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Application of the Fractal Market Hypothesis for
Macroeconomic Time Series Analysis

Jonathan M Blackledge, Fellow, IET, Fellow, IoP, Fellow, IMA, Fellow, RSS

Abstract— This paper explores the conceptual background to
financial time series analysis and financial signal processing
in terms of the Efficient Market Hypothesis. By revisiting the
principal conventional approaches to market analysis and the
reasoning associated with them, we develop a Fractal Market
Hypothesis that is based on the application of non-stationary
fractional dynamics using an operator of the type

∂2

∂x2
− σq(t) ∂q(t)

∂tq(t)

where σ−1 is the fractional diffusivity and q is the Fourier
dimension which, for the topology considered, (i.e. the one-
dimensional case) is related to the Fractal Dimension1 < DF < 2
by q = 1−DF + 3/2.

We consider an approach that is based on the signalq(t) and
its interpretation, including its use as a macroeconomic volatility
index. In practice, this is based on the application of a moving
window data processor that utilises Orthogonal Linear Regres-
sion to compute q from the power spectrum of the windowed
data. This is applied to FTSE close-of-day data between 1980 and
2007 which reveals plausible correlations between the behaviour
of this market over the period considered and the amplitude
fluctuations of q(t) in terms of a macroeconomic model that is
compounded in the operator above.

Index Terms— Fractional Diffusion Equation, Time Series
Analysis, Macroeconomic Modelling, Volatility Index

I. I NTRODUCTION

T HE application of statistical techniques for analysing
financial time series is a well established practice. This

includes a wide range of stochastic modelling methods and
the use of certain partial differential equations for describ-
ing financial systems (e.g. the Black-Scholes equation for
financial derivatives). Attempts to develop stochastic models
for financial time series, which are essentially digital signals
composed of ‘tick data’1 [1], [2] can be traced back to the
early Twentieth Century when Louis Bachelier [3] proposed
that fluctuations in the prices of stocks and shares (which
appeared to be yesterday’s price plus some random change)
could be viewed in terms of random walks in which price
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1Data that provides traders with daily tick-by-tick data - time and sales - of
trade price, trade time, and volume traded, for example, at different sampling
rates as required.

changes were entirely independent of each other. Thus, one of
the simplest models for price variation is based on the sum of
independent random numbers. This is the basis for Brownian
motion (i.e. the random walk motion first observed by the
Scottish Botanist, Robert Brown [4], who, in 1827, noted that
pollen grains suspended in water appear to undergo continuous
jittery motion - a result of the random impacts on the pollen
grains by water molecules) in which the random numbers are
considered to conform to a normal distribution.

With macroeconomic financial systems, the magnitude of a
change in pricedu tends to depend on the priceu itself. We
therefore need to modify the Brownian random walk model
to include this observation. In this case, the logarithm of the
price change as a function of timet (which is also assumed
to conform to a normal distribution) is modelled according to
the equation

du

u
= αdv + βdt or

d

dt
lnu = β + α

dv

dt
(1)

where α is the volatility, dv is a sample from a normal
distribution andβ is a drift term which reflects the average
rate of growth of an asset2. Here, the relative price change of
an asset is equal to a random value plus an underlying trend
component - a ‘log-normal random walk’, e.g [5] - [8].

Brownian motion models have the following basic prop-
erties: (i) statistical stationarity of price increments in which
samples of Brownian motion taken over equal time increments
can be superimposed onto each other in a statistical sense;
(ii) scaling of price where samples of Brownian motion corre-
sponding to different time increments can be suitably re-scaled
such that they too, can be superimposed onto each other in a
statistical sense. Such models fail to predict extreme behaviour
in financial time series because of the intrinsic assumption
that such time series conform to a normal distribution, i.e.
Gaussian processes that are stationary in which the statistics -
the standard deviation, for example - do not change with time.

Random walk models, which underpin the so called Effi-
cient Market Hypothesis (EMH) [9]-[12], have been the basis
for financial time series analysis since the work of Bachelier
in the late Nineteenth Century. Although the Black-Scholes
equation [13], developed in the 1970s for valuing options, is
deterministic (one of the first financial models to achieve deter-
minism), it is still based on the EMH, i.e. stationary Gaussian
statistics. The EMH is based on the principle that the current
price of an asset fully reflects all available information relevant
to it and that new information is immediately incorporated
into the price. Thus, in an efficient market, the modelling

2Note that bothα andβ may very with timet
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of asset prices is concerned with modelling the arrival of
new information. New information must be independent and
random, otherwise it would have been anticipated and would
not be new. The arrival of new information can send ‘shocks’
through the market (depending on the significance of the
information) as people react to it and then to each other’s
reactions. The EMH assumes that there is a rational and
unique way to use the available information and that all agents
possess this knowledge. Further, the EMH assumes that this
‘chain reaction’ happens effectively instantaneously. These
assumptions are clearly questionable at any and all levels of
a complex financial system.

The EMH implies independence of price increments and is
typically characterised by a normal of Gaussian Probability
Density Function (PDF) which is chosen because most price
movements are presumed to be an aggregation of smaller
ones, the sums of independent random contributions having a
Gaussian PDF. However, it has long been known that financial
time series do not follow random walks. An illustration of
this is given in Figure 1 which shows a (discrete) financial
signalu(t) (data obtained from [14]), the log derivative of this
signald log u(t)/dt and a Gaussian distributed random signal.
The log derivative is considered in order to: (i) eliminate the
characteristic long term exponential growth of the signal; (ii)
obtain a signal on the daily price differences3 in accord with
the left hand side term of equation (1). Clearly, there is a
marked difference in the characteristics of a real financial
signal and a random Gaussian signal. This simple comparison
indicates a failure of the statistical independence assumption
which underpins the EMH.

The shortcomings of the EMH model (as illustrated in
Figure 1) include: failure of the independence and Gaussian
distribution of increments assumption, clustering, apparent
non-stationarity and failure to explain momentous financial
events such as ‘crashes’ leading to recession and, in some
extreme cases, depression. These limitations have prompted a
new class of methods for investigating time series obtained
from a range of disciplines. For example, Re-scaled Range
Analysis (RSRA), e.g. [15], [16], which is essentially based
on computing the Hurst exponent [17], is a useful tool for
revealing some well disguised properties of stochastic time se-
ries such as persistence (and anti-persistence) characterized by
non-periodic cycles. Non-periodic cycles correspond to trends
that persist for irregular periods but with a degree of statistical
regularity often associated with non-linear dynamical systems.
RSRA is particularly valuable because of its robustness in the
presence of noise. The principal assumption associated with
RSRA is concerned with the self-affine or fractal nature of the
statistical character of a time-series rather than the statistical
‘signature’ itself. Ralph Elliott first reported on the fractal
properties of financial data in 1938 (e.g. [18] and reference
therein). He was the first to observe that segments of financial
time series data of different sizes could be scaled in such a way
that they were statistically the same producing so called Elliot
waves. Since then, many different self-affine models for price
variation have been developed, often based on (dynamical)

3The gradient is computed using forward differencing.

Fig. 1. Financial time series for the FTSE value (close-of-day) from 02-04-
1984 to 12-12-2007 (top), the log derivative of the same time series (centre)
and a Gaussian distributed random signal (bottom).

Iterated Function Systems (IFS). These models can capture
many properties of a financial time series but are not based
on any underlying causal theory of the type attempted in this
paper.

A good stochastic financial model should ideally consider
all the observable behaviour of the financial system it is
attempting to model. It should therefore be able to provide
some predictions on the immediate future behaviour of the
system within an appropriate confidence level. Predicting the
markets has become (for obvious reasons) one of the most
important problems in financial engineering. Although, at least
in principle, it might be possible to model the behaviour of
each individual agent operating in a financial market, one
can never be sure of obtaining all the necessary information
required on the agents themselves and their modus operandi.
This principle plays an increasingly important role as the
scale of the financial system, for which a model is required,
increases. Thus, while quasi-deterministic models can be of
value in the understanding of micro-economic systems (with
known ‘operational conditions’), in an ever increasing global
economy (in which the operational conditions associated with
the fiscal policies of a given nation state are increasingly open),
we can take advantage of the scale of the system to describe
its behaviour in terms of functions of random variables.

II. M ARKET ANALYSIS

The stochastic nature of financial time series is well known
from the values of the stock market major indices such as
the FTSE (Financial Times Stock Exchange) in the UK, the
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Fig. 2. Evolution of the 1987, 1997 and 2007 financial crashes. Normalised
plots (i.e. where the data has been rescaled to values between 0 and 1
inclusively) of the daily FTSE value (close-of-day) for 02-04-1984 to 24-12-
1987 (top), 05-04-1994 to 24-12-1997 (centre) and 02-04-2004 to 24-09-2007
(bottom)

Dow Jones in the US which are frequently quoted. A principal
aim of investors is to attempt to obtain information that can
provide some confidence in the immediate future of the stock
markets often based on patterns of the past, patterns that are
ultimately based on the interplay between greed and fear. One
of the principle components of this aim is based on the obser-
vation that there are ‘waves within waves’ and ‘events within
events’ that appear to permeate financial signals when studied
with sufficient detail and imagination. It is these repeating
patterns that occupy both the financial investor and the systems
modeller alike and it is clear that although economies have
undergone many changes in the last one hundred years, the
dynamics of market data do not appear to change significantly
(ignoring scale). For example, Figure 2 shows the build up to
three different ‘crashes’, the one of 1987 and that of 1997
(both after approximately 900 days) and what may turn out
to be a crash of 2007 (at the time of writing this paper).
The similarity in behaviour of these signals is remarkable and
is indicative of the quest to understand economic signals in
terms of some universal phenomenon from which appropriate
(macro) economic models can be generated. In an efficient
market, only the revelation of some dramatic information can
cause a crash, yet post-mortem analysis of crashes typically
fail to (convincingly) tell us what this information must have
been.

In modern economies, the distribution of stock returns
and anomalies like market crashes emerge as a result of
considerable complex interaction. In the analysis of financial
time series, it is inevitable that assumptions need to be made
to make the derivation of a model possible. This is the most

vulnerable stage of the process. Over simplifying assumptions
lead to unrealistic models. There are two main approaches
to financial modelling: The first approach is to look at the
statistics of market data and to derive a model based on an
educated guess of the ‘mechanics’ of the market. The model
can then be tested using real data. The idea is that this process
of trial and error helps to develop the right theory of market
dynamics. The alternative is to ‘reduce’ the problem and try to
formulate a microscopic model such that the desired behaviour
‘emerges’, again, by guessing agents’ strategic rules. This
offers a natural framework for interpretation; the problem is
that this knowledge may not help to make statements about the
future unless some methods for describing the behaviour can
be derived from it. Although individual elements of a system
cannot be modelled with any certainty, global behaviour can
sometimes be modelled in a statistical sense provided the
system is complex enough in terms of its network of inter-
connection and interacting components.

