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Application of the Fractal Market Hypothesis for
Macroeconomic Time Series Analysis

Jonathan M Blackledge, Fellow, IET, Fellow, l1oP, Fellow, IMA, Fellow, RSS

Abstract—This paper explores the conceptual background to changes were entirely independent of each other. Thus, one of
financial time series analysis and financial signal processing the simplest models for price variation is based on the sum of
in terms of the Efficient Market Hypothesis. By revisiting the jnqenendent random numbers. This is the basis for Brownian
principal conventional approaches to market analysis and the . . - .
reasoning associated with them, we develop a Fractal Market mothn (i.e. th? random walk motion flrs_t observed by the
Hypothesis that is based on the application of non-stationary Scottish Botanist, Robert Brown [4], who, in 1827, noted that
fractional dynamics using an operator of the type pollen grains suspended in water appear to undergo continuous
51 jittery motion - a result of the random impacts on the pollen
grains by water molecules) in which the random numbers are
considered to conform to a normal distribution.
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where o~ is the fractional diffusivity and ¢ is the Fourier —\njh macroeconomic financial systems, the magnitude of a
dimension which, for the topology considered, (i.e. the one- '

dimensional case) is related to the Fractal Dimension < Dy < 2 Cange in pricelu tends to depend on the prieitself. We

by g =1— Dr +3/2. therefore need to modify the Brownian random walk model
We consider an approach that is based on the signaj(t) and to include this observation. In this case, the logarithm of the

its interpretation, including its use as a macroeconomic volatility price change as a function of tinmte(which is also assumed

index. In practice, this is based on the application of a moving  t, conform to a normal distribution) is modelled according to
window data processor that utilises Orthogonal Linear Regres- the equation

sion to compute g from the power spectrum of the windowed
data. This is applied to FTSE close-of-day data between 1980 and du d dv
2007 which reveals plausible correlations between the behaviour o adv + fdt or T Inu=p0+ a (1)
of this market over the period considered and the amplitude . . .
fluctuations of ¢(t) in terms of a macroeconomic model that is Where a is the volatility, dv is a sample from a normal
compounded in the operator above. distribution andg is a drift term which reflects the average
Index Terms—Fractional Diffusion Equation, Time Series rate of grqwth of an assetHere, the relative price chapge of
Analysis, Macroeconomic Modelling, Volatility Index an asset is equal to a random value plus an underlying trend
component - a ‘log-normal random walk’, e.g [5] - [8].
Brownian motion models have the following basic prop-
erties: (i) statistical stationarity of price increments in which
HE application of statistical techniques for analysingamples of Brownian motion taken over equal time increments
financial time series is a well established practice. Thigin be superimposed onto each other in a statistical sense;
includes a wide range of stochastic modelling methods a(ifj scaling of price where samples of Brownian motion corre-
the use of certain partial differential equations for descrilgponding to different time increments can be suitably re-scaled
ing financial systems (e.g. the Black-Scholes equation fenich that they too, can be superimposed onto each other in a
financial derivatives). Attempts to develop stochastic modedgatistical sense. Such models fail to predict extreme behaviour
for financial time series, which are essentially digital signalg financial time series because of the intrinsic assumption
composed of ‘tick datd’ [1], [2] can be traced back to thethat such time series conform to a normal distribution, i.e.
early Twentieth Century when Louis Bachelier [3] propose@aussian processes that are stationary in which the statistics -
that fluctuations in the prices of stocks and shares (whighe standard deviation, for example - do not change with time.
appeared to be yesterday’s price plus some random changeandom walk models, which underpin the so called Effi-
could be viewed in terms of random walks in which pricgient Market Hypothesis (EMH) [9]-[12], have been the basis
Manuscript received December 1, 2007. The work reported i1;1or financial t!me series analysis since the work of Bachelier
this paper was supported by Man’agemeﬁt and Personnel Servi&sthe late Nineteenth Century. Although the Black-Scholes
Limited (http://Awww.mapstraining.co.uk) and by the Schneider Grougquation [13], developed in the 1970s for valuing options, is

(http://schneidertrading.com). o deterministic (one of the first financial models to achieve deter-
Jonathan Blackledge (jon.blackledge@btconnect.com) is Visiting Professor,

Department of Electronic and Electrical Engineering, Loughborough Unrimn!sr_n)’ itis still bas_ed on the EMH, 'e S_tat|0nary Gaussian
versity, England (http://www.lboro.ac.uk/departments/el/staff/blackledge.htngjatistics. The EMH is based on the principle that the current

and Extraordinary Professor, Department of Computer Science, Umjrice of an asset fully reflects all available information relevant

versity of the Western Cape, Cape Town, Republic of South Afncta it d that inf ti .. diatelV i ted

(http://www.cs.uwc.ac.za). (o it and that new information is immediately incorporate
1Data that provides traders with daily tick-by-tick data - time and sales - #it0 the price. Thus, in an efficient market, the modelling

trade price, trade time, and volume traded, for example, at different sampling

rates as required. 2Note that bothw and 3 may very with timet
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of asset prices is concerned with modelling the arrival «10000 T T T T
new information. New information must be independent ar
random, otherwise it would have been anticipated and wot
not be new. The arrival of new information can send ‘shock 20007 1
through the market (depending on the significance of tl
information) as people react to it and then to each othe | | ‘ | |
rea_\ctlons. The EMH ass_umes_that thgre is a rational a 0 1000 000 1000 4000 5000 il
unique way to use the available information and that all ager
possess this knowledge. Further, the EMH assumes that 1 02 T T T T
‘chain reaction’ happens effectively instantaneously. The
assumptions are clearly questionable at any and all levels
a complex financial system.

