
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference Papers School of Mechanical Engineering 

2010-01-01 

A Study of Friction Testing Methods Applicable to Demoulding A Study of Friction Testing Methods Applicable to Demoulding 

Force Prediction for Micro Replicated Parts Force Prediction for Micro Replicated Parts 

Kevin Delaney 
Technological University Dublin 

David Kennedy 
Technological University Dublin, david.kennedy@tudublin.ie 

G. Bissacco 
University of Padova 

Follow this and additional works at: https://arrow.tudublin.ie/engschmeccon 

 Part of the Mechanical Engineering Commons 

Recommended Citation Recommended Citation 
Delaney, K., Kennedy, D., Bissacco, G.: Study of Friction Testing Methods Applicable to Demoulding Force 
Prediction for Micro Replicated Parts, Matrib 2010, Croatia, June 23-27th, 2010. 

This Conference Paper is brought to you for free and open access by the School of Mechanical Engineering at 
ARROW@TU Dublin. It has been accepted for inclusion in Conference Papers by an authorized administrator of 
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engschmeccon
https://arrow.tudublin.ie/engschmec
https://arrow.tudublin.ie/engschmeccon?utm_source=arrow.tudublin.ie%2Fengschmeccon%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/293?utm_source=arrow.tudublin.ie%2Fengschmeccon%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


A STUDY OF FRICTION TESTING METHODS APPLICABLE TO 

DEMOULDING FORCE PREDICTION FOR MICRO REPLICATED 

PARTS 
 

K. D. Delaney and D. Kennedy, Dublin Institute of Technology, Dublin, Ireland 

G. Bissacco, Department of Innovation in Mechanics and Management, University of 

Padova, Italy 

 

ABSTRACT 

For replication processes to be deemed successful it must be possible to remove the 

replicated parts from the tool after processing. With decreasing part and feature size 

the challenge of demoulding replicated parts increases since the resulting parts and 

replication tooling used are more delicate and can be easily damaged. Predictive 

demoulding force models can be used to optimise the part, tool and process 

parameters to maximise the likelihood of success. Developing accurate models for 

this process requires knowledge of the dominant interfacial contributions to friction 

and knowledge of the size scale at which the dominant contributions operate together 

with an understanding of how these might change as process parameters vary. This 

paper explains the dominant contributors to friction at the micro scale and reviews test 

methods which are available to isolate and quantify each of these contributors.   
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1. Introduction 

Replication technologies have a key role to play in producing components 

consistently in large volumes at a relatively low cost. Such technologies use a die or a 

mould to generate the desired structures. A broad range of micro replication 

technologies have been developed in recent years, allowing the realization of parts 

with features from hundreds of µm to tens of nm (10
-4

 m to 10
-8

 m) in different 

materials such as polymers and ceramics. When a replicated part reaches a condition 

that it will remain stable outside of the tool it is forcibly demoulded or ejected from 

the replication tool. This force, typically applied via a series of ejector pins, is needed 

to overcome retarding forces which develop at the component and tool interface.  

 

With conventional-sized moulded parts quite large ejection areas can be used and the 

parts themselves are suitably rigid so that they are unlikely to be damaged by 

activation of the ejector pins. However as part size reduces, the potential sites where 

ejection pins can act are reduced and the parts themselves become weaker and more 

prone to damage when mechanically stripped from tool cores. Examples of parts with 

such micro features, together with an image of a replication tool surface and sectional 

profile created using SPIP software [1] are shown in Figure 1. 

 

 
Figure 1: Typical micro products and the surface of a micro replication tool. 

 

For both micro and conventionally-sized parts demoulding failure results from shear 

stress due to friction and thermally-induced stress due to cooling. Examples of part 

deformation caused during demoulding by the shrinkage differences between tool and 

polymer are shown in Figure 2 [3].  

 

 
 

Figure 2: Example of micro structure deformation caused by demoulding process [3]. 

Micro miniature connector housing 

and assembly (0.4mm pitch) 

Micro replication tool and surface profile Micro gear and pinion [2] 



 

This paper defines “demoulding force” as that necessary to initiate the ejection 

movement of the part only, thereby not including frictional effects from the actual 

ejection mechanism. An ability to quantify such demoulding forces prior to tool 

fabrication helps designers, particularly designers of smaller components, to optimize 

replication tools to minimize the demoulding force and resultant stress on replicated 

parts. 

 

A number of models have been proposed to predict the demoulding force of replicated 

parts from replication tools, all assuming the existence of an accurate coefficient of 

friction. This paper describes the importance of such coefficients for existing 

demoulding force models and summarises the dominant contributors to friction at the 

micro scale. This is followed by a review of the suitability of standardised test 

methods to measure friction at the micro scale together with a review of the testing 

methods developed specifically to measure friction coefficients in the context of 

replication processes. 