In complex systems, the elements adapt to the aggregate
pattern they co-create. As the components react, the aggregate
changes, as the aggregate changes the components react anew.
Barring the reaching of some asymptotic state or equilibrium,
complex systems keep evolving, producing seemingly stochas-
tic or chaotic behaviour. Such systems arise naturally in the
economy. Economic agents, be they banks, firms, or investors,
continually adjust their market strategies to the macroscopic
economy which their collective market strategies create. It
is important to appreciate that there is an added layer of
complexity within the economic community: Unlike many
physical systems, economic elements (human agents) react
with strategy and foresight by considering the implications
of their actions (some of the time!). Although we can not
be certain whether this fact changes the resulting behaviour,
we can be sure that it introduces feedback which is the
very essence of both complex systems and chaotic dynamical
systems that produce fractal structures.

The link between dynamical systems, chaos and the econ-
omy is an important one because it is dynamical systems that
illustrate that local randomness and global determinism can
co-exist. Global determinism can be considered, at least in
a qualitative sense, in terms of broad social issues and the
reaction of distinct groups to changing social attitudes, partic-
ularly in economies that have traditionally been enhanced by
an open and often pro-active policy towards the immigration
of peoples from diverse cultural backgrounds. For example, in
1656, Cromwell permitted an open door policy to immigration
from continental Europe, partly in an attempt to enhance the
economy of England that had been severely compromised by
the English Civil wars of 1642-46 and 1648-49 [19]. The long
term effect of this was to provide a new financial infrastructure
that laid the foundations for future economic development.
It is arguable that Cromwell’s policy is the principal reason
why the ‘English revolution’ of the Eighteenth Century was
primarily an industrial one. Issues concerning the current and
future economic welfare of England may then be appreciated
in terms of the attitudes and values associated with new
waves of immigrants and the policy of appeasement adopted
at government level.
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Complex systems can be split into two categories: equi-
librium and non-equilibrium. Equilibrium complex systems,
undergoing a phase transition, can lead to ‘critical states’ that
often exhibit random fractal structures in which the statistics of
the ‘field’ are scale invariant. For example, when ferromagnets
are heated, as the temperature rises, the spins of the electrons
which contribute to the magnetic field gain energy and begin
to change in direction. At some critical temperature, the spins
form a random vector field with a zero mean and a phase
transition occurs in which the magnetic field averages to zero.
But the field is not just random, it is a self-affine random field
whose statistical distribution is the same at different scales,
irrespective of the characteristics of the distribution. Non-
equilibrium complex systems or ‘driven’ systems give rise to
‘self organised critical states’, an example is the growing of
sand piles. If sand is continuously supplied from above, the
sand starts to pile up. Eventually, little avalanches will occur
as the sand pile inevitably spreads outwards under the force of
gravity. The temporal and spatial statistics of these avalanches
are scale invariant.

Financial markets can be considered to be non-equilibrium
systems because they are constantly driven by transactions that
occur as the result of new fundamental information about firms
and businesses. They are complex systems because the market
also responds to itself, often in a highly non-linear fashion, and
would carry on doing so (at least for some time) in the absence
of new information. The ‘price change field’ is highly non-
linear and very sensitive to exogenous shocks and it is probable
that all shocks have a long term effect. Market transactions
generally occur globally at the rate of hundreds of thousands
per second. It is the frequency and nature of these transactions
that dictate stock market indices, just as it is the frequency and
nature of the sand particles that dictates the statistics of the
avalanches in a sand pile. These are all examples of random
scaling fractals [20]-[28].

III. D OES A MACROECONOMY HAVE MEMORY?

When faced with a complex process of unknown origin, it
is usual to select an independent process such as Brownian
motion as a working hypothesis where the statistics and prob-
abilities can be estimated with great accuracy. However, using
traditional statistics to model the markets assumes that they are
games of chance. For this reason, investment in securities is
often equated with gambling. In most games of chance, many
degrees of freedom are employed to ensure that outcomes are
random. In the case of a simple dice, a coin or roulette wheel,
for example, no matter how hard you may try, it is physically
impossible to master your roll or throw such that you can
control outcomes. There are too many non-repeatable elements
(speeds, angles and so on) and non-linearly compounding
errors involved. Although these systems have a limited number
of degrees of freedom, each outcome is independent of the
previous one. However, there are some games of chance that
involve memory. In Blackjack, for example, two cards are dealt
to each player and the object is to get as close as possible to
21 by twisting (taking another card) or sticking. In a ‘bust’
(over 21), the player loses; the winner is the player that stays

closest to 21. Here, memory is introduced because the cards
are not replaced once they are taken. By keeping track of
the cards used, one can assess the shifting probabilities as
play progresses. This game illustrates that not all gambling
is governed by Gaussian statistics. There are processes that
have long-term memory, even though they are probabilistic
in the short term. This leads directly to the question, does
the economy have memory? A system has memory if what
happens today will affect what happens in the future.

Memory can be tested by observing correlations in the
data. If the system today has no affect on the system at any
future time, then the data produced by the system will be
independently distributed and there will be no correlations. A
function that characterises the expected correlations between
different time periods of a financial signalu(t) is the Auto-
Correlation Function (ACF) defined by

A(t) = u(t)� u(t) =
∫ ∞

−∞
u(τ)u(τ − t)dτ.

where� denotes that the correlation operation. This function
can be computed either directly (evaluation of the above
integral) or via application of the power spectrum using the
correlation theorem

u(t)� u(t) ⇐⇒| U(ω) |2

where⇐⇒ denotes transformation from real spacet to Fourier
spaceω (the angular frequency), i.e.

U(ω) = F [u(t)] =

∞∫
−∞

u(t) exp(−iωt)dt

whereF denotes the Fourier transform operator. The power
spectrum| U(ω) |2 characterises the amplitude distribution of
the correlation function from which we can estimate the time
span of memory effects. This also offers a convenient way to
calculate the correlation function (by taking the inverse Fourier
transform of | U(ω) |2). If the power spectrum has more
power at low frequencies, then there are long time correlations
and therefore long-term memory effects. Inversely, if there is
greater power at the high frequency end of the spectrum, then
there are short-term time correlations and evidence of short-
term memory. White noise, which characterises a time series
with no correlations over any scale, has a uniformly distributed
power spectrum.

Since prices movements themselves are a non-stationary
process, there is no ACF as such. However, if we calculate
the ACF of the price incrementsdu/dt, then we can observe
how much of what happens today is correlated with what
happens in the future. According to the EMH, the economy
has no memory and there will therefore be no correlations,
except for today with itself. We should therefore expect the
power spectrum to be effectively constant and the ACF to be
a delta function. The power spectra and the ACFs of log price
changesd log u/dt and their absolute value| d log u/dt | for
the FTSE 100 index (daily close) from 02-04-1984 to 24-09-
2007 is given in Figure 3. The power spectra of the data is
not constant with rogue spikes (or groups of spikes) at the
intermediate and high frequency portions of the spectrum. For
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Fig. 3. Log-power spectra and ACFs of log price changes and absolute
log price changes for FTSE 100 index (daily close) from 02-04-1984 to 24-
09-2007. Top-left: log price changes; top-right: absolute value of log price
changes; middle: log power spectra; bottom: ACFs.

the absolute log price increments, there is evidence of a power
law at the low frequency end, indicating that there is additional
correlation in the signs of the data.

The ACF of the log price changes is relatively featureless,
indicating that the excess of low frequency power within the
signal has a fairly subtle effect on the correlation function.
However, the ACF of the absolute log price changes contains
a number of interesting features. It shows that there are
a large number of short range correlations followed by an
irregular decline up to approximately 1500 days after which
the correlations start to develop again, peaking at about 2225
days. The system governing the magnitudes of the log price
movements clearly has a better long-term memory than it
should. The data used in this analysis contains 5932 daily price
movements and it is therefore improbable that these results are
coincidental and correlations of this, or any similar type, what
ever the time scale, effectively invalidates the independence
assumption of the EMH.

IV. STOCHASTIC MODELLING OF MACROECONOMICDATA

Developing mathematical models to simulate stochastic
processes has an important role in financial analysis and
information systems in general where it should be noted that
information systems are now one of the most important aspects
in terms of regulating financial systems, e.g. [29]-[32]. A good
stochastic model is one that accurately predicts the statistics
we observe in reality, and one that is based upon some well
defined rationale. Thus, the model should not only describe
the data, but also help to explain and understand the system.

There are two principal criteria used to define the charac-
teristics of a stochastic field: (i) The PDF or the Characteristic

Function (i.e. the Fourier transform of the PDF); the Power
Spectral Density Function (PSDF). The PSDF is the function
that describes the envelope or shape of the power spectrum of
a signal. In this sense, the PSDF is a measure of the field
correlations. The PDF and the PSDF are two of the most
fundamental properties of any stochastic field and various
terms are used to convey these properties. For example, the
term ‘zero-mean white Gaussian noise’ refers to a stochastic
field characterized by a PSDF that is effectively constant over
all frequencies (hence the term ‘white’ as in ‘white light’) and
has a PDF with a Gaussian profile whose mean is zero.

Stochastic fields can of course be characterized using trans-
forms other than the Fourier transform (from which the PSDF
is obtained) but the conventional PDF-PSDF approach serves
many purposes in stochastic systems theory. However, in
general, there is no general connectivity between the PSDF
and the PDF either in terms of theoretical prediction and/or
experimental determination. It is not generally possible to
compute the PSDF of a stochastic field from knowledge of
the PDF or the PDF from the PSDF. Hence, in general, the
PDF and PSDF are fundamental but non-related properties
of a stochastic field. However, for some specific statistical
processes, relationships between the PDF and PSDF can
be found, for example, between Gaussian and non-Gaussian
fractal processes [33] and for differentiable Gaussian processes
[34].

There are two conventional approaches to simulating a
stochastic field. The first of these is based on predicting the
PDF (or the Characteristic Function) theoretically (if possible).
A pseudo random number generator is then designed whose
output provides a discrete stochastic field that is characteristic
of the predicted PDF. The second approach is based on
considering the PSDF of a field which, like the PDF, is ideally
derived theoretically. The stochastic field is then typically
simulated by filtering white noise. A ‘good’ stochastic model
is one that accurately predicts both the PDF and the PSDF
of the data. It should take into account the fact that, in
general, stochastic processes are non-stationary. In addition, it
should, if appropriate, model rare but extreme events in which
significant deviations from the norm occur.

New market phenomenon result from either a strong the-
oretical reasoning or from compelling experimental evidence
or both. In econometrics, the processes that create time series
such as the FTSE have many component parts and the inter-
action of those components is so complex that a deterministic
description is simply not possible. As in all complex systems
theory, we are usually required to restrict the problem to
modelling the statistics of the data rather than the data itself,
i.e. to develop stochastic models. When creating models of
complex systems, there is a trade-off between simplifying
and deriving the statistics we want to compare with reality
and simulating the behaviour through an emergent statistical
behaviour. Stochastic simulation allows us to investigate the
effect of various traders’ behavioural rules on the global
statistics of the market, an approach that provides for a natural
interpretation and an understanding of how the amalgamation
of certain concepts leads to these statistics.

