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Abstract

In outdoor deployed photovoltaics (PV), standard test conditions (STC) of 25 °C PV
temperature, 1000 Wm™ solar radiation intensity and 1.5 air-mass rarely prevail. PV
temperature can rise 40-100 °C above STC inducing a power drop in crystalline silicon
PV with a coefficient of -0.4 to -0.65 %/K above STC. Increased operating temperature
also results in accelerated PV degradation due to cell delamination allowing moisture
ingress.

Conventional building integrated photovoltaics (BIPV) cooling techniques using passive
or active heat removal by air or water flow are limited by (i) very low heat transfer or (ii)
large capital as well as maintenance costs respectively. A PV cooling technique
employing phase change materials (PCM) exploits latent heat absorption during solid-
liquid phase change in a very narrow range of PCM transition temperature was
investigated.

The current research aims to investigate suitable PCM materials through experimental
characterization in terms of melting point, heat of fusion, thermal conductivity, density
and specific heat capacity to determine the suitability of different PCMs for PV cooling
in different climatic conditions indoors and outdoors employed at small scale cell size PV
systems as well as larger PV panel size system through extensive experimental work
supported by the reasonable numerical modeling to determine the associated power

improvement of PV through cooling produced by PCM.
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Indoor experiments were conducted at small scale cell size PV at 500 Wm?, 750 Wm™
and 1000 Wm™ insolation representative PV operating condition that would require PV
cooling in most cases. The effect of (i) thermal mass of PCM (ii) melting point of PCM
and (iii) thermal conductivities of PCM and PV-PCM system on temperature regulation
performance of PCM was observed. Two out of five PCM, a salt hydrate (CaCl,.6H,0)
and a eutectic mixture of capric -palmitic acid (CP), , an aluminium alloy based PV-
PCM systems were found optimum for PV temperature regulation at most of the solar
radiation intensities. To extend experiments on PV panel size systems, A larger scale PV-
PCM system with dimensions 700 cm x 600 cm with metallic fins was fabricated. PCM
CaCl,.6H,0 and CP found optimum through cell size experiments were characterized at
500 Wm'z, 750 Wm™ and 1000 Wm™ insolation contained in the large scale PV-PCM
system. The experiments on large scale PV-PCM systems showed promise for PV
cooling provided by PCM and associated power gain. PV-PCM systems were then
characterized outdoors in Dublin, Ireland (53.33 N, 6.25 W) and Vehari, Pakistan (30.03
N, 72.25 E) to observe their performance in real time outdoor condition in different
climates. Higher PV cooling and associated power savings were observed in climate of
Vehari than that of Dublin. Out of the two PCMs, CaCl,.6H,O achieved higher PV
cooling and power saving than CP. In the best case, peak PV cooling of 21.5 °C with
associated measured peak power saving of 13 % and predicted peak power saving of 14
% were recorded in Vehari on 30-10-2009. The results show that PCM are an effective

way to cool PV and maintain higher power outputs in higher insolation climates.
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CL
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DSC
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PV
PV-PCM;
PV-PCM,
PV-T
RET

STC
THM
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Nomenclature

A

A

A;

Apy

Bi

Cp,i

FF
FFst

FFr

Gr

Surface area [mz]

Convective heat transfer area of the tube [mz]

Integral of time-temperature curve during liquid phase
= [t [°Cs]

Integral of time-temperature curve during phase change

- [-rana e
Integral of tircrlle—temperature curve of solid PCM till thermal
equilibrium with ambient = § ((T—T.,.)dt [°Cs]
Area of the PV exposed to sc:iar radiations [m2]
Biot number (-]
Specific heat capacity of liquid PCM [kag'lK'l]
Specific heat capacity of solid PCM [kag'lK'l]

Specific heat capacity of glass tube [kJkg 'K
Specific heat capacity of water [kIkg 'K']
East [-]

Fill factor (-]
FF neglecting temperature influence (-]
FF calculated considering temperatures influence [-]
Solar radiation [Wm™]
Grashof number [-]
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Latent heat of fusion
Sensible enthalpy

Convective heat loss coefficient

Combined convective and radiative heat

loss coefficient

Current

Short circuit current

Short circuit current density
Length scale

Liquid fraction

Mass

Mass of PCM
Mass of glass tube

Mass of distilled water

North

Nusselt number

Normal operating cell temperature
Electrical power

Peclet number

Pressure

Boundary pressure

Maximum power point

Prandtl number

[kikg ']
[klkg ']

[WmZK']

[Wm?K]
[A]
[A]
[Am™]

[m]

[ke]
[ke]
[ke]
(kel

(-]

[°C]
[W]
[-]
[Nm™]
[Nm™]
[W]

[-]
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Ste

Power saving

Power produced by PV at a temperature T

Heat lost from PV available to PV-T

Heat storage capacity

Volumetric heat source

Radiation flux

Unit charge

Radius of the glass tube

Raleigh number

Reynolds number

Series resistance

Shunt resistance

Source terms in momentum equation
Source term in energy equation

Stanton number

Stefan number

Ambient temperature

Temperature coefficient of power drop
Temperature of PV cell

Temperature coefficient of fill factor

Interface temperature

Equilibrium temperature of melting/freezing

Temperature coefficient of power

[W]
[W]
[J]

[KJK™]

[Wm]

[C]

[°C]
[°C]
[°C]
[-]
[°C]
[°C]

[%/C1
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Tpy Temperature of the reference PV

Tevecu Temperature of PV-PCM

T, Reference PV temperature

T, Surface temperature

Tsun Temperature of sun

T, Surface temperature

Uuj Actual fluid velocity

Upy Overall heat loss coefficient

Vv Output voltage

v Superficial velocities in y direction
Ve Open circuit voltage

Vi Wind speed

w West

w Superficial velocities in z direction
Wi Interface velocity

X Position of the interface

o Thermal diffusivity

Opy Absorptance of PV

S Thermal expansion coefficient
I Thermal regulation enhancement
AT Change in temperature

y Heat flow into the solid phase

n Efficiency

[°C]
[°C]
[°C]
[°C]
[°C]
[°C]

[ms™]

[Wm?ZK!]

[V]
[ms™]
[V]

[ms™]

[ms™]
[ms™]
[m]
[m’s™]
-]
[K']
[°C-min]

[°C]

[%]

[Js]



0 Coefficient of solar irradiance [-]

Ne Energy efficiency of PV system [%]

Ny Reference PV module efficiency [%]

K Thermal conductivity [Wm™'K"]
Ks Thermal conductivity solid phase [Wm_lK'l]
Ky Thermal conductivity liquid phase [Wm™'K"]
A Porosity (-]
u Superficial fluid velocity [ms™']
i Superficial fluid velocity [ms™]
m Kinetic mobility [-]

v Kinematic viscosity [m’s™]

£ Half mushy zone [-]
p Density [gem™]

U Stefan Boltzmann's constant [ Wm?K*]
T Transmittance of PV [-]

Definitions of Dimensionless numbers

Gr = Grashof number- is the ratio of buoyancy forces to viscous forces acting on a fluid.
It determines the transition from laminar flow to turbulent flow for natural convection
heat transfer in fluids. The natural convection is laminar at lower Gr while it is turbulent

at higher Gr values, the transition to turbulent flow occurs at 10’ < Gr <10®. For vertical
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heated wall, similar to the PV wall heated by incoming solar radiation in current work,

the Gry is:

g.B(Ts - Too)l3
= T

GT'[
Where g is the gravitational constant, £ is the coefficient of thermal expansion of PCM,
T, is the surface temperature, T, is the bulk temperature, v is the kinematic viscosity of
PCM, x= is the thermal conductivity of the PCM, p is the density of the PCM, c,is the

specific heat capacity of the PCM and [ is the distance from the front surface.

Nu; - Nusselt number- is the ratio of convective to conductive heat transfer normal to a
boundary. A Nu; number close to unity shows that the convection and conduction are of
similar magnitude and that the flow is laminar. A larger value of Nu; shows the presence
of strong convection and the transition of fluid flow from laminar to turbulent, the

turbulent flow happens at Nu; values in the range of 100-1000.

h.l
Nul=—c
K

Where 4. is the convective heat transfer coefficient.

Pe; = Peclet number- is the ratio of rate of advection of a physical quantity by flow to

the rate of diffusion of the same quantity driven by appropriate gradient. It describes the
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transport phenomena in a fluid flow, in context of the heat transport it is the product of

the Reynolds number and Prandtl number.

Pel =Rel.PTl =T

pCy

Where v is the velocity of the fluid.

Pr = Prandtl number - is the ratio of momentum diffusivity to thermal diffusivity. It can
be observed that the Pr depends only on the fluid and its physical state and does not
include any length scale variable. Low Pr values (i.e., 0.015 for Mercury) indicate that
conduction is effective with thermal diffusivity dominant while high values (100 — 40000

for engine oils) show that convection is effective with momentum diffusivity dominant.

Whew p is the dynamic viscosity of the fluid.

Ra = Raleigh Number - is the product of the Grashof number (Gr,) and Prandtl number
(Pr). The Ra mostly occurs at 10°-10° for most of the engineering problems. The lower
Ra values show stronger conduction heat transfer while the higher values shows strong

convection heat transfer in the fluids.

Ra = Gr,..Pr = 9k (Ts — To)x3
va
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Where a is the thermal diffusivity.

Reynolds Number (Re)-is the ratio of internal forces to viscous forces. The Re describes
whether the fluid flow is laminar or turbulent. The Re value showing transition from
laminar to turbulent flow depends on the geometry of the system in which fluid is
flowing (i.e., in a pipe with a fully developed flow, the laminar flow occurs at Re < 2300

and the turbulent flow occurs at Re > 4000).

Stanton number (S?)- is the ratio of the heat transferred into the fluid to the thermal
capacity of the fluid. It is used to measures the heat transfer in the forced convection

flows. It can also be written in terms of Nusselt, Reynolds and Prandtl numbers.

Nu  he

St = =
Re.Pr c¢,pv

Stefan number (Ste) is the ratio of sensible heat to the latent heat.

Where AT is the temperature difference between phases and H is the latent heat.
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1 INTRODUCTION

1.1 World Energy Outlook

World primary energy demand is projected to increase by 40 % by 2030 compared to
reference scenario in 2007 (IEA, 2009 a). This increase will be met by 77 % share of
fossil fuels and 23 % share of the renewable energy sources (IEA, 2009 a). The CO,
emissions will increase from 28.8 Gt CO, equivalent in 2007 to 40.2 Gt CO;,
equivalent in 2030. With a 25 % probability that the global temperature does not rise
above 2 °C, the CO, emitted needs to be below 1 trillion tonnes over the period 2000-
2049, of which 313 billion tonnes have already been emitted from 2000-2009 (IEA,
2009 a). If the present trend continues, global temperature will rise by 6 °C toward the
end of this century (IEA, 2009 b).

All proven global oil and natural gas reserves are predicted to be economically usable
and exploitable until 2048 (Goswami, 2007) and 2065 (Breeze, 2005) respectively if
the current trend in consumption growth continues with the little hope for them being
cost competitive in future with the current trend in price hike. Nuclear power as an
immediate alternative to fossil fuels is also unlikely to provide a significant proportion
of energy need in near future in due to political issues, unavailability of technology to
most of the world nations, finite resources of nuclear fuels (currently uranium) and
risk of nuclear accidents (Kreith and Goswami, 2007). Due to the finite fossil fuel and

nuclear reserves, renewable energy technologies (RETs) must provide an increasing



proportion of future energy if the world’s population are to expect a secure and

sustainable developed society.

. PV
Proportion of global (0.015 %)
electricity production hydro
(16.41 %)

wind + tide +

coal . geothermal + other
(40.78 %) (1.05%)
nuclear
(14.69 %)

oil gas
(5.76 %) (20.02 %)

Figure 1.1 Supply of global electricity production by fuel type in 2006 (IEA, 2009 a).

Electricity generation currently accounts for over 30% of global primary energy
demand (Kreith and Goswami, 2007). In 2006, RETs provided 18% of electricity
supply while photovoltaics (PV) supplied 0.015 % when PV production was only
1603 MW, as shown in Figure 1.1 (IEA, (2009 a). From 2006 to 2009 PV production
has increase to 6,802 MW, and is expected to reach 22,325 MW/, at the end of 2013
(EPIA, 2010), 14 times more than it was in 2006. PV converts solar energy, whose
potential is such that one hour of solar energy falling on earth could meet the current

global annual primary energy demand (Morton, 2006). The immense potential of solar



energy along with rapidly increasing share of PV in energy supply clearly shows PV

has an important role in long-term future energy supply.

1.2 Introduction to Photovoltaic Devices

Photovoltaics (PV) are renewable energy systems which convert sunlight directly into
electricity. Incoming solar radiation (G) is absorbed by a semiconductor absorbing
material that generates electron-hole pair mobile charge carriers responsible for an
electric current (Wiirfel, 2005). PV devices are classified according to the type of
light absorbing materials, thickness of the absorbing material and application of the

PV.

1.2.1 Quantum Efficiency of Photovoltaic Cells

Not all solar radiation (G) falling on the PV surface is involved in the electrical
conversion process. Only G with energy equal to or above the band gap of the cell
material takes part in conversion process. Incoming G is either (i) reflected back from
the surface of the cell, (ii) transmitted through or (iii) absorbed by the PV cell
material. The ratio of absorbed G to incoming G is called the "external quantum
efficiency” of the PV cell (Yang, et al., 2008). Absorbed G generates electron-hole
pairs which travel to their corresponding electrodes. Electrons that reach the
electrodes successfully to travel through an external circuit to combine with the holes
from the other side of the junction are responsible for the photo-generated current
available from the cell. Electrons that recombine with the holes in the bulk material

before reaching electrodes do not contribute to the electrical current from the PV cell
3



and constitute "recombination losses" (Gangadhar and Bhattacharyya, 1968; Lu,
1996). The ratio of electrical current produced from the cell to the absorbed G is

called "internal quantum efficiency" (Yang, et al., 2008).

1.2.2 Maximum Power Point

PV can operate over a wide range of voltage (V) and current (/) depending on the
resistive load applied in the external electrical circuit. Applying a very low resistance
results in a negligibly small V and maximum / termed as "short circuit current". By
increasing the load, I decreases and V increases, at a very high resistive load I is
negligibly small and V is very high which is "open circuit voltage". Since the power is
product of V and I, no power is produced at either open circuit or short circuit
conditions as either I or V becomes zero. The load for which PV yields optimum V
and / producing maximum electrical power (P) is called the "maximum power point"

P,.. P,, varies with G and PV temperature.

Current (A) Optimum

Voltage (V)
Figure 1.2 I-V characteristic curve of a PV showing the maximum power point

(Suntechnic, 2006)



1.2.3 Electrical Conversion Efficiency

A solar cell's rated electrical conversion efficiency, # is the ratio of G converted to
electricity at P,, to the total G falling on the PV surface area (A) when a solar cell is
connected to an electrical circuit at standard test conditions (STC). STC are 1000
Wm™ solar radiation intensity (ASTM G 173-03, 2003), 25 °C PV temperature and

1.5 air mass solar spectrum (NREL, 2007)
n=—=>= (1.1)

The highest reported efficiencies are summarised in Figure 1.2 (Kazmerski, 2008)

Figure 1.3 Electrical energy conversion efficiencies of different types of PV cells

(Kazmerski, 2008)



1.2.4 Fill Factor

The "Fill factor" (FF) is defined as a ratio of P,, to the product of open circuit voltage
(V,¢) and short circuit current (/;.) that determines actual performance of the solar cell

given by equation 1.1.

FF=—" (1.1)

FF decreases with increasing series resistance. Series resistance depends strongly on
temperature, 7 and weakly on G so indirectly FF is a weak function of G and strong

function of T (Nelson, 2003).

1.3 Effect of Temperature on Photovoltaic Power

Effect of temperature on power output and long term stability of PV cells and
modules have been widely studied both indoors and outdoors (Radziemska and
Klugmann, 2002). The normal operating cell temperature (NOCT) for different cells
is very important parameters for the service life of the PV cells and required for
design qualification for universally acceptability of the PV and its structural stability
to operate in different operating temperature. The NOCT is supplied by the PV
manufacturers which normally lies in the range of -40 °C to +85 °C (Suntech, 2007)
for crystalline PV cells. Depending on PV cell and encapsulation materials, different
responses of PV cells and modules to temperature increase beyond characterization

and NOCT have been reported as are described in the following sections.



1.3.1 Crystalline Silicon Photovoltaic Cells

For crystalline silicon PV the influence of temperature and wavelength on electrical
parameters of crystalline silicon solar cells and modules are illustrated in figure 1.4.
PV voltage decreases while current increases with increasing temperature however the
increase in current is much less than the decrease in voltage (Radziemska and

Klugmann, 2002).

0.4
P W]
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0

0.3 60°C
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(a) (b)

Figure 1.4 Effect of temperature on power output of the crystalline PV (a) output

power against voltage (b) temperature dependence of the maximum output power

Figure 1.4 shows power output for a polycrystalline silicon solar cell with voltage
where temperatures range from 28 °C- 80 °C. From the figure 1.4 b it is clear that
temperature elevation reduces PV power output (Radziemska and Klugmann, 2002).
At elevated PV module temperatures reduced power output has been reported for
crystalline silicon solar cells with a temperature induced power drop coefficient of -

0.5 % °C ™" to -0.65 % °C"' (Radziemska, 2003; Breteque, 2009).



1.3.2 Amorphous Silicon Solar Cells

Temperature has a very different effect on the performance of amorphous silicon solar
cells. Initially they show decreased power output with increasing temperature
(Hoheisel et al., 1991) but after prolonged exposure the power output stabilizes due to
temperature-induced recovery of the light induced degradation and the efficiency of
the cells is stabilized at higher temperatures. (Yoshihiro, and Shingo, 1994;
Gottschalg, et al., 2005; Shima, et al., 2005). The performance of amorphous PV
modules with insulated and uninsulated back was monitored for 2 years; the insulated
back PV being at 4.2 °C higher temperature than uninsulated back PV produced 7.3 %
higher power output for the duration of the experiment (Yamawaki, et al., 1997). It
has also been demonstrated that for prolonged exposure, performance of amorphous
silicon solar cells takes into account of temperature and illumination history of the
cells. The cells may respond differently to same temperature and illumination during

different seasons of the year as shown in the figure 1.5 (Fukushige et al., 2009).



Figure 1.5 Long time performance monitoring of amorphous silicon solar cells
showing that the amorphous PV produces different output power during different

seasons at same PV temperatures.

1.3.3 GaSb and GaAs Cells

The effect of temperature on electrical output of GaAs and GaSb have been studied
between temperature range of 0 °C to 120 °C which showed a power reduction of

-0.28 % °C" and -0.84 % °C™' respectively (Siefer, et al., 2005) due primarily to
decreased V,.. A GaAs PV cell produced 80 % of its nominal power at 90 °C

(Ferguson and Fraas, 1995).



1.3.4 Dye-Sensitized Solar Cells

Dye sensitized solar cells have been studied at temperatures 5-55 °C. They have
shown an increase in power output from lower temperatures up to maximum 40 °C.
At temperatures higher than 40 °C, decreased power output with increasing
temperature have been observed as shown in figure 1.6 (Berginc et al., 2007) . At
lower temperatures the current is limited by low diffusion of charge carrier (i.e.tri-
iodide) and temperature needs to increase to get higher current. At higher
temperatures above 40 °C the recombination losses dominate over diffusion current
and the current starts decreasing resulting in decreased power output. The optimum
current is achieved at intermediate temperatures which depends on the concentration

of the charge carrier (Berginc ef al., 2008)

Figure 1.6 Dependence of the V. and ;. (Jsc) on the temperature of dye sensitized

cells.
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1.3.5 Organic Solar Cells

In polymer-fullerene organic PV cells increasing temperature results in increased
current and decreased voltage, however the increase in current is higher than the
decrease in voltage resulting in a net increase in power with increasing temperature.
Temperature induced increase in power is followed by a saturation limit, primarily
due to saturation current normally occurring in the range of 47 °C - 60 °C (Katz, et

al., 2001; Kumar et al., 2007).
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Figure 1.7 Temperature dependence of organic PV cells showing an increase in
efficiency (power output) with increasing temperature from 0 °C-120 C, a decrease in
efficiency from 120 °C-200 °C, a peak in efficiency at 200 °C and then continued

decrease in efficiency from 200 °C -300 °C.
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1.3.6 Temperature Induced Structural Damage in Photovoltaic Panels

Crystalline silicon PV exposure to high outdoor temperatures above 85 °C have been
reported to induce structural damage in PV panels resulting in moisture ingress, in 17
months (Igari et al., 1994). Damage of PV after five years has been reported primarily
due to delamination of encapsulating material ethylene-vinyl-acetate (EVA) along
with semiconductor degradation resulting in PV power drop of 1 % annually
(Berman, et al., 1995). In another study a performance degradation of 4.8 % for single
crystalline and 2 % for polycrystalline silicon PV has also been reported after five
years of outdoor exposure (Machida et al., 1997). Moisture ingress results in a
reduced active area, corrosion in the metallic contacts, reduced photon absorption
leading to reduced charge carrier generation and reduced current resulting in up to a
net 14 % drop in power output (Machida, et al., 1997; Saly et al., 2001; Gxasheka et

al., 2005).

1.3.7 Outdoor Temperatures Recorded at Photovoltaic Devices

The PV operating temperature depends on the site where they are deployed (Biicher,
1997). The operating temperature of crystalline silicon PV cell considering ambient
temperature and solar radiation and module temperature (Mattei, et al., 2006) may be

calculated from equation 1.2.

_ UPVTamb + G[(apv’[)—ﬂr _Tcanr]
cell UPV _ %

(1.2)

Where 7, is reference module efficiency, 7, is the PV cell reference temperature
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(typically 25 °C), G is the solar irradiance on the module ( typically 1000 W m™), 6
is the solar irradiance coefficient of PV power which describes the effect of solar
radiation intensity on the PV power, T, is the temperature coefficient of the PV power
which describes the effect of PV temperature on power output of PV module, 7., is
PV cell temperature which depends on environmental conditions, Upy is overall heat
loss coefficient of PV which considers only convective heat loss ignoring radiative
heat loss from the PV panel, a,, is absorptance of PV and 7 is transmittance of PV
encapsulation. This model assumed that the PV cell and cover have the same
temperature while the temperature is uniformly distributed over the PV surface.

Mathematical correlations have shown that the PV operating temperature and
associated power drop largely depends on climate where the PV panels are deployed
(Skoplaki, and Palyvos, 2009). In Germany 50 % of the solar radiation incident on a
PV panel is above 600 Wm™ while in Sudan this value reaches 80 % resulting in
different operating temperatures and associated power drop (Biicher, 1997,
Emmanuel, 2009). A maximum PV operating temperature of 125 °C has been
reported in southern Libya (27.6 N and 14.2 E) resulting in a 69 % reduction in the
nominal power (Nassar, et al. 2007). The advisable operating temperature limit for
PV ranges from -40 °C to 85 °C (Suntechics, 2008), however in hot and arid climates,
PV temperature frequently rises above this temperature range (Nassar et al. 2007),
which results in temperature-induced power failure as well as PV cell delamination
and rapid degradation (Saly et al., 2001) urging a strong need for PV temperature

regulation to maximise both panel lifetime and power output.
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1.3.8 Effect of Photovoltaic Building Integration on Photovoltaic Temperature

Integration of the PV into building fagades thermally insulates back of PV panel when
compared to free standing PV. In a study this thermal insulation has resulted in 20.7
°C increase in PV temperature leading to a 9.3 % decrease in electrical yield of PV
facade due solely to its building integration which produces thermal insulation at PV
back (Krauter et al., 1999). A similar result has been reported by
(Tripanagnostopoulos et al., 2002) who compared free-back-PV with an insulated-
back PV and reported that temperature increased from 43 °C in free back PV to 55 °C
in insulated back PV (representing BIPV) resulting in a 9 % decrease in PV
efficiency in Greece. In a computational study conducted for weather conditions of
Macau, China, a 260 m? BIPV wall was modelled and a temperature of 85 °C was
predicted on such BIPV system in July (Chow ef al., 2003). In a separate study,
integration of a PV into a building in Macon, France was reported to reduce PV
annual conversion efficiency by 2.6 %, resulting in PV power drop of 28 % due to

increased PV temperature caused by building integration of PV (Fraisse et al., 2007)

1.4 Cooling of Photovoltaic Devices

Different passive and active heat removal techniques have been used to maintain PV
at low temperatures. Passive heat removal in free standing PV relies on the buoyancy
driven air flow in a duct behind the PV. Active cooling of PV relies on air or water

flow on the front or back of the PV surface.
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1.4.1 Passive Cooling by Arranging a Duct Behind Photovoltaics

This passive technique is the most conventional for PV cooling and employs a duct
with length L behind the PV installed at an angle & to the horizontal as shown in
figure 1.8. The incident thermal energy ¢ is removed by the buoyant circulation of air
moving with velocity u acting as heat transfer fluid to regulate PV temperature., effect
of which has been studied and a temperature decrease of 20 °C has been reported by
heat removal due to buoyancy driven air flow (Brinkworth et al., 1997). A design
parameters study of the duct found that cooling of PV is enhanced significantly due to
wind which increases the heat loss from the PV front surface and increases the air
flow into the duct (Brinkworth, 2000). Optimisations of cooling ducts have found that
the ratio of duct length to the hydraulic depth of 20 gives the optimal cooling of the
PV (Brinkworth and Sandberg, 2006) with the ratio not being affected significantly by

the slope of the PV array.

Air out
PV panel

Roof

Air in

Figure 1.8 Schematic diagram of a duct behind PV (Brinkworth, B. J. and Sandberg,

M., 2006)
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1.4.2 Air Gap Ventilation of Building Integrated Photovoltaics

Passive heat removal in building integrated photovoltaics (BIPV) relies on buoyant
circulation of air in an open air channel behind the PV (Sandberg and Moshfegh,
1998; Gan, and Riffat, 2004; Lee, et al., 2009). A theoretical analysis of buoyancy
driven air flow in such a design showed a maximum 5 °C temperature reduction in
averaged monthly temperature resulting in a net 2.5 % increase in yearly electrical

output of the PV (Yun et al., 2007).

PV panel
Incident insolation

Back insulation

Figure 1.9 Schematic diagram of a ventilated roof (Lee et al., 2009)

Effect of air flow at (i) different inlet velocities (ii) front and (iii) back air gaps in PV
was modelled and a maximum 34.2 °C front surface temperature decrease was
predicted at air inlet velocity of 1 ms™ at front and back air gap of 20 mm (Mallick et

al., 2007). Though the temperature reduction and the associated prevention of power
16



drop is very low in such PV systems, improvements can be made in the air channel by
(i) suspending metal sheets (ii) inserting fins and (iii) optimising distance between the
walls (Fossa et al., 2008). A ventilated facade has been recently reported by
numerical simulations to achieve a maximum of 40 % net electrical and thermal

energy savings in summer times due to PV cooling (Patania et al., 2010).

1.4.3 Hybrid Photovoltaic Thermal Systems

A hybrid PV-T facade element combined with active water cooling has achieved a
temperature decrease of 20 °C and an electrical power improvement of 9 % (Krauter
et al., 1999). The temperature of the PV applying PV-T with air and water has been
reported to drop from 55 °C to 41 °C and 38 °C respectively yielding an 11 % and

13.3 % increase in efficiency respectively (Tripanagnostopoulos et al., 2002).

AN

a PV /WATER c PV /AIR
PT— T
1
/
/ // g
b PV /WATER + GL d PV/AIR +GL

Figure 1.10 Schematic diagrams of a typical PV-T commonly used, (a) unglazed PV-
T with water as coolant (b) glazed PV-T with water as coolant (c) unglazed PV-T
with air as coolant (d) glazed PV-T with air as coolant.
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Although PV-T achieved higher temperature reduction and power output than PV
alone, in summer when there is no heating demand, heat insulation effect on the back
of PV results in increased PV temperatures above 100 °C. At this higher temperatures
PV shows structural damage as the EVA in the PV modules can not withstand this
temperature for prolonged exposure (Fraisse et al., 2007) which finally reduced the
PV life. Low cost improvement have been suggested in air cooled PV-T by inserting
fins and thin metal sheets (TMS) in the air channel to avoid over heating in summer as
shown in Figure 1.11 (Tonui and Tripanagnostopoulos, 2007). A review of PV/T
systems have been made which describes the types of PV-T systems based on their
design and heat transfer fluid, their different design parametric studies, their
effectiveness in different operating conditions through experimental and modelling

work (Charalambous et. al, 2007)

Figure 1.11 Cross section view of air cooled PV-T collector showing reference PV-T,

PV-T with thin metal sheets (TMS) and PV-T with fins arrangement.
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1.4.4 Hydraulic Cooling of Photovoltaics

Hydraulic water flow over the front surface of the PV can decrease the cell
temperature by up to 22 °C and can improve electrical output by 10 % after
subtracting the power consumed by pump; however the initial and maintenance costs

for the pump were ignored (Krauter, 2004).

d b o watertank
[F———1]
—
water in
water in
waler gut
cooled and improved EV system pv module

water to drain

Diagram L A. Proposed cooling system. B, Simulated system.