The EMH implies independence of price increments and
typically characterised by a normal of Gaussian Probabili 102 | | | | |
Density Function (PDF) which is chosen because most pri 1000 2000 000 4000 £ B0
movements are presumed to be an aggregation of sma
ones, the sums of independent random contributions havin 00 : : : :
Gaussian PDF. However, it has long been known that financ
time series do not follow random walks. An illustration of
this is given in Figure 1 which shows a (discrete) financi:
signalu(t) (data obtained from [14]), the log derivative of this
signaldlog u(t)/dt and a Gaussian distributed random signa | | | | |
The log derivative is considered in order to: (i) eliminate th 1000 2000 000 4000 £000 go00
characteristic long term exponential growth of the signal; (i
obtain a signal on the daily price differenéés accord with Fig. 1. Financial time series for the FTSE value (close-of-day) from 02-04-
the left hand side term of equation (1). Clearly, there is &84 to 12-12-2007 (top), the log derivative of the same time series (centre)
marked difference in the characteristics of a real financi@ld @ Gaussian distributed random signal (bottom).
signal and a random Gaussian signal. This simple comparison

indicates a failure of the statistical independence assumptilgenrated Function Systems (IFS). These models can capture

which underpins the EMH. . . L )
. : .many properties of a financial time series but are not based
The shortcomings of the EMH model (as illustrated "®n any underlying causal theory of the type attempted in this
Figure 1) include: failure of the independence and Gaussian y ying y yp P

dlstrlbuupn O.f Increments assumption, clustering, a}ppargrr)] A good stochastic financial model should ideally consider
non-stationarity and failure to explain momentous financia

. , . ) . all the observable behaviour of the financial system it is
events such as ‘crashes’ leading to recession and, in some . .
; oo aftéempting to model. It should therefore be able to provide
extreme cases, depression. These limitations have prompted a . . . .
. o . . . sgme predictions on the immediate future behaviour of the
new class of methods for investigating time series obtaing

from a range of disciplines. For example, Re-scaled Ran‘%ﬂem within an appropriate confidence level. Predicting the

Analysis (RSRA), e.g. [15], [16], which is essentially base arkets has beco”?e (for ole|ous_ rea;ons) one of the most
) . Important problems in financial engineering. Although, at least
on computing the Hurst exponent [17], is a useful tool far * . . L . ;
. S : o In principle, it might be possible to model the behaviour of
revealing some well disguised properties of stochastic time se-

. . . : . ch individual agent operating in a financial market, one
ries such as persistence (and anti-persistence) characterized b 9 P g

non-periodic cycles. Non-periodic cycles correspond to trends never be sure of obtaining all the necessary information
P ycles. P Y P required on the agents themselves and their modus operandi.

that persist for irregular periods but with a degree of statistic? is principle plays an increasingly important role as the

regularity often associated with non-linear dynamical systems, . ; . ) .
. . . .~ scale of the financial system, for which a model is required,

RSRA is particularly valuable because of its robustness in the . ; L
reases. Thus, while quasi-deterministic models can be of

. o ; ; |
presence of noise. The principal assumption associated V\(}%ﬁue in the understanding of micro-economic systems (with

RSRA is concerned with the self-affine or fractal nature of trlgn wn ‘operational conditions’), in an ever increasing global
statistical character of a time-series rather than the statisticaP P ' 99

‘signature’ itself. Ralph Elliott first reported on the fracta conomy (in which the operational conditions associated with

properties of financial data in 1938 (e.g. [18] and referencrée fiscal policies of a given nation state are increasingly open),

: . . W n tak vant f th le of th tem t ri
therein). He was the first to observe that segments of fmanc*aef can take a_\d antage ot the scale of the system 1o describe
itS behaviour in terms of functions of random variables.

time series data of different sizes could be scaled in such a way

that they were statistically the same producing so called Elliot
waves. Since then, many different self-affine models for price Il. MARKET ANALYSIS

variation have been developed, often based on (dynamicalylhe stochastic nature of financial time series is well known

from the values of the stock market major indices such as

3The gradient is computed using forward differencing. the FTSE (Financial Times Stock Exchange) in the UK, the

—
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vulnerable stage of the process. Over simplifying assumptions
lead to unrealistic models. There are two main approaches
to financial modelling: The first approach is to look at the

" statistics of market data and to derive a model based on an

0B 1 educated guess of the ‘mechanics’ of the market. The model

04 , ‘ i I , ‘ , can then be tested using real data. The idea is that this process
0 100 200 300 400 500 GO0 700 800 400 1000 of trial and error helps to develop the right theory of market

dynamics. The alternative is to ‘reduce’ the problem and try to

formulate a microscopic model such that the desired behaviour
‘emerges’, again, by guessing agents’ strategic rules. This
offers a natural framework for interpretation; the problem is
that this knowledge may not help to make statements about the
future unless some methods for describing the behaviour can
be derived from it. Although individual elements of a system
cannot be modelled with any certainty, global behaviour can
sometimes be modelled in a statistical sense provided the
system is complex enough in terms of its network of inter-
connection and interacting components.