One cause of correlations in market price changes (and
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volatility) is mimetic behaviour, known as herding. In general,
market crashes happen when large numbers of agents place sell
orders simultaneously creating an imbalance to the extent that
market makers are unable to absorb the other side without
lowering prices substantially. Most of these agents do not
communicate with each other, nor do they take orders from
a leader. In fact, most of the time they are in disagreement,
and submit roughly the same amount of buy and sell orders.
This is a healthy non-crash situation; it is a diffusive (random-
walk) process which underlies the EMH and financial portfolio
rationalization.

One explanation for crashes involves a replacement for the
EMH by the Fractal Market Hypothesis (FMH) which is the
basis of the model considered in this paper. The FMH proposes
the following: (i) The market is stable when it consists of
investors covering a large number of investment horizons
which ensures that there is ample liquidity for traders; (ii)
information is more related to market sentiment and technical
factors in the short term than in the long term - as investment
horizons increase and longer term fundamental information
dominates; (iii) if an event occurs that puts the validity
of fundamental information in question, long-term investors
either withdraw completely or invest on shorter terms (i.e.
when the overall investment horizon of the market shrinks
to a uniform level, the market becomes unstable); (iv) prices
reflect a combination of short-term technical and long-term
fundamental valuation and thus, short-term price movements
are likely to be more volatile than long-term trades - they are
more likely to be the result of crowd behaviour; (v) if a security
has no tie to the economic cycle, then there will be no long-
term trend and short-term technical information will dominate.
Unlike the EMH, the FMH states that information is valued
according to the investment horizon of the investor. Because
the different investment horizons value information differently,
the diffusion of information will also be uneven. Unlike most
complex physical systems, the agents of the economy, and
perhaps to some extent the economy itself, have an extra
ingredient, an extra degree of complexity. This ingredient is
consciousness.

V. RANDOM WALK PROCESSES

The purpose of revisiting random walk processes is that
it provides a useful conceptual reference to the model that is
introduced later on in this paper and in particular, appreciation
of the use of the fractional diffusion equation for describing
self-affine stochastic fields, an equation that arises through the
unification of coherent and incoherent random walks. We shall
consider a random walk in the plane where the amplitude
remains constant but where the phase changes, first by a
constant factor and then by a random value between0 and
2π.

A. Coherent (Constant) Phase Walks

Consider a walk in the (real) plane where the length from
one step to another is constant - the amplitudea - and where
the direction that is taken after each step is the same. In this
simple case, the ‘walker’ continues in a straight line and after

n steps the total length of the path the walker has taken will
be justan. We define this value as the resultant amplitudeA
- the total length of the walk - which will change only by
account of the number of steps taken. Thus,

A = an.

If each step takes a set period of timet to complete, then it
is clear that

A(t) = at.

This scenario is limited by the fact that we are assuming that
each step is of precisely the same length and takes precisely the
same period of time to accomplish. In general, we consider
a to be the mean value of all the step lengths andt to be
the cumulative time associated with the average time taken to
perform all steps. A walk of this type has a coherence from
one step or cluster of steps to the next, is entirely predictable
and correlated in time.

If the same walk takes place in the complex plane then the
phaseθ from one step to the next is the same. Thus, the result
is given by

A exp(iθ) =
∑

n

a exp(iθ) = na exp(iθ).

The resultant amplitude is given byna as before and the total
phase value isθ. We can also define the intensity which is
given by

I =| A exp(iθ) |2= A2

Thus, as a function of time, the intensity associated with this
coherent phase walk is given by

I(t) = a2t2.

Suppose we make the walk slightly more complicated and
consider the case where the phase increases by a small constant
factor of θ at each step. Aftern steps, the result will be given
by the sum of all the steps taken, i.e.

A exp(iΘ) =
∑

n

a exp(inθ)

= a[1 + exp(iθ) + exp(2iθ) + ... + exp[i(n− 1)θ]

= a
[1− exp(inθ)]
[1− exp(iθ)]

= a
exp(inθ/2)[exp(−inθ/2)− exp(inθ/2)]

exp(iθ/2)[exp(−iθ/2)− exp(iθ/2)]

= a exp[i(n− 1)θ/2)]
sin(nθ/2)
sin θ/2

.

Now, after many steps, whenn is large,

α = (n− 1)θ/2 ' nθ/2

and when the phase changeθ is small,

sin(θ/2) ' θ

2
' α

n
and we obtain the result

A exp(iΘ) = na exp[i((n− 1)/2)θ]sincα, sincα =
sinα

α
.

For very small changes in the phaseθ << 1, sincα ' 1 and
the resultant amplitudeA is, as before, given byan or as a
function of time, byat.
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B. Incoherent (Random) Phase Walk

Incoherent or random phase walks are the basis of modelling
many kinds of statistical fluctuations. It is also the principle
physical model associated with the stochastic behaviour of
an ensemble of particles that collectively exhibit the process
of diffusion. The first quantitative description of Brownian
motion was undertaken by Albert Einstein and published in
1905 [35]. The basic idea is to consider a random walk in
which the mean value of each step isa but where there is no
correlation in the direction of the walk from one step to the
next. That is, the direction taken by the walker from one step
to next can be in any direction described by an angle between
0 and 360 degrees or0 and 2π radians - for a walk in the
plane. The angle that is taken at each step is entirely random
and all angles are taken to be equally likely. Thus, the PDF
of angles between0 and2π is given by

Pr[θ] =

{
1
2π , 0 ≤ θ ≤ 2π;
0, otherwise.

If we consider the random walk to take place in the complex
plane, then aftern steps, the position of the walker will be
determined by a resultant amplitudeA and phase angleΘ
given by the sum of all the steps taken, i.e.

A exp(iΘ) = a exp(iθ1) + a exp(iθ2) + ... + a exp(iθn)

= a

n∑
m=1

exp(iθm).

The problem is to obtain a scaling relationship betweenA
andn. Clearly we should not expectA to be proportional to
the number of stepsn as is the case with a coherent walk.
The trick to finding this relationship is to analyse the result
of taking the square modulus ofA exp(iΘ). This provides an
expression for the intensityI given by

I = a2

∣∣∣∣∣
n∑

m=1

exp(iθm)

∣∣∣∣∣
2

= a2
n∑

m=1

exp(iθm)
n∑

m=1

exp(−iθm)

= a2

n +
n∑

j=1,j 6=k

exp(iθj)
n∑

k=1

exp(−iθk)

 .

Now, in a typical term

exp(iθj) exp(−iθk) = cos(θj − θk) + i sin(θj − θk)

of the double summation, the functionscos(θj − θk) and
sin(θj − θk) have random values between±1. Consequently,
as n becomes larger and larger, the double sum will reduces
to zero since more and more of these terms cancel each other
out. This insight is the basis for stating that forn >> 1

I = a2n

and the resulting amplitude is therefore given by

A = a
√

n.

In this case,A is proportional to the square root of the number
of steps taken and if each step is taken over a mean time
period, then we obtain the result

A(t) = a
√

t.

With a coherent walk we can state that the resulting amplitude
after a time t will be at. This is a deterministic result.
However, with an incoherent random walk, the interpretation
of the above result is thata

√
t is the amplitude associated with

the most likely position that the random walker will be after
time t. If we imagine many random walkers, each starting out
on their ‘journey’ from the origin of the (complex) plane at
t = 0, record the distances from the origin of this plane after a
set period of timet, then the PDF ofA will have a maximum
value - the ‘mode’ of the distribution - that occurs ata

√
t. In

the case of a perfectly coherent walk, the PDF will consist of
a unit spike that occurs atat.

Figure 4 shows coherent and a incoherent phase walks in the
plane. Each position of the walk(xj , yj), j = 1, 2, 3, ..., N
has been computed using (fora = 1)

xj =
j∑

i=1

cos(θi)

yj =
j∑

i=1

sin(θi)

where θi ∈ [0, 2π] is uniformly distributed and computed
using the standard linear congruential pseudo random number
generator

xi+1 = aximodP, i = 1, 2, ..., N (2)

with a = 77 andP = 231 − 1 and an arbitrary value ofx0 -
the ‘seed’. For the coherent phase walk

θi =
2π

16
xi

‖x‖∞
which limits the angle to a small range between 0 andπ/8
radians4. For the incoherent phase walk, the range of values
is between 0 and2π radians, i.e.

θi = 2π
xi

‖x‖∞

VI. PHYSICAL INTERPRETATION

In the (classical) kinetic theory of matter (including gases,
liquids, plasmas and some solids), we considera to be the
average distance a particle travels before it randomly collides
and scatters from another particle. The scattering process is
taken to be entirely elastic, i.e. the interaction does not affect
the particle in any way other than to change the direction in
which it travels. Thus,a represents themean free pathof a
particle. The mean free path is a measure how far a particle can
travel before scattering with another particle which in turn, is
related to the number of particle per unit volume - the density

4‖x‖∞ denote the uniform norm, equivalent to the maximum value of the
array vectorx.
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Fig. 4. Examples of a coherent (top) and incoherent (bottom) random walk
in the plane forN = 100.

of a gas for example. If we imagine a particle ‘diffusing’
through an ensemble of particles, then the mean free path
is a measure of the ‘diffusivity’ of the medium in which
the process of diffusion takes place. This is a feature of all
classical diffusion processes which can be formulated in terms
of the diffusion equation with diffusivityD. The dimensions of
diffusivity are length2/time and may be interpreted in terms
of the characteristic distance of a random walk process which
varies with the square root of time.

If we consider a wavefront travelling through space and
scattering from a site that changes the direction of propagation,
then the mean free path can be taken to be the average number
of wavelengths taken by the wavefront to propagate from one
interaction to another. After scattering from many sites, the
wavefront can be considered to have diffused through the
‘diffuser’. Here, the mean free path is a measure of the density
of scattering sites, which in turn, is a measure of the diffusivity
of the material - an optical diffuser, for example.

We can use the random walk model associated with a
wavefield to interpret the flow of information through a
complex network of ‘sites’ that are responsible for passing
on the information from one site to the next. If a packet of
information (e.g. a stream of bits of arbitrary length) travels
directly from A to B, then, in terms of the random walk models
discussed above, the model associated with this information
exchange is ‘propagative’; it is a coherent process which is
correlated in time and its principal physical characteristic is
determined by the speed at which the information flows from
A to B. On the other hand, suppose that this information packet
is transferred from A to B via information interchange sites C,
D,...,Z,... In this case the flow of information is diffusive and is
characterised by the diffusivity of the information interchange

‘system’. To a first order approximation, the diffusivity will
depend on the number of sites that are required to manage the
reception and transmission of the information packet. As the
number of sites decreases the flow of information becomes
more propagative and less diffusive. Thus, we can consider
the Internet, for example (albeit a good one) to be a source
of information diffusion, not in terms of the diffusion of
the information it coveys but in terms of the way in which
information packets ‘walk through’ the network. Further, we
can think of the internet itself as being an active medium
for the propagation of financial information from one site to
another.