Figure 1.12 Schematic of a gravity fed water cooling technique (Wilson, 2009)

A gravity fed water cooling technique has also been devised which has theoretically
reduced PV cell temperature by 28 °C due to water cooling from initial 62 °C
(Wilson, 2009). Although such systems are cost effective and simple, at higher
temperature regions a very high water flow rate is needed which increases the

pumping power and capital investment.
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1.5 Research Aims and Proposed Methodology

Part of the energy carried in solar radiations falling on the PV surface is reflected
back from the PV surface while most of it is absorbed in the PV. A certain part of the
absorbed energy corresponding to the PV conversion efficiency is converted into
electricity while the rest transformed to thermal energy. The absorbed thermal energy
increases the PV temperature which has a strong negative impact on the electrical
output of the PV as well as on their long-term operation reliability which urges the
need of PV temperature regulation. Previous research on temperature regulation of PV
to prevent temperature dependent power drop have applied different active and
passive cooling techniques however almost each of the techniques is restricted by one
or the other factors like (i) high initial costs, (ii) operation and maintenance costs, (iii)
low heat removal rate and (iv) inability to produce cooling in higher temperature
summer environments.

A novel PV cooling technique using solid-liquid phase change materials (PCM) to
overcome the above stated limitations was employed by (Huang et al., 2004, 2006a,
2006b). The solid liquid PCM can absorb large amount of latent heat while melting at
a constant temperature and regulate PV temperature close to their characterization
temperature.

The detailed energy flows in such a PV-PCM systems are shown in Figure 1.13. The
technique can combine the benefits of high heat transfer rates achievable in active
heat dissipation systems and low operating and capital costs achievable in passive
systems. Incorporating PCM with PV to form a PV-PCM system may enable PV to

achieve energy conversion efficiencies closer to those at the standard cell

20



characterisation condition of 25°C. Additionally the large amount of heat stored as
latent heat in PCM can potentially be used for further applications of water or space

heating converging to a new type of PV-T system.

Figure 1.13 The schematic diagram of the energy flow in the PV-PCM system under

investigation

In previous research a rectangular container of dimensions 30 cm x 13.2 cm x 4 cm
fitted with aluminium fins with front side selectively coated containing PCM was
studied (Huang er al., 2004). The fabricated PV-PCM system was evaluated
numerically with a 2D finite volume heat transfer model that was validated
experimentally with paraffin wax RT25 as PCM located behind a PV (Huang et al.,
2006a). For 3D heat transfer analysis, a small scale 3D model was developed and

validated with the experimentally-validated 2D model (Huang ef al., 2006b).
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Aim of the current research is to experimentally investigate the PV cooling technique
introduced by Huang et al. extending its use to (i) identify and thermophysically
characterize new PCMs for their suitability for PV cooling applications (ii)
experimentally evaluate the new PCMs indoors with different PV-PCM system
configurations at various solar radiation intensities to adopt PV-PCM systems for
different weather conditions in order to identify suitable PCM and PV-PCM system
(iii) Integrate the optimum PCM into large scale PV panel size system with optimum
PV-PCM configurations, measure PV temperature regulation achieved by PCM and
quantify the increased electrical output brought about by PV cooling indoors (iv)
Evaluate the PV cooling and increased electrical output through use of the novel PV-
PCM system outdoors by extensive experimentation in different climates i.e. (i) high

latitude cooler climate and (ii) low latitude hotter climate.

Figure 1.14 Schematic diagram of the experimental setup consisting of a PV cell

attached at the front surface of an aluminium container filled with PCM.
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In the present work instead of coated aluminium plate, actual PV cells were attached
to the front surface of small cell size (10 cm x 10 cm x 5cm) PV-PCM systems shown
in Figure 1.14 (Hasan et al., 2010).

Five different PCMs, paraffin wax RT20 (Rubitherm, 2009), salt hydrate CaCl,.6H,O
(Sigmaaldrich, 2009 a), mixture of salt hydrate and paraffin wax SP22 (Rubitherm,
2009), eutectic mixture of fatty acids, capric acid-lauric acid (CL) (Sigmaaldrich,
2009 b), and eutectic mixture of fatty acids, capric acid-palmitic acid (CP)
(Sigmaaldrich, 2009 c), were studied in four different cell size PV-PCM systems.
Extensive indoor experiments were conducted to determine thermal regulation of PV
indoors at 500 Wm'z, 750 Wm™ and 1000 Wm solar radiation intensities to optimise
the PV-PCM system. The best PV-PCM system (system A detailed in chapter 4) and
the best PCM (CP and CaCl,.6H,O detailed in chapter 4) were identified small scale
cell size indoor experiments.

The best PV-PCM system (A) was fabricated at a larger PV panel scale (70 cm x 60
cm x 5 cm) consisting of PV panel, PCM container fitted with straight back to back
aluminium fins and two PCM contained in the PV-PCM system. These PV-PCM
systems were evaluated indoors with a large scale solar simulator at solar radiation
intensities of 500 W'mz, 750 Wm™ and 1000 Wm™. Temperatures and electrical
parameters of PV were measured to quantify thermal regulation of PCM and the
associated improvement in power output.

The PV-PCM systems were then installed outdoors in high latitude cooler climatic
conditions of Dublin, (53.33 N, 6.24 W) Ireland from 28-08-2009 to 15-09-2009 and
in low latitude warmer climates of Vehari, (30.03 N, 72.25 E) Pakistan from 25-10-

2009- 13-11-2009. Temperature and electrical parameters were measured at both
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locations applying the same experimental setup and measurement procedures. It was
found that such systems achieved higher temperature regulations and greater
associated power increase in a warmer climate. In the best case a 21.5 °C peak
temperature reduction was recorded with a predicted peak PV power saving of 14 %

in Vehari, Pakistan
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2 INTRODUCTION TO PHASE CHANGE MATERIALS

Different types of phase change materials (PCM) are summarised along with their
advantages and disadvantages. An overview is provided of research on the
thermophysical properties of PCM. The fundamentals of modelling solid-liquid phase

changes are reported together with major applications of PCMs.

2.1 Phase Change Mechanism

On application of heat, the internal energy of a solid is increased to a specific melting
point at which it becomes a liquid. In pure materials liquefaction/solidification occurs
at the distinct temperature 7, which is known as equilibrium temperature of
melting/freezing. This temperature depends solely on pressure and is constant if
melting/solidification proceeds at a slow rate. In this case no curvature of the solid-
liquid interface is present and no significant difference in specific heats between
phases exists. For phase transformation occurring at the equilibrium temperature, the
latent heat of melting corresponds to difference of the products of solid and liquid
phase densities and specific enthalpies at the temperature 7,, (Banaszek et al., 2005).

Phase change materials (PCM) absorb or releases large amount of heat at constant

phase transition temperature when they undergo phase change as shown in Figure 2.1.
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Figure 2.1 Theoretical phase change diagram of solid-liquid phase change materials.

PCM exhibit solid-liquid, liquid-gas phase change and vice versa. Although liquid-to
gas phase change also involves heat absorption, yet they show large volume changes
during phase change. Thus to exploit the heat from liquid-gas phase change, very
large containment volumes are required. Solid-liquid PCM are particularly promising
as they show very little volume change during phase change which enables heat to be
stored in a smaller volume.

Absorption of a large amount of heat at constant temperature during phase change is
one of the main advantages of PCM. The isothermal nature of heat absorption and
release shown in figure 2.1 renders PCM a suitable candidate for thermal energy

storage and temperature control applications.
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2.2 Classification of Phase Change Materials

PCM are classified as organic, inorganic and eutectic mixtures. Organic PCM consist

of paraffin wax and fatty acids, inorganic PCM consist of salt hydrates and eutectic

PCM consist of both organic and inorganic materials.

disadvantages of each of the PCM class are summarised in table 2.1.

The advantages and

Organic Inorganic Eutectics
e Availability in a large e High volumetric latent heat e FEutectics have  sharp
temperature range storage capacity melting point similar to
e Freeze without much super e Low cost and easy availability pure substance
cooling e Sharp melting point ® Volumetric storage
" e Ability to melt congruently e High thermal conductivity density is slightly above
o ¢ Self nucleating properties o High heat of fusion organic compounds
g ¢ Compatibility with e Low volume change
g conventional — material  of e Non-flammable
o construction
< ¢ No segregation
¢ Chemically stable
e High heat of fusion
e Safe and non-reactive
e Recyclable
e Low thermal conductivity in ® Change of volume is very high ® Only limited data is
their solid state. High heat e Super cooling is major available on  thermo-
transfer rates required during problem in solid-liquid physical properties as the
the freezing cycle transition use of this materials are
% ¢ Volumetric latent heat storage o Nucleating agents are needed very new to thermal
g0 capacity is low and they often become storage application
= ¢ Flammable. This can be imperative  after  repeated
g easily alleviated by a proper cycling
2 container e Corrosion causes damage to
= ¢ Due to the cost consideration containment materials and
A only technical grade paraffins reduces the life of containers
may be used which are e Severe dehydration during
essentially paraffin mixture thermal cycling yields mass
and are completely refined of loss, increase in melting point
oil and decrease in latent heat.

Table 2.1 Summary of advantages and disadvantages of different types of phase

change materials (Sharma ef al, 2004; Sharma, 2005, Sharma et al. 2009)
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2.3 Thermophysical Properties of Phase Change Materials

Fatty acids, myristic acid, palmitic acid and stearic acid having melting temperature
ranges of 50 °C-70 °C have been investigated for thermal energy storage (Hasan and
Sayigh, 1994). Their densities and dilation volumes were measured using dilatometry
techniques and thermal cycling properties were measured using differential scanning
calorimetry. It was found that fatty acids were stable to thermal cycling showing little
change in melting points and heat of fusion. Thermal properties of binary and ternary
mixtures of palmitic acid, stearic acid and oleic acid have also been measured. It has
been reported that a reversible solid-solid phase change in oleic acid occurs before
melting and a liquid-liquid phase change before solidification (Cedefio et al., 2001) .
The thermal properties of capric acid, lauric acid and pentadecane mixtures have been
measured and their use was evaluated for cooling applications (Dimaano and
Watanabe, 2002). An improvement in the melting characteristics of capric-lauric acid
mixture was observed by addition of 10 % pentadecane to the mixture (Dimaano and
Watanabe, 2002).

The total melting and solidification time and the effect of Reynolds and Stefan
number on the phase transition behaviour of encapsulated eutectic mixtures of lauric
and stearic acids have been described (Sari and Kaygusuz, 2002). Corrosion and
thermal stability of stearic, palmitic, myristic and lauric acid were investigated for
metallic containment while subjecting them to thermal cycling (Sari and Kaygusuz,
2003; Sari et al., 2004). It was concluded that palmitic and myristic acid may be
suited for long-term thermal energy storage with respect to thermal cycling. Stainless
steel with chromium oxide (Cr,O3;) and aluminium with aluminium oxide (Al,O3)
were found compatible with fatty acids with respect to corrosion. Thermal

conductivity of PCM may be enhanced using expanded graphite and carbon fibre. A
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linear increase in thermal conductivity of PCM with increasing mass fraction of
expanded graphite and carbon fibre has been reported (Karaipekli et al., 2007).

Paraffin wax has been used in a spiral thermal energy storage unit and its melting
characteristics were monitored (Banaszek et al., 1999). It was concluded that paraffin
melts and solidifies over a range of temperatures and it is difficult to separate sensible
and latent heat effects which lead to time changes in melting and solidification. The
heat transfer characteristics of paraffin wax in granules of 1-3 mm diameter have been
described (Nagano et al., 2004) and the temperature variations in the melting PCM
measured. When preparation of stabilized composites of paraffin with high density
polythene and expanded graphite was investigated (Sari, 2004), it was found that the
thermal conductivity of the composite can be increased by 14%-24% by addition of 3
% expanded graphite. Thermal conductivity improvement of paraffin waxes using
graphite matrix has also been reported (Mills et al., 2006). Heating and cooling time
of aluminium foam filled with PCM were reported to increase as a function of surface
area density of the aluminium foam (Hong and Herling, 2006; Sarier and Onder,

2007).

2.4 Modelling of Phase Change Materials

Modelling of phase change phenomena is one of the most important contemporary
research activities. The phase change mechanism occurs in number of natural and
industrial processes which have significant environmental and financial impact. As
the variety of process involving phase change is increasing, so is the scope and
complexity of modelling. The natural process involving solid-liquid phase change
comprises but not limited to melting of ice on the glaciers due to varying weather

conditions which is becoming increasingly important area of research to observe the
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effects of green house gas emissions. The accurate modelling of the phenomena may
bring understanding about the future aspects of the issue and may guide humanity to
take appropriate measures to avoid future disasters. In industrial processes the
processing of materials in foundry and semiconductor industry is taking much
importance in the present day sciences. Certain measurement constraints involved in
studying the behaviour of materials during solidification in high temperature regimes
have increased the importance of precise prediction of such phenomena through
modelling. Very careful modelling of phase change can predict the behaviour of
materials during cooling and solidification which can other wise be either impossible
to measure or is very costly and time consuming thus bringing a huge saving of time
and cost. Having obtained precise understanding of the solidification phenomena
through predictive modelling tools such materials can be manipulated to obtain
desired material properties and purity grades. The recent modelling activities in the
area of PCM for energy storage and temperature regulation applications are reviewed
below:

Control volume two-dimensional numerical models based on local energy balances
and an enthalpy based approach has been developed. Heat transfer and solid liquid
phase transition phenomena were studied in a PCM-—air spiral thermal energy storage
system (Banaszek et al., 2000). The effects of fluid motion, turbulence of air,
curvature of air passage and free convection in melting wax were accounted for by
boosting heat transfer coefficients. The melting behaviour of PCM by free convection
in concentric annuli of different shapes has been numerically described by a finite
element computational model (Khillarkar er al., 2000). A finite element semi-
analytical model was developed to investigate PCM potential for air conditioning

applications (Vakilaltojjar and Saman, 2001). An effective specific heat capacity
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approach was used (Roy and Avanic, 2001a, 2001b) to study heat transfer in phase
change suspensions in a circular duct. The effect of tube length and bulk Stefan
number on laminar and turbulent flow with constant heat flux were described.

An effective specific heat capacity model was developed to enhance forced
convective heat transfer in microencapsulated phase change slurries (Hu and Zhang,
2002). It was observed that the conventional Nusselt number correlations used to
describe heat transfer in single phase fluids were not suitable to accurately describe
the heat transfer in the microencapsulated PCM and a modification in the correlations
was necessary to study heat transfer. A numerical model for transient natural
convection heat transfer with coupled phase change using fixed solution was used
(Scanlon and Stickland, 2004) to investigate the melting of lauric acid adopting a non-
Boussinesq approach, where the density inversion effects were considered. A fully
implicit two dimensional control volume numerical model based on the enthalpy
formulation was used (Trp, 2005) to describe transient forced convection heat transfer
between the moderate prandtl number heat transfer fluid (HTF) and the tube wall in
shell and tube latent heat thermal energy storage. Banaszek et al., 2005 studied the
physical phenomena of solidification such as formation of mushy zone, variation of
microstructure during solidification and role of convection in growth of solid phase.
Mathematical models for dendrites growth, interface tracking method and interface
non tracking methods, macroscopic modelling of mushy zone and macroscopic
computer simulation methods were used along with experimental techniques to
validate the solidification modelling.

Thermal conductivity and charging/discharging of an inorganic PCM containing
carbon fibre were studied using a Crank Nicolson numerical computational model

based on enthalpy formulation (Frusteri et al., 2006). It was reported that the thermal
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conductivity of the PCM increases linearly with an increase of carbon fibre loading. A
transient finite volume numerical model based on a generalized enthalpy formulation
developed was used (Nayak et al., 2006) to discover the significant effect of a thermal
conductivity enhancer on PCM performance. A simulation model was developed
(Cheralathan et al., 2006) to describe the effect of porosity, Stanton number, Stefan
number, and Peclet number on the thermal energy storage employing a spherical

container containing encapsulated PCM integrated with a chiller .

2.5 Model Development for the PV-PCM system

Solar energy incident on the surface of PV is reflected and absorbed by PV module.
Part of the absorbed light generates electricity and greater proportion converts into
heat. Converted heat raises the temperature of the PV and is also transferred from the
back of the PV to PCM. Heat loss takes place in the system by conduction, convection
and radiation (Huang et al., 2006c, 2006b). Heat transfer mechanism in PV-PCM
systems described previously in figure 1.13 is modelled using a detailed finite element

heat transfer simulation model in FLUENT 6.1.2.2.

2.5.1 Conduction

One dimensional heat diffusion equation is solved for simulating heat transfer in the

solid PCM region. The general form of the equation is (Mills, 1999)

IT_peor _1ar
°x k ot a ot

(2.1)

Here o is thermal diffusivity which is a measure of how quickly a material can carry

heat away from heat source. A material does just not transmit heat and is also warmed
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so a involves both the conductivity x and the volumetric heat capacity pc. In solid
regions, the energy transport equation used by FLUENT has the form:

2 o, o). ..
L pn=2 12y
o’ ax( ax,.]“’

i

2.2)
Where

P = density

T
I cpdT
h — sensible enthalpy = "~

T = temperature
4" = yolumetric heat source
The terms on the right-hand side of eq. 2.2 are the heat flux due to conduction and

volumetric heat sources within the solid, respectively.

2.5.2 Radiation

Radiation can be viewed either in terms of electromagnetic waves or in terms of
transport of photons. Materials can exhibit different radiative behaviour at different
wavelengths. An important consideration in radiative heat transfer is the emissivity.
The P1 (Fluent, 2005a) radiation model used in FLUENT incorporates radiation loss
in the model by using the emissivity of the medium. Emissivity is the ratio of the
radiation emitted by the surface at a given temperature to the radiation emitted by a
blackbody at the same temperature. The simple model in Fluent takes less
computation time as compared to other models. The transport equation for radiation is

(Fluent, 2005a):

—Aq, = a,,G — 4ay,,0T* (2.3)
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Where ¢, = radiation flux, G = incident radiations, o = Stefan-Boltzmann constant

apy = Absorption coefficient and 7' =Temperature. The expression for -Aq, is directly
substituted into the energy equation to account for heat sources (or sinks) due to

radiation.

2.5.3 Convection

Convection is the mode of energy transfer between a solid surface and the adjacent
liquid or gas that is in motion. It involves the combined effects of conduction and
fluid motion (Mills, 1999). There are two types of convection i.e. forced convection
and natural convection. When fluid is forced to flow over the surface by external
mean such as a fan then it is called forced convection. In contrast, natural convection
occurs if the fluid motion is caused by buoyancy forces induced by density difference
due to the variation of temperature within the fluid. In present model only natural
convection is considered as the only heat transfer due to convection that ensues. The
Boussinesq approximation model is used as this achieves faster solution convergence
in the numerical analysis of many natural convection problems. The Boussinesq
approach treats density as a constant value in all solved equations except for the

buoyancy term in the momentum equation (Huang, et al. 2006, Fluent, 2005b)

(p-p,)8=-p,B(T-T,)8 (2.4)

42



Where p, is constant density of the flow, 7, is operating temperature, f is thermal
expansion coefficient. The eq. 2.4 is obtained by using Boussinesq approximation

given in equation 2.5:

P=P, (1_ﬁAT) (2.5)

Boundary pressure for Boussinesq approximation is redefined as given by equation
2.6 (Fluent, 2005b)

F =p,gx+F (2.6)

Here p, is atmospheric pressure, p is the operating density of air, g is the

gravitational acceleration and Xis the height of inlet.

2.5.4 Heat Transfer in PCM

An enthalpy formulation based fixed grid methodology is used in FLUENT for the
numerical solution of convection-diffusion controlled mushy region phase-change
problem (Fluent, 2005c). In pure materials, phase change takes place at a distinct
temperature. However in metallurgical alloys, phase change takes place over a

temperature range (Voller and Prakash, 1987).

§<T<-¢ (2.7)

Here ¢ is half mushy range, that is, the evolution of latent heat has a functional
relationship with temperature e.g. AH = f(T'). The enthalpy of the material (the total

heat content) can be expressed as H=h+AH i.e. the sum of sensible heat,h=cT

and latent heat AH which is specified as a function of temperature. As latent heat is

43



associated with the liquid fraction in the mushy zone, a general form f(7) can be

written:

L, T2T,
f(T)={L(1-F,)T,>T =T, (2.8)
0, T<T,

Where L is the fully liquid fluid, F,(7) is the local solid fraction, 7, the liquid
temperature at which solid formation commences and 7, is the temperature at which

full solidification is achieved.

2.5.5 The Governing Equations

The forms of governing equations are similar to the equations for an isothermal phase
change in a cavity Voller er al. 1985, Voller at al., 1986 and Voller et al.,

1987. In FLUENT, the entire cavity is regarded as porous medium, where the porosity
is the ratio of volume of void spaces to the total volume of a medium)

A takes the value A=0 in the solid phase and in the liquid phase, and O< A<1 in the
mushy zone. The governing equations can then be written in terms of velocity defined

as:

u=Au, 2.9

Where u, is the actual fluid velocity. On recognizing that the porosity A =1-F,, the

above relationship can be expanded to give

u, in the liquid phase
u=1(1-F,)u,in the mushy zone

0 in the solid phase
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Using this definition along with the assumption of Newtonian, incompressible,

laminar flow the governing equations are as follows (Patankar, 1980)

Conservation of Mass

dv  ow
Lo _

v ow_ 2.10
dy 0z 10

Where w and v are the superficial velocities in the z- and y-directions, respectively.

Conservation of Momentum

0
M+div(,0uv)=div(,ugmd v)—a—P+SV (2.11a)
ot dy
0
(E';W)+div(puw)=div(,ugmd vv)—?)—P+SZ +S, (2.11b)
Z

Where P is pressure, p is density, g is the liquid viscosity, u = (v, w), and

S,,S. and S, are the source terms.

Conservation of Energy

The heat equation is given as below:

ala';th—l_ div(puh)=div(a grad h)-S,=0 (2.12)
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2.5.6 Discretized Form of the Equations

To numerically solve the governing equations along with the associated source terms a finite
domain method is used (Voller and Prakash, 1987). The finite domain discretization,

following the notation in (Patankar, 1980) and referring to figure 2.2 given below:

a,l,=a,T, +a,T, +a,T, +aT;+a T +b (2.13)

Where the subscripts indicate the appropriate nodal values, the a'sare coefficients which

depend on the diffusion and convective fluxes into the py control volume,

a; = poz0y/ ot and ()’ represent evaluation at the previous time step. The parameter b

incorporates a discretized form of the source term S, .

N
N
W W | E E
: -p i
s
YL
s
X

Figure 2.2: The numerical control volume
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The momentum equation (velocity v in y-direction)

a,v, =agVp T ayVy +ayvy +agvs +a; +b (2.14)
Where
kAy k,Ay k,Ax k Ay . pcAxAy
aE = , =, aN = , aS = — , a4 =——=
(6x), (6x),, (6x), (0y), i At

The important difference between equation 2.13 and 2.14 is that the grids used are
‘staggered’ over the enthalpy grid in momentum equation. (See the dashed control
volume in figure 2.2. The reason for this is so that pressure, which is driving force for
the velocities, can be correctly accounted (Patankar, 1980, Voller and Prakash 1987).

The finite domain equations are solved by employing the PHOENICS code.

2.5.7 Geometry of the Model

The geometry of the model is developed in Gambit 2.1.6 and exported to FLUENT in
filename.msh format. Two models are developed for analysis. First one is PV cell without
integrated PCM and second one is PV/PCM system. The geometry is given below in figure

2.3 for both models.
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Figure 2.3: Geometry of PV/PCM System*

2.5.8 Meshing of the Model

Gambit 2.1.6 is used for the meshing of the model. The PV cell is meshed into 100 x

4 divisions i.e. aspect ratio of 4 which is well within permissible limit and the mesh is

X . . .
Not drawn on scale and all dimensions are in metres.
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shape regular (Braess, 2001). The cover system is meshed into 240 x 16 divisions.
PCM is meshed into 180 x 120 divisions. Entrapped air in container is meshed into 40
x 120 divisions and atmospheric air is meshed into 100 divisions with increasing ratio
of 1.2 i.e. each length of next cell is 1.2 times the length of previous cell so cell size
increases as it goes away from PV-PCM System. A refined mesh takes more
computation time when compared to a coarse mesh so meshing of air is done in such a
way that the mesh is refined near to PV-PCM System and takes active part in
convection while as it moves away from the system, heat transfer is less so the mesh
gets coarse as it moves away from the PV-PCM system. Detail of the Grid used in

Model of PV and PV-PCM system is shown in table 2.2 below:

Cells Faces Nodes
PV 90720 182548 91821
Model | PV-PCM 152240 306718 154467

Table 2.2: Detail of the Grid used in Model of PV cell and PV-PCM system

2.5.9 Boundary Conditions

For fluid flow, zero velocity in the solid phase is attained by employing high viscosity. No
explicit pressure boundary condition is given. The boundary conditions for energy equations
are: (i) Energy influx due to solar input and (ii) Energy loss due to convection and radiation to

ambient. For buoyancy-driven flows, pressure inlet and outlet boundary conditions are

used by FLUENT and as there is no externally imposed pressure gradient so
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atmospheric pressure is applied but for buoyancy-driven flows, redefined pressure is

used which is calculated from the following equation (Fluent, 2005d).

’

Py =P,8X+ P, (2.15)

Wall boundary conditions are used to bound fluid and solid regions in FLUENT.
Thermal along with radiation boundary conditions are applied to calculate heat
transfer between solid to solid (Cover System to PV cell) and solid to fluid (Cover to
air, Back of PV to PCM and Back of container to air). Different boundary conditions
at the wall are as follows: Heat influx boundary condition Wm? is applied at the top
of PV cell. Adiabatic boundary condition is applied on the sides of cover system and
of the container as mentioned in (Huang et al., 2006) in a similar problem. As the P1
radiation model is used to simulate radiation losses so emissivity of all media are
given and values can be found in the Appendix. Initial temperature on the surface of
the PV and container walls are given as calculated experimentally. As the Boussinesq
approximation is used to simulate natural convection losses to air, so operating
density of air is given along with operating temperature and gravitational acceleration.
Solidification and melting model is activated for simulating phase change
phenomenon and density as a function of temperature, heat capacity, thermal
conductivity, viscosity as a function of temperature, absorption coefficient, melting
heat, liquidus temperature and solidus temperature are given as input to model.
Velocity suppression is achieved by giving a high value of viscosity at and beyond
solidus temperature so that zero velocity at solid phase can be simulated. Three types
of continuums are defined in the model i.e. solid, fluid and PCM. Inputs for solids are
heat capacity, thermal conductivity and density. Inputs for fluid are density, heat

capacity, thermal conductivity, viscosity and thermal expansion coefficient. PCM is
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categorized as fluid in Gambit but as solidification-melting model is activated, it is
changed to solid-fluid and the properties given as input are described in table 3.2
Flow, Energy and Pl equations (i.e. equations 2.1- 2.15) are activated in solution
control tab along with PRESTO, pressure discretization scheme because of buoyancy
driven flow. Discretization of pressure-velocity coupling, momentum and energy are
kept to default values as well as relaxation factors. The solution is initialized at the
upper surface of the PV cell with 2D double precision, segregated and unsteady solver
with absolute velocity based formulation and cell based gradient option. The results

obtained from the model will be described in chapter 4.