 

 

2. Demoulding force and friction in the context of demoulding force models 
 

During the cooling phase of a replication process, parts shrink onto and are 

constrained by the replication tool. This shrinkage causes stress to build up in the 

cross section of the part [4] and results in the generation of forces normal to the 

surfaces restrained from shrinking. The stresses which develop are strongly related to 

normal pressure and therefore to shrinkage, part stiffness and mould packing. These 

forces are those resulting from contact pressure between the tool and core. If 

atmospheric pressure doesn’t exist between the part and core during demoulding a 

suction force may be generated. This is the product of atmospheric pressure and 

surface area on the top of the core. These primary demoulding force components are 

illustrated in Figure 3. 

 
Figure 3: Primary contributors to demoulding force. 

 

A tangential force is required to overcome the effect of these frictional forces and 

create relative motion between the part and tool during part demoulding. Most 

mathematical models to quantify the force needed to demould parts from replication 

tools derive from the empirical law of Coulomb friction [4]. For parts which shrink 

onto cores, such as sleeves or box-shaped parts, the release force FR is given as: 

 

     FR = µ x PA x AC            (1) 

 

Where µ is the coefficient of friction PA is the contact pressure and AC the area of 

contact. An outline of demoulding force models based on Coulomb’s law is shown in 

Figure 4.  



 

 
 

Figure 4: Outline of demoulding force models. 
 

While the nominal contact area can be measured relatively easily the friction 

coefficient and contact pressure can have various interpretations. For simple 

geometries, such as cylindrical parts which shrink onto a core, thick-walled cylinder 

theory can be used to predict the contact pressure between the replicating tool and the 

replicated part assuming the material properties and part geometry details are known. 

For more complex geometries Finite Element Analysis has been applied to predict the 

contact pressure [5]. However the magnitude of µ depends upon several factors such 

as the materials concerned, mould surface roughness, moulding pressures, 

demoulding velocity, and mould temperatures. The approach typically followed, 

effectively treating the effects of friction as a “black-box” produces a single number 

which can mask the contribution made by different friction mechanisms. To more 

clearly understand the situation at the micro scale the specific contributors to friction 

at this scale are briefly discussed. 
 

 

3. Dominant contributors to friction at the micro scale 

Interpreting the friction of organic polymers to describe part demoulding is complex 

since there are many influencing factors. Building upon Bowden and Tabor’s [6] 

friction law Briscoe [7] presented an interpretation of organic polymer friction based 

on a two-term non-interacting model where the frictional work is dissipated in two 

distinct regions; an interface zone and a subsurface zone as shown in Figure 5. The 

overall friction force F  is assumed to consist of two components; one relating to 

adhesion, adhesionF , and the other to deformation or hysteresis, ndeformatioF : 

 

ndeformatioadhesion FFF +=   (2) 

 

The adhesion term is a surface effect, regarded as occurring to a depth in either 

surface which does not exceed molecular dimensions (Angstroms), whereas the 

deformation term is a bulk phenomenon. This deformation component of friction, 

which results from delayed recovery of the elastomer after indentation by a particular 

asperity, is a bulk effect governed by the relative velocity of the surfaces as well as 

the overall pressure distribution. Each term of this non-interacting model includes 

contributions from different interface phenomena. 

 



 
Figure 5: Separation of friction into deformation and adhesion components. 

 

3.1 Adhesion component of friction 

Adhesion is a surface effect for which various definitions have been proposed. Wu [8], 

states that: Adhesion refers to the state in which two dissimilar bodies are held 

together by intimate interfacial contact such that mechanical forces can be 

transferred across the interface. Mechanical strength of the system is determined not 

only by the interfacial forces, but also by the mechanical properties of the interfacial 

zone and the two bulk phases. 

 

For the purposes of this review adhesion mechanisms have been categorized as 

consisting of thermodynamic/chemical adhesion, electrical / electrostatic adhesion 

and capillary attraction as shown in Figure 6 (adapted from Garbassi et al [9]). 

 

 
Figure 6: Fundamental adhesion mechanisms. 

 

In the case of thermodynamics / chemical / kinetic adhesion some materials may 

merge at the joint by diffusion or inter-diffusion of chains if the molecules of both 

materials are mobile and soluble in each other. This is particularly effective with 

polymer chains where one end of the molecule diffuses into the other material. During 

sintering, when metal or ceramic powders are compacted and heated, this mechanism 

causes atoms to diffuse from one particle to the next joining the particles together. 

Wake [10] has reported that attempts to extend this diffusion theory to polymer/metal 

systems were not successful. 