A. The Classical Diffusion Equation

The homogeneous diffusion equation is given by (for the
one-dimension casex) [36](

∂2

∂x2
− σ

∂

∂t

)
u(x, t) = 0

for a diffusivity D = σ−1. The fieldu(x, t) represents a mea-
surable quantity whose space-time dependence is determined
by the random walk of a large ensemble of particles or a
multiple scattered wavefield or information flowing through a
complex network. We consider an initial value for this field
denoted byu0 ≡ u(x, 0) = u(x, t) at t = 0. For example,u
could be the temperature of a material that starts ‘radiating’
heat at timet = 0 from a point in spacex due to a mass
of thermally energised particles, each of which undertakes
a random walk from the source of heat in which the most
likely position of any particle after a timet is proportional to√

t. In optical diffusion, for example,u denotes the intensity
of light. The light wavefield is taken to be composed of an
ensemble of wavefronts or rays, each of which undergoes
multiple scattering as it propagates through the diffuser. For a
single wavefront element, multiple scattering is equivalent to
a random walk of that element.

The relationship between a random walk model and the
diffusion equation can also be attributed to Einstein [35]
who derived the diffusion equation using a random particle
model system assuming that the movements of the particles
are independent of the movements of all other particles and
that the motion of a single particle at some interval of time is
independent of its motion at all other times. The derivation is
as follows: Letτ be a small interval of time in which a particle
moves some distance betweenλ andλ+dλ with a probability
P (λ) whereτ is long enough to assume that the movements
of the particle in two separate periods ofτ are independent. If
n is the total number of particles and we assume thatP (λ) is
constant betweenλ andλ + dλ, then the number of particles
which will travel a distance betweenλ and λ + dλ in τ is
given by

dn = nP (λ)dλ.

If u(x, t) is the concentration (number of particles per unit
volume) then the concentration at timet + τ is described by
the integral of the concentration of particles which have been
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displaced byλ in time τ , as described by the equation above,
over all possibleλ, i.e.

u(x, t + τ) =

∞∫
−∞

u(x + λ, t)P (λ)dλ.

Since,τ is assumed to be small, we can approximateu(x, t+τ)
using the Taylor series and write

u(x, t + τ) ' u(x, t) + τ
∂

∂t
u(x, t).

Similarly, using a Taylor series expansion ofu(x + λ, t), we
have

u(x + λ, t) ' u(x, t) + λ
∂

∂x
u(x, t) +

λ2

2!
∂2

∂x2
u(x, t)

where the higher order terms are neglected under the assump-
tion that if τ is small, then the distance travelled,λ, must also
be small. We can then write

u(x, t) + τ
∂

∂t
u(x, t) = u(x, t)

∞∫
−∞

P (λ)dλ

+
∂

∂x
u(x, t)

∞∫
−∞

λP (λ)dλ +
1
2

∂2

∂x2
u(x, t)

∞∫
−∞

λ2P (λ)dλ.

For isotropic diffusion,P (λ) = P (−λ) and soP is an even
function with usual normalization condition

∞∫
−∞

P (λ)dλ = 1.

As λ is an odd function, the productλP (λ) is also an odd
function which, if integrated over all values ofλ, equates to
zero. Thus we can write

u(x, t) + τ
∂

∂t
u(x, t) = u(x, t) +

1
2

∂2

∂x2
u(x, t)

∞∫
−∞

λ2P (λ)dλ

so that

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t)

∞∫
−∞

λ2

2τ
P (λ)dλ.

Finally, defining the diffusivity as

D =

∞∫
−∞

λ2

2τ
P (λ)dλ

we obtain the diffusion equation

∂

∂t
u(x, t) = D

∂2

∂x2
u(x, t).

B. The Classical Wave Equation

The wave equation (homogeneous form) is given by (for
the one-dimension case) [36](

∂2

∂x2
− 1

c2

∂2

∂t2

)
u(x, t) = 0

wherec is the wave speed andu denotes the amplitude of the
wavefield. A possible solution to this equation is

u(x, t) = p(x− ct)

which describes a wave with distributionp moving alongx at
velocity c. For the initial value problem where

u(x, 0) = v(x),
∂

∂t
u(x, 0) = w(x)

the (d’Alembert) general solution is given by [36]

u(x, t) =
1
2
[v(x− ct) + v(x + ct)] +

1
2c

x+ct∫
x−ct

w(ξ)dξ.

This solution is of limited use in that the range ofx is
unbounded and only applies to the case on an ‘infinite string’.
For the case whenw = 0, the solution can be taken to describe
two identical waves with amplitude distributionv(x) travelling
away from each other. Neither wave is taken to undergo any
interaction as it travels along a straight path and thus, after
time t the distance travelled will bect. This is analogous
to a walker undertaking a perfectly coherent walk with an
average step length ofc and after a period of timet reaching
a positionct. The point here, is that we can relate the diffusion
equation and the wave equation to two types of processes. The
diffusion equation describes a field generated by incoherent
random processes with no time correlations whereas the wave
equation describes a field generated by coherent processes that
are correlated in time. One of the aims of this paper is to
formulate an equation that models the intermediate case - the
fractional diffusion equation - in which random walk process
have a directional bias.

VII. H URST PROCESSES

For a walk in the plane,A(t) = at for a coherent walk and
A(t) = a

√
t for an incoherent walk. However, what would

be the result if the walk was neither coherent or incoherent
but partial coherent/incoherent? In other words, suppose the
random walk exhibited a bias with regard to the distribution
of angles used to change the direction. What would be the
effect on the scaling law

√
t? Intuitively, one expects that

as the distribution of angles reduces, the corresponding walk
becomes more and more coherent, exhibiting longer and longer
time correlations until the process conforms to a fully coherent
walk. A simulation of such an effect is given in Figure 5 which
shows a random walk in the (real) plane as the (uniform)
distribution of angles decreases. The walk becomes less and
less random as the width of the distribution is reduced.

The equivalent effect for a random phase walk in three-
dimensions is given in Figure 6. Each position of the walk

(xj , yj , zj), j = 1, 2, 3, ..., N
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has been computed using

xj =
j∑

i=1

cos(θi) cos(φi)

yj =
j∑

i=1

sin(θi) cos(φi)

zj =
j∑

i=1

sin(φi)

for N = 500. The uniform random number generator used
to computeθi and φi is the same - equation (2) - but with
different seeds. Conceptually, scaling models associated with
the intermediate case(s) should be based on a generalisation of
the scaling laws

√
t andt to the formtH where0.5 ≤ H < 1.

This reasoning is the basis for generalising the random walk
processes considered so far, the exponentH being known as
the Hurst exponent or ‘dimension’.

Fig. 5. Random phase walks in the plane for a uniform distribution of angles
θi ∈ [0, 2π] (top left), θi ∈ [0, 1.9π] (top right),θi ∈ [0, 1.8π] (bottom left)
andθi ∈ [0, 1.2π] (bottom right).

H E Hurst (1900-1978) was an English civil engineer who
designed dams and worked on the Nile river dam projects in
the 1920s and 1930s. He studied the Nile so extensively that
some Egyptians reportedly nicknamed him ‘the father of the
Nile’. The Nile river posed an interesting problem for Hurst
as a hydrologist. When designing a dam, hydrologists need
to estimate the necessary storage capacity of the resulting
reservoir. An influx of water occurs through various natural
sources (rainfall, river overflows etc.) and a regulated amount
needs to be released for primarily agricultural purposes, for
example, the storage capacity of a reservoir being based on
the net water flow. Hydrologists usually begin by assuming
that the water influx is random, a perfectly reasonable as-
sumption when dealing with a complex ecosystem. Hurst,

Fig. 6. Three dimensional random phase walks for a uniform distribution of
angles(θi, φi) ∈ ([0, 2π], [0, 2π]) (top left),(θi, φi) ∈ ([0, 1.6π], [0, 1.6π])
(top right), (θi, φi) ∈ ([0, 1.3π], [0, 1.3π]) (bottom left) and(θi, φi) ∈
([0, π], [0, π]) (bottom right).

however, had studied the 847-year record that the Egyptians
had kept of the Nile river overflows, from 622 to 1469. He
noticed that large overflows tended to be followed by large
overflows until abruptly, the system would then change to low
overflows, which also tended to be followed by low overflows.
There appeared to be cycles, but with no predictable period.
Standard statistical analysis of the day revealed no significant
correlations between observations, so Hurst, who was aware
of Einstein’s work on Brownian motion, developed his own
methodology [37] lead to the scaling lawtH . This scaling law
makes no prior assumptions about any underlying distribu-
tions. It simply tells us how the system is scaling with respect
to time. So how do we interpret the Hurst exponent? We know
that H = 0.5 is consistent with an independently distributed
system. The range0.5 < H ≤ 1, implies a persistent time
series, and a persistent time series is characterized by positive
correlations. Theoretically, what happens today will ultimately
have a lasting effect on the future. The range0 < H ≤ 0.5
indicates anti-persistence which means that the time series
covers less ground than a random process. In other words,
there are negative correlations. For a system to cover less
distance, it must reverse itself more often than a random
process.

VIII. L ÉVY PROCESSES

The generalisation of Einstein’s equationA(t) = a
√

t by
Hurst to the formA(t) = atH , 0 < H ≤ 1 was necessary in
order for Hurst to analyse the apparent random behaviour of
the annual rise and fall of the Nile river for which Einstein’s
model was inadequate. In considering this generalisation,
Hurst paved the way for an appreciation that most natural
stochastic phenomena which, at first site, appear random, have
certain trends that can be identified over a given period of
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time. In other words, many natural random patterns have a
bias to them that leads to time correlations in their stochastic
behaviour, a behaviour that is not an inherent characteristic of
a random walk model and fully diffusive processes in general.
This aspect of stochastic field theory was taken up in the late
1930s by the French mathematician Paul Lévy (1886-1971)
[38].

Lévy processes are random walks whose distribution has
infinite moments. The statistics of (conventional) physical
systems are usually concerned with stochastic fields that have
PDFs where (at least) the first two moments (the mean
and variance) are well defined and finite. Lévy statistics is
concerned with statistical systems where all the moments
(starting with the mean) are infinite.

Many distributions exist where the mean and variance are
finite but are not representative of the process, e.g. the tail of
the distribution is significant, where rare but extreme events
occur. These distributions include Lévy distributions. Ĺevy’s
original approach5 to deriving such distributions is based on
the following question: Under what circumstances does the
distribution associated with a random walk of a few steps
look the same as the distribution after many steps (except
for scaling)? This question is effectively the same as asking
under what circumstances do we obtain a random walk that
is statistically self-affine. The characteristic function (i.e. the
Fourier transform)P (k) of such a distributionp(x) was first
shown by Ĺevy to be given by (for symmetric distributions
only)

P (k) = exp(−a | k |q), 0 < q ≤ 2

wherea is a (positive) constant. Ifq = 0,

p(x) =
1
2π

∞∫
−∞

exp(−a) exp(ikx)dk = exp(−a)δ(x)

and the distribution is concentrated solely at the origin as
described by the delta functionδ(x). Whenq = 1, the Cauchy
distribution

p(x) =
1
2π

∞∫
−∞

exp(−a | k |) exp(ikx)dk =
1
π

a

a2 + x2

is obtained and whenq = 2, p(x) is characterized by the
Gaussian distribution

p(x) =
1
2π

∞∫
−∞

exp(−ak2) exp(ikx)dk

=
1
2π

√
π

a
exp[−x2/(4a)],

whose first and second moments are finite. The Cauchy distri-
bution has a relatively long tail compared with the Gaussian
distribution and a stochastic field described by a Cauchy
distribution is likely to have more extreme variations when
compared to a Gaussian distributed field. For values ofq

5P Lévy was the research supervisor of B Mandelbrot, the ‘inventor’ of
‘fractal geometry’.

between 0 and 2, Ĺevy’s characteristic function corresponds
to a PDF of the form

p(x) ∼ 1
x1+q

, x →∞.