2.6 Applications of Phase Change Materials

The major research areas of PCM have been their use as a temperature regulator for
high power dissipation electronic packaging, mobiles phones and space vehicles in
space vehicles (Pal and Joshi, 1995; Gurrum et al., 2002), thermal energy storage
(Sharma et al., 2009; Agyenim et al., 2010), food and biological preservation (Wyatt,
1991; Mcdermott, 1997; Drage, 2009), electricity demand peak shifting or lowering
(Fath, 1995, 1998; Enibe, 2003; Halford and Boehm, 2007), medical therapies (Saly,
[.O. (1996; Junghanss, 2009), textile fabrics for human comfort (Mondal , 2008 ;
Sénchez, et al. 2010) building fabrics that provide passive cooling of buildings (Zalba
et al., 2004; Huang et al., 2006a) and thermal management of motors, actuators and
power converters in electric vehicles (Jackson III ef al., 2002). The areas in which

PCM are currently applied are listed in table 2.2.
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References

Applications

Thermal energy storage systems for solar
energy storage and harnessing

Pillai and Brinkworth, 1976; Fath, 1998;
Zalba et al., 2003; Kenisarin and Mahkamov,
2007; Regin et al., 2008; Sharma et al., 2009;
Agyenim et al., 2010

Thermal protection of electronic devices
computer chips, space vehicles, power
electronics and packaging

Tan and Tso, 2004; Wang et al., 2007;
Kandasamy et al., 2008; Wang et al., 2008;
Fok et al., 2010

Thermal regulation of building integrated
photovoltaics

Huang et al., 2004, 2006b

Passive cooling of building by heat storage in
building fabrics to main human comfort
temperature and electrical appliances in
buildings

Hariri and Ward, 1988; Zalba et al., 2004,
Huang et al., 2006a; Pasupathy et al., 2008;
Zhou et al., 2009; Zhu et al., 2009; Kenisarin,
2010

Cooling during off-peak loads to reduce
installed power by peak shaving. Heating
sanitary hot water, using off-peak loads.

Fath, 1995, 1998; Enibe, 2003; Halford and
Boehm, 2007

Solar energy storage at high temperatures in
solar tower power plants

Hoshi et al., 2005; Michels and Pitz, 2007; Gil
et al., 2010; Kenisarin, 2010

Thermal protection, preservation and transport
of food items.

Wyatt, 1991; Mcdermott, 1997; Drage, 2009

Encapsulation in textile fabric to maintain
human comfort temperature

Mondal , 2008 ; Sanchez, et al. 2010

Medical applications in transport of blood at
controlled temperature, operating tables, hot-
cold therapies

Saly, 1.O. (1996; Junghanss, 2009

Engine cooling ( electric and combustion)
Thermal comfort in vehicles

Jackson III et al., 2002.

Table 2.3 Summary of applications of phase change materials.
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3 CHARACTERIZATION OF PHASE CHANGE MATERIALS

3.1  Selection of Phase Change Materials

The properties of phase change materials (PCM) will predominantly determine the

performance of PCM-based thermal-regulation devices. For an integrated novel PV-

PCM device, the required PCM properties include:

Fixed melting point close to device desired operating temperature

Larger latent heat of fusion for a given mass of PCM; as the latent heat of fusion
increases so will be the duration of both heat absorption and attained temperature
regulation.

Good thermal conductivity; this encourages efficient heat transfer into solid PCM
through the melting-front, enabling uniform temperature distribution via reduced
thermal gradient in the PCM

Phase congruence; this encourages uniform thermophysical behaviour

Good solidification properties with no, or low, supercooling; in the current work
solid PCM absorbs heat and melts during daytime to regulate PV temperature. The
absorbed heat is released nocturnally by ambient and radiative cooling bringing
back to solid phase. A PCM with higher supercooling needs to be cooled below
freezing point to initiate solidification. In sunny warm climates where the need for
daytime PV temperature regulation is critical, the night time ambient temperatures

are also higher. Such higher night time temperatures do not support PCM cooling
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below freezing points (about 25 °C in this application) hampering PCM
solidification process rendering PCM with supercooling unsuitable in such
climates. It should be noted that though the night time air temperatures can remain
warm, clear skies can provide a heat sink for radiative cooling.

= Chemical stability; this ensures (i) longer life of PCM itself (ii) no or less change
in melting point and (iii) no or less change in the heat of fusion

= No toxicity; this assures (i) safe disposal of materials to the environment and (ii)
renders possible their use in buildings by being compatible with most building
codes and regulations.

= No combustibility; this assures (i) fire safety when included in a building
integrated facade and (ii) less risk in device manufacture.

= No or low corrosion of the containment materials; this enhances the container life

= Low cost; this will (i) aid the achievement of economic viability and (ii) reduce
initial cost thereby enabling a greater penetration of cost sensitive application

contexts.

The properties desired for a suitable PCM are classified and summarized in Table 3.1.
A systematic choice is difficult as a particular PCM may only have some of the
desired characteristics, but may not possess the others. Very little literature compares
performance of different PCM types for thermal regulation. Its high latent heat of
fusion, cheap and abundant availability and no-toxicity makes water an ideal PCM;

however its solid-liquid phase change temperature at atmospheric pressure is 0 °C
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which makes it an unsuitable PCM for any application where ambient temperatures

are generally above 0 °C.

Requirement Reason for requirement
Thermal High latent heat Maximum heat absorption
High heat capacity Minimum sensible heating
Good thermal conductivity Efficient heat removal
Reversible phase change Diurnal response
Fixed melting point Consistent behaviour
Physical Congruent melting Minimum thermal gradient,
Low volume expansion No overdesign
High density Low containment requirement
Kinetic No supercooling, Easy to freeze
Good crystallisation rate Faster solidification
Properties Chemical Chemical stability, Long life
Non-corrosive, Long container life
Non-flammable, Comply building safety codes
Non explosive, Environment friendly
Non-toxic
Economic Abundant, Available, Market competitiveness
Cheap and Cost effective Economic viability and market
penetration
Environmental | Recyclable/Reusable Ease to dispose of
Odour free Comfortable to apply in

dwellings environment

Table 3.1 Properties of a PCM desired for Photovoltaic thermal regulation

In order to simplify the selection of a suitable PCM, an extensive literature review

was conducted of all known PCM classes, i.e. paraffin, salt hydrates, fatty acids and

mixtures of salt hydrate and paraffins to identify a PCM that had a melting point
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between 21 °C- 29 °C i.e. 25 + 4 °C with latent heat of fusion >130J g'l. The range of
melting points from 21 °C - 29 °C were chosen because:

(i) a PCM that melts and absorbs latent heat below 25 °C (e.g. at 21 °C in this case)
has the advantage of stabilizing PV temperature close to the PV characterization
temperature of 25 °C due to PCM melting below this desired PV temperature.
Nevertheless when ambient temperatures are higher than PCM melting point (in this
case an ambient temperature of 25 °C will be higher than PCM melting point which is
below 21 °C) melting ensues due to ambient heat gain in addition to incoming solar
radiations. This may lead to a shorter melt time, shorter period of heat absorption and
subsequently a shorter duration of PV temperature regulation. (ii)) A PCM with
melting points above 25 °C (e.g. 29 °C) may have advantage of not melting at most
ambient temperatures and being melted solely by incident solar radiations.
Consequently they may continue melting and absorbing heat for a longer period
providing a longer duration of PV temperature regulation. However the disadvantage
of melting commencing and absorbing heat above a temperature of 25 °C is higher
temperatures at the PV surface. Table 3.2 lists the PCMs identified from the literature

possessing the desired properties.
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PCM

RT20 SP224A | CaCl,.6H,0 | CL Cp
Melting point, experimental 22 21.6 29.6 20.6 22.4
O
literature 21° 23* 29.8" 18.5° 22.5°
Heat of fusion, Experimental 139 125 212 188 195
(kTkg™) DSC
Experimental 143 135 210 179 190
THM
literature 134 150° 191° 168° 173°
Thermal Solid 0.2" 0.6" 1.08" 0.143¢ 0.143¢
Conductivity
(Wm'eC™) liquid 0.18° 0.4' 0.56' 0.139° 0.139¢
Experimental | 1.5 1.7 1.77 1.8 22
— Solid (THM)
g Experimental | 1.3 1.6 1.6 1.9 1.9
g Specific heat (DSC)
S| capacity Literature 1.4° 1.4° 1.4° 1.97¢ 28
S | (KIkg'K™)
& Liquid experimental | 1.6 1.8 22 2.12 24
. THM
S Experimental | 1.8 1.7 1.9 23 22
%. (DSC)
‘ literature 1.7° 1.95 2.1° 2.24¢ 2.3¢
=
é Corrosion to metallic containers No* Yes® Yes" Yes" Yes"
Thermal cyclic stability Yes N.A Yes®, No' Ye¢ Yes'
Chemical Classification Paraffin | Mixture | Salt hydrate | Eutectic Eutectic
wax of mixture of | mixture of
paraffin fatty acids | fatty acids
wax and
salt
hydrate
Densigy Solid 0.88" 1.49° 1.71° 0.89¢ 0.87°
(kgm™) Liquid 075 | 144" | 1.56 0.77° 0.79°
Kinematic viscosity (m”.sec”) x10” 6.25° 1.23* 1.84° 0.0022¢ 0.0023°
Coefficient of thermal expansion (K') 0.001° 0.0008* | 0.0005 0.00067¢ | 0.00078°
Material source Rubith- | Rubith- | Sigma Sigma Sigma
erm erm Aldrich Aldrich Aldrich
(2010) (2010) (2010) (2010) (2010)

Table 3.2 Thermophysical characteristics identified from literature and experiments of

suitable PCMs for temperature regulation of Photovoltaics at close to their

characterization temperature.
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(a-Rubitherm, 2009 a), (b- Tyagi and Buddhi, 2008), (c- Sari and Karaipekli, 2008),
(d-Sharma and Sagara, 2005), (e- Huang et al., 2006 a), (f- Zelba,2003), (g- Sari, A
and Kayazug, K., 2002), (Cabeza et al., 2002), (i- El-Sebaii et al., 2009), (j-Sedat et

al., 2005)

3.2 Characterization of Phase Change Materials.

SP22, RT20 and CaCl,.6H,O were sourced as ready-to-use from commercial
manufacturers CL (eutectic mixtures capric acid (45%) and lauric acid (55%) by
weight) and CP (eutectic mixture of capric acid (75.2%) and palmitic acid (24.8%) by
weight) were prepared in the laboratory from individual chemicals in the form of
capric acid, lauric acid and palmitic acids. The fatty acids were mixed as solids in the
eutectic combinations given in Table 3.2 to get a net mixture of 25 g. Each solid
mixture was melted at 60 °C for three hours to obtain a homogenous solution that then
cooled to solidify as eutectic solids. Prepared PCMs were characterized using (i)
differential scanning calorimetry (DSC) and (ii) temperature history method (THM) to
determine their thermophysical properties. Each was compared with data available in
the literature. DSC is a standard instrument to determine thermophysical properties of
materials while THM is custom-built method to determine those properties of PCM
that are function of PCM mass (and are not determined easily by DSC) such as

subcooling and supercooling etc.

68



3.2.1 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is a thermodynamic technique to determine
thermophysical materials properties including melting point, heat of fusion, specific
heat capacity, melting onset, melting peak transition range. The temperature over
which a given sample of a material completely melts is a function of sample mass and
the heating rate (Dotsch and Fink 1987; Marini et al. 1988). The energy input is
measured to establish a nearly zero temperature difference between an empty
reference metallic pan and an identical metallic pan containing the sample material,
both subjected to identical temperature regimes in heating and/or cooling mode at a
controlled rate of temperature rise. DSC setup includes a nitrogen tank for purging at
a fixed pressure, a cooling media (liquid nitrogen) to perform cooling, the calorimeter
itself and a data acquisition system. DSC systems in common use are classified as
either a power-compensation DSC or a heat-flux DSC (Ekeren ef al. 1997; Bailey and

Hay 1999; Danley 2002).

The sample and the reference temperatures are controlled independently using
identical separate crucibles. Identical sample and reference temperatures are
maintained by varying the power inputs to the two crucibles. The difference in the
energy required to maintain these identical temperatures is a measure of the enthalpy

(or heat capacity change) in the sample compared to the reference (Sichina, 2000)
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Nitrogen gas

\Data acquisition

DSC

Cooling
fluid

Figure 3.1 Experimental setup for a PerkinElmer 8000 N5340511 power

compensation differential scanning calorimeter (DSC)

In a heat-flux DSC, the sample and the reference are connected by a low-resistance
heat-flow path (a metal disc). The whole assembly is enclosed in a single crucible
shown in figure 3.2. Enthalpy or heat capacity changes in the sample caused a
difference in its temperature relative to the reference. The temperature difference was
recorded and related to enthalpy change in the sample compared with the reference
(Danley, 2002). The resulting heat flow was small compared with that in differential
thermal analysis (DTA) because the sample and reference were in good thermal

contact.
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Figure 3.2 : Schematic diagram of a heat flux differential scanning calorimetry

3.2.1.1 Experiments

In this study a heat-flux DSC was used, this provided quick, accurate and detailed
measurements from only a very small, 3 to 10 mg sample. Paraffin wax RT20, salt
hydrate CaCl,.6H,0, a mixture of salt hydrate and paraffin wax SP22, a eutectic
mixture of capric acid-lauric acid and a eutectic mixture of capric acid-palmitic acid
were characterized sing 5 mg sample of each PCM. During the experiment the
crucibles were purged with a constant supply of nitrogen gas whilst each sample was
heated from 10 °C to 60 °C at a heating rate of 5 °C min™. At the end of each heating
run, the crucibles were cooled to 10 °C with liquid nitrogen in preparation for the next
run. Three runs were performed for each PCM with the same experimental conditions
to ensure repeatability. The variation of less than 1 % was observed in measured

values that represents the accuracy of the device.
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Thermal properties of the samples were analysed in the form of energy-time
relationships termed thermograms for predetermined operating temperature ranges
during the heating (i.e., melting) cycles. The difference in heat input between the
reference pan and the pan containing sample for a unit temperature rise formed the
DSC output that was plotted against temperature rise. Evaluation of DSC
thermograms determined the PCM phase transition temperature, specific heat and

latent heat of fusion.

Temperature °C

Heat Flux keallkg

Figure 3.3 : DSC results for RT20 PCM

Paraffin wax RT20 was studied to compare these current results with those obtained
from previous work that also used paraffin wax RT25 PCM for temperature regulation
of building integrated photovoltaics (Huang et al. 2006a; Huang et al. 2006b)

Figure 3.3 presents the DSC thermograph obtained with paraffin wax RT20 showing

the PCM started latent heat of absorption at 18.7 °C with a peak at 24 °C and
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completed heat absorption at 31.4 °C. The melting range was 22 °C to 25 °C with a
latent heat of fusion of 139 J g'1 respectively are in good agreement with the
manufacturer corresponding data of melting point of 21 °C and heat of fusion of 134
J g'1 (Rubitherm, 2009). This very large heat absorption from 18.7 °C to 31.4 °C can
be attributed to (i) heat transfer mechanisms in the sample crucible, (ii) low thermal
conductivity of RT20 and (iii) a too small sample size. The melting point is taken as
the point where the slope of the thermograph is maximum so as to ensure the latent
heat is taken at close to isothermal conditions. RT20 thus is a potential candidate
PCM for PV temperature regulation due to its higher heat of fusion appropriate lower
melting point well below a desired PV temperature of 25 °C. However RT20 also has
certain drawbacks of which the most important are (i) its low density of 0.88 gcrn'3 in
solid phase and 0.75 gcm’3 in liquid phase which means that mass required would
occupy comparatively large volume, thus making a PV-PCM unit less readily
integrated into typical building facades, (ii) low thermal conductivity of 0.2 Wm'K!
and (iii) its large volume expansion of 14 % from solid to liquid phase change
(Rubitherm, 2009) may cause containment design problems. The wide range heat
absorption in Figure 3.3 (18.7 °C to 31.4 °C) of paraffin RT20 may seem unsuitable
for temperature control close to 25 °C. However predicted device design
manipulations such as inserting thermal conductive fins in PCM container to enhance
heat transfer rate can cause the PCM to melt in a relatively narrow temperature range
(Huang et al. 2004). Combustibility of RT20 with flash point of 154 °C (Rubitherm,

2009) can also be a potential problem restricting its use in building integrated
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applications as it would not comply with building safety and/or design codes in

various legislations.

Temperature °C
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Figure 3.4 :DSC results for the SP22 PCM

Figure 3.4 presents DSC thermographs of a mixture of paraffin wax and salt hydrate,
SP22 showing that the PCM has a moderate melting range of 15 °C to 26.8 °C with a
peak at 23 °C. The melting range was 21.6 °C to 24 °C with the latent heat of fusion
of 125 ] —g'l. While the melting point and heat storage capacity indicated in the
manufacture’s catalogue were 23 °C and 150 kJ kg'1 respectively in the temperature
range of 13°C-28 °C (Rubitherm, 2009 ). The difference between these values can be
attributed to (i) the range of melting, (ii) method of measurement and (iii) too small
mass of the sample. Further characterization was conducted with larger sample

masses described in section 3.2.2.
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PCM SP224A (referred to as SP22 onwards) shows promise for an integrated PV-
PCM application due to (i) high heat of fusion (ii) high thermal conductivity of 0.6 W
m'K™! (iii) high density of 1.49 g-cm™ and (iv) low volume expansion of 4.03 %
while changing phase from solid to liquid. The large heat absorption range (15 °C-
26.8 °C) and beyond evident from the curve suggests that SP22 4A can be a suitable
material for thermal energy storage applications as it can store energy as a sensible
and latent heat however it may not be suitable for PV temperature control applications
where the need is to melt just above typical ambient temperatures (i.e., 25 °C).
Furthermore SP22 PCM being a mixture of paraffin wax and a salt hydrate
(Rubitherm, 2009) may lead to incongruent melting due to different melting
behaviour and thermophysical properties of the constituent PCMs. For effective

temperature regulation a PCM should have little or no phase incongruence.
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Figure 3.5: DSC results for the CaCl,.6H,O PCM
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Figure 3.5 presents the DSC thermograph of pure salt hydrate CaCl,.6H,O and shows
that heat absorption began at 25.9 °C and completed at 33.9 °C with a peak at 29.7
°C. The melting range was 29.6 °C and 30.4 °C with a latent heat of fusion of 213.2
J g'1 which are in agreement with the reported melting point of 29.8 °C and heat of
fusion of 191 J g'1 (Tyagi and Buddhi, 2008). CaCl,.6H,O PCM thus has the lowest
temperature range of heat absorption (25.9 °C -33.9 °C) of the PCMs measured. The
variation observed in heat of fusion was due to (i) grade and purity of the PCM, (i.e.,
the PCM used in current experiments and those used in the reference literature were
different) and (ii) the thermal cycles and dehydration the PCM had undergone before
performing the experiment. CaCl,.6H,O PCM shows (i) a good range of melting, (ii)
relatively high heat of fusion, (iii) high thermal conductivity of 1.09 Wm'K™" and @iv)
high density of 1.71 g cm™ and (v) very good thermal cycling properties if carefully
melted in hermetically sealed containers (Tyagi and Buddhi, 2008). However the
melting occurs at a higher temperature than the desired temperature of 25 °C, this
PCM also has a higher corrosion rate in metallic containers materials (Cabeza et al.,
2002; Farrell et al,. 2006) compared to the other PCMs and a tendency to dehydrate
during melting when exposed to air (El-Sebaii et al., 2009).

The DSC results for a eutectic mixture of capric-lauric acid in figure 3.6 show that the
heat absorption commenced at 18 °C and completed at 27 °C with the peak at 24.6 °C.
The lower and upper melting points were 19.6 and 22.5 °C with latent heat of fusion
188 J g'1 that are in good agreement with previously reported values of 18.5 °C and

168 J- g’1 respectively (Sari and Karaipekli 2008).
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Figure 3.6 : DSC results for the capric-lauric acid PCM

This PCM has (i) a suitable melting point (ii) a relatively high heat of fusion (iii)
moderate volume expansion and (iv) good thermal cyclic stability when subjected to
several solid to liquid phase change cycles (Sedat et al., 2005; Shilei et al., 2006; Sari
and Karaipekli, 2008). However this PCM has also (i) a wide heat absorption
temperature range (18 °C - 27 °C) may be attributed to (i) its very low thermal
conductivity of 0.14 W m™'K ™" and (ii) relatively low density of 0.89 g-cm™ in solid
phase (Sharma and Sagara, 2005).

Figure 3.7 shows DSC thermographs for eutectic mixture of capric-palmitic acid.
Heat absorption commenced at 19 °C and had completed at 31.4 °C with a peak at
26.4 °C. The melting range was found be 22.4 °C to 25 °C with latent heat of fusion
of 195 Jg'1 while comparable values in literature were 22.5 °C and 173.6 Jg'1

respectively (Karaipekli and Sari, 2007; Sari and Karaipekli, 2008).
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Figure 3.7 : DSC results for the capric-palmitic acid PCM

This PCM also shows promise for a PV cooling application due to (i) its high heat of
fusion (ii) suitable melting point, (iii) melting peak in close proximity to the desired
PV temperature and (iv) a moderate volume expansion of 8-10 % during phase
change from solid to liquid. However, this PCM shows (i) an undesired wide range of
heat absorption of 19 °C — 31.4 °C) caused by its very low thermal conductivity of
0.14 W m"'K™ and (ii) also possesses a relatively low density of 0.87 kg dm™ in solid
phase (Schuette and Vogel, 1939; Sharma and Sagara, 2005). DSC characterizations

results are summarized and compared with those found in literature in table 3.3.

As can be seen in table 3.2 none of the PCM possesses all of the desired properties.

While changing phase from solid-liquid during measurement, each sample is far from
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thermal equilibrium. A significant temperature gradient arises within the sample due
to the PCM’s relatively low thermal conductivity. This can lead to a deviation of
several degrees Celsius from the indicated heat storage capacity with respect to
temperature depending on sample size, heating rate and heat storage capacity of the
sample. In order to study PCM behaviour more precisely further experiments were

conducted using the temperature history method.

3.2.2 Temperature History Method (THM)

The limitations of DSC in accurately determining the thermophysical properties of
PCM is that the sample mass is found to be optimum at 5 mg which is not
representative of the masses in the range of kilograms used in practical applications.
Supercooling-subcooling and nature of melting that depend on the quantity of PCM
may vary substantially with a change of PCM sample mass from mg to kilogram.
Therefore although the properties measured from DSC may serve as a reference, they
do not give reliable information about the bulk PCM behaviour for practical large-
scale applications. In order to determine properties for a reasonable PCM sample
mass, Yinping et al. (1999) introduced the temperature history method (THM) based
on recording the temperature of a PCM while it cools from a higher temperature
liquid state to a lower temperature solid state through solidification. The cooling
curve thus obtained can be used to determine the (i) start and end of solidification, (ii)
specific heat capacity, (iii) amount of sub cooling/super cooling, (iv) latent heat
released during solidification, and (v) temperature dependent enthalpy. The original

method introduced by Yinping et al (1999) assumed that degree of super cooling
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represented the end of melting and assumed no sensible heat due to incongruence, the
latter occurring in real melting/solidification contribute to errors in determining
thermophysical properties. The method was improved by Hong et al. (2004) by (i)
considering the end of melting to be when the derivative of the temperature time
graph on the cooling curve becomes minimum and (ii) including sensible heating in
the calculation of heat capacity and enthalpy (Hong et al. 2004). Although the original
THM was improved by the inclusion of considering sensible heating, the method
derived by Hong et al. (2004) did not determine the temperature dependence of heat
capacity and enthalpy of PCM. The THM was further extended by Marin et al.
(2003) to determine temperature dependent properties such as specific heat capacity
and enthalpy of the PCM and produced enthalpy temperature curves for PCMs (Marin

et al., 2003).

3.2.2.1 Experiments

To characterize PCM by THM, 25 g samples of each of the five PCMs was placed in
15 cm long glass test tubes with 1cm internal diameter and 0.8 mm wall thickness.
These dimensions were selected to ensure that the Biot number, Bi = hR/2k was < 0.1
where h is the convective heat transfer coefficient, R is radius of the tube and k is the
thermal conductivity of the tube material. Satisfying these conditions enables heat
transfer to occur solely in one-dimension along the length of the tube containing PCM
so the tube can be considered a lumped system in front of heating or cooling source
and the lumped capacitance method can be applied. The PCM and the reference

(distilled water with known specific heat capacity ) contained in the tube were heated
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with the temperature raised to above 40 °C, then maintained at this temperature for 2
hours to get a homogenous solution of PCM and finally exposed to cool ambient.
Temperatures of the PCM and the reference were recorded while cooling until the
PCM solidified and temperature-time graphs were plotted for both the reference and
the PCM. The governing equations to calculate specific heat capacity, heat of fusion
and heat transfer coefficient are obtained by simple energy balance (Yinping et al

1999) as follows:
(mee,, + mye,, (T, — T.) = h A A, G.1)

Where m,, and m, are the masses of the tube and PCM respectively, ¢, ;and ¢, ;are the
mean specific heat capacities of the liquid PCM and the tube material respectively, A,
is the convective heat transfer coefficient respectively, A. is the convective heat
transfer area of a tube and A; = J B ((T—Ts,.)de The heat loss by the cooling PCM is
0
due to natural convection given by equation 3.2
myH,_=h_A_A,

v (3.2)

5
Where H,, is the heat of fusion of the PCM and A, =j 2[(1" —T,.)dt and (t, — t;)
1

is the time in which the phase change occurs and:

(mecpe + Mo, )(T. - T.) = h A4 (3.3)

Phps
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t3
Where ¢, ; is the mean specific heat capacity of the solid PCM, A;= j ((T—Tu,)dt
2
T, is the reference temperature. If a tube containing pure water is suddenly exposed to
the same ambient as of the PCM, it also cools and releases heat following the curve

shown in figure 3.8. Considering the B; < 0.1 similarly we have:

(myc,, +m,c,, )(Ty—T.) = h AA" (G.4)

[ WTma

[:mr Cpt + mwc*p,w}[:Ts - Trj = hc Ac}laz 3.5)
Where m,, and ¢, ,, are the mass and mean specific heat capacity of water,

respectively,

t']_ ':IE
A= [ (@=Ted and A | (r-rana

Using equation 3.4, the natural convective heat transfer coefficient (A.) of air outside
the tube is calculated which is 4.5 Wm™'K™". Rearranging the equations described
above, the specific heat capacity and the latent heat of fusion of the PCM can be

calculated using the equations 3.6-3.8.

My Coe T My Ay me
— W pw”erpt fs T
Cp.s M, A, my Cp.t (3.6)
F z F
T
e = Mgy Ut gy A,y omy (3‘7)
Pl My A, m, Pt
F B F
__ My cpwtrlpr Az
Hm - P (TEI - Tsj (38)

my Al
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Figure 3.8: Temperature history curves for the distilled water taken as reference (left)

and the sample PCM, CaCl,.6H,O (right) when cooling from a higher temperature in

the same ambient.

Using the equations 3.6-3.8, the specific heat capacity of each of the PCMs in solid
and liquid phases is calculated. The ¢,  and ¢, ; and H,, are calculated and are
summarised in table 3.2. The calculated values from THM are closer to the values
calculated from DSC analysis and the literature values are within maximum 5 %
deviation from measured DSC and 10 % from literature values. The deviation can be
attributed to the fact that this method relies on overly simplified custom made set up
which are not precisely calibrated like conventional compared to DSC. Most of the
reported values in literature are determined using DSC which also shows variation
between values of the same material due to different measurement modes, operating

conditions and instruments used. Considering these factors, the values obtained from
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THM are reasonably accurate and can be compared with measured or literature

values. Although THM allows calculating temperature dependent properties however

this needs highly calibrated THM, where as the set up used in these experiments is

very simple and can not be applied with confidence for temperature dependent

properties. The temperature-time curve obtained for RT20 using THM is presented in

figure 3.8. The PCM cooled from 40 °C to well below the solidification point until all

the PCM had melted. It can be observed from the slope of figure 3.9 that the heat
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Figure 3.9 : Time- temperature curve for paraffins wax RT 20 using THM

release occurs in three different regimes. The sensible cooling starts from initial

temperature of 40 °C down to the start of solidification at 21 °C. From start of
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solidification at 21 °C to the end of solidification at 6 °C the heat release occurs as
sensible as well as latent heat. After completing solidification, sensible heat is
released below 6 °C. The graph shows that RT 20 has a wide range of solidification
heat release from 21 °C - 6 °C in contrast to the isothermal heat release desired for
this application.