In complex systems, the elements adapt to the aggregate
pattern they co-create. As the components react, the aggregate
changes, as the aggregate changes the components react anew.
Barring the reaching of some asymptotic state or equilibrium,
Fig. 2. Evolution of the 1987, 1997 and 2007 financial crashes. Normalisemplex systems keep evolving, producing seemingly stochas-
) o s o e e o o b 34 e 1 or chaotic behaviour. Such systems arise naturally in the
1987 (top), 05-04-1994 to 24-12-1997 (centre) and 02-04-2004 to 24-09-208¢0Nomy. Economic agents, be they banks, firms, or investors,
(bottom) continually adjust their market strategies to the macroscopic

economy which their collective market strategies create. It

is important to appreciate that there is an added layer of
Dow Jones in the US which are frequently quoted. A principgbmplexity within the economic community: Unlike many
aim of investors is to attempt to obtain information that caphysical systems, economic elements (human agents) react
provide some confidence in the immediate future of the stoghth strategy and foresight by considering the implications
markets often based on patterns of the past, patterns that@freheir actions (some of the time!). Although we can not
ultimately based on the interplay between greed and fear. One certain whether this fact changes the resulting behaviour,
of the principle components of this aim is based on the obs@fe can be sure that it introduces feedback which is the
vation that there are ‘waves within waves’ and ‘events withidery essence of both complex systems and chaotic dynamical
events’ that appear to permeate financial signals when studigdtems that produce fractal structures.
with sufficient detail and imagination. It is these repeating The link between dynamical systems, chaos and the econ-
patterns that occupy both the financial investor and the systegrsy is an important one because it is dynamical systems that
modeller alike and it is clear that although economies hauRistrate that local randomness and global determinism can
undergone many changes in the last one hundred years, dbeexist. Global determinism can be considered, at least in
dynamics of market data do not appear to change significanélyqualitative sense, in terms of broad social issues and the
(ignoring scale). For example, Figure 2 shows the build up teaction of distinct groups to changing social attitudes, partic-
three different ‘crashes’, the one of 1987 and that of 199¥arly in economies that have traditionally been enhanced by
(both after approximately 900 days) and what may turn oeh open and often pro-active policy towards the immigration
to be a crash of 2007 (at the time of writing this paperpf peoples from diverse cultural backgrounds. For example, in
The similarity in behaviour of these signals is remarkable ané56, Cromwell permitted an open door policy to immigration
is indicative of the quest to understand economic signals fitom continental Europe, partly in an attempt to enhance the
terms of some universal phenomenon from which appropriaieonomy of England that had been severely compromised by
(macro) economic models can be generated. In an efficiehé English Civil wars of 1642-46 and 1648-49 [19]. The long
market, only the revelation of some dramatic information cagrm effect of this was to provide a new financial infrastructure
cause a crash, yet post-mortem analysis of crashes typicaliyt laid the foundations for future economic development.
fail to (convincingly) tell us what this information must havet is arguable that Cromwell’s policy is the principal reason
been. why the ‘English revolution’ of the Eighteenth Century was

In modern economies, the distribution of stock returngrimarily an industrial one. Issues concerning the current and
and anomalies like market crashes emerge as a resultfudfire economic welfare of England may then be appreciated
considerable complex interaction. In the analysis of financia terms of the attitudes and values associated with new
time series, it is inevitable that assumptions need to be maadaves of immigrants and the policy of appeasement adopted
to make the derivation of a model possible. This is the moat government level.

04 1 1 1 1 1 1 1 | 1
0 100 200 300 400 500 GOO 700 800 400 1000

200 300 400 500 BOD VOO 800 400
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Complex systems can be split into two categories: equilosest to 21. Here, memory is introduced because the cards
librium and non-equilibrium. Equilibrium complex systemsare not replaced once they are taken. By keeping track of
undergoing a phase transition, can lead to ‘critical states’ tithe cards used, one can assess the shifting probabilities as
often exhibit random fractal structures in which the statistics pfay progresses. This game illustrates that not all gambling
the ‘field’ are scale invariant. For example, when ferromagnets governed by Gaussian statistics. There are processes that
are heated, as the temperature rises, the spins of the electten® long-term memory, even though they are probabilistic
which contribute to the magnetic field gain energy and begin the short term. This leads directly to the question, does
to change in direction. At some critical temperature, the spitt®& economy have memory? A system has memory if what
form a random vector field with a zero mean and a phabkappens today will affect what happens in the future.
transition occurs in which the magnetic field averages to zero.Memory can be tested by observing correlations in the
But the field is not just random, it is a self-affine random fieldata. If the system today has no affect on the system at any
whose statistical distribution is the same at different scaldature time, then the data produced by the system will be
irrespective of the characteristics of the distribution. Norindependently distributed and there will be no correlations. A
equilibrium complex systems or ‘driven’ systems give rise tfunction that characterises the expected correlations between
‘self organised critical states’, an example is the growing dfifferent time periods of a financial signalt) is the Auto-
sand piles. If sand is continuously supplied from above, tl@orrelation Function (ACF) defined by
sand starts to pile up. Eventually, little avalanches will occur 0o
as the sand pile inevitably spreads outwards under the force of A(t) = u(t) ©u(t) = / u(r)u(r — t)dr.
gravity. The temporal and spatial statistics of these avalanches -
are scale invariant. where® denotes that the correlation operation. This function

Financial markets can be considered to be non-equilibriugdn be computed either directly (evaluation of the above
systems because they are constantly driven by transactions thtggral) or via application of the power spectrum using the
occur as the result of new fundamental information about firnggrrelation theorem
and businesses. They are complex systems because the market 9
also responds to itsel{ often in Z high?/y non-linear fashion, and ut) O u(t) == U(w) |
would carry on doing so (at least for some time) in the absenaere<— denotes transformation from real spade Fourier
of new information. The ‘price change field’ is highly nonspacew (the angular frequency), i.e.
linear and very sensitive to exogenous shocks and it is probable oo
that all shocks have a long term effect. Market transactions .
generally occur globally at gt}he rate of hundreds of thousands Ulw) = Flu®)] = / u(t) exp(—iwt)dt
per second. It is the frequency and nature of these transactions -
that dictate stock market indices, just as it is the frequency awtiere 7 denotes the Fourier transform operator. The power
nature of the sand particles that dictates the statistics of tgectrum| U(w) |? characterises the amplitude distribution of
avalanches in a sand pile. These are all examples of randiiv@ correlation function from which we can estimate the time
scaling fractals [20]-[28]. span of memory effects. This also offers a convenient way to
calculate the correlation function (by taking the inverse Fourier
transform of| U(w) |?). If the power spectrum has more
power at low frequencies, then there are long time correlations