This can be shown as follows6: For 0 < q < 1 and since the
characteristic function is symmetric, we have

p(x) = Re[f(x)]

where

f(x) =
1
π

∞∫
0

eikxe−kq

dk

=
1
π

[
1
ix

eikxe−kq

]∞
k=0

− 1
ix

∞∫
0

eikx(−qkq−1e−kq

)dk


=

q

2πix

∞∫
−∞

dkH(k)kq−1e−kq

eikx, x →∞

where

H(k) =

{
1, k > 0
0, k < 0

For 0 < q < 1, f(x) is singular atk = 0 and the greatest
contribution to this integral is the inverse Fourier transform of
H(k)kq−1. Noting that [27]

F−1

[
1

(ik)q

]
∼ 1

x1−q

whereF−1 denotes the inverse Fourier transform, and that

H(k) ⇐⇒ δ(x) +
i

πx
∼ δ(x), x →∞

then, using the convolution theorem, we have

f(x) ∼ q

iπx

i1−q

xq

and thus

p(x) ∼ 1
x1+q

, x →∞

For 1 < q < 2, we can integrate by parts twice to obtain

f(x) =
q

iπx

∞∫
0

dkkq−1e−kq

eikx

=
q

iπx

[
1
ix

kq−1e−kq

eikx

]∞
k=0

+
q

πx2

∞∫
0

dkeikx[(q − 1)kq−2e−kq

− q(kq−1)2e−kq

]

=
q

πx2

∞∫
0

dkeikx[(q−1)kq−2e−kq

−q(kq−1)2e−kq

], x →∞.

6The author acknowledges Dr K I Hopcraft, School of Mathematical
Sciences, Nottingham University, England, for his help in deriving this result.
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The first term of this result is singular and therefore provides
the greatest contribution and thus we can write,

f(x) ' q(q − 1)
2πx2

∞∫
−∞

H(k)eikx(kq−2e−kq

)dk.

In this case, for1 < q < 2, the greatest contribution to this
integral is the inverse Fourier transform ofkq−2 and hence,

f(x) ∼ q(q − 1)
πx2

i2−q

xq−1

so that
p(x) ∼ 1

x1+q
, x →∞

which maps onto the previous asymptotic asq → 1 from the
above.

For q ≥ 2, the second moment of the Lévy distribution
exists and the sums of large numbers of independent trials are
Gaussian distributed. For example, if the result were a random
walk with a step length distribution governed byp(x), q > 2,
then the result would be normal (Gaussian) diffusion, i.e. a
Brownian process. Forq < 2 the second moment of this PDF
(the mean square), diverges and the characteristic scale of the
walk is lost. This type of random walk is called a Lev́y flight.

IX. T HE FRACTIONAL DIFFUSION EQUATION

We can consider a Hurst process to be a form of fractional
Brownian motion based on the generalization

A(t) = atH , H ∈ (0, 1].

Given that incoherent random walks describe processes whose
macroscopic behaviour is characterised by the diffusion equa-
tion, then, by induction, Hurst processes should be charac-
terised by generalizing the diffusion operator

∂2

∂x2
− σ

∂

∂t

to the fractional form

∂2

∂x2
− σq ∂q

∂tq

where q ∈ (0, 2] and D = 1/σ is the fractional diffusivity.
Fractional diffusive processes can therefore be interpreted
as intermediate between classical diffusive (random phase
walks with H = 0.5; diffusive processes withq = 1) and
‘propagative process’ (coherent phase walks forH = 1;
propagative processes withq = 2), e.g. [39], [40] and [38]
- references therein. Fractional diffusion equations can also
be used to model Ĺevy distributions [41] and fractal time
random walks [42], [43]. However, it should be noted that the
fractional diffusion operator given above is the result of a phe-
nomenology. It is no more (and no less) than a generalisation
of a well known differential operator to fractional form which
follows from a physical analysis of a fully incoherent random
process and it generalisation to fractional form in terms of the
Hurst exponent. Note that the diffusion and wave equations can
be derived rigorously from a range of fundamental physical
laws (conservation of mass, the continuity equation, Fourier’s
law of thermal conduction, Newton’s laws of motion and so

on) and that, in comparison, our approach to introducing a
fractional differential operator is based on postulation alone.
It is therefore similar to certain other differential operators, a
notable example being Schrödinger’s operator.

The fractional diffusion operator given above is appropriate
for modelling fractional diffusive processes that are stationary.
For non-stationary fractional diffusion, we could consider the
case where the diffusivity is time variant as defined by the
function σ(t). However, a more interesting case arises when
the characteristics of the diffusion processes change over time
becoming less or more diffusive. This is illustrated in terms
of the random walk in the plane given in Figure 7. Here, the
walk starts off being fully diffusive (i.e.H = 0.5 andq = 1),
changes to being fractionally diffusive (0.5 < H < 1 and
1 < q < 2) and then changes back to being fully diffusive. The
result given in Figure 7 shows a transition from two episodes
that are fully diffusive which has been generated using uniform
phase distributions whose width changes from2π to 1.8π and
back to2π. In terms of fractional diffusion, this is equivalent
to having an operator

∂2

∂x2
− σq ∂q

∂tq

where q = 1, t ∈ (0, T1]; q > 1, t ∈ (T1, T2]; q = 1, t ∈
(T2, T3] where T3 > T2 > T1. If we want to generalise
such processes over arbitrary periods of time, then we should
considerq to be a function of time. We can then introduce a
non-stationary fractional diffusion operator given by

∂2

∂x2
− σq(t) ∂q(t)

∂tq(t)
.

This operator is the theoretical basis for the Fractal Market
Hypothesis considered in this paper.

Fig. 7. Non-stationary random phase walk in the plane.

X. FRACTIONAL DYNAMIC MODEL

We consider an inhomogeneous non-stationary fractional
diffusion equation of the form[

∂2

∂x2
− σq(t) ∂q(t)

∂tq(t)

]
u(x, t) = F (x, t)

whereF is a stochastic source term with some PDF andu
is the stochastic field whose solution we require. Specifying
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q to be in the range0 ≤ q ≤ 2, leads to control over the
basic physical characteristics of the equation so that we can
define an anti-persistent fieldu(x, t) when q < 1, a diffusive
field whenq = 1 and a propagative field whenq = 2. In this
case, non-stationarity is introduced through the use of a time
varying fractional derivative whose values modify the physical
characteristics of the equation.

The range of values ofq is based on deriving an equation
that is a generalisation of both diffusive and propagative
processes using, what is fundamentally, a phenomenology.
When q = 0 ∀t, the time dependent behaviour is determined
by the source function alone; whenq = 1 ∀t, u describes
a diffusive process whereD = σ−1 is the ‘diffusivity’; when
q = 2 we have a propagative process whereσ is the ‘slowness’
(the inverse of the wave speed). The latter process should
be expected to ‘propagate information’ more rapidly than a
diffusive process leading to transients or ‘flights’ of some type.
We refer toq as the ‘Fourier Dimension’ which is related to
the Hurst Exponent byq = H + DT /2 where DT is the
Topological Dimension and to the Fractal DimensionDF by
q = 1−DF + 3DT /2 as shown in Appendix I.

Since q(t) ‘drives’ the non-stationary behaviour ofu, the
way in which we modelq(t) is crucial. It is arguable that
the changes in the statistical characteristics ofu which lead
to its non-stationary behaviour should also be random. Thus,
suppose that we let the Fourier dimension at a timet be
chosen randomly, a randomness that is determined by some
PDF. In this case, the non-stationary characteristics ofu will
be determined by the PDF (and associated parameters) alone.
Also, sinceq is a dimension, we can consider our model to be
based on the ‘statistics of dimension’. There are a variety of
PDFs that can be applied which will in turn affect the range of
q. By varying the exact nature of the distribution considered,
we can ‘drive’ the non-stationary behaviour ofu in different
ways. However, in order to apply different statistical models
for the Fourier dimension, the range ofq can not be restricted
to any particular range, especially in the case of a normal
distribution. We therefore generalize further and consider the
equation[

∂2

∂x2
− σq(t) ∂q(t)

∂tq(t)

]
u(x, t) = F (x, t),−∞ < q(t) < ∞,∀t.

which allows us to apply different PDFs forq covering
arbitrary ranges. For example, suppose we consider a system
which is assumed to be primarily diffusive; then a ‘normal’
PDF of the type

Pr[q(t)] =
1

σ
√

2π
exp[−(q − 1)2/2σ2], −∞ < q < ∞

whereσ is the standard deviation, will ensure thatu is entirely
diffusive whenσ → 0. However, asσ is increased in value,
the likelihood of q = 2 (and q = 0) becomes larger. In
other words, the standard deviation provides control over the
likelihood of the process becoming propagative.

Irrespective of the type of distribution that is considered,
the equation[

∂2

∂x2
− σq(t) ∂q(t)

∂tq(t)

]
u(x, t) = F (x, t)

poses a fundamental problem which is how to define and work
with the term

∂q(t)

∂tq(t)
u(x, t).

Given the result (for constantq)

∂q

∂tq
u(x, t) =

1
2π

∞∫
−∞

(iω)qU(x, ω) exp(iωt)dω

we might generalize as follows:

∂q(τ)

∂tq(τ)
u(x, t) =

1
2π

∞∫
−∞

(iω)q(τ)U(x, ω) exp(iωt)dω.

However, if we consider the case where the Fourier dimension
is a relatively slowly varying function of time, then we can
legitimately considerq(t) to be composed of a sequence of
different statesqi = q(ti). This approach allows us to develop
a stationary solution for a fixedq over a fixed period of time.
Non-stationary behaviour can then be introduced by using the
same solution for different values ofq over fixed (or varying)
periods of time and concatenating the solutions for allq.

XI. GREEN’ S FUNCTION SOLUTION

We consider a Green’s function solution to the equation

(
∂2

∂x2
− σq ∂q

∂tq

)
u(x, t) = F (x, t), −∞ < q < ∞

when F (x, t) = f(x)n(t) where f(x) and n(t) are both
stochastic functions. Applying a separation of variables here
is not strictly necessary. However, it yields a solution in
which the terms affecting the temporal behaviour ofu(x, t)
are clearly identifiable. Thus, we require a general solution to
the equation(

∂2

∂x2
− σq ∂q

∂tq

)
u(x, t) = f(x)n(t).

Let

u(x, t) =
1
2π

∞∫
−∞

U(x, ω) exp(iωt)dω

and

n(t) =
1
2π

∞∫
−∞

N(ω) exp(iωt)dω.