Figure 3.10 shows the THM cooling curve for salt hydrate CaCl,.6H,O when cooling
from 55 °C to below its solidification point. It is observed that the PCM undergoes

11°C of subcooling before it starts solidification at 29 °C.

—s—Ambient
60 — —e—C aCl2.6H20
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Figure 3.10 Temperature-time curve for salt hydrate CaCI2.6H,0 using THM

The heat release during solidification occurs between 29 °C-27 °C temperature range
that is very close to the isothermal condition due to high thermal conductivity (1.09 W

m’lK'l) of CaCl,.6H,0O compared to 0.2 W m 'K of RT20. Heat release in a narrow
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temperature range is a strongly desired property for this application. Subcooling is
expected in salt hydrates as the salt needs to be cooled below melting point to start
nucleation (Giinther et al., 2007b). CaCl,.6H,O starts nucleation at a relatively lower
temperature of 18 °C, below enough to typical ambient temperature of 25 °C,
indicating that subcooling can be a major problem during heat removal from

CaC12.6H20.

SP22
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Figure 3.11 : THM Temperature-time curve for SP22 4A, a mixture of salt hydrate

and paraffin wax

Figure 3.11 shows the THM curve of a blend of salt hydrate and paraffin wax, SP22
which undergoes 8 °C of subcooling before it starts solidification at 16 °C. The heat
release during solidification occurs between 16 °C-15 °C temperature range that is

very close to the isothermal due to high, thermal conductivity (0.6 Wm'K™) of SP22
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compared to 0.2 Wm 'K thermal conductivity of RT20. Heat release in a narrow
temperature range is a strongly desired property for this application. Though
subcooling is expected in a salt hydrate such as SP22 (Giinther et al., 2007a), the
particularly lower subcooling than in CaCl,.6H,O observed here is due the salt
hydrate being blended with paraffin wax however the disadvantage is it melts over a
wider range. This subcooling may be problematic as the salt needs to be cooled to 16
°C to start nucleation (Giinther et al., 2007b). In warm climates extra cooling may
therefore be needed when heat is to be removed from such a PCM.

Figure 3.12 shows the THM time-temperature diagram obtained for eutectic mixture

of capric acid-lauric acid cooling from melted state at 40 °C until complete

solidification.
Capric-Lauric Acid
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Figure 3.12 : THM Temperature-time curve for eutectic mixture of capric acid-lauric

acid.
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The graph shows that the fatty acid commences solidification at 24 °C without
exhibiting any subcooling and completes solidification at 19 °C showing only 5 °C
deviation from the isothermal heat release at solidification. The deviation from
isothermal heat release during melting can be attributed to the low thermal
conductivity, 0.14 W m'K™" of the PCM.

Figure 3.13 shows the THM results obtained for eutectic mixture of capric acid-

palmitic acid while cooling from 40 °C to the complete solidification.
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Figure 3.13 THM Temperature-time curve for eutectic mixture of capric acid-palmitic

acid fatty acids
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Results show that the PCM starts solidification at 25.5 °C with negligible sub-cooling
of 1 °C and completes solidification at 18 °C. Heat release during solidification
occurs in the temperature range of 7.5 °C which is a little higher than temperature for
capric-lauric acid although their thermal conductivities are similar at 0.14 Wm'K™"
However, the solidification of capric-palmitic acid commences at a temperature 1.5
°C higher than the solidification temperature of capric-lauric acid. Solidification
commencing at a higher a higher temperature with very little subcooling are the

properties desired for this application.

3.3 Conclusions

Thermophysical characterization of all the PCM with DSC and THM showed good
agreement with literature and within measured values. Salt hydrate CaCl,.6H,O
possessed the highest heat of fusion and narrow transition range which renders it
suitable for PV thermal regulation however it starts melting at 29.6 °C slightly above
desired temperature of 25 "C. CaCl,.6H,0 solidifies at a higher temperature which
renders solidification possible at higher nocturnal ambient temperatures. The
drawback of CaCl,.6H,O is the highest undercooling of 11 °C down to 18 °C which
makes solidification difficult at higher ambient temperatures. Mixture of salt hydrate
and paraffin wax, SP22 also shows subcooling of 8 “C below its freezing temperature
down to 16 °C and a wide range of melting/solidification which may impede its
solidification. However both CaCl,.6H,O and SP22 have higher thermal

conductivities which make them suitable for efficient heat removal. Paraffin wax
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RT20 melts and solidifies over a wide temperature range along with higher volumetric
expansion which makes it unsuitable for the temperature control applications.

Both the fatty acids examined commenced solidification close to 25 °C and were fully
solidified at close to 19 °C over a short temperature range with a very clear phase
transition boundaries. Although they have very low thermal conductivities, the nature
of melting and the start and end of solidification renders them suitable for an
application requiring temperature control at around 25 °C. Based on these results it
can be seen that a systematic choice of the PCM is however difficult and needs further
indoor characterization on real PV systems to compare the potential of each PCM for

PV thermal regulation.
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4 INDOOR CHARACTERIZATION OF SMALL SCALE
PHOTOVOLTAIC PHASE CHANGE MATERIALS SYSTEMS

4.1 Aim of the Experiments

Five different PCMs were characterized using two different thermophysical
techniques i.e. DSC and THM as described in chapter 3. The results described the
thermophysical properties of PCMs however they were unable to predict the
temperature regulation behavior of PCM when integrated into the PV systems. In
order to study the behavior of the PCM indoors when integrated into the PV systems
indoor experiments were conducted at constant ambient temperature and with no air
flow condition with following variables:

* Thermal mass of PCM

= Thermal conductivity of PCM and PCM container

= Melting point of the PCM

= Solar radiation intensity

4.2 Methodology

Five different PCMs were evaluated experimentally indoors to determine the
temperature regulation effect of each of the PCMs on cell-sized PV-PCM

systems.
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Four different cell-size PV-PCM systems with different container material and
dimensions detailed in table 4.1 were used to contain PCM behind the PV. The
influence of solar radiation intensity, thermal conductivity of the PV-PCM
systems and thermal mass of the PCM on thermal regulation of the PV was
determined.

Experiments were conducted at three solar radiation intensities of 500 Wm™, 750
Wm™ and 1000 Wm™ for each of the PCMs contained in the four different PV-
PCM systems.

Temperatures at front surfaces, back surfaces and side walls of the reference PV
and the PV-PCM systems were measured.

Temperature difference from the reference PV of each PV-PCM system was
determined to quantify the temperature regulation achieved by each PCM

contained in PV-PCM systems.

This methodology provided temperature reduction data achieved by each PCM, the
effect of thermal mass of PCM on PV temperature reduction and the effect of PV-

PCM container material on performance of the contained PCM.

4.3 Experimental Set up

Polycrystalline silicon PV cells with dimensions of 10 cm x 10 cm x 0.05 cm were
encapsulated between two sheets of 3 mm thick transparent perspex to simulate a cell
size section of a PV module. Perspex thickness of 3 mm was selected corresponding
to generally applied thickness of PV encapsulation to obtain enough mechanical

strength to bear external pressures and wind speed. Perspex was used as encapsulation
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material because it was easily accessible, possesses similar optical thermal and
mechanical properties to most of the PV encapsulation materials i.e. glass and
polymers. Four rectangular containers, as described in table 4.1 were fabricated and
a PV cell was attached to the front of each container as illustrated in Figure 4.1
Different container materials and container dimensions were chosen to compare
thermal performance of (i) Heat conductive (A & C) compared with heat insolating (B
& D) containers (i1) PCM having different thermal masses on PV thermal regulation
at different insolations (iii) Thermal performance of corrosive metallic PCM container
compared to the non corrosive polymeric PCM containers. The dimensions of 3cm
and Scm were calculated by making thermal balances on a PV-PCM system at 500
Wm™ and 1000 Wm™ to accommodate enough thermal mass of paraffin wax PCM to
regulate PV-PCM temperature until fully melted in 8 hours from previous work by
authors (Huang et al., 2004). The paraffin wax RT2S5 used in the previous research
had similar thermophysical properties to paraffin wax RT20 used in the current

research.

Figure 4.1 Photographs of PV-PCM systems A, B, C and D as described in table 4.1
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PV-PCM systems
A B C D
Container material Aluminium Perspex Aluminium Perspex
Thermal conductivity of | 237 0.19 237 0.19
material (Wm’lK'l)
Container width internal (cm) 5 5 3 3

Table 4.1 PV-PCM systems A, B, C and D fabricated from aluminium (A & C) and

perspex (B & D)

Systems A & C were fabricated from 5 mm thickness high thermal conductivity,

237 Wm 'K aluminium alloy 1050A from Aalco (Aalco, 2007), which enabled
increased heat removal rate from PV into PCM leading to a decreased time of
melting of the PCM (Shina and Inagaki, 2005; Sharma et al., 2006). However
systems A & C being highly heat conductive had less heat retention due to heat loss to
ambient through their conductive surfaces (Martin et al. 1990). The high conductivity
aluminium side walls and back surface of the PV-PCM systems A and C were kept
heat un-insulated to allow maximum heat dissipation through container walls to the
ambient to provide maximum cooling of PV cells. Systems B & D were fabricated on
all the five sides (front, back, two side and a top and a bottom wall) from a 10 mm
thick perspex, "MARCRYL CLEAR" from Vink Plastics that had very low thermal
conductivity, 0.19 Wm'K! (Vink, 2007). This lower thermal conductivity enabled

higher heat retention due to less heat loss to ambient because of thermally insulating
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side and back perspex walls however it had a low heat removal rate from PV into
PCM (Chen et al. 2008) .

Although aluminium has higher thermal conductivity which enables efficient heat
transfer from PV surface to PCM, it corrodes with most of the PCM which may result
in reduced PCM container life. The advantage of using perspex instead of aluminium
is its less corrosion to most of the PCM which yields longer PCM container life
however it results in less efficient heat removal which may result in higher

temperatures at PV surface.

4.4 Experimental Procedure

The reference experiments were conducted by irradiating the PV section with a
Griven GR262 solar simulator at insolations of 500 Wm'z, 750 Wm? and 1000 Wm™
with ambient temperature at 20 +1 °C (Appendix A). The spectrum of the solar
simulator was measured and compared with the standard solar spectrum to calibrate
the solar simulator. The solar radiation intensity was measured at the PV front surface
at a fixed position of the solar simulator from the PV cell, the positions were marked
and fixed for repeatability to produce desired insolations (i.e., 500 Wm™?, 750 Wm™
and 1000 Wm™) in particular experiment which were kept constant for the whole
duration of the experiment. Although the common design criteria for design
qualification of PV is to test them at lower irradiations of 200 Wm'z, however in
context of the current research this low irradiation ends up in low temperatures at PV

surface which would need little or no cooling rendering use of PCM irrelevant for

temperature regulation of PV. Higher solar radiation intensities however are likely to
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achieve sufficiently higher temperatures at PV surface that would cause PV power
failure and require temperature regulation to maintain rated power output. The
insolations of 500 Wm™ to 1000 Wm were selected to achieve higher temperature at
PV surface representative of high insolation ambient where PV has higher thermal
load and can justify use of PCM for PV thermal management. Temperatures at the PV
front and back surfaces were measured with calibrated T-type copper-constantan
thermocouples with the maximum measured deviation of +0.2 °C. Thermocouples
were installed with 2 cm displacement from sides, top and bottom of PV and 3 cm
distance from each of the adjacent thermocouple locations at front surface of the PV

and are illustrated in figure 4.2.

2¢cm 3cm 3c¢m 2cm

okt

2 cm

T

Ll‘

3 cm

.
:

3 cm
y
A

—?2cm
4

Figure 4.2: Position of thermocouples on front surface of the PV section

The insolation was measured with a Kipp and Zonen CM6B pyranometer with a
maximum measured spatial intensity variation of 2 % over the PV front surface
described in appendix B. (Kipp and Zonnen 2003). The data were recorded in AT data
logger described in Appendix C. Experiments were conducted with each of the

selected PCM contained in systems A, B, C & D under the same test conditions (i.e.,
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500 Wm™, 750 Wm™ and 1000 Wm at ambient temperature of 20 +1 °C) with the
experimental setup as shown in the Figure 4.3. Each experiment was conducted twice
to confirm their repeatability. The error in two corresponding measurements for the
same experiments remained always in the range of 1-3 % which can be attributed to

the error range of the instruments used.
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Figure 4.3 Schematic of the experimental setup showing a cell size PV irradiated with
a Griven GR262 solar simulator, temperature and irradiation measured with a Kipp
and Zonen CM6B pyranometer and T-type thermocouples respectively via a Delta-T

2e data logger.
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4.5 Results and Discussion

4.5.1. Validation of PV cell's temperatures

For each experiment the temperature at PV front surface increased rapidly to reach a
steady state when heat input to PV due to irradiation equalled the heat lost by the PV
to ambient primarily due to natural convection. Reference steady-state temperatures,
their corresponding insolations and the time elapsed to reach these steady state
temperatures were, 45 °C at 500 Wm? in 80 minutes, 51 °C at 750 Wm? in 40
minutes and 57 °C at 1000 Wm™ in 34 minutes. Each of the experiments described in
following sections was conducted twice for repeatability and generally good
agreement between corresponding measured temperatures was observed with
deviation ranging from 1-3 %. In following sections average temperatures at the front
surface of PV-PCM systems for each experiment will be compared with the average
PV cell temperature without PCM at various insolations, PCMs and PV-PCM systems
at fixed ambient temperatures.

Initial simulations were undertaken using the model described in section 2.5 for PV
cell without integrated PCM to calculate temperature evolution at the front surface un-
cooled PV cell. Model results provide a reference temperature levels obtained at PV
front surface which are validated with the measured experimental temperature data
shown in figure 30, 31 and 32 at 1000 Wm™, 750 Wm™ and 500 Wm™ insolation,
respectively. In case of 1000 Wm™ insolation the temperature rises to 55 °C in half an
hour while in the same duration, temperature rise was 49°C and 41°C at 750 Wm™ and

500 Wm™ respectively. The initial gradient of temperature is same in both simulated
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and experimental results but after 30 minutes the temperature rise is less in simulation
as compared to experimental results. This is due to the difference of atmospheric
condition between experiment and simulation. In the simulation model air heating
adjacent to the heat source, i.e. solar simulator is not considered and the heat transfer
is considered only between the PV surface and the adjacent air. In real operating
conditions the solar simulator surface also gets heated and transfers heat to the
ambient air enclosed between solar simulator and the PV cell reducing temperature
difference and the heat transfer between the PV surface and the ambient air resulting
in higer PV temperature. However the difference is only ~1-2 Kelvin and will not
have a large effect on the solar to electrical conversion efficiency of PV cell. It can be
improved by considering air heating near solar simulator and by mesh refinement at

the cost of increased computation time.

Figure 4.4: Temperature evolution on PV cell at 500 Wm™ insolation and 20 %I °C

ambient temperature.

103



60

50

|

40

30 —&—Simulated
—m—Experimental

20

Temperature (°C)

0 10 20 30 40 50 60 70 80 90
Time (mins)

Figure 4.5: Temperature evolution on PV Cell at 750 Wm™ insolation and 20 #1 °C

ambient temperature.

Figure 4.6: Temperature evolution on PV Cell at 1000 Wm™ insolation and 20 #1 °C

ambient temperature.

104



4.5.2. Validation of PV-PCM System

Figure 4.7 shows both experimental and simulated results of the temperature
evolution on PV-PCM System at insolation level 1000 Wm™ using PCM RT20. The
insolation of 1000 Wm™ was selected as is the insolation at which the PV are rated
while the PCM RT20 was selected because its thermophysical properties input to this
model were already verified through an earlier modelling work by Huang et al., 2006a
using similar thermophysical properties as in the current model. Initial gradient of
temperature rise as well as the final temperature rise is the same for both experimental
and simulated results. After half hour of exposure to solar radiations at 750 Wm? the
temperature in PV-PCM system rose to 43.5 °C in simulated result and 45 °C in
experimental results compared to 51 °C in PV without PCM. This shows temperature
regulation effect of 7.5 °C in modelled results and 6 °C in experimental results which
indicates that the model has over predicted temperature regulation in the start. In the
middle part i.e. between 45 minutes to 150 minutes, the model has predicted less
temperature regulation than the experimental results as can be seen from figure 4.7.
The prime reason for this difference between simulated and experimental result is
starting point for phase change process and the variation of density with temperature.
In the modelled temperature curve, the gradient of temperature rise starts to decrease
earlier than that in experimental curve which indicates an earlier start to melting

process and latent heat absorption.
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Figure 4.7 : Comparison of temperature evolution on PV Cell with and without

integrated PCM RT20 at 1000 Wm™ insolation and 20 +1 °C ambient temperature.

Figure 4.8: Melt fraction of PCM RT20 at 1000 Wm insolation and

20 £1 °C ambient temperature
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From figure 4.8, it can be seen that the melting started after 10 minutes represented by
sharp increase in melt fraction. Due to earlier start of phase change, temperature
regulation starts earlier in simulation model which results in over predicted
temperature regulation in first half an hour. Later variation in the middle part of both
modelled and experimental temperature curves may be, in author’s point of view, due
to density variation of actual and modelled PCM. The input density in the model is
piecewise linear with only two points given as input i.e. density in solid phase and
density in liquid phase assuming a linear relationship between these two points while
in reality, density variation is highly non-linear behaviour (Huang et al., 2006) In
actual conditions, density changes very quickly initially due to heat transfer by
conduction between solid PCM and PV Cell while as the melting front move towards
the back of the container, density variation reduces due heat to transfer by convection
rather than conduction caused in part by lower thermal conductivity of PCM 1i.e. 0.2

Wm'°C!.

Figure 4.9: Melt fraction against temperature of PCM RT20 at 1000 Wm™

insolation and 20 1 “C ambient temperature
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In simulations the density variation is linear so the melt fraction also follows a linear
curve with respect to temperature as the melting front moves away as shown in figure
4.9. Figure 4.10 shows distribution of melt fraction during the experiments. Compared
to real PV-PCM system the top, bottom, left and right surfaces shown in figure 4.10

are the front, back, top and bottom of the real PV-PCM system.

(a) (b)

(c) (d)

Figure 4.10 : Melt fraction of RT20 at 1000Wm™ insolation and 2041 ambient
temperature (a) after 20 minutes, (b) after 50 minutes, (c) after 100 minutes and (d)

after 160 minutes.

It shows that the melting front is planar at the start of the experiment (figure 4.10 a)
when heat transfer is due to pure conduction however after 50 minutes, it starts to

form curvature (figure 4.10 b) when sufficient PCM melt has developed. After 100
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minutes (figure 4.10 c) it can be observed that the lighter PCM with higher melt
fraction in the mushy zone moves upward due to buoyancy driven natural convection
caused by density difference and heavier PCM with lower melt fraction in the mushy
region moves downward in the direction of gravity with solid PCM accumulated at
the bottom of the PV-PCM system. After 160 minutes no pure solid is present and the
a stronger distribution of melt fraction in the mushy region is observed due to stronger
buoyancy driven natural convection with clear distinction of fully melted PCM at top
and near the heated surface and heavier less-melted PCM layers moving all the way
downwards to the bottom due to gravity. This shows how natural convection in the

melt changes the shape of the initially plane melting front.

4.5.3. Heat Transfer Mechanism in the PV-PCM System

In the PV-PCM system, the continuous heat input from incoming solar radiations
raised PV and consequently PCM temperature. At start temperature rise in PV-PCM
system was rapid up to 25-30 °C due to sensible heating of PV which transferred heat
to the solid PCM at the back due to conduction showing very little deviation from the
reference system temperature. Above 30 °C PV front surface temperature, the PCM
contained in PV-PCM system in direct contact with the PV back surface started
melting and absorbing PV thermal energy as latent heat. As a result of PCM melting
at fixed melting point the rate of temperature rise at PV front surface started to
decrease and deviate from the reference system temperature. A thin layer of melted
PCM developed between the heated PV back surface and the solid PCM. The melted

PCM layer started sensible heating with a rise in temperature while the solid PCM
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further away still continued to melt and absorb latent heat. The melted layer had a
lower thermal conductivity than the initially solid PCM decreasing heat transfer rate
to solid PCM and induced a temperature difference between the melted and solid
PCM. As the melt fraction increased, temperature difference in melted PCM induced
a density difference in the melt with lighter and heated fluid moving upward to the
container top due to buoyant natural convective heat transfer. The natural convection
resulted in different rate of melting at top and bottom PCM layers that introduced a
curvature in the initial planar melting front that caused the melting front to
breakdown. Higher density solid PCM started falling to the bottom of the PCM
container while lower density liquid PCM moved upward due to buoyancy to the top
of the PCM further increasing the temperature difference between top and bottom of
the PCM. As the heat absorption continued, the melt fraction continued to grow
rendering increasing convection in the melted PCM compared to conduction in the
solid PCM thus a larger deviation from isothermal heat absorption ensued. The
melting rate thus decreased the temperature rising slowly controlled by natural
convection until whole the PCM had melted. After the PCM had melted fully as the
latent heat is fully used a sharp increase in the PV temperature was observed which
reached the reference PV temperature in shorter time. In order to describe the heat
transfer mechanism in the PCM indicative Raleigh numbers (Ra) are calculated using

(Huang et al., 2006):

v— 4.1)
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Where g is the gravitational constant, f is the coefficient of thermal expansion of
PCM, T; is the surface temperature, T, is the bulk temperature, v is the kinematic
viscosity of PCM, x= is thermal conductivity of the PCM, p is density of the PCM, c,
is the specific heat capacity of the PCM and x is the distance from the front surface.
with the following assumptions (i) The melting front location is taken at the centre of
the PCM, i.e. at 2.5 cm from the heated front PV surface after half of the time of
turning the solar simulator on (ii) The bulk PCM temperature is taken as average
temperature between the front and back surface temperature of PV-PCM system after
half of the PCM had melted. (iii) Constant phase and temperature independent values
of thermal conductivity, specific heat capacity, density, viscosity and volumetric
expansion coefficient of PCM are considered. The thermal mass and Ra number were
calculated for each PCM and are given in table 4.2. Table 4.2 shows that CaCl,.6H,0O
has the highest thermal mass (2.65 kJK™") while RT20 has the lowest thermal mass
(1.03 kJK™") while the fatty acids fall in between which indicates that the CaCl,.6H,O
would result least temperature rise while RT20 would result in the highest
temperatures rise with same amount of heat input.

Table 4.2 shows also that the Ra number varies from 3.8 x10” to 1.4 x 10" which
confirms the presence of natural convection and laminar fluid flow in PV-PCM
system. It also shows that the salt hydrates CaCl,.6H,O has the lowest Ra number
(10%) indicating less convective heat transfer compared to fatty acids having the
highest Ra (10”) number showing the strongest convection within all the PCMs. It
also shows that in each PCM the Ra number increases with increasing solar radiation

intensity due primarily to increased temperature difference.
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Thermal mass Raleigh number
(kJK™)
RT20 500 | 1.03 1.8 x10°*
750 | 1.03 2.6x10"
1000 | 1.03 3.5x 10°
SP22 500 | 2.09 8 x 10°
750 | 2.09 1x10°
1000 | 2.09 1.4x 10°
CaCl,.6H,0 | 500 |2.65 3.8x 10°
750 | 2.65 5.8x 10°
1000 |2.65 7.6x 10°
CL 500 | 1.39 5.8x 10°
750 | 1.39 8.6x 10°
1000 | 1.39 1.2x 10’
CP 500 | 1.47 6.8 x 10°
750 | 1.47 1.1x 10’
1000 | 1.47 1.4x 10’

Table 4.2; Calculated thermal mass and indicative Raleigh numbers from the

thermophysical properties of the PCMs described in table 3.2.

4.5.4. Thermal Regulation at 500 Wm™ Insolation

Each experiment was conducted until all the PCM had melted and solar simulator
was stopped after PV-PCM temperature equalled reference temperature because if the
solar simulator was kept running after the PCM afterwards, the increased thermal
mass of PV-PCM system due to PCM would continue absorbing heat and act as heat
insulator compared to free back PV thus overheating the PV. In outdoor experiments
however it is not possible to stop heat input due to uncontrolled nature of solar
radiation, it becomes extremely necessary to remove heat from melted PCM

effectively by flowing cooling fluid (water or air) into the PCM at complete PCM
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melting. This heat extraction mechanism needs to be optimized for different climates
and ambient condition to avoid overheating of the PV-PCM system due to thermal
insulation provided by integrated PCM.

Figure 4.11 presents the temperatures on the PV front surface for all PCMs in system
A compared with the reference system at 500 Wm™ insolation and 20 1 °C ambient

temperature.
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Figure 4.11 Temperature evolution on the front surface of the reference PV system
and PV-PCM system A containing each PCM type at an insolation of 500 Wm™ and

ambient temperature of 20 1 °C

The temperature at the reference system without PCM increased rapidly due to
continuous heat input from the solar radiation falling on the PV and reached steady
state at 45 °C in 1 hour. The magnitude and duration of deviation of PCM temperature
in system A from the reference PV system quantifies the thermal regulation

enhancement of PV achieved using PCM. The duration of the deviation is given by
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the time in which the temperature in system A containing PCM equalled the
temperature in the reference system which is 6.5 hours for RT20, 9 hours for CL, 9.5
hours for SP22, 11 hours for CP and 13 hours for CaCl,.6H,O. RT20 showed the
shortest time of temperature deviation that is expected result due to its lowest thermal
mass while CaCl,.6H,0 showed the longest duration of melting owing to its highest
thermal mass compared to other PCMs which fell in between. Observing temperature
difference from reference, after 4 hours the temperatures in system A were below the
reference temperature by 4.6 °C with RT20, 6.5 °C with SP22, 7 °C with CL, 7.5 °C
with CaCl,.6H,0 and 8 °C with CP respectively. It was observed that RT20 showed
the smallest temperature deviation from reference of 4.6 °C and shortest duration of
the deviation of 6.5 hours primarily due to lower thermal mass and heat of fusion
compared to salt hydrate and fatty acids. CP showed the largest temperature deviation
from the reference of 8 °C due to its lower melting point compared to CaCl,.6H,O
while CaCl,.6H,O showed the longest duration of the temperature deviation of 13
hours due to its highest thermal mass and heat of fusion compared to other PCMs.

Results obtained when using PCMs contained in systems B, C and D under the same
conditions of 500 Wm™ and 20 + 1 °C are shown in Figures 4.12 — 4.14. Similar
trends in temperature evolution can be observed in all three PV-PCM systems
however each PV-PCM system, B, C and D achieved less temperature difference from

the reference system for shorter time durations than PV-PCM system A.
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Figure 4.12 Temperature evolution at front surface of the reference PV system and the

PV-PCM system B at an insolation of 500 Wm™? and ambient temperature of 20 *1

°C.
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Figure 4.13 Temperature evolution at front surface of the reference PV system and the

PV-PCM system C at an insolation of 500 Wm™ and ambient temperature of 20 *1°C
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Figure 4.14 Temperature evolution at front surface of the reference PV system and the

PV-PCM system C at an insolation of 500 Wm™ and ambient temperature of 20 *1°C

In order to compare the performance of different PCMs in system A, B, C and D, the
duration for which PCM in each of these systems maintained their temperature 10 °C
below the reference system temperature is illustrated in Figure 4.15. It can be seen
that all PCM types when used in system A maintained a 10 °C temperature reduction
for the longest duration compared to system B, C and D. Although system A & B
have the same dimensions (accommodating the same PCM thermal mass with same
PCM thermophysical properties of melting point, heat of fusion and thermal
conductivity) system A been fabricated from aluminium alloy has a higher thermal

conductivity than system B which have been fabricated from polymer perspex.

Since system A and B only differ in thermal conductivity of container, it indicates that

thermal conductivity of the container helps improve efficient heat transfer in system A
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compared to system B yielding lower temperatures at PV front surface for longer
durations of time. Similarly PCM in system C maintained a temperature reduction for
a longer duration than system D, although both have the same dimensions
(accommodating the same PCM thermal mass with same PCM thermophysical
properties of melting point, heat of fusion and thermal conductivity) however system
C has higher thermal conductivity than system D. It also indicates that the thermal
conductivity of the container material helps to achieve lower temperature for longer
duration of time. From observation mentioned above it can be concluded that at low
insolation all PCM types performed better in high thermal conductivity systems A &

C compared with the same sized lower thermal conductivity systems B & D.
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Figure 4.15 Duration for which PCM maintained PV front surface temperature 10 °C
below the reference temperature in systems A, B, C and D at an insolation of 500 W

m*and ambient temperature of 20 +1 °C.