When faced with a complex process of unknown origin, @nd therefore long-term memory effects. Inversely, if there is
is usual to select an independent process such as Browrgaeater power at the high frequency end of the spectrum, then
motion as a working hypothesis where the statistics and prdbere are short-term time correlations and evidence of short-
abilities can be estimated with great accuracy. However, usitegm memory. White noise, which characterises a time series
traditional statistics to model the markets assumes that they aith no correlations over any scale, has a uniformly distributed
games of chance. For this reason, investment in securitiep@ver spectrum.
often equated with gambling. In most games of chance, manySince prices movements themselves are a non-stationary
degrees of freedom are employed to ensure that outcomesgaeess, there is no ACF as such. However, if we calculate
random. In the case of a simple dice, a coin or roulette whethe ACF of the price incrementé./dt, then we can observe
for example, no matter how hard you may try, it is physicalllow much of what happens today is correlated with what
impossible to master your roll or throw such that you cahappens in the future. According to the EMH, the economy
control outcomes. There are too many non-repeatable elemdras no memory and there will therefore be no correlations,
(speeds, angles and so on) and non-linearly compoundigept for today with itself. We should therefore expect the
errors involved. Although these systems have a limited numbkmswer spectrum to be effectively constant and the ACF to be
of degrees of freedom, each outcome is independent of théelta function. The power spectra and the ACFs of log price
previous one. However, there are some games of chance tfengesilogu/d¢t and their absolute valuedlogw/dt | for
involve memory. In Blackjack, for example, two cards are deahe FTSE 100 index (daily close) from 02-04-1984 to 24-09-
to each player and the object is to get as close as possible@®7 is given in Figure 3. The power spectra of the data is
21 by twisting (taking another card) or sticking. In a ‘busthot constant with rogue spikes (or groups of spikes) at the
(over 21), the player loses; the winner is the player that staygermediate and high frequency portions of the spectrum. For

Ill. DOES AMACROECONOMY HAVE MEMORY?
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07 07 Function (i.e. the Fourier transform of the PDF); the Power
Spectral Density Function (PSDF). The PSDF is the function

that describes the envelope or shape of the power spectrum of
01 a signal. In this sense, the PSDF is a measure of the field
correlations. The PDF and the PSDF are two of the most

07 0 fundamental properties of any stochastic field and various
0 2000 4000 G000 0 2000 4000 000 terms are used to convey these properties. For example, the
5 10 term ‘zero-mean white Gaussian noise’ refers to a stochastic
field characterized by a PSDF that is effectively constant over
all frequencies (hence the term ‘white’ as in ‘white light’) and
has a PDF with a Gaussian profile whose mean is zero.
Stochastic fields can of course be characterized using trans-
forms other than the Fourier transform (from which the PSDF

=

=

!
3]

01000 2000 3000 0 1000 2000 3000 s obtained) but the conventional PDF-PSDF approach serves
0.05 05 many purposes in stochastic systems theory. However, in
045 general, there is no general connectivity between the PSDF

and the PDF either in terms of theoretical prediction and/or

0 04 experimental determination. It is not generally possible to
0.3 forge B compute the PSDF of a stochastic field from knowledge of
005 the PDF or the PDF from the PSDF. Hence, in general, the
0 1000 2000 3000 0 1000 2000 3000 ppF and PSDF are fundamental but non-related properties

of a stochastic field. However, for some specific statistical
|Fi@l- 3. Lr?g-pow?r spe;tra %Bd' gCFsdofllogal pricef chaggeg an;isabsozltpjﬁocesses, relationships between the PDF and PSDF can
o e changes for TSE 100 idex (daly close) fom 02.04-398¢ 2 2 found, for example, between Gaussian and non-Gaussian
changes; middle: log power spectra; bottom: ACFs. fractal processes [33] and for differentiable Gaussian processes
[34].

There are two conventional approaches to simulating a
the absolute log price increments, there is evidence of a powgschastic field. The first of these is based on predicting the
law at the low frequency end, indicating that there is additionpipF (or the Characteristic Function) theoretically (if possible).
correlation in the signs of the data. A pseudo random number generator is then designed whose

The ACF of the log price changes is relatively featurelesgytput provides a discrete stochastic field that is characteristic
indicating that the excess of low frequency power within th@f the predicted PDF. The second approach is based on
signal has a fairly subtle effect on the correlation functioronsidering the PSDF of a field which, like the PDF, is ideally
However, the ACF of the absolute log price changes contaigérived theoretically. The stochastic field is then typically
a number of interesting features. It shows that there aBnulated by filtering white noise. A ‘good’ stochastic model
a large number of short range correlations followed by 38 one that accurately predicts both the PDF and the PSDF
irregular decline up to approximately 1500 days after whicf the data. It should take into account the fact that, in
the correlations start to develop again, peaking at about 22g8neral, stochastic processes are non-stationary. In addition, it
days. The system governing the magnitudes of the log priggould, if appropriate, model rare but extreme events in which
movements clearly has a better long-term memory thansjgnificant deviations from the norm occur.
should. The data used in this anaIySiS contains 5932 dally priCQ\|eW market phenomenon result from either a Strong the-
movements and it is therefore imprObable that these results ofEtical reasoning or from Compe”ing experimenta| evidence
coincidental and correlations of this, or any similar type, wha poth. In econometrics, the processes that create time series
ever the time Scale, eﬁeCtiVEly invalidates the independe%h as the FTSE have many Component parts and the inter-
assumption of the EMH. action of those components is so complex that a deterministic

description is simply not possible. As in all complex systems
IV. STOCHASTICMODELLING OF MACROECONOMICDATA  theory, we are usually required to restrict the problem to