Then, using the result

∂q

∂tq
u(x, t) =

1
2π

∞∫
−∞

U(x, ω)(iω)q exp(iωt)dω

we can transform the fractional diffusion equation to the form(
∂2

∂x2
+ Ω2

q

)
U(x, ω) = f(x)N(ω)
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where we shall take

Ωq = i(iωσ)
q
2

and ignore the case forΩq = −i(iωσ)
q
2 . Defining the Green’s

function g to be the solution of [44], [45](
∂2

∂x2
+ Ω2

q

)
g(x | x0, ω) = δ(x− x0)

whereδ is the delta function, we obtain the following solution:

U(x0, ω) = N(ω)

∞∫
−∞

g(x | x0, ω)f(x)dx (3)

where [36]

g(x | x0, k) =
i

2Ωq
exp(iΩq | x− x0 |)

under the assumption thatu and ∂u/∂x → 0 as x → ±∞.
This result reduces to conventional solutions for cases when
q = 1 (diffusion equation) andq = 2 (wave equation) as shall
now be shown.

A. Wave Equation Solution

Whenq = 2, the Green’s function defined above provides a
solution for the outgoing Green’s function. Thus, withΩ2 =
−ωσ, we have

U(x0, ω) =
N(ω)
2iωσ

∞∫
−∞

exp(−iωσ | x− x0 |)f(x)dx.

Fourier inverting and using the convolution theorem for the
Fourier transform, we get

u(x0, t) =
1
2σ

∞∫
−∞

dxf(x)...

1
2π

∞∫
−∞

N(ω)
iω

exp(−iωσ | x− x0 |) exp(iωt)dω

=
1
2σ

∞∫
−∞

dxf(x)

t∫
−∞

n(t− σ | x− x0 |)dt

which describes the propagation of a wave travelling at veloc-
ity 1/σ subject to variations in space and time as defined by
f(x) and n(t) respectively. For example, whenf and n are
both delta functions,

u(x0, t) =
1
2σ

H(t− σ | x− x0 |).

This is a d’Alembertian type solution to the wave equation
where the wavefront occurs att = σ | x − x0 | in the causal
case.

B. Diffusion Equation Solution

Whenq = 1 andΩ1 = i
√

iωσ,

u(x0, t) =
1
2

∞∫
−∞

dxf(x)...

1
2π

∞∫
−∞

exp(−
√

iωσ | x− x0 |)√
iωσ

N(ω) exp(iωt)dω.

For p = iω, we can write this result in terms of a Bromwich
integral (i.e. an inverse Laplace transform) and using the
convolution theorem for Laplace transforms with the result

c+i∞∫
c−i∞

exp(−a
√

p)
√

p
exp(pt)dp =

1√
πt

exp[−a2/(4t)],

we obtain

u(x0, t) =

1
2
√

σ

∞∫
−∞

dxf(x)

t∫
0

exp[−σ(x0 − x)2/(4t0)]√
πt0

n(t− t0)dt0.

Now, if for example, we consider the case whenn is a delta
function, the result reduces to

u(x0, t) =

1
2
√

πσt

∞∫
−∞

f(x) exp[−σ(x0 − x)2/(4t)]dx, t > 0

which describes classical diffusion in terms of the convolution
of an initial sourcef(x) (introduced at timet = 0) with a
Gaussian function.

C. General Series Solution

The evaluation ofu(x0, t) via direct Fourier inversion for
arbitrary values ofq is not possible due to the irrational
nature of the exponential functionexp(iΩq | x − x0 |) with
respect toω. To obtain a general solution, we use the series
representation of the exponential function and write

U(x0, ω) =
iM0N(ω)

2Ωq

[
1 +

∞∑
m=1

(iΩq)m

m!
Mm(x0)

M0

]
(4)

where

Mm(x0) =

∞∫
−∞

f(x) | x− x0 |m dx.

We can now Fourier invert term by term to develop a series
solution. Given that we consider−∞ < q < ∞, this requires
us to consider three distinct cases.
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1) Solution forq = 0: Evaluation ofu(x0, t) in this case
is trivial since, from equation (3)

U(x0, ω) =
M(x0)

2
N(ω) or u(x0, t) =

M(x0)
2

n(t)

where

M(x0) =

∞∫
−∞

exp(− | x− x0 |)f(x)dx.

2) Solution forq > 0: Fourier inverting, the first term in
equation (4) becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω =

M0

2σ
q
2

1
2π

∞∫
−∞

N(ω)
(iω)

q
2

exp(iωt)dω

=
M0

2σ
q
2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ

(
q
2

) ∞∫
−∞

n(ξ)
(t− ξ)1−(q/2)

dξ.

The second term is

−M1

2
1
2π

∞∫
−∞

N(ω) exp(iωt)dω = −M1

2
n(t).

The third term is

− iM2

2.2!
1
2π

∞∫
−∞

N(ω)i(iωσ)
q
2 exp(iωt)dω =

M2σ
q
2

2.2!
d

q
2

dt
q
2
n(t)

and the fourth and fifth terms become

M3

2.3!
1
2π

∞∫
−∞

N(ω)i2(iωσ)q exp(iωt)dω = −M3σ
q

2.3!
dq

dtq
n(t)

and

i
M4

2.4!
1
2π

∞∫
−∞

N(ω)i3(iωσ)
3q
2 exp(iωt)dω =

M4σ
3q
2

2.4!
d

3q
2

dt
3q
2

n(t)

respectively with similar results for all other terms. Thus,
through induction, we can writeu(x0, t) as a series of the
form

u(x0, t) =

M0(x0)
2σq/2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ

(
q
2

) ∞∫
−∞

n(ξ)
(t− ξ)1−(q/2)

dξ

−M1(x0)
2

n(t) +
1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)σkq/2 dkq/2

dtkq/2
n(t).

Observe that the first term involves a fractional integral (the
Riemann-Liouville integral), the second term is composed
of the source functionn(t) alone (apart from scaling) and

the third term is an infinite series composed of fractional
differentials of increasing orderkq/2. Also note that the first
term is scaled by a factor involvingσ−q/2 whereas the third
term is scaled by a factor that includesσkq/2.

3) Solution forq < 0: In this case, the first term becomes

1
2π

∞∫
−∞

iN(ω)M0

2Ωq
exp(iωt)dω

=
M0

2
σ

q
2

1
2π

∞∫
−∞

N(ω)(iω)
q
2 exp(iωt)dω =

M0

2
σ

q
2

d
q
2

dt
q
2
n(t).

The second term is the same is in the previous case (forq > 0)
and the third term is

− iM2

2.2!
1
2π

∞∫
−∞

N(ω)i
(iωσ)

q
2

exp(iωt)dω

=
M2

2.2!
1

σq/2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ

(
q
2

) ∞∫
−∞

n(ξ)
(t− ξ)1−(q/2)

dξ.

Evaluating the other terms, by induction we obtain

u(x0, t) =
M0(x0)σq/2

2
dq/2

dtq/2
n(t)− M1(x0)

2
n(t)

+
1
2

∞∑
k=1

(−1)k+1

(k + 1)!
Mk+1(x0)

σkq/2

1
(2i)kq

√
π

Γ
(

1−kq
2

)
Γ

(
kq
2

) ...

∞∫
−∞

n(ξ)
(t− ξ)1−(kq/2)

dξ

where q ≡| q |, q < 0. Here, the solution is composed of
three terms: a fractional differential, the source term and an
infinite series of fractional integrals of orderkq/2. Thus, the
roles of fractional differentiation and fractional integration are
reversed asq changes from being greater than to less than
zero. All fractional differential operators associated with the
equations above and hence forth should be considered in terms
of the definition for a fractional differential given by

D̂qf(t) =
dn

dtn
[În−qf(t)], n− q > 0

where Î is the fractional integral operator (the Riemann-
Liouville transform),

Îpf(t) =
1

Γ(p)

t∫
−∞

f(ξ)
(t− ξ)1−p

dξ, p > 0 (5)

The reason for this is that direct fractional differentiation
can lead to divergent integrals. However, there is a deeper
interpretation of this result that has a synergy with the issue
over whether a macroeconomic system has ‘memory’ and
is based on observing that the evaluation of a fractional
differential operator depends on the history of the function in
question. Thus, unlike an integer differential operator of order
n, a fractional differential operator of orderq has ‘memory’
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because the value of̂Iq−nf(t) at a time t depends on the
behaviour off(t) from −∞ to t via the convolution with
t(n−q)−1/Γ(n − q). The convolution process is of course
dependent on the history of a functionf(t) for a given kernel
and thus, in this context, we can consider a fractional derivative
defined via the result above to have memory. In this sense, the
operator

∂2

∂x2
− σq(t) ∂q(t)

∂tq(t)

decribes a process, compounded in a fieldu(x, t), that has a
non-stationary memory association with the temporal charac-
teristics of the system it is attempting to model. This is not
an intrinsic charcteristic of systems that are purely diffusive
q = 1 or propagativeq = 2.

D. Asymptotic Solutions for an Impulse

We consider a special case in which the source function
f(x) is an impulse so that

Mm(x0) =

∞∫
−∞

δ(x) | x− x0 |m dx =| x0 |m .

This result immediately suggests a study of the asymptotic
solution

u(t) = lim
x0→0

u(x0, t) (6)

=


1

2σq/2
1

(2i)q
√

π

Γ( 1−q
2 )

Γ( q
2 )

∞∫
−∞

n(ξ)
(t−ξ)1−(q/2) dξ, q > 0;

n(t)
2 , q = 0;

σq/2

2
dq/2

dtq/2 n(t), q < 0.

The solution for the time variations of the stochastic fieldu
for q > 0 are then given by a fractional integral alone and
for q < 0 by a fractional differential alone. In particular, for
q > 0, we see that the solution is based on the convolution
integral (ignoring scaling)

u(t) =
1

t1−q/2
⊗ n(t), q > 0

where⊗ denotes convolution and inω-space (ignoring scaling)

U(ω) =
N(ω)

(iω)q/2
.

This result is the conventional random fractal noise model for
Fourier dimensionq. Table I quantifies the results for different
values ofq with conventional name associations7. The fieldu
has the following fundamental property forq ∈ (0, 2):

λq/2Pr[u(t)] = Pr[u(λt)].

This property describes the statistical self-affinity ofu. Thus,
the asymptotic solution considered here, yields a result that
describes a random scaling fractal field characterized by a
PSDF of the form1/ | ω |q which is a measure of the time
correlations in the signal.

7Note that Brown noise conventionally refers to the integration of white
noise but that Brownian motion is a form of pink noise because it classifies
diffusive processes identified by the case whenq = 1.

q-value t-space ω-space (PSDF) Name

q = 0 1
t
⊗ n(t) 1 White noise

q = 1 1√
t
⊗ n(t) 1

|ω| Pink noise

q = 2
tR
n(t)dt 1

ω2 Brown noise

q > 2 t(q/2)−1 ⊗ n(t) 1
|ω|q Black noise

TABLE I

NOISE CHARACTERISTICS FOR DIFFERENT VALUES OFq. NOTE THAT THE

RESULTS GIVEN ABOVE IGNORE SCALING FACTORS.

Note thatq = 0 defines the Hilbert transform ofn(t) whose
spectral properties in the positive half space are identical to
n(t) because

1
t
⊗ n(t) ⇐⇒ −iπsign(ω)N(ω)

where

sign(ω) =

{
1, ω > 0;
−1, ω < 0.