Comparing PCM types, fatty acids CL and CP maintained temperature deviation of 10

°C from the reference for the longest duration of 2.5 hours followed by salt hydrates
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SP22 and CaCl,.6H,0 at 2.25 hours and paraffin wax RT20 at 1.5 hours. Fatty acids
CL and CP have a low thermal conductivity of 0.14 Wm™'K"! (Sharma and Sagara
2005) compared to paraffin RT20 having 0.2 Wm'K"! (Rubitherm 2009 -a), SP22
having 0.6 Wm™'K™ with similar melting points (Rubitherm 2009 -b). It indicates that
the lower thermal conductivity PCM types performed better than higher thermal
conductivity PCM at lower insolations.

Lower thermal conductivity PCM types performed better than higher thermal
conductivity PCM however higher thermal conductivity PV-PCM systems performed
better than the lower thermal conductivity PV-PCM systems. This leads to the
conclusion that at low insolation the thermal conductivity of the PV-PCM system is
more important than the thermal conductivity of the PCM itself to maintain higher

thermal regulation.

4.5.5. Thermal Regulation at 750 Wm™ Insolation

Figure 4.16 shows temperatures at the front surface of system A containing each of
the five PCMs compared with the temperature at front surface of the reference PV
system irradiated at 750 Wm? and 20 +1 °C ambient temperature. It can be observed
that the temperature rise at front surface of the reference systems and system A is
similar for all PCM types up to 30 °C. Above this temperature the temperature rise in
the reference continued with the similar gradient however the gradient of temperature
rise in system A with different PCMs started to decrease. This indicates onset of latent
heat absorption by the melting PCM contained in systems A at the back of PV.

Temperature in system A remained lower than the temperature in the reference system
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due to continued latent heat absorption. After 4 hours, temperature in system A was
below the reference temperature by 4 °C with RT20, 7.5 °C with SP22, 8 °C with

CL, 9 °C with CP 10 °C and with CaCl,.6H,O respectively.
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Figure 4.16 Temperature evolution on front surface of PV in system A at an insolation

of 750 Wm™ and ambient temperature of 20 1 °C

Again PCM RT20 achieved the lowest temperature regulation for the same reasons
described in the previous section, however at 750 Wm™ CaCl,.6H,0 achieved higher
temperature regulation than CP in contrast to what was observed at 500 Wm™. CP has
lower melting point while CaCl,.6H,O has higher thermal mass and thermal

conductivity which shows that at 750 Wm™

the thermal mass and thermal
conductivity has relatively stronger effect than the melting point in stabilising lower
PV temperatures. After complete melting of the PCM, the temperature in system A
started to rise with a higher gradient and eventually equalled the temperature in the

reference system. The time for which the temperature in system A remained below the

temperature in reference system indicates the potential of each PCM contained in
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system A to regulate PV temperature. The duration to reach temperature equilibrium
was 6 hours for RT20, 8 hours for CL, 9 hours for SP22, 10 hours for CP and 12
hours for CaCl,.6H,0O. RT20 achieved the smallest temperature difference from the
reference and the shortest time to achieve equilibrium for the same reasons explained
in previous section. CaCl,.6H,0O showed the largest temperature difference from the
reference system and also achieved the longest duration of the temperature difference
primarily because of highest thermal mass, thermal conductivity and heat of fusion of
the PCM compared to all other PCMs.

Results obtained when using PCM with system B, C and D under same conditions of
750 Wm™ insolation and 20 + 1 °C ambient temperature are shown in Figures 4.17 —
4.19. Similar trends as in Figure 4.10 can be observed for the temperature evolution in
all the three figures with each of the PV-PCM systems, B, C and D showed a lesser

temperature difference from reference than system A.
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Figure 4.17 Temperature evolution on front surface of PV in system B at an insolation

of 750 Wm™ and ambient temperature of 20 1 °C.
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Figure 4.18 Temperature evolution on front surface of PV in system C at an insolation

of 750 Wm™ and ambient temperature of 20 1 °C.
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Figure 4.19 Temperature evolution on front surface of PV in system D at an insolation

of 750 Wm™ and ambient temperature of 20 1 °C.
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The duration for which each PCM maintained PV temperature 10 °C below the

reference temperature were compared and are illustrated in Figure 4.20.
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Figure 4.20 Duration for which PCM maintained PV front surface temperature 10 °C
below the reference temperature in systems A, B, C and D at insolation of 750 Wm?

and ambient temperature of 20 £1 °C.

Comparing systems A, B, C and D, the temperature reduction for the longest duration
was achieved with system A for all PCMs. Similarly comparing different PCMs,
CaCl,.6H,0 maintained the temperature reduction of 10 °C for the longest duration of
3.5 hours followed by SP22 at 2.7 hours CP and CL at 2.5 hours and RT20 at 2
hours. At 750 Wm™ high thermal conductivity and thermal mass of PCMs,
CaCl,.6H,0 and SP22 performed better than lower thermal conductivity and thermal
mass PCMs, CP, CL and RT20 opposite to what was observed at 500 Wm? insolation
where CL and CP performed better than RT20, SP22 and CaCl,.6H,0. It can be

concluded that at intermediate insolation the optimum performance was achieved with
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the combination of high thermal conductivity and higher thermal mass PCM

CaCl,.6H,0 with high thermal conductivity PV-PCM sytems A.

4.5.6. Thermal Regulation at 1000 Wm Insolation

Figure 4.21 shows temperatures at front surface of system A for all PCMs compared
with the reference at 1000 Wm™ insolation and 20 +1 °C ambient temperature.
Similar to the trend observed at 500 Wm™ and 750 Wm™ insolation, the use of the

PCM in system A maintained lower temperatures than the reference system.
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Figure 4.21 Temperature evolution on PV front surface in system A at an insolation of

1000 Wm™ and ambient temperature of 20 +1 °C.

At start of the experiments the temperature in the reference system and the system A
was similar until it reached 35 °C. As soon as the PCM at the back of PV in system A

started melting and absorbing latent heat the gradient of temperature rise in systems A
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started decreasing and the difference of temperatures between the reference and the
system A started to increase. After 4 hours, the temperature in system A was
maintained below the reference temperature; 3.5 °C with RT20, 4 °C with CL, 7.5
°C with SP22, 11 °C with CaCl,.6H,0 and 12 °C with CP.

Each melting PCM in system A continued to absorb latent heat and maintained lower
temperature in PV until the whole PCM had melted. At this point gradient of
temperature rise in system A started increasing sharply and eventually system A
reached temperature equilibrium with reference system. The temperature reduction
and time length for such reduction varied for each PCM. The duration in which the
PCM in system A equalled the temperature in the reference system is 5.5 hours for
RT20, 6 hours for CL, 9 hours for SP22, 9.5 hours for CP and 11 hours for
CaCl,.6H,0 respectively. It is observed that RT20 showed the smallest temperature
difference with shortest duration to reach the equilibrium with the reference system
due to lower thermal conductivity, thermal mass and heat of fusion compared to
CaCl,.6H,0. C-P showed the largest temperature difference due primarily to lower
melting point and higher heat of fusion and CaCl,.6H,O showed the longest duration
to reach equilibrium with the reference system due to higher thermal mass and heat of
fusion. Results obtained when using PCM with system B, C and D under same
condition of 1000 Wm™ and 20 + 1 °C are shown in Figures 4.22 — 4.24. Similar
trends can be observed for temperature evolution in all the three figures however each
of the PV-PCM systems, B, C and D showed a lesser temperature difference from

reference than system A.
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Figure 4.22 Temperature evolution on PV front surface in system B at an insolation of

1000 Wm™ and ambient temperature of 20 +1 °C.

65

Temperature at front surface (°C)

40 —»— Reference system
System C with RT20
354/ —a— System C with CL
i —#— System C with CP
304 System C with CaCl,.6H,0
—e— System C with SP22
25
20 T T T 1
0 2 4 6 8

Time (hour)

Figure 4.23 Temperature evolution on PV front surface in system C at an insolation of

1000 Wm™ and ambient temperature of 20 +1 °C.
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Figure 4.24 Temperature evolution on PV front surface in system D at an insolation of

1000 Wm™ and ambient temperature of 20 +1 °C.

The duration for which each PCM maintained PV front surface temperature 10 °C
below reference temperature are illustrated in Figure 4.25. Comparing containers A,
B, C and D, container A achieved the longest duration of the 10 °C temperature
reduction for all PCM. Comparing different PCM types, CaCl,.6H,O achieved the
longest duration of the temperature reduction of 5 hours followed by CP at 4.2 hours,
CL and SP22 at 3 hours and RT20 at 2.6 hours in system A. largest amount of
temperature difference was obtained with CP in system A while largest duration of
temperature difference was achieved with CaCl,.6H,0 in system A. It illustrates that
at high insolation, the combination of low thermal conductivity, lower melting point
and comparable heat of fusion PCM, CP in combination with higher thermal
conductivity system A achieved the largest temperature reduction. Also the

combination of high thermal conductivity, high thermal mass and high heat of fusion
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PCM CaCl,.6H,0 in combination with high thermal conductivity system A achieved

the longest duration of temperature difference.
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Figure 4.25 : Duration for which PCM maintained PV front surface temperature 10 °C
below the reference temperature in systems A, B, C and D at an insolation of 1000

Wm™ and ambient temperature of 20 +1 °C.

4.5.7. Effect of Thermal Conductivity of Container Material of PV-PCM

System on PCM Performance

To determine the best container type two PCMs with different thermal conductivities,
thermal mass and heat of fusions, CP and CaCl,.6H,O were characterized in same
sized systems A & B having different thermal conductivities at 1000 Wm? insolation
and 20 £1 °C ambient temperature. Temperatures were recorded at the front surface of
system A and B using CP and CaCl,.6H,0O and are illustrated in Figure 4.26 (a) and

Figure 4.26 (b) respectively.
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Figure 4.26 Temperature at PV front surface using (a) C-P in system A and B (b)
CaCl,,6H,0 in system A and B and (c) CP and CaCl,.6H,0O in system A at an

insolation of 1000 Wm™ and ambient temperature of 20 +1 °C.

System A maintained lower temperatures at the PV front surface than system B for
CP as shown in Figure 4.26 (a) with a maximum temperature difference of 5 °C. In
Figure 4.26 (b) again system A maintained lower temperature than system B using
CaCl,.6H,0O however the maximum temperature difference was 1 °C. Since for CP
the temperature difference in A and B was higher (5 °C ) than for CaCl,.6H,0 (1°C) it
suggests that CP having lower thermal conductivity and lower melting point improves
more when placed in higher thermal conductivity container than higher thermal
conductivity and higher melting point PCM, CaCl,.6H,0. This is very encouraging
behaviour showing that the lower thermal conductivity of PCM can be compensated
for by higher thermal conductivity of PV-PCM container if the lower melting point
PCM is selected for temperature regulation compared to higher melting point PCM.

To compare CP and CaCl,.6H,0 in same system A, temperatures at PV front surface
are presented in Figure 4.25(c) at 1000 Wm™ insolation and 20 1 °C ambient

temperature. CP maintained lower PV temperature than CaCl,.6H,O for the initial 5
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hours in low PV temperature range. After which CaCl,.6H,O maintained a lower
temperature for rest of experiment at the higher PV temperature range. Since CP has
lower thermal conductivity as well as lower melting point than CaCl,.6H,0,it can be
concluded that the lower thermal conductivity PCM with a lower melting point
performs better at lower PV operating temperatures. However higher conductivity
PCM (CaCl,.6H,0O) with higher melting point performs better at higher PV operating
temperature. However PCM with high thermal conductivity, thermal mass and heat of
fusion (CaCl,.6H,0) is highly corrosive to the metallic containers while low thermal
conductivity and lower melting point PCM, CP with comparable heat of fusion is less
corrosive to the PCM container which brings the possibility that lower thermal
conductivity and lower thermal mass PCM, CP to compete with higher thermal
conductivity and higher thermal mass PCM at higher PV operating temperature not in
terms of producing higher temperature regulation but in terms of longer PCM

container life due to reduced corrosion.

4.5.8. Determination of Thermal Regulation Enhancement (I') for Different

PCM types

PCM can remove thermal energy available at the PV and maintain lower temperatures
during melting. Heat removed by PCM is the sum of the sensible heat absorbed when
its temperature rises from ambient to its melting point, the latent heat absorbed during
melting and the sensible heat from the end of melting until it reaches thermal

equilibrium with the reference system. This can be represented by equation 4.2.

Q:mcps (T,-T)+mL+ mel(Tf -T)) 4.2)
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Where Q is the heat removed by PCM, C, , and C, ; are specific heat capacities of
PCM in solid and liquid phase respectively, T;, T, and Ty are initial, melting and final
temperatures of PCM respectively, m is the mass of PCM and L is the latent heat of
fusion of the PCM. The difference between temperature evolution of a reference PV
system and PV system with PCM are plotted in figure 4.27.

J. TPVPCM dt (4'3)

I = ITHTPV dt —

t=t
t

o

Where Tpy and Tpypcy are the PV and PV-PCM temperature, f, and ¢, are the start and

end time of the experiment.
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Figure 4.27 Temperature difference between the reference and the PV-PCM systems

represented by the shaded area.

Figure 4.27 is a indicative of the total thermal regulation enhancement, I" provided
using PCM. Mathematically I for a particular PCM at constant insolation and
ambient temperature is obtained by subtracting the integral of PV temperature

evolution over time with PCM from the integral of reference PV temperature
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evolution over time as shown in equation 4.3. When the test conditions are identical

for both the PV and the PV-PCM systems, the equation 4.4 is obtained:

I = (Toy = Thrypem ydi (4.4)

While for n discrete measurements of Tpy and Tpypcm under identical conditions, the

thermal enhancement becomes

- 4.5)
' = Z (TPV,t ~Trvpen ,t)
t=0

As described equation 4.5 I'is a function of deviation of PV temperature with PCM

(Tpvpcm) from the reference temperature (Tpy) and the duration of the deviation.

Figure 4.28 shows that initially there was no deviation between Tpypcy and Tpy:.
however, as the PCM commenced melting, this deviation started and continued
increasing to a maximum (14 - 18 °C in 50 minutes) where it stabilized for up to 30
minutes. After which the combination of latent and sensible heating of PCM raised
the temperature in the PCM at back of PV yielding higher temperature at PV front
surface. The increase of temperature in PV-PCM system resulted in a decrease in the
temperature difference from reference (10 - 14 °C in 100 minutes). As the melt
fraction of PCM continued to increase, the temperature difference between reference
PV and the PV-PCM systems continued to decrease. After the PCM had completed

melting the temperature of PCM started increasing with a larger gradient and the
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temperature deviation between reference and PV-PCM system started decreasing with
larger gradient until Tpypcm equalled Tpy and the deviation became zero in 11 hours.

CaCl,.6H,0 and CP achieved the largest temperature deviation of 18 °C followed by
SP22 and CL at 16.5 °C and RT20 at 14 °C. CaCl,.6H,0 maintained the temperature
deviation for the longest duration of 11 hours followed by CP at 9.5 hours, SP22 at 9
hours, CL at 6 hours and RT20 at 4.5 hours. A similar trend was observed with PCM

in systems B, C and D.
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Figure 4.28 Temperature difference from reference for RT20, CL, C-P, CaCl,.6H,O
and SP22 at an insolation of 1000 Wm™ and ambient temperature of 20 + 1 °C for

system

To quantify the thermal regulation enhancement, I' for all PCM in PV-PCM systems,
integrals of the temperature deviation were determined at 500 Wm™, 750 Wm™ and

1000 Wm™ insolation and 20 + 1 °C ambient temperature and are presented in figure

4.29.
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Figure 4.29 Thermal regulation potential for all PCM at 500 Wm™ in systems A, B, C

and D.

Figure 4.29 illustrates that at 500 Wm'2, system A achieved the maximum I value of
all PCM followed by systems C, B and D with systems C & B achieving similar
I" values. Since the high conductivity system C contains 3/5 PCM mass compared to
the low conductivity system B, yet achieved the same I suggests that 2/5 mass of
PCM can be saved by using high thermal conductivity system at low insolation.
Comparing PCMs, CaCl,.6H,O achieved the highest value for I followed by CP,
SP22, CL and RT20 respectively which shows that highest thermal conductivity,
higher thermal mass PCM CaCl,.6H,O in combination with highest thermal

conductivity system A achieved the highestI" .

Figure 4.30 illustrates that system A achieved the highest T" at 750 Wm™ as well
followed by B, C and D. CP and CL gave a marginally higher I" in container C than

B while CaCl,.6H,0, SP22 and RT20 gave higher I" in container B than C. Since
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container C has higher thermal conductivity than container B, it suggests that it is
more appropriate for use with low thermal conductivity PCM (i.e., CP and CL which
perform better in C and B) than for higher thermal conductivity PCMs (i.e.,
CaCl,.6H,0, SP22 and RT20). Comparing PCMs, CaCl,.6H,0 achieved the highest
I followed by CP, CL, SP22 and RT20 the same trend as was observed in the

previous section.

V7777) System A 55 System B System C

6000 %
5000

4000 :
: %

3000

[T

2000

2T py-Tpy/pcm (C-min)

1000

RT20 C-p CaCl2 SP22

Figure 4.30 Thermal regulation potential for all PCMs at 750 Wm? in systems A, B,

C and D.

Figure 4.31 illustrates that system A achieved the highest I" followed by, B, C and D
respectively at 1000 Wm™>. Comparing B and C, all PCMs showed higher I" in
container B than in container C. This was opposite to the trend observed at 500 Wm™?
where all PCMs had higher I' in container C than in container B. It can be concluded

that although the increased PV-PCM thermal conductivity improved I' for all PCMs
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at high insolation, however the improvement at 1000 Wm™ was less than that
observed at 500 Wm™ where 2/5 PCM mass saving was achieved due to increased

thermal conductivity of the PV-PCM system.
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Figure 4.31 Thermal regulation potential for all PCM at 1000 Wm? in systems A, B,

C and D.

The results obtained from all indoor experiments for temperature regulation, end of
melting time and thermal regulation enhancement of PV using PCM for all five
PCMs, four PV-PCM systems, and three solar radiation intensities are summarized in

table 4.3
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PCM

RT20 CL CP CaCL,.6H,0 | SP22
PVPCM | A | 1.4 26 25 22 22
at 50 B |06 0.8 1.1 1.5 0.6
Time for Wm™ Clo07 1.4 1.4 12 1.3
10 °C D | 0.6 1 0.8 1 0.9
temperature [  PVPCM | A | 2 2.4 24 35 2.7
regulation at 750 B|19 0.5 1.3 2 0.6
(hours) Wm? Cl15 1.8 1.9 1 1.8
D| 14 0.5 0.7 1.8 0.5
PVPCM | A | 2.6 3 42 5.1 3
at 1000 [B [ 1.9 0.6 1.1 2 12
Wm? Cl14 1.5 2.8 3.7 1.9
D |09 0.7 1 22 0.6
At Al 65 9 11 13 9.5
Time to | PVPCM [ B |54 8.6 10.4 12.4 8
reach steady | 500 C|5 4.8 9.1 12.3 7.3
state ie. | Wm? D |38 59 78 10.1 58
complete PVPCM |[A |6 8 10 12 9
PCM at 750 B |64 53 8.1 11.4 6.8
melting Wm™? C |38 6 6.6 7 6.9
(hours) D |37 32 6 8.1 4.8
PVPCM | A | 5.6 59 95 1.1 9
at 1000 [ B | 4.76 6.2 8.8 11 6.7
Wm? C |28 43 5.7 6.3 4.6
D |39 4.4 6.2 6.6 52
PVPCM | A | 2208 3649 4519 5244 3573
at 502 B | 1732 2416 2959 4192 2362
Thermal Wm C [ 1839 2527 4054 4629 2476
;i‘;ﬁle";em D | 1187 1788 2184 3173 1729
(°Comin) PVPCM | A | 2907 3653 4763 6116 3964
at 750 B | 1801 2564 3294 5303 3156
Wm C [ 1812 2676 3751 3662 2803
D | 1014 1611 1932 3254 1383
A | 2420 2755 4280 5545 3823
PVPCM | B | 1793 2012 3170 4899 2545
at 1000 [ C [ 1199 1698 2877 3846 2041
Wm™ D | 916 1404 2100 2973 1401

Table 4.3 : Summary of results obtained from indoor experiments at three different

solar radiation intensities, four PV-PCM systems and five PCMs at 20+1 °C ambient

temperature.
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4.6 Conclusions

Five PCMs evaluated at three different insolations showed that thermal regulation
performance of a PCM depends on the thermal conductivity, thermal mass, heat of
fusion and melting point of PCM and over all thermal conductivity of PV-PCM
systems. A simple heat transfer simulation model was developed and initial validation
of the experimental results was carried out. It was observed that the heat transfer does
not happen as pure conduction and natural convection is present which can not be
ignored. Comparing PCMs, the highest temperature reduction was achieved (i) at 500
Wm™ by eutectic mixture fatty acids CP (i) at 750 Wm™ by salt hydrate CaCl,.6H,O
and (iii) at 1000 Wm? again by CaCl,.6H,0. In the best case, CP and CaCl,.6H,O
maintained a maximum of 18 °C temperature reduction at PV front surface for 30
minutes, while CaCl,.6H,0 maintained a 10 °C temperature reduction for 5 hours at
1000 Wm™ insolation in system A.

Although time to maintain 10 °C temperature difference is a good figure of merit to
evaluate the temperature regulation because in most of the cases PV temperature
curve using PCM was flatter at this temperature difference from the reference which
means maximum latent heat absorption occurred in this regime. However it does not
inform for how long the PCM will maintain temperature difference at a lower
temperature than 10 °C. For example some PCMs may maintain 10 °C temperature
difference for shorter time duration but may maintain lower temperature difference
(say 5 °C) for longer duration which means they still can compete with those
producing 10 °C for longer time duration. In order to better understand PCM

performance for longer time duration integral of temperature difference over time was
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taken. The preferred figure of merit would be I' as it shows the over all behaviour of
PCMs in all temperature difference regimes. Comparing PV-PCM systems, system A
yielded the highest temperature reduction and I" with all PCM types. Finally the
thermal conductivity of the PV-PCM system had stronger impact on performance
enhancement of lower thermal conductivity and lower melting point eutectics of fatty
acids, CL and CP than on higher thermal conductivity salt hydrates SP22 and
CaCl,.6H,0.

It is observed that CP performs best of all PCMs at low insolation (500 Wm™?) while
CaCl2.6H20 performs better at intermediate (750 Wm'z) and higher (1000 Wm'z).
The reason being probably at low insolation the temperature at PV surface is lower
enough that the low melting point PCMs (CP with melting point 22.5 °C) fully melts
and absorbs more heat resulting lower temperature at PV than high melting PCMs
(CaCl,.6H,O with melting point 29.8 °C) which melts partially and absorbs less
amount of heat resulting in higher PV temperature. At high temperature the melting
point may not be very crucial and the thermal conductivity and heat of fusion (both
are higher for CaCl,.6H,0 than for CP) plays dominant role due to increased need of
efficient and maximum heat removal from PV to yield lower temperatures.
Aluminium container always produced the best results with all the PCMs, although it
is corrosive with most of the PCMs however this problem can be resolved with further
research applying corrosion protective coatings. The effectiveness and cost incurred
to such improvements in the container is still an open issue and needs extensive

research.
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S INDOOR LARGE SCALE EXPERIMENTS ON PV-PCM
MODULAR SYSTEMS WITH CaCl,.6H,0O AND EUTECTIC
MIXTURE OF CAPRIC PALMITIC ACID.

5.1 Aim of the Experiments

Five different PCMs were characterized indoors with different PCM masses,
containment materials and solar radiation intensities on small scale cell size PV-PCM
systems discussed in chapter 4. It was observed that the eutectic mixture of capric-
palmitic acid (CP) and the salt hydrate (CaCl,.6H,0) performed better than the other
materials, paraffin wax (RT20), eutectic mixture of capric-lauric acid (CL) and the
mixture of salt hydrate and the paraffin wax (SP22) in indoor experiments. It was also
observed that the system A (i.e., PV integrated into the aluminium container with
volume to surface area ration of 5 cm’cm™) performed better than all the other
systems at all characterization solar radiation intensities (500, 750 and 1000 Wm'z),
using all PCMs.

The aim of these experiments is to study the behavior of the two PCMs (CP and
CaCl,.6H,0 that performed better in small scale indoor experiments) on large scale
panel size (600 mm x 700 mm) systems. These two PCMs were integrated into large
scale PV modules referred to as PV-PCM; (i.e., PV module containing integrated CP)
and PV-PCM,; (i.e., PV module containing CaCl,.6H,0). Indoor experiments were
conducted with reference PV module and the two PV-PCM systems using a larger
solar simulator housed at the Centre for Sustainable Technologies, Ulster University,

Jordanstown, N-Ireland.
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5.2 Methodology

= Experiments were conducted at solar radiation intensities of 500 Wm?, 750

Wm? and 1000 Wm for the reference PV, PV-PCM; and PV-PCM,

= Temperature evolution was recorded at the reference PV system and both the
PV-PCM systems and the difference in the temperatures was determined and

compared.

= Open circuit voltage (V,.) and the short circuit currents (/;.) were measured
for the reference and the two PV-PCM systems. Temperature induced change in /.
being very low has marginal effect on PV power while temperature induced change in
V. 1s significant that is mainly responsible for the temperature induced change in PV
power. Therefore only difference of the V,. between the reference system and the two

PV-PCM systems will be analyzed.

= Fill factor (FF) was determined from the reference PV power and I-V curves
provided by the manufacturer at standard test conditions (STC) and were extrapolated
to determined FF at operating conditions (i.e., solar radiation intensities and

temperatures) of reference PV, PV-PCM, and PV-PCM,

= The calculated FF was used with measured V,.and ;. to determine measured

power output (P) for the reference PV and the two PV-PCM systems

] Finally the percentage difference between measured P from the reference

system and the measured P from the two PV-PCM systems were compared to
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calculate prevention of temperature dependent power drop, so called power saving

(Py) obtained by PV cooling.

= Temperature reduction achieved by the two PCMs multiplied by temperature
coefficient of power drop (7)), provided by the PV manufacturer’s catalogue, to

obtain predicted P, obtained by reduced PV operating temperature.

] Finally the measured and predicted P, values were compared to validate the

experimental results with manufacturer’s data.

5.3 Experimental Setup

Three 65 W Suntechnics polycrystalline silicon PV panels (Suntechnics, 2006) were
installed and characterized outdoors at Focas Institute, Dublin, (53.33 N, 6.24 W) to
observe any inconsistencies in their V,. and I, Data measured confirmed the
consistency of performance in all the three PV with respect to the V,. and ;. with the
highest deviation of = 1 %

Two rectangular PCM containers with internal dimensions of 600 mm x 700 mm x 50
mm were fabricated from a 5 mm thick aluminium alloy to contain the PCM. Seven
straight fins of dimensions 700 mm x 50 mm x 5 mm with inter fin spacing of 75 mm
fabricated from the same alloy were vertically fitted back to back between internal
walls of the container to enhance the thermal conductivity of the PCM container. Such
finned systems have been reported (Huang et al., 2004; Huang et al., 2006) to achieve
increased heat transfer into the PCM matrix. This results in increased PCM melting

leading to decreased melting time and reduced PV temperature closer to the desired
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PV temperature. The fabricated containers were attached to back of the PV panels
with epoxy resin and were fixed to the PV under pressure for 48 hours to allow glue

to uniformly settle and yield strong bond between PV and the container.

Thermocouples

Ry with thermacouplas Mounted PY/PCM system

Solar Simulatar

Data legger

Multimeters

Figure 5.1 Indoor experimental setup consisting of a large scale solar simulator to

produce desired insolation, PV with thermocouples, multimeters and data logger.