Developing mathematical models to simulate stochasticodelling the statistics of the data rather than the data itself,
processes has an important role in financial analysis anel to develop stochastic models. When creating models of
information systems in general where it should be noted thaimplex systems, there is a trade-off between simplifying
information systems are now one of the most important aspeatsd deriving the statistics we want to compare with reality
in terms of regulating financial systems, e.g. [29]-[32]. A goodnd simulating the behaviour through an emergent statistical
stochastic model is one that accurately predicts the statisti==haviour. Stochastic simulation allows us to investigate the
we observe in reality, and one that is based upon some weflect of various traders’ behavioural rules on the global
defined rationale. Thus, the model should not only descrisaatistics of the market, an approach that provides for a natural
the data, but also help to explain and understand the systdnterpretation and an understanding of how the amalgamation

There are two principal criteria used to define the characf certain concepts leads to these statistics.
teristics of a stochastic field: (i) The PDF or the Characteristic One cause of correlations in market price changes (and
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volatility) is mimetic behaviour, known as herding. In generah steps the total length of the path the walker has taken will
market crashes happen when large numbers of agents placelsefustan. We define this value as the resultant amplitutie
orders simultaneously creating an imbalance to the extent thahe total length of the walk - which will change only by
market makers are unable to absorb the other side with@agcount of the number of steps taken. Thus,

lowering prices substantially. Most of these agents do not
communicate with each other, nor do they take orders from
a leader. In fact, most of the time they are in disagreemeHteach step takes a set period of timéo complete, then it
and submit roughly the same amount of buy and sell ordels.clear that

This is a healthy non-crash situation; it is a diffusive (random- A(t) = at.

walk) process which underlies the EMH and financial portfolighis scenario is limited by the fact that we are assuming that
rationalization. each step is of precisely the same length and takes precisely the
One explanation for crashes involves a replacement for t8¢me period of time to accomplish. In general, we consider
EMH by the Fractal Market Hypothesis (FMH) which is the, to be the mean value of all the step lengths ar be
basis of the model considered in this paper. The FMH propos@g cumulative time associated with the average time taken to
the following: (i) The market is stable when it consists o,gerform all steps. A walk of this type has a coherence from

investors covering a large number of investment horizole step or cluster of steps to the next, is entirely predictable
which ensures that there is ample liquidity for traders; (i3ngd correlated in time.

information is more related to market sentiment and technicaljf the same walk takes place in the complex plane then the
factors in the short term than in the long term - as investmephases from one step to the next is the same. Thus, the result
horizons increase and longer term fundamental informatigf) given by
dominates; (iii) if an event occurs that puts the validity _ ) )
of fundamental information in question, long-term investors Aexp(if) = ZQGXP(ZH) = naexp(if).
either withdraw completely or invest on shorter terms (i.e. o
when the overall investment horizon of the market shrinksh€ resultant amplitude is given by: as before and the total
to a uniform level, the market becomes unstable): (iv) pricé%‘ase value i9. We can also define the intensity which is
reflect a combination of short-term technical and long-terfiven by s
fundamental valuation and thus, short-term price movements I =| Aexp(if) "= A
are likely to be more volatile than long-term trades - they afehus, as a function of time, the intensity associated with this
more likely to be the result of crowd behaviour; (v) if a securitgoherent phase walk is given by
has no tie to the economic cycle, then there will be no long- I(t) = a2?
term trend and short-term technical information will dominate. ’
Unlike the EMH, the FMH states that information is valued Suppose we make the walk slightly more complicated and
according to the investment horizon of the investor. Becaugensider the case where the phase increases by a small constant
the different investment horizons value information differentlyactor of @ at each step. Aften steps, the result will be given
the diffusion of information will also be uneven. Unlike mosby the sum of all the steps taken, i.e.
complex physical systems, the agents of the economy, and Aexp(i©) = Zaexp(me)

n

A =an.

perhaps to some extent the economy itself, have an extra
ingredient, an extra degree of complexity. This ingredient is

CONSCIOUSNESS. = a[l + exp(if) + exp(2i0) + ... + expli(n — 1)0)

[ —exp(ind)]
V. RANDOM WALK PROCESSES [1 — exp(if)]
The purpose of revisiting random walk processes is that — eXp(mfo/Q)[eXp(_me/Q) - eXp(.me/Q)]
it provides a useful conceptual reference to the model that is exp(i0/2)[exp(—if/2) — exp(if/2)]
introduced later on in this paper and in particular, appreciation sin(nf/2)

of the use of the fractional diffusion equation for describing = aexpli(n —1)0/2)] sin 6,2
self-affine stochastic fields, an equation that arises through mgw after many steps, when s large
unification of coherent and incoherent random walks. We shall ’ ’

consider a random walk in the plane where the amplitude a=(n—1)0/2~nf/2
remains constant but where the phase changes, first by when the phase changés small,
constant factor and then by a random value betweemd 0
27, sin(0/2) ~ 2=
and we obtain the result
A. Coherent (Constant) Phase Walks A o _ /201 ) sin o
Consider a walk in the (real) plane where the length from exp(i®) = naexpli((n — 1)/2)f]sinca, - sinca = a

one step to another is constant - the amplitudeand where For very small changes in the phage<< 1, sinca ~ 1 and
the direction that is taken after each step is the same. In tthie resultant amplitudel is, as before, given byn or as a
simple case, the ‘walker’ continues in a straight line and afténction of time, byat.
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B. Incoherent (Random) Phase Walk In this caseA is proportional to the square root of the number