The statistical properties of the Hilbert transform ofn(t) are
therefore the same asn(t) so that

Pr[t−1 ⊗ n(t)] = Pr[n(t)].

Hence, asq → 0, the statistical properties ofu(t) will ‘reflect’
those ofn, i.e.

Pr
[

1
t1−q/2

⊗ n(t)
]

= Pr[n(t)], q → 0.

However, asq → 2 we can expect the statistical properties of
u(t) to be such that the width of the PDF ofu(t) is reduced.
This reflects the greater level of coherence (persistence in time)
associated with the stochastic fieldu(t) for q → 2.

E. Other Asymptotic Solutions

A similar result to the asymptotic solution forx0 → 0 is
obtained when the diffusivity is large, i.e.

lim
σ→0

u(x0, t)

=
M0(x0)
2σq/2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ

(
q
2

) ∞∫
−∞

n(ξ)
(t− ξ)1−(q/2)

dξ

−M1(x0)
2

n(t), q > 0. (7)

Here, the solution is the sum of fractal noise and white noise.
Further, by relaxing the conditionσ → 0 we can consider the
approximation

u(x0, t) '
M0(x0)
2σq/2

1
(2i)q

√
π

Γ
(

1−q
2

)
Γ

(
q
2

) ∞∫
−∞

n(ξ)
(t− ξ)1−(q/2)

dξ
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−M1(x0)
2

n(t) +
M2(x0)

2.2!
σq/2 dq/2

dtq/2
n(t), q > 0, σ << 1

(8)
in which the solution is expressed in terms of the sum of
fractal noise, white noise and the fractional differentiation8 of
white noise.

F. Equivalence with a Wavelet Transform

The wavelet transform is defined in terms of projections of
f(t) onto a family of functions that are all normalized dilations
and translations of a prototype ‘wavelet’ functionw [47], i.e.

W[f(t)] = FL(t) =

∞∫
−∞

f(τ)wL(τ, t)dτ

where

wL(τ, t) =
1√
L

w

(
τ − t

L

)
, L > 0.

The independent variablesL andt are continuous dilation and
translation parameters respectively. The wavelet transforma-
tion is essentially a convolution transform wherewL(t) is the
convolution kernel with dilation variableL. The introduction
of this factor provides dilation and translation properties into
the convolution integral that gives it the ability to analyse
signals in a multi-resolution role (the convolution integral is
now a function ofL), i.e.

FL(t) = wL(t)⊗ f(t), L > 0.

In this sense, the asymptotic solution (ignoring scaling)

u(t) =
1

t1−q/2
⊗ n(t), q > 0 x → 0

is compatible with the case of a wavelet transform where

w1(t) =
1

t1−q/2

for the stationary case and where, for the non-stationary case,

w1(t, τ) =
1

t1−q(τ)/2
.

XII. FTSE ANALYSIS USING OLR

We consider the basic model for a financial signal to be
given by

u(t) =
1

t1−q/2
⊗ n(t), q > 0

which has characteristic spectrum

U(ω) =
N(ω)

(iω)q/2

and is a solution to the fractional diffusion equation(
∂2

∂x2
− σq ∂q

∂tq

)
u(x, t) = δ(x)n(t), x → 0

The PSDF is thus characterised byω−q, ω ≥ 0 and our
problem is thus, to computeq from the dataP (ω) =| U(ω) |2
, ω ≥ 0. For this data, we consider the PSDF

P̂ (ω) =
c

ωq

8As defined by equation (5).

or
ln P̂ (ω) = C + q lnω

where C = ln c. The problem is therefore reduced to im-
plementing an appropriate method to computeq (and C) by
finding a best fit of the lineln P̂ (ω) to the datalnP (ω).
Application of the least squares method for computingq,
which is based on minimizing the error

e(q, C) = ‖ lnP (ω)− ln P̂ (ω, q, C)‖22
with regard toq and C, leads to errors in the estimates for
q which are not compatible with market data analysis. The
reason for this is that relative errors at the start and end
of the datalnP may vary significantly especially because
any errors inherent in the dataP will be ‘amplified’ through
application of the logarithmic transform required to linearise
the problem. In general, application of a least squares approach
is very sensitive to statistical heterogeneity [48] and in this
application, may provide values ofq that are not compatible
with the rationale associated with the FMH (i.e. values of1 <
q < 2 that are intermediate between diffusive and propagative
processes). For this reason, an alternative approach must be
considered which, in this paper, is based on Orthogonal Linear
Regression (OLR).

Applying a standard moving window,q(t) is computed by
repeated application of OLR based on the m-code available
from [49]. Sinceq is, in effect, a statistic, its computation
is only as good as the quantity (and quality) of data that
is available for its computation. For this reason, a relatively
large window is required whose length is compatible with:
(i) the number of samples available; (ii) the autocorrelation
function and long-term memory effects as discussed in Section
III. An example of theq(t) signal obtained using a 1000
element window is given in Figure 8 which includesq(t) after
it has been smoothed using a Gaussian low-pass filtered to
reveal the underlying trends inq. Inspection of the data (i.e.
closer inspection of the time series than is shown in Figure 8)
clearly illustrates a qualitative relationship between trends in
the financial data andq(t) in accordance with the theoretical
model considered. In particular, over periods of time in which
q increases in value, the amplitude of the financial signal
u(t) decreases. Moreover, and more importantly, an upward
trend in q appears to be a pre-cursur to a downward trend in
u(t). A more detailed example of this behviour is shown in
Figure 9 for close of day FTSE data over a smaller period of
time (i.e. from 1994 to 1997), a correlation that is compatible
with the idea that a rise in the value ofq relates to the
‘system’ becoming more propagative, which in stock market
terms, indicates the likelihood for the markets becoming ‘bear’
dominant in the future.

The results of using the method discussed above not only
provides for a general appraisal of different macroeconomic
financial time series, but, with regard to the size of selected
window used, an analysis of data at any point in time.
The output can be interpreted in terms of ‘persistence’ and
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Fig. 8. Application of OLR using a 1000 element window for analysing
financial time series composed of FTSE values (close-of-day) from 02-04-
1984 to 13-02-2008. The plot shows the time varying Fourier Dimension
q(t) (green) onto which is superimposed a Gaussian low-pass filtered version
of the signal (red) and the FTSE time series after normalisation.

Fig. 9. Application of OLR using a 1000 element window for analysing
financial time series composed of FTSE values (close-of-day) from 05-04-
1994 to 24-12-1997. The plot shows the time varying Fourier Dimension
q(t) (green) onto which is superimposed a Gaussian low-pass filtered version
of the signal (red) and the FTSE time series after normalisation.

‘anti-persistence’ and in terms of the existence or absence
of after-effects (macroeconomic memory effects). For those
periods in time whenq(t) is relatively constant, the existing
market tendencies usually remain. Changes in the existing
trends tend to occur just after relatively sharp changes in
q(t) have developed. This behaviour indicates the possibility
of using the time seriesq(t) for identifying the behaviour
of a macroeconomic financial system in terms of both inter-
market and between-market analysis. These results support the
possibility of usingq(t) as an independent macroeconomic
volatility predictor. It is noted that, at the time of writing
this paper, the value ofq(t) associated with those days after
approximately day 4800 in Figure 8 (representing the latter
half of 2007) indicate the growth of propagative behaviour and
thus the macroeconomic instability compounded in the term
‘Credit Crunch’. This is not surprising if it is assumed that the
downward trend from approximately day 3000 to day 3700
shown in Figure 8 is a natural consequence of the effect of a
higher inflationary global economy resulting from the end of
the cold war and that the upward trend from approximately day
3700 to 5000 is a consequence of credit policies adopted by
banks in an attempt to compensate for this natural inflationary
pressure. Under this assumption, the ‘Credit Crunch’ of 2007
represents a transition that is compounded in a reappraisal of
the definition of poverty, namely, that poverty is not a measure
of how little one has but a measure of how much one owes.

XIII. D ISCUSSION

This paper is concerned with the introduction and theoretical
analysis (in terms of general a solution) associated with the
non-stationary fractional diffusion operator

∂2

∂x2
− σq(t) ∂q(t)

∂tq(t)

in the context of a macroeconomic model. By considering a
source function of the typeδ(x)n(t) wheren(t) is white noise,
we have shown that, forx → 0, the fractional diffusive field
u(t) at timeτ is given by (ignoring scaling)

u(t, τ) =
1

t1−q(τ)/2
⊗ n(t)

which has Power Spectral Density Function characterised by
| ω |−q(τ)/2 - a random scaling fractal. It should be noted,
that the data analysis reported in this paper is based on an
asymptotic solution (i.e.x → 0) used to obtain equation (6)
and is thus, limited in the extent to which it ‘reflects’ the
physical principles upon which the model has been established.
However, it is noted that the computation ofq(t) in the
presence of additive white noise is equivalent to the inversion
of equation (7) forq (and for arbitrary values ofx0) when
σ → 0. In this sense, the power spectrum method used to
computeq(t) is valid under the assumption that a fractional
diffusive process occurs with high diffusivity and a high
signal-to-noise ratio (i.e.‖M1(x0)‖ → 0). For the case when
σ << 1, the inversion of equation (8) to computeq from u
might be possible using an iterative approach which can be
extended to solve the general case as required.

The non-stationary nature of this model is taken to ac-
count for stochastic processes that can vary in time and are
intermediate between diffusive and propagative or persistent
behaviour. Application of Orthogonal Linear Regression to
macroeconomic time series data provides an accurate and
robust method to computeq(t) when compared to other statis-
tical estimation techniques such as the least squares method.
As a result of the physical interpretation associated with the
fractional diffusion equation and the ‘meaning’ ofq(t), we
can, in principal, use the signalq(t) as a predictive measure in
the sense that as the value ofq(t) continues to increases, there
is a greater likelihood for volatile behaviour of the markets.
This is reflected in the data analysis that is compounded in
Figure 8 for the FTSE close-of-day between 1980 to 2007
and in other financial data, the results of which lie beyond the
scope of this paper9. It should be noted that because financial
time series data is assumed to be self-affine, the computation
of q(t) can be applied over any time scale, and that the FTSE
close-of-day is only one example that has been used in this
paper as an illustrative case study.

In a statistical sense,q(t) is just another measure that may,
or otherwise, be of value to market traders. In comparison
with other statistical measures, this can only be assessed
through its practical application in a live trading environment.
However, in terms of its relationship to a stochastic model
for macroeconomic data,q(t) does provide a measure that

9Similar results being observed for other major stock markets.
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is consistent with the physical principles associated with a
random walk that includes a directional bias, i.e. fractional
Brownian motion. The model considered, and the signal
processing algorithm proposed, has a close association with
re-scaled range analysis for computing the Hurst exponentH
since forDT = 1, q = H + 1/2 (see Appendix I) [48]. In
this sense, the principal contribution of this paper has been to
consider a model that is quantified in terms of a physically
significant (but phenomenological) model that is compounded
in a specific (fractional) partial differential equation. As with
other financial time series, their derivatives, transforms etc., a
range of statistical measures can be used to characteriseq(t),
an example being given in Figure 8 and Figure 9 whereq(t)
has been smoothed to provide a measure of the underlying
trends.