 

Electrostatic adhesion arises from charge generation (triboelectrification) or charge 

transfer during contact. Some conducting materials may pass electrons to form a 

difference in electrical charge at the joint resulting in a structure similar to a capacitor 

and creating an attractive electrostatic force between the materials which accounts for 



the resistance to separation. Ebnesajjad [11] described the electrostatic mechanism as 

a plausible explanation for polymer-metal adhesion bonds. In this case the metal will 

be the electron donor and when the contact is broken the polymer surface will get a 

negative charge. 

 

When surfaces have a micro-roughness the gaps between contacting asperities can 

become filled with water resulting in the development of a meniscus force (capillary 

attraction). This is particularly likely to happen in high humidity environments where 

a liquid film develops between the replicating tool and the replicating part. 

Adsorption of moisture at the narrow gap can lead to the formation of a liquid bridge 

resulting in surface tension. 

 

3.2 Deformation component of friction 

The deformation component of friction can be further divided into ploughing and 

hysteresis contributions. Ploughing friction models assume that the dominant 

contribution to friction is the energy required to displace material ahead of a rigid 

protuberance (or protuberances) moving along a surface. Ploughing deformation in 

replication processes results from the sliding of replicated parts across features such 

as asperities and burrs which may remain from the tool fabrication process. Hysteresis 

is dependent on the viscoelastic properties of the elastomer and occurs due to delayed 

recovery after indentation by a particular asperity. It is governed by the relative 

velocity of the surfaces, the demoulding rate, as well as the overall pressure 

distribution.  

 

 

4. Determining a suitable coefficient of friction 

The coefficient of friction is defined as the ratio of the tangential force required to 

slide a body along a surface and weight of the actual body itself. The static coefficient 

of friction is typically higher than the dynamic coefficient of friction. To ascertain 

realistic friction coefficients Bataineh and Klamecki performed actual demoulding 

experiments of ring shaped geometries and these values were then used to predict the 

demoulding force [12]. This approach assumes that the coefficient will be the same 

for the geometry tested and the geometry being modelled. For convenience and speed 

it is desirable to evaluate friction coefficients using dedicated, standardised tests.  

 

4.1 Standardised friction test equipment and methods 

Equipment for such testing must support the two bodies being studied, move the 

bodies relative to each other in a controlled fashion, apply a normal force and measure 

the magnitude of the tangential friction force opposing relative motion. Several 

different designs of friction testing rigs, or tribometers, have been developed for 

commercial applications. Two of the simplest tribometers are the sled and inclined 

plane types as shown in Figure 7.  

 



    
Figure 7: Tribometers for commercial application [13, 14]. 

 

A key issue in friction testing is the repeatability of the results (within the same 

laboratory) and the reproducibility of the results (between one laboratory and another). 

According to Blau, with the proper care friction test results can be extremely 

repeatable and, to a lesser degree, reproducible [15]. To address this problem 

standards have been developed by several organisations. Specific test standards, 

describing sled-type tests, include JIS K 7125, ISO 8295 and ASTM D1894.  

 

Maldonado [16] measured the coefficient of friction for polymers sliding across steel 

and aluminium surfaces using a modified form of ASTM D 1894. Results reported 

show that the coefficient of friction varies significantly with increased load. However 

the experiments were not performed at temperatures or pressures representative of 

conditions within a replication tool. This is important for replication processes, 

particularly at the micro scale, where quite high replication pressures can be found.  

 

If larger normal forces are needed to generate the increased normal pressure then the 

sled-type friction tribometer is not suitable and a friction tester of different 

construction is typically used. An example of such a device is the pin-on-disk test rig 

as shown in Figure 8. The axial hydraulic actuator allows the application of a higher 

normal pressure. 

 

 
Figure 8: Tribometer concept for higher normal force values [13]. 

 

The equipment described is not suitable for measuring a representative coefficient of 

friction which can be used in demoulding force models. Burke and Malloy [17] 

described the difficulties in defining such coefficients since it depends on processing, 

material, product and mould design variables. Experimental work to determine 



suitable values using simulated replication trials has led researchers to develop 

friction testing devices which specifically simulate replication processes. 

 

4.2 Replication-style friction testing 

The requirements for such equipment include being able to test specimen with varying 

surface roughness under a defined, adjustable, normal force (effectively replication 

pressure). The influence of replication process parameters such as replication pressure, 

replication temperature, demoulding temperature, and demoulding rate, on the 

demoulding force has been studied using such equipment and the results are discussed 

below.  

 

Ferreira et al [18] developed an apparatus to study the effect of different parameters 

on the coefficient of friction relevant for the ejection of plastic parts from moulds. 

The effects of tool polish direction, surface roughness and test temperature on the 

coefficient of friction were studied. Results showed that testing temperature and 

surface roughness had a significant effect on the coefficient of friction for PC. No 

parameters studied had a significant effect on the coefficient of friction for PP, 

although the polish direction and roughness did have some effect. In general the 

coefficients of static friction observed for PC and PP were larger than previously 

published data. 