Incoherent or random phase walks are the basis of modelliify Steps taken and if each step is taken over a mean time
many kinds of statistical fluctuations. It is also the principl@€riod, then we obtain the result
physical model associated with the stochastic behaviour of A(t) = aVt.
an ensemble of particles that collectively exhibit the process
of diffusion. The first quantitative description of BrownianWith a coherent walk we can state that the resulting amplitude
motion was undertaken by Albert Einstein and published gfter a timet will be at. This is a deterministic result.
1905 [35]. The basic idea is to consider a random walk irfowever, with an incoherent random walk, the interpretation
which the mean value of each stepaidut where there is no of the above result is that,/z is the amplitude associated with
correlation in the direction of the walk from one step to théhe most likely position that the random walker will be after
next. That is, the direction taken by the walker from one stdjgne ¢. If we imagine many random walkers, each starting out
to next can be in any direction described by an angle betwe@ their ‘journey’ from the origin of the (complex) plane at
0 and 360 degrees dr and 27 radians - for a walk in the t = 0, record the distances from the origin of this plane after a
plane. The angle that is taken at each step is entirely randé@t period of time, then the PDF ofA will have a maximum
and all angles are taken to be equally likely. Thus, the PDRIue - the ‘mode’ of the distribution - that occursay'z. In

of angles betweef and2r is given by the case of a perfectly coherent walk, the PDF will consist of
) a unit spike that occurs ait.
Pr[f] = {%7 0<6<2m Figure 4 shows coherent and a incoherent phase walks in the
0, otherwise. plane. Each position of the walk;,y;), j=1,2,3,...,N

. . h ing (for=1
If we consider the random walk to take place in the complexaS been computed using (@r )

plane, then aften steps, the position of the walker will be J

determined by a resultant amplitudé and phase angl® Tj = ZCOS(Qi)
given by the sum of all the steps taken, i.e. i=1
J
Aexp(i®) = aexp(ify) + aexp(ibs) + ... + aexp(ib,) yi = Z sin(6;)
n 1=1
—a Zl exp(ifm)- where 6; € [0,2x] is uniformly distributed and computed

using the standard linear congruential pseudo random number
The problem is to obtain a scaling relationship between generator

andn. Clearly we should not expect to be proportional to

the number of steps as is the case with a coherent walk. Tip1 = az;modP, i=1,2,..,N (2)
The trick to finding this relationship is to analyse the result:, , — 77 and P = 231
of taking the square modulus agfexp(i©). This provides an
expression for the intensity given by

— 1 and an arbitrary value af -
the ‘seed’. For the coherent phase walk

2 x;
g : R

I=a? Z exp (i) o >

el which limits the angle to a small range between 0 an@
n n radiané. For the incoherent phase walk, the range of values
— g2 Z exp(ifim) Z exp(—ifi) is between 0 andr radians, i.e.

m=1 m=1 0, =27 L

. . B

=a® |n+ Z exp(i9j)ZeXp(—i€k)
J=1,j#k k=1

VI. PHYSICAL INTERPRETATION

Now, in a typical term In the (classical) kinetic theory of matter (including gases,

exp(i6;) exp(—iby) = cos(0; — 6x) + isin(6; — Ox) liquids, plasmas and some solids), we consideio be the
. ) average distance a particle travels before it randomly collides
of the double summation, the function®s(6; — 6i) and 4y scatters from another particle. The scattering process is
sin(; — 6),) have random values betweeni. Consequently, yaren to be entirely elastic, i.e. the interaction does not affect
asn becomes larger and larger, the double sum will reducg, particle in any way other than to change the direction in
to zero since more and more of these terms cancel each olfififch it travels. Thusg represents thenean free pattof a
out. This insight is the basis for stating that for>> 1 particle. The mean free path is a measure how far a particle can
I 2 travel before scattering with another particle which in turn, is

=an
related to the number of particle per unit volume - the density
and the resulting amplitude is therefore given by
4|1x|lo denote the uniform norm, equivalent to the maximum value of the
A =avn. array vectorx.
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‘system’. To a first order approximation, the diffusivity will

0 . . . . . . . . . depend on the number of sites that are required to manage the
reception and transmission of the information packet. As the
5b | number of sites decreases the flow of information becomes

more propagative and less diffusive. Thus, we can consider
the Internet, for example (albeit a good one) to be a source
of information diffusion, not in terms of the diffusion of
the information it coveys but in terms of the way in which
15 ! ! ! ! ! ! ! ! ! information packets ‘walk through’ the network. Further, we

; can think of the internet itself as being an active medium
for the propagation of financial information from one site to
B . . . . . . another.

A. The Classical Diffusion Equation

The homogeneous diffusion equation is given by (for the
one-dimension case) [36]

0? 3j
(E);L‘2 — U&f) u(z,t) =0

for a diffusivity D = o—!. The fieldu(z, t) represents a mea-
Fig. 4. Examples of a coherent (top) and incoherent (bottom) random wagkirable quantity whose space-time dependence is determined
in the plane forV = 100. by the random walk of a large ensemble of particles or a

multiple scattered wavefield or information flowing through a

complex network. We consider an initial value for this field
of a gas for example. If we imagine a particle ‘diffusingdenoted byuy = u(z,0) = u(x,t) att = 0. For exampleu
through an ensemble of particles, then the mean free pathuld be the temperature of a material that starts ‘radiating’
is a measure of the ‘diffusivity’ of the medium in whichheat at timet = 0 from a point in space: due to a mass
the process of diffusion takes place. This is a feature of @ thermally energised particles, each of which undertakes
classical diffusion processes which can be formulated in termasrandom walk from the source of heat in which the most
of the diffusion equation with diffusivityD. The dimensions of likely position of any particle after a timeis proportional to
diffusivity are length? /time and may be interpreted in terms\/z. In optical diffusion, for exampley denotes the intensity
of the characteristic distance of a random walk process whigh light. The light wavefield is taken to be composed of an
varies with the square root of time. ensemble of wavefronts or rays, each of which undergoes

