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Effect of monomer diffusion on photoinduced shrinkage in 

photopolymer layers determined by electronic speckle pattern 

interferometry 

 
Mohesh Moothancherya,b, Manojit Pramanikb, Vincent Toala,*, Izabela Naydenovaa,†  

 

aCentre for Industrial & Engineering Optics, Dublin Institute of Technology, Dublin, Ireland 
bSchool of Chemical and Biomedical Engineering, Nanyang Technological University, 

Singapore 

ABSTRACT  

The aim of this study is to determine the effect of monomer diffusion on the photoinduced shrinkage profile in 

acrylamide based photopolymer layers during holographic recording. Using phase shifting electronic speckle pattern 

interferometry the displacement at each pixel in the image of the layer is measured. The complete displacement profile 

of the layer was obtained using phase shifting technique. We observed a reduction in shrinkage as a result of monomer 

diffusion from unexposed regions of holographic exposure. As a result of diffusion the maximum shrinkage was 

reduced by 26 % from 7.18µm to 5.28µm in a photopolymer layer of thickness160 ± 3 µm  after 84 seconds of 

recording.  

Keywords: Holography, interferometry, photopolymer, shrinkage 

 

1. INTRODUCTION 

Polymerisation induced shrinkage is one of the main reasons why photopolymer materials are not widely used in some 

holographic applications. Shrinkage occurring in an acrylamide based photopolymer developed at the Centre for 

Industrial and Engineering Optics 1 has been previously determined 2-4 by measuring the shift in the angular position 

of the Bragg peak. Incorporating of zeolite nanoparticles helps in reducing shrinkage in photopolymer layers4-6. 

Shrinkage was later measured in  real time using holographic interferometry, a non-destructive technique that 

measures small static or dynamic changes occurring in an object 6-9.. Fringe counting techniques can give information 

regarding real time shrinkage but cannot give whole field information. Phase shifting electronic speckle pattern 

interferometry (ESPI) is a suitable technique widely used for determining whole field surface deformations and shapes 

of rough surfaces 10-14.  Temporal phase shifting technique in which the reference mirror is moved is one of the most 

common phase shifting technique. In our current work, we present the effect of monomer diffusion on the whole field 

displacement profile due to photoinduced shrinkage in an acrylamide based photopolymer layer during holographic 

recording. The shrinkage was determined using a (5, 5) phase shifting algorithm. The displacement at each pixel in 

the image of the layer was measured so that a complete shrinkage profile of the layer was obtained. 

2. EXPERIMNTAL PROCEDURES 

2.1 SAMPLE PREPARATION 

A green light sensitive photopolymer layer was prepared as previously described2. Briefly, 0.6 g of acrylamide 

monomer was added to 9 ml stock solution of polyvinyl alcohol (20% wt). Then 2 ml of triethanolamine was added. 

To this solution 0.2 g of N, N-methylene bisacrylamide and finally 4 ml of Erythrosine-B dye was added (0.11% wt. 

water stock solution). 0.06 ml of photopolymer solution was spread on a circular area of 1.2 cm diameter on a 25 mm 

x 35 mm glass plate coated on the opposite side with non-reflective paint.  Similarly 0.12 ml of photopolymer solution 

                                                 
* E-mail: vincent.toal@dit.ie 
† E-mail: izabela.naydenova@dit.ie 

mailto:vincent.toal@dit.ie
mailto:izabela.naydenova@dit.ie


 

 
 

 

was spread on a circular area of 1.7 cm diameter on a 25 mm × 35 mm glass plates. The samples were dried for 24 h. 

Sample thickness after drying was approximately 160±3 μm.  

 

2.2 EXPERIMENTAL TECHNIQUE  

 

         

Fig. 1. Schematic of the Electronic speckle pattern interferometry (ESPI) system 

 

The ESPI system is as shown in Fig. 1. An Erythrosine B, green light sensitive photopolymer layer (Er.B sample) with  

different diameters was the object under study. The photopolymer substrate is a glass plate coated with non-reflective 

paint on the opposite side to the photopolymer layer. A similar glass plate was attached to a piezoelectric transducer 

(PZT) whose motion was precisely controlled by Labview software. A spatially filtered and collimated He- Ne laser 

(632.8 nm) beam to which the Er. B sample has negligible sensitivity was used in the interferometry system. The beam 

reflected from the photopolymer layer (object beam) and the beam reflected from the glass plate attached to the PZT 

(reference beam) were allowed to interfere and the interference pattern or specklegram was captured by a CMOS 

camera. The spatially filtered beam from a Nd-YVO4 laser (emission wavelength 532 nm) was collimated and split 

into two beams which were allowed to interfere on the photopolymer sample for holographic recording. The diameter 

of the recording beam was 1.2cm. The spatial frequency of the recorded interference pattern was 1000 lines/mm. A 

constant phase difference of π/2 between consecutive specklegrams was introduced by changing the input voltage to 

the PZT. The phase shifted specklegrams were used to obtain the phase map of the surface of the layer. 