Figure 5.1 shows the experimental set up where the reference PV and PV-PCM were
connected to multimeters to measure their V,. and /.. The calibrated t-type copper-
constantan thermocouples with measurement error of 0.2 °C were installed on the
reference PV and the two PV-PCM systems at locations shown in figure 5.1 (b) to
measure temperature. A Kipp and Zonen CM6B pyranometer with an accuracy of +

0.2 % was installed to measure the solar radiation intensity (Kipp and Zonnen 2003).
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A large solar simulator consisting of a 7 x 5 array of 575 W metal halide lamps was
used to produce the desired insolation. The solar simulator was capable of producing
1200 Wm2 ona2mx 2.2 m target surface area at a variable distance of 1.8 m to 2.2
m with 95 % measured uniform intensity distribution (Zacharopoulus et al., 2009). A
delta-T 2e data logger with an accuracy of + 0.1 % was used to record temperatures

and solar radiation intensities described in Appendix F (Delta-T, 2010).

5.4 Experimental Procedure

The PCMs, CP was prepared by mixing 75.2 % by weight of capric acid (= 96 % pure
from Sigma Aldrich) with 24.8 % by weight of palmitic acid (> 98 % pure from
Sigma Aldrich). The mixture was heated until all the PCM had melted and stirred for
12 hours to obtain a uniform mixture. The salt hydrate CaCl,.6H,O was also melted
and stirred for 12 hours to obtain a uniform solution. The melted PCM were filled in
their respective PV-PCM systems up to 650 mm of container height leaving a 50 mm
empty top space to accommodate PCM expansion during phase change. The PV-PCM
systems were kept indoors at 16 °C for 48 hours until both PCM had fully solidified
and were ready to be exposed to the solar simulator to start the experiment. Reference
experiments were conducted on a vertically installed PV panel without PCM
irradiated by the solar simulator at insolations of 500 Wm'z, 750 Wm™ and 1000 Wm™
% with an ambient temperature of 20+1 °C. Temperatures at the front and back PV
surfaces, V,. and I, were measured for the reference PV exposed to the solar

simulator.
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PV-PCM; containing fully solidified CP was installed vertically and exposed to solar
simulator for 6 hours at 500 Wm™ and temperatures, V,. and ;. were also recorded.
The temperatures on front surface of PV and PV-PCM,, the V,. and I, were compared
to quantify cooling of PV produced by melting CP and the concomitant effect of this
cooling on PV electrical output.

After the heating cycle was over, the solar simulator was switched off to allow PCM
in the PV-PCM system to cool down for at least 16 hours simulating night time
conditions to get it ready for the next run of the experiment. Similarly the experiments
were conducted at 750 Wm™ and 1000 Wm™ with the same ambient temperature of
20 £ 1 °C. After the experiments were finished with CP, the same experiments under
same conditions were conducted using CaCl,.6H,0 in PV-PCM, for the same length

of time and again temperatures, V,.and I, were recorded.

5.5 Results and Interpretations

5.5.1. Thermal Regulation at Low Insolation

Figure 5.2 shows the temperature rise at front surface of the reference PV, PV-PCM;
and PV-PCM; when all three were exposed to a solar radiation intensity of 500 Wm™
and 20 £1 C ° ambient temperature. It is observed that the reference temperature
provided by the PV without PCM stabilized at 40 °C at 500 Wm™ solar radiation
intensity. Temperatures in the two PV-PCM systems also followed a similar trend in
temperature rise however maintained a lower temperature than the reference

temperature.
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Figure 5.2 Temperature evolution in the indoor experiment at solar radiation intensity
of 500 Wm™ and ambient temperature of 20 #1 °C measured on the front surface of

reference PV, PV-PCM,; and PV-PCM,

The lower temperature was achieved due to heat (produced by incident radiations at
the PV surface) being absorbed by the melting PCM as latent heat of fusion at the
back of each PV-PCM system. It is observed that PV-PCM, maintained lower
temperatures than PV-PCM,; for the length of the experiments. Temperature difference
between the reference PV and the two PV-PCM systems at 500 Wm™ is presented in
Figure 5.3. A higher temperature difference was observed in the start of the
experiments for 25 minutes with 5 °C for PV-PCM; and 8 °C for PV-PCM,, which
continued to decrease as the experiment proceeded. The higher temperature difference
occurred at the start of the experiments due to maximum heat absorption by PCMs

due to dominant latent heat absorption by PCM close to their melting points.
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Figure 5.3 Temperature regulation in large scale indoor experiments for the reference
PV, PV-PCM; and PV-PCM,; at solar radiation intensity of 500 Wm? and ambient

temperature of 20 =1 °C

As the melting proceeded, the melt fraction increased leading to dominant sensible
nature of heat absorption at further beyond to transition temperature resulting in
increase PCM temperature and decreased temperature difference between the
reference and the two PV-PCM systems. Towards the end of the experiments, most of
the PCM had melted and the sensible heating of the PCM dominated shown by sharp
increase in the PV-PCM temperatures with a higher gradient shows that PV-PCM,
maintained a higher temperature difference from the reference throughout the
experiment than PV-PCM;. At the end of the experiment after 6 hours, the
temperature difference of PV-PCM; from the reference PV dropped to zero however
the temperature difference of PV-PCM; from the reference PV remained at 4 °C. This
showed that the PCM in PV-PCM; still had potential to absorb heat and regulate PV
temperature for a further period of time. Both the PV-PCM systems have same
dimensions and containment materials distinguished solely by the PCM, CP in PV-

PCM; and CaCl,.6H,0 in PV-PCM,. It can be inferred that CaCl,.6H,O performed
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better than CP at 500 Wm™ achieving higher temperature difference and longer
duration of time to maintain the temperature difference.

Figure 5.4 shows the measured V,, for the reference PV and the two PV-PCM systems
which showed that the two PV-PCM systems maintained higher V. than the reference
PV.
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20.5

20.0 4
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Figure 5.4 Open circuit voltage for indoor experiments at solar radiation intensity of

500 Wm™ and ambient temperature of 20 +1 °C

Higher V,.in the two PV-PCM systems is due the lower temperatures of the systems
compared to the reference PV, shown in Figure 5.2, due to heat absorbed by melting
PCM contained in the PV-PCM systems. Results found are in agreement with
previous studies (Green, 2003; Radziemska, 2003) that found that higher operating
temperatures in PV systems caused a drop in PV voltage and power, which can be
avoided by maintaining PV at lower temperatures (Krauter, 2004; Tonui and
Tripanagnostopoulos, 2007). At start of the experiments, as PV temperatures were

lower, V,. was higher for the reference PV and the two PV-PCM systems. As the
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temperatures started to increase during the experiments due to incident insolation, the
Vo started to decrease. At the end of the experiment the V,. in the PV-PCM; equalled
Voc in the reference PV. However V,. in PV-PCM; remained higher than the reference
PV which is in agreement with the temperatures profiles in Figure 5.2.

Figure 5.5 presents the difference in V,. of the two PV-PCM systems from the
reference PV leading to quantification of voltage improvement i.e., prevention of

temperature induced voltage drop by maintaining the PV at lower temperatures.
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Figure 5.5 Voltage improvement in indoor experiments as a result of temperature
regulation by PCM at solar radiation intensity of 500 Wm™ and ambient temperature

of 20 1 °C

It can be observed that the PV-PCM; maintained higher voltage improvement than the
PV-PCM, which is in accordance with the temperature difference shown in Figure 5.3
the higher the temperature difference from the reference the higher the voltage

improvement and vice versa. At the start of the experiments the voltage improvement
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was higher in both PV-PCM systems, 0.6 V for PV-PCM, and 0.9 V for PV-PCM,
which continued to decrease as the experiments proceeded, a similar behaviour as was

observed in case of the temperature difference shown in Figure 5.3

5.5.2. Thermal Regulation at Intermediate Insolation
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Figure 5.6 Temperature evolution in the indoor experiments for reference PV, PV-

PCM; and PV-PCM; at solar radiation intensity of 750 Wm and ambient temperature

of 20 £1 °C.

Figure 5.6 shows the temperature rise at the front surface of the reference PV, PV-
PCM; and PV-PCM,; when exposed to the solar simulator at 750 Wm? solar radiation
intensity and 20 1 C ° ambient temperature. Temperature in the reference PV

stabilized at 51 + 1 °C, temperatures in the PV-PCM; and PV-PCM, followed the
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trend in temperature rise however maintained a lower temperature than the reference
PV due to cooling effect produced by latent heat removal by the melting PCM at the
back of each PV-PCM system. PV-PCM; maintained slightly lower temperature than
PV-PCM; for the initial 1 hour of the experiment, afterwards PV-PCM, maintained a
lower temperature than PV-PCM,. Towards the end of the experiment PV-PCM;
exhibited a higher gradient of temperature rise than the PV-PCM, indicating end of
melting and predominantly sensible heating of CP contained in PV-PCM,. PV-PCM,
exhibited continued temperature rise with a smaller gradient indicating that
CaCl,.6H,0 was still melting and absorbing latent heat.
Figure 5.7 shows the temperature difference between the reference PV and the two
PV-PCM systems at 750 Wm™ insolation and 20 +1 °C ambient temperature.
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Figure 5.7 Temperature regulation in the indoor experiments for reference PV, PV-
PCM;, and PV-PCM, at solar radiation intensity of 750 Wm and ambient temperature

of 20 £1 °C
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It can be observed that both PV-PCM systems showed a higher temperature difference
initially, 14 °C for PV-PCM; and 12 °C for PV-PCM;, which continued to decrease
until the end of the experiment in 6 hours. For both PV-PCM systems, the temperature
difference at 750 Wm™ was higher than the temperature difference at 500 Wm™.
Comparing reference PV temperatures, at 750 Wm™ the reference temperature was
11 °C higher than the reference temperatures at 500 Wm™ which provided PV-PCM
systems with possibility to obtain higher temperature difference at higher solar
radiation intensities. Figure 5.8 shows V,, of the reference PV and the two PV-PCM

systems at 750 Wm™ insolation and 20 +1 °C ambient temperature.
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Figure 5.8 Open circuit voltage in indoor experiments at solar radiation intensity of

750 Wm™ and ambient temperature of 20 1 °C

It was observed that V,. of the two PV-PCM systems was higher than V,. of the
reference PV due to the lower temperature at the PV-PCM systems than the reference

PV, similar trend in V,. was observed at 500 Wm™. V, 1n the reference PV remained
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around 19.2 V for the duration of the experiment because its temperature remained
stable, while V,. in the PV-PCM systems was initially higher and continued to
decrease as their temperatures increased during course of the experiments. This again
confirms the drop in V,. caused by the increase in PV temperature which can be
prevented by keeping the PV at lower temperatures. Figure 5.9 shows the difference
in V,. between the reference PV and the PV-PCM systems at 750 Wm™ solar
radiation intensity and 20 =1 °C ambient temperature.
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Figure 5.9 Voltage improvement in indoor experiments as a result of temperature
regulation at solar radiation intensity of 750 Wm™ and ambient temperature of 20 + 1
°C

PV-PCM, had a higher V,, difference from the reference PV for the initial 1 hour of
the experiments, afterwards V,. of PV-PCM, remained higher. In last hour of the
experiments, V,. difference of PV-PCM; from the reference started to drop with a
larger gradient than that of PV-PCM; indicating that the PCM in PV-PCM, completed
melting while PCM in PV-PCM, continued to melt and absorb latent heat, a similar

behaviour as was observed for the temperature difference in Figure 5.7.
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5.5.3. Thermal Regulation at High Insolation

Figure 5.10 shows the temperature rise at the front surface of the reference PV, PV-
PCM,; and PV-PCM; when exposed to the solar simulator at 1000 Wm™ solar

radiation intensity and 20 1 C ° ambient temperature.
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Figure 5.10 Temperature evolution in indoor experiments for reference PV, PV-PCM;
and PV-PCM, at solar radiation intensity of 1000 Wm™ and ambient temperature of

201 °C

Temperature in the reference PV stabilized at 60 °C while temperatures in PV-PCM;
and PV-PCM;, remained lower than the reference temperature due to cooling effect
produced by latent heat removal by the melting PCM. Both PV-PCM systems
maintained similar temperatures evolution upto 45 °C for the initial 3.5 hours of the
experiments with PV-PCM;, having slightly higher temperature than PV-PCM,. After
3.5 hours the temperature in PV-PCM; started to increase at a much higher rate
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indicating the predominant sensible heating of CP contained in PV-PCM; however
temperature in PV-PCM, continued to increase with the previous rate indicating the
predominant latent heating of the CaCl,.6H,O contained in the PV-PCM,. It clearly
indicates that CaCl,.6H,O possesses higher heat absorption and temperature

regulation potential for longer duration than CP.
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Figure 5.11 Temperature regulation for indoor experiments of the reference PV, PV-

PCM,; and PV-PCM, at solar radiation intensity of 1000 Wm™> and ambient

temperature of 20 =1 °C

Figure 5.11 shows the temperature difference between the reference PV and the two
PV-PCM systems at 1000 Wm™ insolation and 20+1°C ambient temperature. It was
observed that both PV-PCM systems showed a higher temperature difference initially,
18 °C for PV-PCM; and 19°C for PV-PCM, which continued to decrease at a lower
rate until 3.5 hours for both the PV-PCM systems. After 3.5 hours, the temperature

difference in PV-PCM, started decreasing at a much higher rate indicating
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predominantly sensible heating of PCM. The temperature difference for the PV-PCM,
however continued to decrease with smaller gradient indicating predominant latent
heating of the PCM. After 6 hours at the end of experiments, the temperature
difference of PV-PCM, from reference PV dropped to 5 °C while the temperature
difference of PV-PCM, remained at 13 °C indicating higher heat absorption potential
of CaCl,.6H,O in PV-PCM, than CP in PV-PCM,. Comparing temperature
differences in both PV-PCM systems from reference PV at all the insolations
discussed, temperature difference was the highest at 1000 Wm™. Since the reference
PV temperature was also highest at 1000 Wm™ than the reference PV temperatures at
500 Wm™ and 750 Wm™ which indicates that PV-PCM systems are more effective at

higher solar radiation intensities and PV temperatures.
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Figure 5.12 Open circuit voltage in indoor experiments at solar radiation intensity of

1000 Wm™ and ambient temperature of 20 = 1 °C
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Figure 5-12 shows the V. for the reference PV and the two PV-PCM systems at 1000
Wm™ solar radiation intensity and 20 £1 °C ambient temperature. V,. of the PV-PCM
systems was higher than V,. of the reference PV due to the lower temperature at the
PV-PCM systems than the reference PV similar to what was observed in Figure 5.4
and Figure 5.8. V,. in the reference PV remained around 19 + 1 V for the whole
duration of the experiment because its temperature remained stable while the V,. in
the PV-PCM systems continued to decrease as their temperatures continued to
increase during the course of the experiments. Similar to the trend in temperature rise,
the voltage drop was similar for both PV-PCM systems for initial 3.5 hours, after that
V,e in PV-PCM; dropped with larger gradient than V,. in PV-PCM,. Figure 5.13
shows V,. improvement for the reference PV and the PV-PCM systems at 1000 Wm™
solar radiation intensity and 20 £1 °C ambient temperature.
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Figure 5.13 Open circuit voltage improvement in indoor experiments at solar radiation

intensity of 1000 Wm™ and ambient temperature of 20 £ 1 °C
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It is observed that PV-PCM, maintained a higher voltage improvement than PV-PCM,
for the duration of experiments with initial V,, improvements of 1.2 V and 1.5 V for
PV-PCM, and PV-PCM; respectively. After 3.5 hours a larger difference between V.
improvement of PV-PCM; and PV-PCM, was observed Comparing V,,. improvements
at all the three insolations discussed it is observed that V,. improvements were the
highest at 1000 Wm™ than V., improvements at 500 Wm? and 750 Wm™ similar to

what was observed for temperature reduction.

Experiments conducted at solar radiation intensities of 500 Wm'z, 750 Wm and 1000
Wm™ prove consistently through measured data of temperature rise, temperature
reduction, V,. output and V,. improvements that the use of PCM in the PV-PCM

systems maintained lower temperatures and achieved higher V.

5.5.4. Average Temperature Reduction and Voltage Improvement

Temperature reduction and V,, improvement did not stay constant over the duration of
the experiments i.e., higher temperature reduction and V,, improvement was observed
at the start of the experiments, which decreased as the temperatures in the PV-PCM
systems increased towards the end of the experiments in all cases. Higher initial
temperature reduction and V,,. improvement were caused by latent heat absorption by
the PCM in direct contact with PV back at constant temperature. If this situation i.e.,
pure isothermal latent heat absorption is stabilized for longer durations, maximum
temperature regulation and associated power savings (P,) can be achieved. However
as the experiment proceeds sensible heat absorption by melted PCM and latent heat
absorption by melting PCM occurs. This causes a rise in PV-PCM temperature and its
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temperature difference from the reference PV starts decreasing down the peak.
Although the peak temperature reduction could not be maintained through out the
experiment however they are important benchmarks to give insight into how higher

temperature reductions can be achieved provided the PCM melts without sensible

heating.

However the peak V,. improvement and temperature reduction are not realistic
indicators to quantify relative performance of the PV-PCM systems because they last
for short time. Therefore average temperature reduction and V,. improvement is a
more realistic approach to quantify the potential of PV-PCM systems to regulate

temperature and prevent temperature induced power drop in PV devices.
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Figure 5.14 Comparison of average temperature reduction achieved for 6 hours in PV-
PCM, and PV-PCM, at solar radiation intensities of 500 Wm'z, 750 Wm™ and 1000

Wm™ and ambient temperature of 21 *1 °C.
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Figure 5-14 shows average PV temperature regulation achieved by both PV-PCM
systems at solar radiation intensities of 500 Wm?, 750 Wm™ and 1000 Wm™ and
ambient temperature of 20 1 °C. PV-PCM, achieved higher average temperature
reduction than PV-PCM; at all solar radiation intensities, In the best case, average
temperature reduction of 13 °C was achieved for PV-PCM,; and 15 °C for PV-PCM,
at 1000 Wm™. Higher temperature reduction was observed at higher solar radiation
intensities and reference PV temperatures. This is due to maximum heat absorption by
PCM during solid-liquid phase change at higher PV temperature. It can be concluded
that these PCMs are more suitable for hot climates where higher PV temperatures are
more likely to be achieved even at lower solar radiation intensities. In cooler climates
although the PCM produce temperature regulation, however because the temperatures
at PV surface remain very low which results in very low temperature regulation and
the associated improvement in the electrical power, the temperature regulation may be
too low to justify economic viability of using PCM.

Average improvement in the V,. was also determined as shown in Figure 5.15, which
shows that the voltage improvement also followed the same trend as in temperature
reduction shown in Figure 5.14. It was observed that the PV-PCM; maintained higher
average V,.improvement than the PV-PCM; at all insolations, the lowest being 1.4 %
obtained at 500 Wm™ by PV-PCM, and the highest being 5.5 % obtained at 1000

Wm™ by PV-PCM..
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Figure 5.15 Average open circuit voltage improvement compared with the reference
PV for 6 hours at solar radiation intensities of 500 Wm'z, 750 Wm™ and 1000 Wm>

and ambient temperature of 20 + 1 °C for PV-PCM, and PV-PCM,

5.5.5. Average Measured Power Saving by Cooling of PV

The term measured power saving points to the fact that the power saving is based on
measured electrical parameters of V,. and I, and calculated value of fill factor (FF)
from the PV characteristic curve. Use of PCM in this integrated PV-PCM system
reduced PV operating temperature and improved V,,. which resulted in the prevention
of temperature dependent power drop providing power savings (P,). Measured P, for
the PCM was determined by comparing Power output (P) from PV with and without

PCM.
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Figure 5.16 Power and I-V characteristic of the reference PV panel at 1000 Wm™, 800

Wm™ and 600 Wm™ at standard test conditions (STC) (Suntech, 2006).

FF was obtained from the /-V and power characteristics of the reference PV panel
shown in Figure 5.16 by dividing optimum power (P,,) by the product of V,. and I, at

respective solar radiation intensities provided by Figure 5-16 as given by equation 5.1

FF=—" (5.1)

Equation 5.11 and I-V curves of the PV provided by Figure 5.16 were used to
calculate FF at solar radiation intensities of 1000 Wm'z, 800 Wm™ and 600 Wm™.
Which were interpolated to obtain FF at 750 Wm™ and 500 Wm™ insolations. FF
determined by this procedure at 500 Wm?, 750 Wm™ and 1000 Wm™ assumed a

constant PV temperature at 25 °C.
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In previous sections, it has been shown that increased solar radiation resulted in
increased PV temperature above 25 °C e.g. 60 "C at 1000 Wm™ illustrated Figure
5.10. FF which has been reported to decrease with a temperature dependent
coefficient (Trr) of -0.12 %/K (Marshal and Malinovska 2002) to -0.2%/K
(Radziemska and Klugmann 2002) for polycrystalline PV as PV temperature rises
above 25 °C. Replacing standard FF at 25 °C with FF calculated at corresponding
temperatures (Frr) Power produced by PV at a temperature T, (Pr) can be calculated
as:
P, =F. xV,.xly (5.2)

The Frrcan be calculated as:

F., =FF =T, (T -25) (5.3)
Substituting equation 5.3 in equation 5. 2, the Py can be calculated as:

P, = (FF =T, (T —=25V,.I (5.4)

Pr has been calculated using equation 5.4 for the reference PV, PV-PCM, and PV-
PCM,. The difference of Py between reference PV and the two PV-PCM systems
have been determined. This procedure is adopted to quantify the power saving (Py)
achieved by using the PCM by cooling PV. Figure 5.17 summarizes P, obtained by
the PV-PCM systems at solar radiation intensities of 500 Wm™, 750 Wm™ and 1000

Wm™ and ambient temperature of 20 £ 1 °C.
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Figure 5.17 Measured average power saving P as a percentage of optimum power

from PV.

PV-PCM; achieved higher P, than PV-PCM, at all the three solar radiation intensities.
P, increased with increasing solar radiation intensity with a lowest value of 2.8 %
achieved by PV-PCM; at 500 Wm™ and highest value of 9.7 % achieved by PV-

PCM, at 1000 Wm™.

5.5.6. Average Predicted Power Saving

The term predicted power saving is based on the non electrical measured parameters
of temperature and temperature coefficient of power drop obtained from PV
manufacturer’s data and literature research from which power saving (Ps) is
predicted. Average predicted power saving P, was obtained by using the temperature

coefficient of power drop (7)) provided by the manufacturer presented in table 5.1 and
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the measured temperature reduction achieved by PV-PCM; and PV-PCM; using

equation 5.5.

NOCT 48C+ 2T
Current temperature coefficient Yol K 0.06 + 0.01
Voltage temperature coefficient my/K (7B +10)
Power temperature coefficient Yl K -(0.5+0.05)

Table 5.1 Temperature dependent coefficients of voltage, current and power drop

provide by PV catalogue data at standard test conditions (STC) (Suntech, 2006).

Py =T,(Tp,

- TPV—PCM )

(5.5)

Tpy and Tpy.pcy denote temperature of the reference PV and PV-PCM respectively.

Predicted P, was obtained from equation 5.5 shown in figure 5.18.
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Figure 5.18 Predicted PV power saving obtained by multiplying average temperature

regulation by temperature coefficient of power drop.
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Comparison of measured and predicted P, in Figure 5.19 shows that measured and predicted
P, are in good agreement at low temperatures and insolation but deviate for PV-PCM, at
higher temperatures and solar radiation intensities. This shows that the temperature
coefficient of power drop provided from manufacturer is not a true reflection of the actual

power drop at higher temperatures and insolation intensities.

—=— Measured PV-PCM —— Measured PV-PCM,
124 Predicted PV-PCM,—v— Predicted PV-PCM,

power saving (%)

T T T T T T T T T T T
500 600 700 800 900 1000
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Figure 5.19 Comparison of measured and predicted power saving using PCM

integrated into PV.

The calculated value of FF changes slightly due to change in solar radiation i.e., from
75.8 % at 1000 Wm™ to 74.7 % at 600 Wm™ when effect of temperature on FF is not
considered. However considering temperature dependence of FF by using the
temperature coefficient of fill factor (Trr ) of -0.2%/K, the FF drops from 75.8 % to

68.8 % when PV temperature increased from 25 °C to 60 °C at solar radiation
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intensity of 1000 Wm™. The results obtained FF, power output (P) and power savings

(Ps) due to PV cooling are presented in table 5.2.

Reference PV PV-PCM, PV-PCM,
Insolation Insolation Insolation
500 750 1000 500 750 1000 | 500 750 1000
Wm? | Wm? Wm? | Wm? | Wm? | Wm™ Wm?> | Wm™
Wm™
Fill Standard 0.747 | 0.7515 | 0.758 | 0.747 | 0.755 | 0.758 0.747 | 0.752 0.758
Factor
Considering 0.717 | 0.6985 | 0.688 | 0.724 | 0.722 | 0.717 | 0.732 0.724 0.722
temperature
Standard 18.83 30.88 | 42.23 | 19.15 | 31.86 | 43.58 19.23 | 32.04 | 44.16
Power Corresponding 18.08 28.70 | 38.33 | 18.60 | 30.48 | 41.22 18.80 | 30.86 | 42.06
conditions
(W)
Power Power saving 0 0 0 2.84 6.19 7.52 3.98 7.54 9.73
savings, | using FF
Ps (W) Power saving 0 0 0 2.1 5.06 7.22 33 6.37 8.5
using T¢

Table 5.2 Summary of Results for fill factor (FF), Power (P) and Power savings (Ps).
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5.6 Conclusions

Results obtained from indoor experiments, at solar radiation intensities of 500 Wm™,
750 Wm™ and 1000 Wm™ and ambient temperature of 20 + 1 °C indicate that both
PV-PCM systems perform comparable however PV-PCM, achieved slightly higher
temperature regulation, resulting V,. improvement and associated P, Measured and
predicted P, were found in agreement apart from at higher solar radiation intensities
indicating that the temperature coefficients provided by the manufacturer may only be
useful at lower temperatures and insolations. Finally, the best-case measured average
temperature reduction of 15 °C and P; of 9.7 % for 6 hours was achieved with PV-
PCM, at 1000 Wm™ and 20 +1 °C which were found in agreement with the predicted

values.
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6 OUTDOOR LARGE SCALE EXPERIMENTS IN THE
CLIMATES OF IRELAND AND PAKISTAN

6.1. Aim of the Experiments

Results from indoor large scale experiments in the PV-PCM; and PV-PCM, showed
agreement with those achieved from small scale indoor experiments; it was desired to
investigate the performance of the PV-PCM systems in real outdoor operating
conditions. The aim of these experiments is to compare the behaviour of the PV-PCM
systems in outdoor realistic uncontrolled conditions with the indoors controlled test
conditions to determine how effective the PV-PCM systems are in ‘real’ conditions.
In addition the PV-PCM systems were characterized in two different climates i.e.,
high latitude cool climate of Dublin, Ireland and low latitude hot climate of Vehari,

Pakistan to compare their performance.

6.2. Methodology

] Experiments were conducted with the same experimental set up and PV-PCM

systems as were used in indoor large-scale experiments.

= Experiments were conducted outdoors on the roof of the Focas Institute,
Dublin Institute of Technology Dublin, Ireland (53.33 N, 6.24 W) from 28-08-2009 to

12-09-2009 with reference PV, PV-PCM; and PV-PCM,
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. Experiments were conducted outdoors on roof of Jam house, Vehari, Pakistan
(30.03 N, 72.25 E) from 30-10-2009 to 13-11-2009 with reference PV, PV-PCM, and

PV-PCM,

. Temperature evolution was measured on the reference PV, PV-PCM, and PV-
PCM; and the difference of the temperatures of PV-PCM; and PV-PCM, from the
reference was determined to quantify the effect of using PCM on the temperature

regulation of the PV.

= Vo and I, were measured for all systems and the difference of V,. and I,
between reference and the two PV-PCM systems were calculated to determine the
effect of PV temperature reduction achieved by PCM on the electrical performance of

the PV.

= FF was determined from the power and I-V curves for the PV at STC and

these were interpolated to get the FF at real outdoor operating condition of the PV

= FF thus obtained were used with measured V. and ;. to determine electrical
power (P) produced by reference PV and the two PV-PCM systems to evaluate the

effect of the PV temperature reduction on the gain of PV power

] Temperature coefficient of power (7,) provided by the PV manufacturer’s
catalogue was used to predict the power saving, P obtained by reduced PV operating

temperature achieved using the two PV-PCM systems.