If we consider a wavefront travelling through space anahultiple scattering as it propagates through the diffuser. For a
scattering from a site that changes the direction of propagatisingle wavefront element, multiple scattering is equivalent to
then the mean free path can be taken to be the average nunadberndom walk of that element.
of wavelengths taken by the wavefront to propagate from oneThe relationship between a random walk model and the
interaction to another. After scattering from many sites, th#ffusion equation can also be attributed to Einstein [35]
wavefront can be considered to have diffused through thdo derived the diffusion equation using a random particle
‘diffuser’. Here, the mean free path is a measure of the densitodel system assuming that the movements of the particles
of scattering sites, which in turn, is a measure of the diffusivigre independent of the movements of all other particles and
of the material - an optical diffuser, for example. that the motion of a single particle at some interval of time is
We can use the random walk model associated withirdependent of its motion at all other times. The derivation is

wavefield to interpret the flow of information through aas follows: Letr be a small interval of time in which a particle
complex network of ‘sites’ that are responsible for passirijoves some distance betwekmnd+ dX with a probability
on the information from one site to the next. If a packet oP(\) wherer is long enough to assume that the movements
information (e.g. a stream of bits of arbitrary length) travelgf the particle in two separate periods-ofire independent. If
directly from A to B, then, in terms of the random walk models is the total number of particles and we assume h@t) is
discussed above, the model associated with this informatiegnstant between and A 4 dA, then the number of particles
exchange is ‘propagative’; it is a coherent process which Wich will travel a distance betweeh and A + dX in 7 is
correlated in time and its principal physical characteristic gven by
determined by the speed at which the information flows from dn = nP(\)dA.
Ato B. On the other hand, suppose that this information packet
is transferred from A to B via information interchange sites Gf u(x,t) is the concentration (number of particles per unit
D,....Z,... In this case the flow of information is diffusive and isolume) then the concentration at time- 7 is described by
characterised by the diffusivity of the information interchangthe integral of the concentration of particles which have been
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displaced by\ in time 7, as described by the equation aboveB. The Classical Wave Equation

over all possible), i.e.

u(z,t+71) = /u(m—i—)\,t)P()\)d)\.

— 00

Since,r is assumed to be small, we can approximgte, t+7)

using the Taylor series and write

u(z,t+7) ~u(z,t) + T%u(x, t).

Similarly, using a Taylor series expansion@fz + A, t), we

have

The wave equation (homogeneous form) is given by (for
the one-dimension case) [36]

0? 1 02
(axz B m) u(z,t) =0

wherec is the wave speed anddenotes the amplitude of the
wavefield. A possible solution to this equation is

u(z,t) = p(x — ct)

which describes a wave with distributipgnmoving alongz at
velocity c. For the initial value problem where

u(z,0) = v(x), %u(m,()) = w(z)

w(z + A t) ~u(z,t) + AaEU(x,t) + /;88722 the (d’Alembert) general solution is given by [36]
€T . 0x
z+ct
where the higher order terms are neglected under the assump-y (s, ¢) = l[v(x —ct) +v(z +ct)] + ks w(€)de.
tion that if 7 is small, then the distance travelled, must also 2 e

be small. We can then write

oo

u(z,t) + T%U(l‘, t) = u(x,t) / P(N\)dA

— 00

oo oo

2

ox 2 Ox2

—00 — 00

For isotropic diffusion,P(\) = P(—X) and soP is an even

function with usual normalization condition

o0

/ POVAA = 1.

— 0o

As X is an odd function, the productP(\) is also an odd
function which, if integrated over all values of equates to

zero. Thus we can write

oo
2

0 B 10 9
u(x,t) + Tgu(x,t) =u(z,t) + §@u(z,t) / A P(A)dA

— 00

so that

Finally, defining the diffusivity as
/\2
D= / - P()A

we obtain the diffusion equation

o 2

5 u(z, t).

+gu(:r,t)/)\P(A)dA—&—la—u(x,t) / N P(N)dA.

This solution is of limited use in that the range ofis
unbounded and only applies to the case on an ‘infinite string’.
For the case whew = 0, the solution can be taken to describe
two identical waves with amplitude distributieriz) travelling
away from each other. Neither wave is taken to undergo any
interaction as it travels along a straight path and thus, after
time ¢ the distance travelled will bet. This is analogous

to a walker undertaking a perfectly coherent walk with an
average step length efand after a period of timeé reaching

a positionct. The point here, is that we can relate the diffusion
equation and the wave equation to two types of processes. The
diffusion equation describes a field generated by incoherent
random processes with no time correlations whereas the wave
equation describes a field generated by coherent processes that
are correlated in time. One of the aims of this paper is to
formulate an equation that models the intermediate case - the
fractional diffusion equation - in which random walk process
have a directional bias.

VIl. HURSTPROCESSES

For a walk in the planeA(t) = at for a coherent walk and
A(t) = ay/t for an incoherent walk. However, what would
be the result if the walk was neither coherent or incoherent
but partial coherent/incoherent? In other words, suppose the
random walk exhibited a bias with regard to the distribution
of angles used to change the direction. What would be the
effect on the scaling law/t? Intuitively, one expects that
as the distribution of angles reduces, the corresponding walk
becomes more and more coherent, exhibiting longer and longer
time correlations until the process conforms to a fully coherent
walk. A simulation of such an effect is given in Figure 5 which
shows a random walk in the (real) plane as the (uniform)
distribution of angles decreases. The walk becomes less and
less random as the width of the distribution is reduced.