In terms of the non-stationary fractional diffusive model
considered in this work, the time varying Fourier dimension
q(t) can be interpreted in terms of a ‘gauge’ on the charac-
teristics of a dynamical system. This includes the manage-
ment processes from which all modern economies may be
assumed to be derived. In this sense, the FMH is based on
three principal considerations: (i) the non-stationary behaviour
associated with any system undergoing continuous change that
is driven by a management infrastructure; (ii) the cause and
effect that is inherent at all scales (i.e. all levels of management
hierarchy); (iii) the self-affine nature of outcomes relating to
points (i) and (ii). In a modern economy, the principal issue
associated with any form of financial management is based on
the flow of information and the assessment of this information
at different points connecting a large network. In this sense,
a macroeconomy can be assessed in terms of its information
network which consists of a distribution of nodes from which
information can flow in and out. The ‘efficiency’ of the system
is determined by the level of randomness associated with the
direction of flow of information to and from each node. The
nodes of the system are taken to be individuals or small
groups of individuals whose assessment of the information
they acquire together with their remit, responsibilities and
initiative, determines the direction of the information flow
from one node to the next. The determination of the efficiency
of a system in terms of randomness is the most critical in terms
of the model developed. It suggests that the performance of
a business is related to how well information flows through
an organisation. If the information flow is entirely random,
then we might surmise that the decisions made which ‘drive’
the direction of the ‘system’ are also entirely random. The
principal point here is that the flow of information has a direct
relationship on the management decisions that are made on
behalf of an organisation.

The non-stationary but statistically self-affine nature of the
markets leads directly to the use of the Fourier dimension as
a measure for quantifying their ‘state of coherence’. Just as
this parameter can be used as a market index for managing a
financial portfolio, so, it may be of value in quantifying the
‘state’ of any organisation undergoing change (management).
The conceptual basis associated with the Fourier dimension
and the system behaviour that it reflects leads directly to an
approach to management where the principles of openness and

Fractal type Fractal Dimension
Fractal Dust 0 < DF < 1
Fractal Curve 1 < DF < 2
Fractal Surface 2 < DF < 3
Fractal Volume 3 < DF < 4
Fractal Time 4 < DF < 5
Hyper-fractals 5 < DF < 6
...

...

TABLE II

FRACTAL TYPES AND CORRESPONDING FRACTAL DIMENSIONS

transparency articulate the degree of coherence of information
flow through an organisation from one level to another. In
effect, the sustained organisational approach to managing
continuous change is the basis for a portfolio in whichq(t) > 1
and increases with time.

The FMH and the self-affine nature of organisations in
general provides a model in which the work-force at any one
level (i.e. department/section/group etc.) of an organisation
can empathise with all other levels by cultivating an under-
standing in which each level is a reflection of their own, e.g.
problems/solutions at middle management are a reflection of
the same type of problems/solutions at executive level. This
‘empathy’ is a two-way entity which differs only in terms
of its scale. Sustained organisational change and the example
methods of implementing it is a self-affine process and should
thus be introduced with this aspect in mind [50]. In tackling
problems at any level within an organisation, one is, in effect,
taking consideration of such problems above and below that
same level in terms of the dynamic behaviour of the ‘system’
as a whole, a macroeconomy being the antithesis of such a
‘system’.

APPENDIX I
RELATIONSHIP BETWEEN THEHURST EXPONENT AND THE

TOPOLOGICAL, FRACTAL AND FOURIER DIMENSIONS

Suppose we cut up some simple one-, two- and three-
dimensional Euclidean objects (a line, a square surface and
a cube, for example), make exact copies of them and then
keep on repeating the copying process. LetN be the number
of copies that we make at each stage and letr be the length
of each of the copies, i.e. the scaling ratio. Then we have

NrDT = 1, DT = 1, 2, 3, ...

where DT is the topological dimension. The similarity or
fractal dimension is that value ofDF which is usually (but not
always) a non-integer dimension ‘greater’ that its topological
dimension (i.e. 0,1,2,3,... where 0 is the dimension of a point
on a line) and is given by

DF = − log(N)
log(r)

.

The fractal dimension is that value that is strictly greater
than the topological dimension as given in Table II. In each
case, as the value of the fractal dimension increases, the fractal
becomes increasingly ‘space-filling’ in terms of the topological
dimension which the fractal dimension is approaching. In each
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case, the fractal exhibits structures that are self-similar. A
self-similar deterministic fractal is one where a change in the
scale of a functionf(x) (which may be a multi-dimensional
function) by a scaling factorλ produces a smaller version,
reduced in size byλ, i.e.

f(λx) = λf(x).

A self-affine deterministic fractal is one where a change in
the scale of a functionf(x) by a factorλ produces a smaller
version reduced in size by a factorλq, q > 0, i.e.

f(λx) = λqf(x).

For stochastic fields, the expression

Pr[f(λx)] = λqPr[f(x)]

describes a statistically self-affine field - a random scaling
fractal. As we zoom into the fractal, the shape changes, but
the distribution of lengths remains the same.

There is no unique method for computing the fractal di-
mension. The methods available are broadly categorized into
two families: (i) Size-measure relationships, based on recursive
length or area measurements of a curve or surface using
different measuring scales; (ii) application of relationships
based on approximating or fitting a curve or surface to a known
fractal function or statistical property, such as the variance.

Consider a simple Euclidean straight line` of lengthL(`)
over which we ‘walk’ a shorter ‘ruler’ of lengthδ. The number
of steps taken to cover the lineN [L(`), δ] is thenL/δ which
is not always an integer for arbitraryL andδ. Since

N [L(`), δ] =
L(`)

δ
= L(`)δ−1,

⇒ 1 =
lnL(`)− lnN [L(`), δ]

ln δ
= −

(
lnN [L(`), δ]− lnL(`)

ln δ

)
which expresses the topological dimensionDT = 1 of the
line. In this case,L(`) is the Lebesgue measure of the line
and if we normalize by settingL(`) = 1, the latter equation
can then be written as

1 = − lim
δ→0

[
lnN(δ)

ln δ

]
since there is less error in countingN(δ) asδ becomes smaller.
We also then haveN(δ) = δ−1. For extension to a fractal
curvef , the essential point is that the fractal dimension should
satisfy an equation of the form

N [F (f), δ] = F (f)δ−DF

whereN [F (f), δ] is ‘read’ as the number of rulers of sizeδ
needed to cover a fractal setf whose measure isF (f) which
can be any valid suitable measure of the curve. Again we may
normalize, which amounts to defining a new measureF ′ as
some constant multiplied by the old measure to get

DF = − lim
δ→0

[
lnN(δ)

ln δ

]
whereN(δ) is taken to beN [F ′(f), δ] for notational conve-
nience. Thus a piecewise continuous field has precise fractal

properties over all scales. However, for the discrete (sampled)
field

D = −
〈

lnN(δ)
ln δ

〉
where we choose valuesδ1 and δ2 (i.e. the upper and lower
bounds) satisfyingδ1 < δ < δ2 over which we apply
an averaging processes denoted by〈 〉. The most common
approach is to utilise a bi-logarithmic plot oflnN(δ) against
ln δ, choose valuesδ1 and δ2 over which the plot is uniform
and apply an appropriate data fitting algorithm (e.g. a least
squares estimation method or, as used in this paper, Orthogonal
Linear Regression) within these limits.

The relationship between the Fourier dimensionq and the
fractal dimensionDF can be determined by considering this
method for analysing a statistically self-affine field. For a
fractional Brownian process (with unit step length)

A(t) = tH , H ∈ (0, 1]

where H is the Hurst dimension. Consider a fractal curve
covering a time period∆t = 1 which is divided up intoN =
1/∆t equal intervals. The amplitude increments∆A are then
given by

∆A = ∆tH =
1

NH
= N−H .

The number of lengthsδ = N−1 required to cover each
interval is

∆A∆t =
N−H

N−1
= N1−H

so that
N(δ) = NN1−H = N2−H .

Now, since

N(δ) =
1

δDF
, δ → 0,

then, by inspection,

DF = 2−H.

Thus, a Brownian process, whereH = 1/2, has a fractal
dimension of 1.5. For higher topological dimensionsDT

DF = DT + 1−H.

This algebraic equation provides the relationship between the
fractal dimensionDF , the topological dimensionDT and the
Hurst dimensionH. We can now determine the relationship
between the Fourier dimensionq and the fractal dimension
DF .

Consider a fractal signalf(x) over an infinite support with
a finite samplefX(x), given by

fX(x) =
{

f(x), 0 < x < X;
0, otherwise.

A finite sample is essential as otherwise the power spectrum
diverges. Moreover, iff(x) is a random function then for any
experiment or computer simulation we must necessarily take
a finite sample. LetFX(k) be the Fourier transform offX(x),
PX(k) be the power spectrum andP (k) be the power spectrum
of f(x). Then
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fX(x) =
1
2π

∫ ∞

−∞
FX(k) exp(ikx)dk,

PX(k) =
1
X
|FX(k)|2

and
P (k) = lim

X→∞
PX(k).

The power spectrum gives an expression for the power of a
signal for particular harmonics.P (k)dk gives the power in
the rangek to k + dk. Consider a functiong(x), obtained
from f(x) by scaling thex-coordinate by somea > 0, thef -
coordinate by1/aH and then taking a finite sample as before,
i.e.

gX(x) =
{

g(x) = 1
aH f(ax), 0 < x < X;

0, otherwise.

Let GX(k) and P ′X(k) be the Fourier transform and power
spectrum ofgX(x), respectively. We then obtain an expression
for GX in terms ofFX ,

GX(k) =
∫ X

0

gX(x) exp(−ikx)dx =

1
aH+1

∫ X

0

f(s) exp
(
− iks

a

)
ds

wheres = ax. Hence

GX(k) =
1

aH+1
FX

(
k

a

)
and the power spectrum ofgX(x) is

P ′X(k) =
1

a2H+1

1
aX

∣∣∣∣FX

(
k

a

)∣∣∣∣2
and, asX →∞,

P ′(k) =
1

a2H+1
P

(
k

a

)
.

Sinceg(x) is a scaled version off(x), their power spectra are
equal, and so

P (k) = P ′(k) =
1

a2H+1
P

(
k

a

)
.

If we now setk = 1 and then replace1/a by k we get

P (k) ∝ 1
k2H+1

=
1
kβ

.

Now sinceβ = 2H + 1 andDF = 2−H, we have

DF = 2− β − 1
2

=
5− β

2
.

The fractal dimension of a fractal signal can be calculated
directly fromβ using the above relationship. This method also
generalizes to higher topological dimensions giving

β = 2H + DT .

Thus, since
DF = DT + 1−H,

thenβ = 5− 2DF for a fractal signal andβ = 8− 2DF for
a fractal surface so that, in general,

β = 2(DT + 1−DF ) + DT = 3DT + 2− 2DF

and

DF = DT + 1−H = DT + 1− β −DT

2
=

3DT + 2− β

2
,

the Fourier dimension being given byq = β/2.
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