 

Pouzada et al [19] studied the static coefficient of friction under moulding conditions. 

The equipment developed enabled the determination of an optimal surface roughness 

that corresponds to the minimum coefficient of static friction. The test data obtained 

was sensitive to temperature, the surface roughness and the pressure between the 

contacting surfaces.  

 

Worgull et al [20, 21] observed that demoulding forces may vary by several factors 

depending on the process parameters selected and the quality of the tool. A test 

apparatus designed for mounting in a tensile testing machine was described and 

results presented based on varying parameters. These friction test results show the 

static coefficient of friction increases as the velocity decreases. Worgull et al [20] 

have published results of simulated replication trials where various demoulding rates 

were studied. Static coefficients of friction at 1mm/min were substantially higher than 

those at 5mm/min. 

 

          
Figure 9: Friction test devices created to simulate replication conditions [20, 21]. 

 

The process parameters varied during these trials together with additional results of 

friction testing trials presented by Kinsella et al [22] are summarised in Table 1. 

Ejection force is a function of: normal force (pressure/shrinkage), surface roughness, 



surface finishing direction, material (of both tool and component), temperature 

(mould temp at ejection and processing temperature) and the demoulding rate. 

 

 
Table 1: Friction process parameters varied during simulated replication trials. 

 

The test equipment described used material and surface roughness values typical of  

microstructured tools.  

 

 

5. Discussion 

By measuring the actual demoulding force for a series of injection moulded parts 

Sasaki et al [23] confirmed an optimum roughness for the core which minimizes the 

ejection force. This is consistent with experimental results by Grosch [24] who 

concluded that friction on smooth and rough surfaces is from different mechanisms. 

That on smooth surfaces is attributed to “adhesion” and that on rough surfaces to 

“deformation”.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Dominant mechanisms contributing to ejection force. 

 

In terms of the deformation component of friction, asperities or other surface 

roughness features physically slide across each other during the demoulding process. 



Any damage to the surface of the replicated part can be viscoelastic, or hysterectic, 

without any physical scratching, or it can be plastic, with resulting physical scratching 

or ploughing. Such damage to the replicated surface after demoulding has been 

reported by Sasaki et al [23].  

 

With the possible exception of thermodynamic/chemical or kinetic adhesion, which is 

unlikely to occur due to the timescale of a typical replication process such as injection 

moulding or hot embossing, it is difficult to isolate specific friction mechanisms 

during physical testing. However attempts have been made to reduce the impact of 

specific mechanisms during such experimentation. Examples include optimizing the 

choice of materials (both replication tool and replication material) and the selection of 

optimum process conditions (such as ensuring that the polymer is dried correctly and 

that the actual test is conducted in a controlled humidity environment). Specific 

coatings and lubricants have also been applied in order to isolate the effects of 

specific friction mechanisms. 

    

Another issue is that the tool surface condition may change during processing as 

noted by Packham who highlighted a number of problems associated with mould 

sticking and fouling [25]. Mould fouling relates to the build-up of deposits on the 

mould surface after a number of moulding cycles. The use of release agents can be 

suitable for larger components but may not be suitable for micro replication processes 

since replication dimensions may be affected. Yamamoto et al [26] proposed a 

chemically adsorbed fluorocarbon nano-release film on the mould surface to facilitate 

demoulding without any loss in mould precision. Moulding trials showed that initial 

resistance to ejection was high and then it dropped suddenly. The coating was shown 

to be effective up to 20k shots. A washing process was performed at 10k cycles when 

a contact angle measurement showed that the coating had lost its effectiveness. After 

the washing process the demoulding force was again found to increase before settling 

down to a lower level. These results suggest that mould fouling will actually tend to 

reduce the demoulding force. 

 

 
Figure 11: Demoulding force as a function of the number of moulding shots [26]. 

 

 

6. Conclusion 

An accurate coefficient of friction is critical to predict demoulding forces using 

existing models. Challenges associated with finding accurate values for these 



coefficients have been described. Blau has highlighted that the conditions used to 

obtain friction coefficients must be clearly stated and understood to ensure that they 

represent the planned application [15]. Due to the conditions to be found in a 

replication process this precludes the use of existing friction coefficient data, 

commonly presented by material suppliers and used by design engineers, in 

demoulding force models.  

 

To help in efforts to reduce the overall demoulding force it is desirable to be able to 

isolate the contribution of each friction mechanism to the overall demoulding force. 

To date successful attempts in this respect have not been reported in the context of 

quantifying demoulding force. Efforts towards the development of an improved 

demoulding force model which examines the fundamental contributions to 

demoulding friction are ongoing at the authors’ institutions. 
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