3. EXPERIMENTAL RESULTS 

The prepared sample as discussed in Section.2.1 was mounted in the ESPI system as shown in Fig. 1. Photopolymer 

layers of different diameters were exposed to a green light (532 nm) interference pattern formed by the two recording 

beams. Before holographic exposure, 5 phase shifted frames were stored for the initial state of the layer, and then the 

layer was exposed. In order to evaluate the shrinkage during exposure 5 phase shifted frames were captured and stored 

after 84 seconds of holographic recording. In order to study the effect of monomer diffusion on shrinkage holographic 

recordings were made in photopolymer samples of the same diameter as the recording beam. In this case there won’t 

be any effect of monomer diffusion from unexposed regions. Another holographic recording was made in 

photopolymer sample of larger diameter than that of the recording beam in which case we may expect diffusion of 

monomer from outside the illuminated region. The phase maps corresponding to the sample surface before and after 



 

 
 

 

exposure were calculated using a 5-frame algorithm. The error-compensating 5-step phase evaluation equation was 

used 14 .  
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The phase map was calculated from these 5 phase shifted frames. The wrapped phase map contains 2π phase 

discontinuities and phases are wrapped between –π and +π due to the nature of the arctangent function. The process 

of removing these 2π discontinuities is called phase unwrapping or integrating the phase 16,17. The wrapped phase 

maps before and after exposure were unwrapped using the 2D-SRNCP unwrapping algorithm 18. The 2D SRNCP 

algorithm belongs to the class of quality guided path algorithms. In order to prevent error propagation, this algorithm 

will unwrap the highest quality pixels with highest reliability values first and lowest quality pixels with lowest 

reliability value last. The 2D SRNCP algorithm follows non-continuous or discrete paths for unwrapping. The phase 

maps still contain some errors which cannot be detected, but the algorithms are very robust in practice compared to 

continuous path unwrapping algorithms. The two unwrapped phase maps corresponding to the sample surface before 

and after 84 seconds of exposure to green light were subtracted from one another in order to get the phase map of the 

displacement profile due to shrinkage in the photopolymer.  
 

 
Fig. 2. Unwrapped phase map (a) before exposure, (b) after 84s exposure, (c) phase map of shrinkage obtained by subtracting 3(a) 

from 3(b). 
 

The unwrapped phase maps before and after exposure are  shown in Fig. 2(a) and (b) respectively. The phase value at 

each pixel lying in the range [-π, +π] is represented by a grey level within the dynamic range of the CMOS camera 

enabling display of the phase map as a gray level image. The dark pixels correspond to a phase value of –π and white 

pixels which are saturated correspond to phase value of +π.  
 

In order to determine shrinkage in photopolymer layers the phase map corresponding to the time of recording, in this 

case 84 sec, was subtracted from that before recording. The resulting unwrapped phase map is shown in Fig. 2(c). 

From the subtracted phase map, a 3D displacement map of shrinkage can be calculated 
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where, d - shrinkage in photopolymer layer;  - wavelength of laser ; -unwrapped phase 

 

 

 
 

Fig. 3. A 3D map of the absolute shrinkage photoinduced in a 160±3 µm thick sample after 84 sec holographic exposure for (a) 

without diffusion (b)  with diffusion. 2D map of the absolute shrinkage (c) without diffusion (d) with diffusion. Recording 

intensity was 10 mW/cm2. 

 

Fig. 3 (a) shows the shrinkage measured 84 s after the start of holographic recording with two beams with total 

intensity of 10 mW/cm2. The photopolymer layer used in this case was the same diameter as the recording beam.  Fig. 

3(b) shows the shrinkage measured after 84 s recording in a photopolymer layer of diameter larger than the recording 

beam. The thickness of both the samples was 160±3 µm. Fig. 3 (c) and Fig 3(d) show the 2 dimensional displacement 

profiles of the samples as in Fig. 3(a) and Fig. 3(b). Inorder to compare the effect of diffusion the shrinkage profile is 

plotted along the central region of the layer designated by the  black dotted line in Fig. 4. 

The result is shown in Fig. 4. We can clearly see that the shrinkage is greater in the case of holographic recording 

where the  recording beam and layer are the same diameter there is no diffusion. All monomer molecules in the 

photopolymer were polymerised during holographic recording and as a result higher shrinkage occurs whereas in the 

case of recording beams smaller in diameter than the layer, shrinkage is partially compensated by diffusion from 

outside the illuminated area. In the profiles  100 pixels corresponds to 1.2 cm. A detailed analysis of the data is 

currently being carried out and will be published elsewhere. 

 



 

 
 

 

 
Fig. 4. Line profile showing the effect of monomer diffusion on shrinkage 

 

4. CONCLUSIONS 

We have demonstrated the effect of monomer diffusion on the whole field deformation by photoinduced shrinkage of 

photopolymer layer, using a phase shifting ESPI system. Holographic gratings were recorded  in 160±3 µm thick 

layers with one sample having same size of the recording beam and another larger in size than that of the recording 

beams. Phase shifted specklegrams were captured before and after holographic recording. These phase shifted 

specklegrams were used to obtain  the shrinkage profile. It was observed that the shrinkage is greater for samples 

where there is no effect of monomer diffusion from the unexposed region which could be related to the fact that all 

monomer molecules are polymerized during holographic exposure. The reduced shrinkage at the edges could primarily 

relate to the fact that the exposed beam profile is Gaussian and hence the intensity at the edges will be lower than that 

at the center. From the diffusion studies we can say that diffusion of material from outside the illumination area 

influences the final shrinkage and could be the reason why the shrinkage at the edge is lower than in the case of no 

diffusion. The current study will find useful application for the characterization of photosensitive polymer materials 

for holographic applications.   
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