= Predicted P obtained using 7, with measured temperature reduction and the
measured P, obtained using FF and measured V,. and I, were compared to validate

the experimental results with the manufacturer’s data.
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6.3. Experimental Setup

Experimental set up, sample preparation and the measurement procedures were the
same as for indoor large scale experiments explained in chapter 5. The only difference
was the source of insolation, instead of the solar simulator; PV and PV-PCM systems
were placed outdoors and exposed to sun at the latitudes of Dublin, Ireland (53.33 N,
6.24 W) and Vehari, Pakistan (30.03 N, 72.25 E).

Py wit1 cantairer  Reference Py and FV/PCH systane

ina
P electi'ca connectons LM containar

Multimeers

Figure 6.1 Outdoor experimental setup consisting of a reference PV, PV-PCM; and
PV-PCM; installed on the roof of Focas Institute, Dublin Institute of Technology,

Dublin, Ireland.

Figure 6.1 shows the experimental setup consisting of the reference PV panels
without PCM, PV-PCM; and PV-PCM,; installed outdoors on roof of Focas Institute.
The temperatures and V,. and ;. were measured with delta-T 2e data logger and the

multimeters shown in Figure 6.1.
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6.4. Experimental Procedure

Three PV panels were characterized outdoors in Dublin for three days with solar
radiation values ranging from 400 Wm™ to 950 Wm™ over the duration of experiment
from 09:00 to 18:00 hours prior to their integration into PV-PCM systems: The V.
and I, were measured for all three panels to quantify any inconsistencies in the panels
which confirmed measured deviation below 1 % which can be described by the
accuracy of the measuring instruments.

The reference PV and the two PV-PCM systems were deployed outdoors facing south
in Dublin, Ireland at the latitude (53.33 N, 6.24 W) and the experiments were
conducted from 28.08.2009 to 12.09.2009 from 09:00 to 18:00. In the same way the
reference PV and the two PV-PCM systems were deployed outdoors facing south in
Vehari, Pakistan at latitude (30.03 N, 72.25 E) and the experiments were conducted
from 30.10.2009 to 13.11.2009 from 09:00 to 18:00. The ambient temperatures, wind
speed, solar radiation intensities, temperatures at front and back surfaces, V,. and I,

for the reference PV and the two PV-PCM systems were measured.

6.5. Results and Interpretation

The temperatures, V,. and I, were measured for the reference PV, PV-PCM; and the
PV-PCM,. The difference in the temperatures and the improvement in V,. and /;. from
the reference were determined for the PV-PCM; and PV-PCM; which quantified the

effect of using PCM on the temperature and the electrical output of the PV. Based on
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the temperature reduction and V,,. and /. improvement, the predicted P was calculated

with two different methods, which will be illustrated in the following sections.

6.5.1. Temperature Evolution

Although experiments were conducted from 30-08-2009 to 12-09-2009 for Dublin,
Ireland and from 30-10-2009 to 13-11-2009 for Vehari, Pakistan, the weather
conditions were not stable on all days. On certain days the solar radiation intensity
and the ambient temperatures were not high enough due to overcast weather
conditions in Ireland and fog conditions in Pakistan which restricted temperatures at
the PV surface to such low values that the PCM could not melt properly. For other
days the ambient temperatures and the solar radiation were high enough to raise the
PV temperature above the PCM melting point which allowed heat absorption and thus
melting of PCM to occur. Higher solar radiation intensity, higher ambient temperature
and lower wind speed were available for few days which provided higher reference
temperatures at PV surface allowing higher temperature regulation and associated P;
by applying PCM making their use justifiable. Due to this experimental constraint, the
solar radiation, ambient temperature, PV panel temperatures, PV-PCM temperatures,
thermal regulation by PCM and the associated V,., I, and P, data are given for one
day, the best case at each location which provided peak solar radiation intensity of
990 Wm™ and 950 Wm™ , peak ambient temperature of 24 °C and 34 °C , wind speed
of 3.1 ms" and 0.9 ms™ and combined convective and radiative coefficient of heat
transfer of 9.1 Wm?K"! and 17 Wm?K! for Dublin, Ireland and Vehari, Pakistan,

respectively.
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Figure 6.2 Solar radiation intensity measured in Dublin (53.33 N, 6.25 W) Ireland on

12-09-20009.
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Figure 6.3 Ambient temperature and wind speed measured in Dublin (53.33 N, 6.25

W) Ireland on 12-09-2009.
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Figure 6.2 shows that solar radiation intensity ranged from 380 Wm™ at 9:00 to 200
W-m™ at 18:00 with a peak at 990 Wm™ at 13:20. Figure 6.3 shows that the data
measured showed that the ambient temperature remained between 18 °C and 24 °C,
the wind speed remained between 0.25 and 3 m-s". The best case data with higher
solar radiation intensities (990 Wm™?) peak and ambient temperatures (24 °C peak)
was obtained at 12-09-2009. The stable conditions resulted in higher temperatures at
the reference PV front surface. This made more heat available at PV enabling higher
heat harnessing by the PCM at the back of PV resulting more temperature reduction.
The temperature reduction caused a V. gain leading to improved PV power and P;, in
PV-PCM; and PV-PCM,; compared to the reference PV.The aim of these experiments
is to investigate into the behavior of the PV-PCM systems in climates with higher
ambient temperatures.

Figure 6.4 shows the average temperature evolution on the front surface of the
reference PV, PV-PCM, and PV-PCM, measured on September 12th 2009 in Dublin.
Temperature at the PV front surface increased rapidly from 22 °C (at 09:00) to 40 °C
in 2 hours and 5 minutes (at 11:05) and remained above 40 °C for 4 hours and 15
minutes (up to 15:20) with a peak temperature of 49 °C at 13:20. The peak
temperature corresponds to the ambient temperature of 24 °C and solar radiation of
990 Wm™ at a low wind speed of 0.25 m-s"'. Temperature of the reference PV
remained around the peak for an hour (between 13:00 to 14:00) followed by a rapid
drop to 37 °C in 1.5 hours. This rapid temperature drop was caused by the increase in

wind speed from 0.25 ms” to 2.9 ms” shown in Figure 6.3; however during the same
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duration the solar radiation intensity continued to decrease with a smooth gradient
(figure 6.2). This shows the impact of wind speed on the PV temperature.

As shown in figure 6.4 PV-PCM; and PV-PCM, followed the same trend in
temperature rise as the reference PV temperature however the PV-PCM systems
maintained lower temperatures than the reference PV throughout the experiment.
After 14:00 the temperature of the reference PV dropped rapidly due to combined
effect of (i) decreased incoming heat caused by decreasing solar radiation intensity
and (ii) increased heat loss to ambient due to rapid increase in wind speed. The
temperature in the PV-PCM systems showed less of a decrease, primarily due to the
stored latent heat and thermal mass of the PCM in the PV-PCM systems, which

releases stored heat with a small temperature changes.
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Figure 6.4 Average temperature at front surface of reference PV, PV-PCM, and PV-

PCM,; measured on 12-09-2009 for Dublin, Ireland (53.33 N, 6.25 W).
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Figures 6.5, figure 6.6, and figure 6.7 show the solar radiation intensity, wind speed
and temperature evolution of the reference PV and the PV-PCM systems containing
PCM,; and PCM; measured on 30-10-2009 in Vehari, Pakistan (30.03 N, 72.25 E).

1000
800
600
400

200+

Solar radiation intensity (Wm‘z)

10 12 14 16 18
Hour of day

Figure 6.5 Solar radiation intensity measured on 30-10-2009 on roof of Jam house,

Vehari (30.03 N, 72.25 E), Pakistan.
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Figure 6.6: The wind speed data measured on 30-10-2009 for Vehari (30.03 N, 72.25

E), Pakistan.
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Figure 6.5 shows that the solar radiation intensity started at from 390 Wm™ at 9:00,
reached a peak at 950 Wm™ at 13:40 and dropped to below 200 Wm™ till 18:00. The
wind speed shown in figure 6.6 remained always between 0 ms™' to 1 ms™ from 9:00
till 18:00. The ambient temperature increased from 16 °C to 34 °C (figure 6.7) at peak

around 14:20.
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Figure 6.7 Average temperature at front surface of reference PV, the PV-PCM, and

the PV-PCM,; measured on 30-10-2009 for Vehari (30.03 N, 72.25 E), Pakistan.

Figure 6.7 shows that PV-PCM; and PV- PCM; followed the trend of temperature
evolution as of the reference PV with smaller temperature difference at start of the
experiment for 25 minutes however they started deviating from reference afterwards

due to heat absorption by melting PCM at the back of the PV. The temperature at the
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front surface of the reference PV increased from 18 °C to 50 °C in 2 hours reaching a
peak of 63 °C at 13:45. The temperature remained at or above 50 °C for 6 hours until
17:00 when it dropped to 38 °C in the last hour of the experiment till 18:00. After
13:45, the temperature started to decrease in the reference PV with a stable gradient
(higher than that of PV-PCM; and PV-PCM),) indicating smooth cooling of the PV as
the solar radiation started to decrease.

The temperature decrease in the PV-PCM systems was very slow which shows the
heat retention of the PV-PCM system due to latent heat and thermal mass of the PCM.
This also illustrates an important finding that in hot climates, higher ambient
temperatures in the evenings result in lesser convective heat loss to ambient. This
mechanism encourages higher heat retention of the system. Higher heat retention is
required if the heat stored is to be exploited later for domestic water heating. High
heat retention however discourages nocturnal solidification of the PCM which may
affect its readiness and thermal regulation performance for the next day. In such
cases coolant flow into the PCM to maximise heat extraction may be required. A
further study needs to be conducted in this direction to make such systems energy

efficient in hot climates by finding mechanisms to extract stored energy in PCM.

6.5.2. Temperature Reduction

Temperature difference of the two PV-PCM systems from the reference PV is shown
in the Figure 6.8 for Dublin, Ireland. Figure 6.8 shows that PV-PCM; maintained a
higher temperature reduction than the PV-PCM;, for the duration of the experiment.

Peak temperature reduction of 10 °C was achieved for PV-PCM, compared to 7 °C
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for PV-PCM,. The higher temperature reduction achieved in PV-PCM; is due to
CaCl,.6H,0O, the PCM in PV-PCM, that has higher heat of fusion, thermal
conductivity and density than CP, the PCM in PV-PCM,.

124 —*— PV-PCM, —v—PV-PCM,

104

Temperature regulation (°C)

Hour of day
Figure 6.8 Temperature regulation — temperature difference between the reference
PV and the PV-PCM systems measured on 12-09-2009 for Dublin, Ireland (53.33 N,

6.25 W).
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Figure 6.9 Temperature Regulation measured on 30-10-2009 for Vehari (30.03 N,

72.25 E), Pakistan
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PCM; possessed higher heat of fusion that resulted in large amount of heat removal
from the PV, higher thermal conductivity that resulted in more efficient heat removal
from the PV, and higher density that resulted in higher thermal mass of PV-PCM,.

Temperature difference between the reference PV and the PV-PCM systems is shown
in Figure 6.9 measured on 30-10-2009 for Vehari (30.03 N, 72.25 E), Pakistan. Figure
6.9 shows that at the start of the experiment, the temperature difference was lower.
The temperature difference increased as the incoming solar radiation and the ambient
temperature increased to a peak of 17 °C at 12:20 for PV-PCM; and a peak of 21.5 °C
at 13:55 for PV-PCM,. It is observed that PV-PCM; maintained a higher temperature
difference than PV-PCM; for the duration of the experiment. PV-PCM, maintained a
temperature difference from the reference of over 20 °C for two hours between 12:20
to 14:20 which illustrates its potential to achieve high temperature reduction for
longer durations. PV-PCM, maintained a temperature difference of 15 °C for 2 hours
20 minutes from 10:40 to 13:00. The temperature difference started decreasing after
the peak with similar gradient for both PCMs however temperature in PV-PCM,
equalled reference PV temperature i.e. zero temperature difference at 16:30 while
temperature in PV-PCM, equalled the reference temperature at 17:50, just before the
end of the experiment, which shows higher heat retention in PV-PCM; than PV-

PCM,.

6.5.3. Open Circuit Voltage

Figure 6.10 presents the measured V,. for the reference PV and PV-PCM systems

measured on 12-09-2009 for Dublin, Ireland.
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Figure 6.10 Open circuit voltage for the reference PV and the PV-PCM systems

measured on 12-09-2009 for Dublin (53.33 N, 6.25 W)

V. was highest for all systems at the start of the experiment at 9:00 but continued to
decrease during the course of the experiment. V,. is reported to increase with the
increase in solar radiation intensity (Dvorsky et al., 2009), therefore V,, should be at a
minimum at start of the experiment and reach a maximum at 13:45 when the solar
radiation intensity is maximum. However, increasing solar radiation also increases the
temperature of the PV which has been reported to decrease V,. and PV power
(Radziemska and Klugmann, 2002; Nassar and Salem, 2007).

It can be observed that at start of the experiment V,,.is at a maximum corresponding to
the minimum PV temperature although the solar radiation intensity is at minimum. It
is partly due to low PV temperature which encourages higher voltage gain. It can be
observed that the two PV-PCM systems maintained higher V,. than the reference PV

due to lower temperatures in PV-PCM systems than the reference PV. PV-PCM,
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maintained a higher V,, than the PV-PCM; for the duration of the experiment due to

the lower temperature.

Figure 6.11 shows the open circuit voltage for the reference PV and the two PV-PCM

systems 30-10-2009 in Vehari.
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Figure 6.11 Open circuit voltage for reference PV and PV-PCM systems measured on

30-10 2009 for Vehari, Pakistan (30.03 N, 72.25 E)

At the start of the experiment from 9:00 to 10:00, the V,, started to increase for the
reference PV and the PV-PCM systems. The increase in V,. was due to the increase in
solar radiation. However this increase in solar radiation caused an increase in
temperature of the PV. Increase in the solar radiation intensity tends to increases the

V.. however the associated increase in the temperature of the PV tends to decrease the
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Voc in the PV. Both the phenomena occurred together in the PV as the solar radiation
increased when the sun stared coming into the plane of the panel.

Up to 10:00 the increase in the V,. due to increasing solar radiation dominated the
decrease in the V,. due to the associated temperature rise resulting a net increase in
V,e. Although the solar radiation intensity continued to increase beyond 10:00 tending
to increase V,. in the reference PV however the temperature in the PV has increased
up to 44 °C which tended to decrease the V,.. This temperature was high enough that
the associated temperature dependent decrease in the V,. dominated the insolation
induced increase in V,. with a net effect of decreased V,. in the reference PV. On the
contrary, for the PV-PCM systems, the V,,. continued increasing beyond 10:00 as the
temperature in the PV-PCM system remained below the temperature of reference PV.
This shows that the cooling in PV-PCM systems caused by heat absorption of the
melting PCM prevented the temperature dependent V,. drop yielding a net effect of
increased V,.in the PV-PCM systems.

However after 11:00 the temperature in the PV-PCM systems became higher enough
that the temperature dependent V,. drop dominated the insolation induced V,. gain
with a net effect of decreased V,. in both PV-PCM systems. From figures 6.11 it can
be seen that net decrease in the V,. of PV-PCM systems occurred corresponding to 37
°C (figure 6.) while in the reference PV, the net decrease in V,. occurred
corresponding to 44 °C (figure 6.7) which seems a disagreement between the
reference PV and the two PV-PCM systems.

The temperature distribution on the reference PV was quite uniform which indicates
that all the cells in the reference PV were at similar temperatures and their

corresponding V,. output was similar. However in the PV-PCM systems the

187



temperature was not uniform over the surface due to temperature distribution
(described in detail in section 6.5.5) which meant that different cells were at different
temperatures. It is possible that while the average temperature was 37 °C on PV-PCM
surface, the highest temperature on a cell at the top surface may have reached 44 °C
where the temperature dependent V,,. drop dominated the insolation induced V,. gain
yielding a net decrease in V. It should be noted that though average temperatures
were considered in both cases (i.e., reference PV and in PV-PCM system), in
reference PV the average temperature and maximum temperature were similiar due to
uniform temperature distribution while in PV-PCM system (due to thermal gradient)
the average temperature in PV-PCM system may be quite lower than maximum
temperature.

Towards the end of the experiment after 16:00 the V,. in the PV-PCM systems started
to decrease with a greater gradient than the V. in the reference PV. This can be
explained by the temperatures in the reference PV and the two PV-PCM systems, it
was observed in figure 6.9 that the reference PV started to rapidly decrease in
temperature due to lower thermal mass while the PV-PCM systems maintained a
slower temperature reduction due to higher thermal mass. This caused the temperature
in the reference PV to drop below the temperature in the PV-PCM systems which
caused a higher prevention of V,. drop in the reference PV than in the two PV-PCM
systems. V,.in PV-PCM; and PV-PCM, dropped below the V. in the reference PV at

16:20 and 17:45 respectively similar to the temperature difference in Figure 6.9.
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6.5.4. Improvement in Open Circuit Voltage

Figure 6.12 shows the difference in V,. of the PV-PCM systems from the reference
PV in Dublin. It can be observed that the PV-PCM; maintained higher V,. difference
than PV-PCM, similar to the temperature difference. V,. difference was found to be
highest at the start of the experiment at 09:00 and at the time when solar radiation
intensity was highest at 13:40 similar to what was observed for temperature

difference.
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Figure 6.12 Voltage improvement - Difference of V,. between reference PV and PV-

PCM systems measured on 12-09-2009 for Dublin (53.33 N, 6.25 W)

It confirms that higher temperature regulation resulted in higher V,, improvement.
The peak V,. improvement was of 0.5 V for PV-PCM; and 0.8 V for PV-PCM,
obtained at 13:40. The temperature coefficient of voltage provided by the PV panel
manufacturer was 0.078 + 0.01 VK™ (Suntech, 2006). Measured peak temperature
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regulation was 7 °C for PV-PCM; and 10 °C for PV-PCM,. Alternatively the
predicted peak V,. improvement was obtained by multiplying peak temperature
regulation and the temperature coefficient which gave predicted V. to be 0.47- 0.61 V
compared to measured value of 0.5 V for PV-PCM;. Similarly the predicted V,,
improvement was found to be 0.68 -0.88 V compared to measured value of 0.8 V for
PV-PCM,. It shows that the measured and predicted V,. improvements are in good
agreement for both PV-PCM systems. Figure 6.13 shows the improvement in V,,
between the reference PV and the two PV-PCM systems for Vehari (30.03 N, 72.25
E), Pakistan measured on 30-10 2009.
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Figure 6.13 Voltage improvement: the difference of voltage between the reference
and the two PV-PCM systems measured on 30-10 2009 for Vehari, Pakistan (30.03 N,

72.25 E)
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PV-PCM; maintained a higher V,. improvement compared to PV-PCM; for the
duration of the experiment. V,. improvement showed a similar trend as the
temperature reduction in Figure 6.9. In the start of the experiment the V.
improvements were similar for both PV-PCM systems when the temperature was
lower. As the temperature increased, V,. improvement for PV-PCM, showed a
remarkable difference from that of PV-PCM,;. This indicates that at higher
temperatures CaCl,.6H,0 in PV-PCM,, performed much better than CP in PV-PCM,.
Peak V,. measured improvements were 1.35 V and 1.75 V for PV-PCM, and PV-
PCM,; respectively.

Measured temperature regulation was 17 °C for PV-PCM; and 21.5 °C for PV-PCM,.
Alternatively predicted V,. improvement were calculated by multiplying the
temperature coefficient of voltage by the temperature reduction of each PV-PCM
system. The V. predicted improvement was found in the range of 1.16-1.49 V for PV-
PCM, compared to measured value of 1.4 V. The V,. improvement for PV-PCM, was
found 1.43-1.85 V compared to measured value of 1.75 V. In both PV-PCM systems
the measured and the predicted values of V,. improvements were in close agreement

which shows accuracy of the measured data.
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6.5.5. Temperature Distribution Over PV surface

Measured temperature was found to be much higher at the top of the front surface
compared to the temperature at the bottom of the surface for both PV-PCM systems,
showing temperature distribution. Temperature distribution was lower at the start of
the experiment when the temperature of the PV was low and only a small amount of
PCM had melted. As the temperature increased at the PV front surface, the amount of
melted PCM increased and continued moving upward due to natural convection; this
buoyancy driven flow of the melted PCM resulted in higher temperatures at the top
surface and lower temperatures at the bottom surface of the PV-PCM systems.

The disadvantage of this upward movement of the melted PCM due to natural
convection was that a certain amount of incoming heat was carried away by the
melted PCM to the top surface into already melted PCM as sensible heat. This
resulted in incoming heat being used as sensible heat, heating the melted PCM and
raising its temperature instead of being used as latent heat to melt the solid PCM
which would inhibit sensible heating and result in lower temperatures in the PV-PCM
system. Thus in-homogenous temperature distribution slowed down PCM melting and
resulted in increased PV-PCM temperature and limited PCM thermal regulation.
Temperature was measured at 9 thermocouple locations on the front surface of the
PV-PCM systems. The temperature difference between thermocouple location with
the highest temperature at top surface of PV-PCM system and the thermocouple
location with the lowest temperature at bottom surface of the PV-PCM system was
taken to quantify temperature distribution. Figure 6.14 shows measured top-bottom

temperature difference as an indicator of temperature distribution measured for both
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PV-PCM systems for Dublin, Ireland and Vehari, Pakistan. The figure shows that the
temperature distribution was higher in Pakistan compared to that in Ireland for both
PCM with PV-PCM,; due primarily to lower convective heat loss coefficient from PV
surface in Pakistan (9.1 Wm’2K’1) than in Ireland (17 Wm'2K’1), however was
considerable at both the locations.

Increased temperature difference on the PV surface causes different cells to operate at
different temperatures. The temperature rise decreases voltage from the PV cells, thus
cells in the same PV panels would produce different voltages and currents. Since
power output from PV corresponds to the minimum cell voltage, reduced voltage at
certain cell reduces net power output from the PV panel referred to as power
mismatch losses (Ramabadran, 2009). The power drop due to unequal temperature
distribution needs further investigation to quantify the effect of this phenomenon on
the net power output of PV.

The evenly distributed temperature would enable cells to produce same power to
minimise power loss due to mismatch. Although the PV-PCM system already
consisted of high thermal conductivity metallic fins installed vertically to enhance
heat transfer and decrease the temperature distribution, the temperature distribution
can further be decreased by optimising fins structure, arrangement and spacing.
Different honey comb structures can be incorporated in the PCM matrix to achieve
still increased thermal conductivity and reduced temperature distribution over the PV

surface due primarily to natural convection.
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Figure 6.14 Peak measured temperature difference between top and bottom
thermocouple locations for both PV-PCM systems in Dublin (53.33 N, 6.25 W),

Ireland and Vehari (30.03 N, 72.25 E), Pakistan
6.5.6. Measured and Predicted PV Power Saving

The reduced PV temperature achieved by applying PCM prevented the temperature
dependent V,. drop which were measured and are presented in previous sections for
Dublin, Ireland and Vehari, Pakistan for both PV-PCM systems. At both geographical
locations, PV-PCM, obtained the higher temperature regulation and V,, improvement
than PV-PCM,;. Since the use of PCM showed savings on V,, it is important to
determine the impact of temperature reduction on the P,. P, are predicted by
multiplying temperature coefficient of power (7)) (provided by the manufacturer, -0.5
% K (Suntechics 2008) and T, reported in the literature, -0.65 %K) by the peak
and daily averaged temperature reductions measured for both PV-PCM systems

presented in Figure 6.15.
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Figure 6.17 Predicted Power saving obtained by using the temperature coefficient of
power drop from the literature (-0.65 % K™') with the measured temperature reduction
for PV-PCM; and PV-PCM, in Dublin (53.33 N, 6.25 W), Ireland and Vehari (30.03

N, 72.25 E), Pakistan.

Figure 6.16 and 6.17 show that a lower peak and daily averaged predicted P, was
obtained for both PV-PCM systems in Ireland than in Pakistan. PV-PCM; maintained
a higher peak and daily averaged P, than PV-PCM;, at both the geographical locations.
Peak and daily average P, of 10.8 % and 6.8 % respectively were obtained using T,
from manufacturer (-0.5 % K™) and peak and daily average P, of 14 % and 8.8 %
respectively were obtained using 7, from literature (-0.65 % K™) in Pakistan with PV-
PCM, .

Measured data of V,. and I, from the reference PV and the PV-PCM systems were
used to determine the measured peak and daily averaged P, by multiplying product of
Voo I by FF. FF for the reference PV and the PV-PCM systems were determined by
extrapolating from the PV characteristic curve to the required operating conditions in
Dublin and Vehari and applying the methodology described in chapter 5. P, obtained
from V,,, I, and FF is termed as measured P because it is based on extrapolation of

measured electrical outputs of V,.and I from the experiments.
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In Dublin, the measured peak and average V,. (Peak V,. corresponds to the value of
Voe at which the highest V,. improvement was achieved by using PCM) were 20.1 V
and 20.41 V for reference PV, 20.81 V and 20.52 V for PV-PCM, and 20.95 V and
20.81 V respectively for PV-PCM,. Peak and average daily I, were 3.74 A and 2.82
A for the reference PV, 3.70 A and 2.77 A for PV-PCM;, 3.68 A and 2.78 A for PV-
PCM,.

In Vehari The measured peak and average V,. were 18.32 V and 18.72 V for reference
PV, 19.71 V and 19.42 V for PV-PCM, and 20.15 V and 19.92 V respectively for PV-
PCM,. The peak and average daily I, were 3.42 A and 2.45 A for the reference PV,
3.35 A and 2.41 A for PV-PCM}, 3.33 A and 2.39 A for PV-PCM,.

Peak and average FF corresponding to the peak and average solar radiation intensities
were first calculated at characterization temperature of 25 °C neglecting temperature
influence on FF, denoted by FF, applying the methodology described in chapter 5.
Then the temperature influence on FF was incorporated with a coefficient, Ty taken
as -0.2 %K' drop in FF with increasing temperature above 25 °C and FF at real
operating temperatures (FFr) was calculated for the reference PV and the two PV-
PCM systems. FF calculated were used with the peak and average daily V. and I, to
determine the corresponding peak and daily average power produced (P) at particular
temperatures and solar radiation intensities for the reference PV and the PV-PCM
systems. Peak and daily average P from the PV-PCM systems were compared with
peak and daily average P from the reference PV to determine the peak and daily P, for
the PV-PCM systems. P; was determined for both the locations, Dublin Ireland and

Vehari, Pakistan.
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FF at peak and average solar radiation intensities neglecting temperature effect (FFy,),
FF at peak and average solar radiation intensities considering temperatures effect
(FFy), peak and daily average P for the reference PV and the PV-PCM systems and
the peak and daily average P; for the PV-PCM systems are shown in Table 6.1.

The peak and daily average P, were recorded as 4 % and 1 % respectively for PV-
PCM; and 5.1 % and 1.8 % respectively for PV-PCM, in Dublin, Ireland. In
Pakistan, the peak and average daily P, were recorded as 11.3 % and 4.4 %
respectively with PV-PCM; and 13 % and 7.7 % respectively with PV-PCM,. It
clearly shows that the integration of PCM into PV for their temperature regulation is
particularly effective in high temperature climates such as in Vehari, Pakistan, than in
low temperature climates, Dublin, Ireland in this study.

Key results of temperature regulation and P, obtained from indoor experiments and
outdoor experiments in Vehari, Pakistan and Dublin, Ireland using PV-PCM, and PV-
PCM,; are compared in table 6.2 which show reasonably closer values of temperature

regulation and P;in indoor experiments to outdoor experiments in Vehari, Pakistan.
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Reference PV PV-PCM;, PV-PCM,
Dublin Vehari Dublin Vehari Dublin Vehari
Insolation | Average 674 660 674 660 674 660
,Wm'2
Average FF, 74.82 74.78 74.82 74.78 74.82 74.78
Fill Average FFy 72.22 69.64 | 72.82 7126 | 73.22 72.24
Factor,
FF
Voe (V) Average 20.41 18.72 20.52 19.42 20.81 19.92
L (Amp) | Average 2.82 2.45 2.77 2.41 2.78 2.39
Peak 53.3 42.52 55.46 47.34 55.99 48.04
Power Average 41.57 31.94 41.71 33.35 423 34.39
(W)
Ps (%) Peak --- --- 4 11.3 5.1 13
Average - - 1 4.4 1.8 7.7

Table 6.1: Summary of the results for Dublin (53.33 N, 6.25 W), Ireland and Vehari

(30.03 N, 72.25 E), Pakistan

Indoor Experiments Outdoors Ireland Outdoors Pakistan

Reference | PV- PV- Reference | PV- PV- Reference | PV- PV-

PV PCM, | PCM, PCM, | PCM, PCM, | PCM,
T Ambient 20+1 21£1 | 201 | 18-24 18-24 | 18-24 | 16-34 16-34 | 16-34
O Surface 60 42 41 49 42 39 63 46 41.5

Regulation | - 18 19 -- 7 10 -- 17 21.5

Insolation (Wm'z) 1000 1000 | 1000 | 990 990 990 950 950 950
Measured P (W) 38.33 41.22 | 42.06 | 53.3 55.46 | 55.99 | 42.52 47.34 | 48.04
Measured Py (%) - 7.52 9.73 4 5.1 11.3 13

Table 6.2 : Comparison of results for indoors and outdoors in Dublin (53.33 N, 6.25

W), Ireland and Vehari (30.03 N, 72.25 E), Pakistan.
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6.6. Conclusions

PCM, CaCl,.6H,0 achieved higher PV temperature regulation and resulted in higher
P, than CP at both locations outdoors. In the best case CaCl,.6H,O achieved a 1.7 %
higher P, than CP in Vehari, Pakistan. The temperature regulation and resulting P is
affected adversely by temperature distribution in PCM between top and bottom
surface which reached up to 17 °C using PCM CaCl,.6H,0 in Pakistan. Although the
temperature regulation and P was higher for CaCl,.6H,0, yet the adverse effect of
temperature distribution was also higher for CaCl,.6H,O compared to CP. A
maximum PV temperature regulation of 21.5 °C was achieved with CaCl,.6H,O in
Vehari, Pakistan yielding a peak measured and predicted Ps; of 13 % and 14 %
respectively. P predicted using 7, provided by the manufacturer was always less than
P, calculated through measured values of V,. and I, with FF while considering
temperature dependence of FF. Both PCM evaluated showed promising potential for
the desired application, with higher potential in low latitude hot climate of Pakistan

compared to high latitude cool climate of Ireland.
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7 ENERGY AND ECONOMIC ANALYSIS OF PV-PCM
SYSTEMS

7.1 Introduction

Crystalline silicon photovoltaic (PV) cells have currently a 90 % share of the PV
market (Bagnall, 2008). As global silicon PV module manufacturing capacity has
increased, average manufacturing costs have decreased from US$6 Wp'1 in 1992 to
US$2.75 Wp'1 in 2005 (Margolis et al., 2006), with the rate of reduction being
greatest in the period 1992-2000 (Margolis et al., 2006). The reduction in average
costs slowed significantly after 2000 when the cost per W, was already as low as
$2.75W," equivalent to €2.03 W,". A recent study has shown that actual costs of
installed PV are $ 6.5 W' in USA (Sciencedaily, 2010) equivalent to € 4.8 W' (XE,
2010). In the next 20 years, total costs p Wp'1 of “lst generation” silicon PV
technologies are predicted to fall by less than 30% (Bagnall, 2008). This indicates that
PV production costs are not expected to decrease enough in the near future to make
them cost competitive compared to available conventional energy technologies. The
current research seeks to maintain high PV efficiency and increase the operating life
by maintaining PV at a low temperature. Making use of the heat available at the PV
system may also enable it to reach financial viability. Energy efficiency analysis of
PV systems is conducted to evaluate their potential for improved electrical and
thermal efficiency. Finally the additional costs incurred in PV-PCM system and the

resulting benefits are discussed in this chapter.
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7.2 Energy Analysis of a PV-T System

The PV-PCM system in the current research is considered as a new type of a
photovoltaic-thermal systems employing latent heat storage. The energy efficiency of
a (PV-T) system can be defined as a ratio of total thermal (available on PV as heat)
and electrical energy produced to the total solar energy falling on the PV surface

given by equation 7.1 (Joshi et al., 2009).

— VoclsctQa
e G Apy

(7.1)
Where 7, is the energy efficiency of PV system, Apy is the area of the PV exposed to

solar radiation and Q, is the heat lost from the PV to ambient given by equation 7.2

Qa = heaApy (Tpv — Tamp) (7.2)

Where T,,, and Tpy are the ambient and PV temperatures, respectively, Apy is the heat
transfer area of the PV and A, is the combined convective and radiative heat loss

coefficient given by equation 7.3 (Tiwari, 2002, Tiwari and Sodha, 2006)

h., = 5.7 + 3.8v, (1.3)

Where v, is the wind speed taken from figure 6.3 for Dublin, Ireland and figure 6.6
for Vehari, Pakistan on 12-09-2009 and 30-10-2009, respectively. The maximum heat
transfer coefficients (h.,) calculated for Ireland and Pakistan using Equation 7.3 and
v, data from figures 6.3 (3 ms™) and 6.6 (0.9 ms™) respectively are 17 Wm™“K" and
9.12 Wm'zK'l, respectively which shows that A, for Ireland is almost twice that for

Pakistan which is in agreement with the general trend of temperature recorded at both
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location on PV surface which show that at the same solar radiation intensity, the PV

surface temperature in Pakistan was always higher than that in Ireland due primarily

to less heat lost from the PV surface in Pakistan. Substituting equations 7.2 and 7.3

into equation 7.1, 7, can be obtained as given in equation 7.4

— Voclsc+(5.7+ 3.8vy)(Tpy—Tamb)

Using equation 7.4, 7, of the PV systems were calculated for two different locations of

Dublin, Ireland and Vehari, Pakistan and are presented in table 7.1. For Dublin, the

weather data of ambient temperature, wind speed and solar radiation required for

equation 7.4 was taken from figures 6.2, figure 6.3 and figure 6.4 respectively while

V,. and I,. was taken from table 6.1. For Vehari, Pakistan the weather data of solar

radiation, wind speed and ambient temperature required for equation 7.4 was taken

from figure 6.5, figure 6.6 and figure 6.7, respectively while V,. and I;. were taken

from table 6.1.

Ireland Pakistan
Electrical energy 1.85 1.49
s Voelie (M)
Combined convective and 9.1 17
radiative heat loss
coefficient, h,
(Wm?K™")
Heat lost , Q, (MJ) 3.03 2.19
Solar energy , GApy (MJ) 11.01 11.50
Energy efficiency of 44.6 32
PV-PCM (%)

Table 7.1 Results obtained for energy efficiency of PV measured from 09:00 to 18:00

for Dublin, Ireland on 12-09-2009 and Vehari, Pakistan on 30-10-2009.
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The average 7, values for the duration of experiment (9:00 to 18:00) were 44.6 % for
Dublin and 32 % for Vehari, Pakistan and are summarised in Table 7.1. The 7, values
obtained (32 % and 44.6 %) are in good agreement with previously reported values
ranging from 33 % to 45 % obtained for weather conditions of New Delhi using the

same method (Joshi, et al., 2009).

7.3 Cost Analysis of the PV-PCM systems

Total cost associated with the PV-PCM systems is derived using three different costs
i.e. (i) cost of the PCM (ii) cost of the containment materials (iii) manufacturing cost
of the container. Each of the cost is then further divided into the cost of materials
when purchased in kilograms for the experiment and the cost of the materials for large
scale mass production when purchased in tonnes of the materials. Cost of the
materials was €30 kg™ for PCM; and €22 kg'1 for PCM; respectively when purchased
in smaller quantities (Sigma Aldrich, 2008). The cost is projected to reduce to €2.5
kg'1 for PCM; and €1.9 kg'1 for PCM, when purchased in tonnes (ISIS, 2010). 12 kg
of PCM; and 19 kg of PCM, were consumed to make the PV-PCM, and PV-PCM,
respectively. So the total cost of the PCM incurred was €360 and €418 from local
suppliers which is projected to reduce to €30 and €36 for PCM; and PCM,
respectively.

The amount of aluminium alloy used was 13 kg to fabricate each PV-PCM system.
The cost of the aluminium was €3.8 kg'1 when purchased from Pakistan and €5.6 kg'1
when purchased from Ireland for fabrication of the single PV-PCM system. The cost
of aluminium is €1.71 kg'1 (Commodity, 2010) for Asian market and €2.5 kg'1 (LME,

2010) for European market when purchased in tonnes. Total cost of aluminium is €74
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when purchased for single PV-PCM system which drops to €32.5 when purchased for
mass production of PV-PCM systems in Ireland. The cost of aluminium is €49.4 when
purchased in smaller quantities to fabricate PV-PCM system and €22.2 when
purchased for mass production of such PV-PCM systems in Pakistan. Cost of
fabrication was € 300 for Ireland and €40 for Pakistan for each PV-PCM system. If
the production cost of mass produced systems decreases by a factor of 10 which is
normal (KSB, 2010) then the manufacturing cost are expected to be €4 for Pakistan

and €30 for Ireland. The costs are presented in table 7.2.

Single fabricated Mass produced
PV-PCM system PV-PCM system
PV-PCM, PV-PCM, | PV-PCM, | PV-PCM,
PCM 360 418 30 36
Aluminium 74 74 32 32
Ireland | Manufacturing | 300 300 30 30
Cost Net cost 734 792 92 98
€) PCM 360 418 30 36
Aluminium 49 49 22 22
Pakistan | Manufacturing | 4 4 4 4
Net Cost 413 471 56 62

Table 7.2 Summary of manufacturing and material costs incurred to produce the

proposed PV-PCM systems in Ireland and Pakistan.

In the most simple cost analysis cost incurred on the PV-PCM systems to regulate PV
temperature is compared with the benefit obtained through improved PV electrical
output due to temperature regulation. It can be observed that the cost incurred in
Ireland on the production of PV-PCM systems was €734 for PV-PCM; and €792 for
PV-PCM; produced as single system which is expected to drop to €92 for PV-PCM;,
and €98 for PV-PCM, when mass produced. Similarly the cost incurred in Pakistan
on the production of PV-PCM systems was €413 for PV-PCM, and €471 for PV-

PCM,; produced as single system and is expected to drop to €56 for PV-PCM,; and
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€62 for PV-PCM, when mass produced. Since the rated power of PV is 65 W, so the

additional cost incurred due to integration of PCM into PV for mass produced PV-

PCM systems in Ireland is €1.41 W, for PV-PCM; and €1.50 W, for PV-PCM,.

Similarly the cost involved in mass produced PV-PCM systems in Pakistan is €0.86

W, for PV-PCM; and €0.95W," for PV-PCM,.

7.4 Benefit of the proposed PV-PCM systems

Peak electrical energy gain due to temperature regulation by PV-PCM; in Dublin
was found to be 2.16 W. The cost to produce same amount of electricity through
installing extra PV would be obtained by multiplying cost per watt of PV (i.e., €
4.81 W to the extra electricity produced (i.e., 2.16 W) which gives the financial
benefit of 10.39 € of the PV-PCM system. However the cost incurred to mass
produce such PV-PCM; in Ireland systems was 92 € which shows that PV-PCM;
costs 8.8 times the benefit in Ireland.

Peak electrical energy gain due to temperature regulation by PV-PCM; in Dublin
was found to be 2.69 W. The cost to produce same amount of electricity through
installing extra PV would be obtained by multiplying cost per watt of PV (i.e., €
4.81 W'l) to the extra electricity produced (i.e., 2.69 W) which gives the financial
benefit of 12.94 € of the PV-PCM system. However the cost incurred to mass
produce PV-PCM; in Ireland was € 98, which shows that PV-PCM,; costs 7.5 times
the benefit in Ireland.

Peak electrical energy gain due to temperature regulation by PV-PCM; in Vehari
was found to be 4.82 W. The cost to produce same amount of electricity through
installing extra PV would be obtained by multiplying cost per watt of PV (i.e., €

4.81 W to the extra electricity produced (i.e., 4.82 W) which gives the financial
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benefit of 23.18 € of the PV-PCM system. However the cost incurred to mass
produce PV-PCM; in Pakistan was € 56 which shows that PV-PCM; costs 2.4
times the benefit in Pakistan .

= Electrical energy gain due to temperature regulation by PV-PCM; in Vehari was
found to be 5.52 W. The cost to produce same amount of electricity through
installing extra PV would be obtained by multiplying cost per watt of PV (i.e., €
4.81 W) to the extra electricity produced (i.e., 5.52 W) which gives the financial
benefit of 26.55 € of the PV-PCM system. The cost incurred to mass produce PV-
PCM,; in Pakistan was € 62 which shows that PV-PCM,; costs 2.3 times the benefit

in Pakistan.

7.5 Conclusions

The energy and economic analysis of the PV-PCM systems was performed. For PV
the #,, was 44.6 % for Dublin, Ireland and 32 % for Vehari Pakistan that is in good
agreement with reported values for the similar work in literature. It was observed that
in both Ireland and Pakistan, the financial benefit of electrical energy saved by
temperature regulation through PV-PCM systems was lesser than the cost incurred to
mass produce such systems at the corresponding locations confirming that at this
stage the PV-PCM systems are not cost effective. Cost of the systems is from 7-8
times of the benefit in Ireland while about 2 times of the benefit in Pakistan which
encourages the possibility of future research to improve performance of such systems
in context of warmer climates like Pakistan. Additionally in the current analysis the
benefit of exploiting thermal energy stored in PCM, increased PV life due to reduced

operating temperature, environmental incentives due to carbon savings, State
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incentives for green energy production and increased power density for building
integrated photovoltaics were not considered which will further bridge the gap in cost

and benefit to make PV-PCM systems cost competitive.
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8 FUTURE PROSPECTS AND CONCLUSIONS

8.1 Future Prospects of the Research

8.1.1Building Integration of PV-PCM Systems

The next step in this research can be to integrate the PV-PCM system into a building
facade or roof and determine the heat gains, temperature regulation and PV power
gain due to the system integration. The performance of BIPV systems strongly
depends on the climate of geographical location where they are installed. It is strongly
recommended that such systems should be installed at selected locations with
substantially different latitudes and climatic conditions to measure their operating
temperatures, temperature effects on electrical and thermal performance, effectiveness
of cooling through use of variety of PCM to generate enough data for validation and
establishing general correlations between climatic conditions and PV and PV-PCM
performance. A successful integration and performance evaluation of the integrated
system with respect to thermal and electrical performance evaluation/improvement

will be very important research contribution which is very limited at present.
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8.1.2 Heat Extraction from PV-PCM System

It has been shown that PCM integrated into PV stores a large amount of thermal
energy available from PV as latent heat. Utilizing the stored energy brings additional
benefit of these systems which can be maximised by future research:

A heat extraction methodology can be devised that will enable improve heat exchange
from the PV-PCM into heat transfer media. The study may focus on the cost, effective
life and competitive heat exchanger materials. The measures can help to reduce
temperature distribution in PCM by efficient heat extraction to improve PV power
quality.

Selection of appropriate heat transfer fluid, qualifying for little to no additional
investment and operating cost, higher heat gains, possibility of utilizing heat using
water for domestic water heating or air for space heating can be investigated. It has
been shown in literature (Wilson, 2009) that water can be passed through such system
using the normal hydraulic head available at home water supply systems which will
save on pumping power need and extra capital cost. An arrangement of high thermal
conductivity metallic cylindrical pipes equally distributed into the PCM matrix can be
a start point.

Optimisation of coolant flow rates will also be important for efficient and optimised
heat removal from PCM and would reduce pumping or fan power if any of them
arises. The study may involve modelling of heat transfer within the system between

PCM and the coolant for design and flow rate optimization.
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The timings of heat extraction from PCM may easily be overlooked nevertheless it can
be potentially important depending on site of the installed systems. Timing to start
heat extraction may vary with the seasonal variation at the same site or geographical
variation between sites during the same season. At high thermal loads in warmer
climates the PCM may melt completely in shorter time duration and will thermally
insulate PV from back tending to overheat the PV provided the heat is not extracted in
timely fashion. Initially starting heat extraction at the (i) end of the day and (ii) mid of
the day can be considered. End of the day heat extraction may more suit to cooler
climates where PV can absorb heat for longer time durations. Mid of the day heat
extraction may be necessary in hot climates where the temperatures are high enough to

melt PCM in initial few hours of exposure.

8.1.3 Thermal Conductivity Improvement of the PV-PCM System

It is observed that thermal conductivities of the PCM and PV-PCM container play an
important role in thermal regulation performance of the PV-PCM systems. Very low
thermal conductivities of the PCM reduces heat transfer rate from PV into PCM and
encourages natural convection in the PCM generating temperature gradient within
PCM resulting in higher PV operating temperatures. Following measures can be taken
to enhance thermal conductivity of the PV-PCM system

Manipulation of fin design and investigation into different fin arrangements by

numerical modelling and validation with experimental measurements.
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= Addition of thermal conductivity enhancers (i.e., metallic nanopowders and carbon
nanotubes) into the PCM and make uniform distribution (Lee et al., 2005; Collins and

Phaedon, 2000)

8.1.4 Optimization of PV-PCM System for Different Climates

Modelling of BIPV systems for different geographical locations with available
weather data can be very important contribution to understand the electrical
performance, additional benefits and potential challenges for competitive and reliable
operation of such systems world wide. Simulation models can be developed using
commercial packages such as TRNSYS and RET taking meteorological data to predict
performance of BIPV systems at diverse weather conditions which will help provide
rational for cooling need of the BIPV systems. At the second stage performance
improvement of BIPV can be predicted with integrated PV-PCM systems. The model
will help optimise PV-PCM system integrated into BIPV for thermal as well electrical
gain for different climates avoiding increased effort and investment for experimental
measurements and will guide investigation of suitable PCMs for different climatic

conditions.

8.1.5 Corrosion Studies

It has been reported that some PCM show higher tendency to corrode PCM container
materials than others. Comparison of different PCMs for their corrosion to the
container materials is important to predict PCM container life-time and well as

effectiveness of PCM materials for long time performance compatibility. The

214



corrosion studies will help understand the possible ways and materials to protect PCM
containers from corrosion, comprehensive studies relating corrosion protection
measures and their effectiveness and limitations have not been reported as yet to

Author’s knowledge.

8.1.6 Search for New PCM

Investigation into different PCM with suitable thermophysical properties, long time
operation reliability, cost competitiveness and availability to suit different climates for
PV cooling and enhanced performance is an open area of research. Research with an
aim of discovering new materials, learning from cooling potential, techniques,
limitation and challenges reported for cooling performance of PCM applied in
electronics, building fabrics and food preservation can provide very important inputs
for future research. Characterization of new materials, improvement in their properties
and measures to functionally grade them can generate a list of optimum PCM for

different geographical locations.
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8.2 Conclusions

Aim of the current research is to experimentally investigate the PV cooling technique
introduced by Huang et al., 2004, 2006 extending its use to (i) identify and
thermophysically characterize new PCMs for their suitability for PV cooling applications
(1) experimentally evaluate the new PCMs indoors with different PV-PCM system
configurations at various solar radiation intensities to adopt PV-PCM systems for
different weather conditions (iii) integrate the optimum PCM into large scale PV panel
size system with optimum PV-PCM configurations, measure PV temperature regulation
through use of PCM and quantify the increased electrical output brought about by PV
cooling indoors (iv) evaluate the PV cooling and increased electrical output through use
of the novel PV-PCM system outdoors by extensive experimentation in two different
climates i.e. (1) high latitude cool climate and (ii) low latitude hot climate.

Different PV types, their efficiencies and effect of temperature on their performance have
been reviewed. It is proven that temperature has a strong impact on the electrical output
as well as long-term operation reliability of almost all PV types. Different active and
passive cooling techniques have been reviewed. Almost all of the conventional PV
cooling techniques are limited by (i) high initial costs, (i) operation and maintenance
costs, (iii) low heat removal and (ii1) inability to produce cooling at higher temperature
summer environments.

The thermophysical properties of PCM were reviewed to determine suitable PCM for PV

temperature regulation. Consequently five different PCM, RT20, SP22, CaCl,.6H,0, CL
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and CP from three major classes of PCM, (i.e., paraffin waxes, salt hydrates and fatty
acids) were selected with melting points around 25+4 °C and heats of fusion between
125-212 kJkg'. Initial characterization of PCM using DSC verified thermophysical
properties of PCM. DSC could accommodate only 5-15 mg of the PCM mass, further
characterization was deemed necessary with larger PCM masses. THM offered the
possibility to place 25 g sample material and showed characterization comparable to
DSC. Characterization with both DSC and THM showed good agreement with the results
reported in literature. It was found that RT20 melts and solidifies over a wider
temperature range and has high volumetric expansion (14%) during melting however it is
non corrosive to most of the containment material which favours its use for PV
temperature regulation being contained in metallic containers. CaCl,.6H,O possessed the
highest heat of fusion (i.e., 213 Jg), highest thermal conductivity (i.e., 1.09 Wm™'°C™)
and melts and solidifies over a small temperature range. It shows an undesired strong
corrosion to most of the container materials, a higher undercooling of 11 °C below its
freezing point rendering difficulty in solidification and dehydration during thermal cycles
if not contained in hermetically sealed containers. CL and CP melt and solidify over
relatively narrow temperature ranges and possess higher heats of fusions (i.e., 168 Jg
and 191 Jg', respectively) however CP and CL have very low thermal conductivities
(0.14 Wm™°C™") which impedes heat transfer. SP22 has higher thermal conductivity (0.6
Wm'lOC'l) than CP, CL and RT20 however it has the lowest heat of fusion (122 ] g'l) of
all PCM, shows undercooling of 8 °C below its freezing temperatures which renders

difficulty in solidification

217



Further indoor experiments on the cell size PV-PCM system enabled to determine actual
thermal regulation of PV. Extensive indoor experiments conducted at 500 Wm™, 750
Wm™ and 1000 Wm™ solar radiation intensities enabled to understand the effect of @)
PV-PCM container material, (ii) melting point of PCM (iii) thermal mass of PCM (iv)
heat of fusion of PCM (v) thermal conductivities of PCM and PV-PCM system on
thermal regulation enhancement of PV. It was observed that the thermal regulation
performance of a PCM depends on the thermal mass of PCM, melting point of PCM, heat
of fusion of PCM and thermal conductivity of both (i) PCM and (ii) PV-PCM container
material. Comparing PV-PCM systems, the aluminium based system A was found to be
the optimum while CP and CaCl,.6H,O were found to be the best PCMs. Better thermal
regulation was produced at lower insolation by CP and at higher insolation by
CaCl,.6H,0. In the best case both CP and CaCl,.6H,0 maintained a maximum of 18 °C
temperature reduction at PV front surface for 30 minutes, while CaCl,.6H,0 maintained a
10 °C temperature reduction for 5 hours at 1000 Wm™ insolation in system A. Indicative
Ra numbers were calculated for all PCMs at three insolations which ranged between 10° -
10" which shows that the natural convection is present in the PV-PCM system and also
the fluid flow is laminar. The experimental results were validated with an emissivity
based P1 (Fluent, 2005 a) radiation model for incoming solar radiations and an enthalpy
based two dimensional heat transfer model applying Boussinesq approximation for
density variation in the fluid to solve phase change. PV without PCM was validated
systems at all the three solar radiation intensities while PV-PCM system was validated at
1000 Wm™ insolation using RT20 as PCM which showed good agreement with

measurement results. Simulation results confirmed the presence of natural convection by
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distribution of melt fraction along the vertical direction, with melted PCM moving to the
top surface due to buoyancy and solid PCM moving downwards under gravity.

The best PCM (i.e., CaCl,.6H,O and CP) and PV-PCM from small scale indoor
experiments (i.e., system A) were characterized, at a larger PV panel scale (70 cm x 60
cm X 5 cm) consisting of PV panel, PV-PCM container fitted with metallic fins with
PCM filled in. Indoor experiments with a large scale solar simulator producing solar
radiation intensities of 500 Wm™, 750 Wm™ and 1000 Wm™ enabled to quantify the PV
thermal regulation produced by each of the two PCM, CP and CaCl,.6H,0. Increase in
V,. was observed with decreasing PV temperature. It was observed that PV-PCM
containing CaCl,.6H,O produced highest PV thermal regulation and associated
improvement in V,, than the PV-PCM containing CP at all solar radiation intensities. In
the best case temperature regulation of 13 °C and 15 °C was achieved with PV-PCM;
and PV-PCM, respectively for 6 hours at 1000 Wm™ solar radiation intensity. This PV
thermal regulation increased PV power by 7.52 % and 9.7 % with PV-PCM, and PV-

PCM; respectively.

Good results in indoor characterization encouraged outdoor characterization to be
conducted in high latitude cool climates of Dublin, (53.33 N, 6.24 W) Ireland and low
latitude warm climate of Vehari, (30.03 N, 72.25 E), Pakistan respectively applying the
same experimental setup and measurement procedures. Similar indoor large-scale
characterization, temperature reduction and associated PV power improvements were
observed outdoors. In Dublin a peak PV temperature regulation of 7 °C with PV-PCM;
and 10 °C with PV-PCM, was achieved yielding a predicted power improvement of 4.6

% with PV-PCM; and 6.5 % with PV-PCM, (using T, of 0.65 % OC'l). In Vehari a peak
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PV temperature regulation of 17 °C with PV-PCM; and 21.5 °C with PV-PCM, was
recorded which produced predicted power improvement of 11 % with PV-PCM;, and 14
% with PV-PCM,. It was observed that both PV-PCM systems produced higher PV
temperature regulation and greater associated power increase in the warm climate of
Vehari than in the cool climate of Dublin. A simplified cost and benefit analysis showed
that the PV-PCM systems cost more than the electrical saving due to cooling of PV,
however the difference between cost and benefit is much lower in climates of Pakistan

than in climates of Ireland.

Although the temperature regulation and power improvement was higher for CaCl,.6H,0,
yet the adverse effect of temperature distribution (temperature difference between top and
bottom of PV-PCM system) was also higher for CaCl,.6H,O compared to CP causing
power loss due to voltage mismatch. It is expected that with improved heat transfer,
exploiting stored thermal energy, better design and comprehensive cost analysis, these

systems can become cost competitive.
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Appendix

Appendix A- Solar Simulator

Product Name: Griven GR-262 Inse 1200 Followspot 1200W

Product Model: INSE1200

Manufacturer: GRIVEN

Griven GR-262 Inse 1200 Followspot 1200W

Followspot for 1200 MSR discharge lamp, zoom optical system: high light output
and perfect focusing. Complete with two cooling fans, safety micro-switch, iris
diaphragm, built-in ballast, on/off switch and supply cable.

The lamp is sold separately.

Technical features

- LAMP SOURCE

Type: MSR

Wattage (W): 1200

Base: G22

Lamp life (h): 750
Lumens: 110.000

- COLOURS

Color (MIX): Optional colour changer group

- PROJECTION

Zoom: 7-12
Iris:
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Dimmer: Optional

Effects: Optional 4-way shutter

- HOUSING

Cooling: FV

- SIZE (mm)

Height: 420
Width: 350
Depth: 1010

- - WEIGHT (kg)

Main fixture: 30

- POWER

Input (V): 230
HZ: 50-60
AMP: 12
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Appendix B-Pyranometer
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N Kipp &
LD Zonen

Sensitivitatsabweichung: <+ 1% pro Jahr

Spektrale Trennscharie + 2% (0,35 pm bis 1,5 pm)

Das genannte Richtungsverhalten enthalt folgende relative Fehler:

Kosinusverhalten: max. + 1% Abweichung vom Ideal bei 60 ° Sonnenzenitwinkel
in jeglicher Azimuthrichtung

max. + 3% Abweichung vom Ideal bei 80 ° Sonnenzenitwinkel
in jeglicher Azimuthrichtung

Konstruktion

Farbe Sensorelement: Kohlschwarz

Glasdam: Schott K5 optisches Glas, 2mm dick,
30mm und 50mm dulerer Durchmesser

Trocknungsmittel: Silika-Gel

Libelle: Sensitivitat 0.5° (Luftblase zur Halfte
aulerhalb des Ringes, Deckung mit
Sensarsackel)

Oberflache des Sensorelementes und
Sensorsockel sind deckungsgleich
innerhatb 0,1*

Materialien: seewasserfestes Aluminiumgehause
und Nivellierschrauben, eloxiert. Rost-
frele Stahischrauben, korrosionsfrei
montiert
Weiler Plastiksonnenschirm ASA/PC,
Trocknungspatrone PMMA

Gewicht: B850 g

Kabelldnge: 10m

Abmessungen: BxH 150 x 85 mm. (S. a. Abbildung 5)
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Appendix C- AT Data logger
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