The equivalent effect for a random phase walk in three-
dimensions is given in Figure 6. Each position of the walk

(xj,yj,zj), ] = 1,2,3,...,N
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has been computed using
; 400 400,

T = ; cos(6;) cos(¢;) - ?5' 200+ \\‘
2

L 0 0 1\
y; = Z sin(6;) cos(¢;) 50 \\ gy 100 \H b ssmmey
i=1 0 ™~ _ "0 B0 e _—" g
i 50 -20 0 -50
2=y sin(¢;)
1=1
for N = 500. The uniform random number generator use 400 400,
to computef; and ¢; is the same - equation (2) - but with : -
different seeds. Conceptually, scaling models associated w 200 \‘“\ 200 \‘“‘\x
the intermediate case(s) should be based on a generalisatio '\._\\ R\L“H
the scaling laws,/t andt to the formt? where0.5 < H < 1. 208 e o 203 . e
This reasoning is the basis for generalising the random wz mx,xf,ﬂfjs‘af a mux“m f_fﬁ;; 0
processes considered so far, the exporértteing known as 0 _100 0 _oo0

the Hurst exponent or ‘dimension’.

Fig. 6. Three dimensional random phase walks for a uniform distribution of
angles(eiv ¢'L) € ([07 271']7 [07 271—]) (top Ieft)r (627 ¢l) € ([07 1.67’1’]7 [07 167‘—})

50 . (top right), (6:,¢:) € ([0,1.37],[0,1.3x]) (bottom left) and(0;, ¢;) €

([0, ], [0, ]) (bottom right).

o 50
-50 0 .JI“‘ however, had studied the 847-year record that the Egyptians
had kept of the Nile river overflows, from 622 to 1469. He
= 5 am s wm ; o0 i noticed that I.arge overflows tended to be followed by large
overflows until abruptly, the system would then change to low
400 000 overflows, which also tended to be followed by low overflows.

There appeared to be cycles, but with no predictable period.

300
Standard statistical analysis of the day revealed no significant

4000
200

2000 correlations between observations, so Hurst, who was aware
100 5 of Einstein’s work on Brownian motion, developed his own
0 . methodology [37] lead to the scaling la . This scaling law

makes no prior assumptions about any underlying distribu-
tions. It simply tells us how the system is scaling with respect
to time. So how do we interpret the Hurst exponent? We know
Fig. 5. Random phase walks in the plane for a uniform distribution of angl¢hat H = 0.5 is consistent with an independently distributed
gln 59[1.0’62{6], (ltgfr]'e{tb)éggnf [r?éﬁ{)?ﬁ} (top right), 8; € [0, 1.8x] (bottom left) system. The range.5 < H < 1, implies a persistent time
series, and a persistent time series is characterized by positive
correlations. Theoretically, what happens today will ultimately
have a lasting effect on the future. The rangec H < 0.5
indicates anti-persistence which means that the time series

H E Hurst (1900-1978) was an English civil engineer wh overs less ground than a random process. In other words,
ere are negative correlations. For a system to cover less

designed dams and worked on the Nile river dam projects i . itself f h d
the 1920s and 1930s. He studied the Nile so extensively t éﬁtance, It must reverse itself more often than a random

some Egyptians reportedly nicknamed him ‘the father of tHYOCESS.

Nile'. The Nile river posed an interesting problem for Hurst i

as a hydrologist. When designing a dam, hydrologists need VIII. L EVY PROCESSES

to estimate the necessary storage capacity of the resultinghe generalisation of Einstein’s equatiof{t) = av/t by
reservoir. An influx of water occurs through various naturadfiurst to the formA(¢) = at,0 < H < 1 was necessary in
sources (rainfall, river overflows etc.) and a regulated amoumider for Hurst to analyse the apparent random behaviour of
needs to be released for primarily agricultural purposes, fitre annual rise and fall of the Nile river for which Einstein’s
example, the storage capacity of a reservoir being basedrondel was inadequate. In considering this generalisation,
the net water flow. Hydrologists usually begin by assumingurst paved the way for an appreciation that most natural
that the water influx is random, a perfectly reasonable astochastic phenomena which, at first site, appear random, have
sumption when dealing with a complex ecosystem. Hurstertain trends that can be identified over a given period of

-100 —2000
=500 0 500 1000 1500 1000 0 1000 2000
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time. In other words, many natural random patterns havebatween 0 and 2, &vy's characteristic function corresponds
bias to them that leads to time correlations in their stochasta@ a PDF of the form

behaviour, a behaviour that is not an inherent characteristic of 1

a random walk model and fully diffusive processes in general. p(x) ~ PR ET AR

This aspect of stochastic field theory was taken up in the late

1930s by the French mathematician Paéky (1886-1971) |Nis can be shown as follofisFor 0 < ¢ < 1 and since the
[38]. characteristic function is symmetric, we have

3=

Lévy processes are random walks whose distribution has p(z) = Re[f ()]
infinite moments. The statistics of (conventional) physical
systems are usually concerned with stochastic fields that haviere -
PDFs where (at least) the first two moments (the mean " ikm kA
and variance) are well defined and finiteVly statistics is fla) = /6 e dk
concerned with statistical systems where all the moments 0
(starting with the mean) are infinite. - oo

Many distributions exist where the mean and variance are_ 1 {161-1“6;&] 1 /e“”(quqfle*’“q)dk
finite but are not representative of the process, e.g. the tail of 7™ \ [z k—o T
the distribution is significant, where rare but extreme events 0
occur. These distributions includegly distributions. Evy's q 7 .
original approachto deriving such distributions is based on = 9min / dkH(k)kT e e 2 — oo
the following question: Under what circumstances does the oo

distribution associated with a random walk of a few steps

look the same as the distribution after many steps (except L k>0
for scaling)? This question is effectively the same as asking H(k) = { ’
under what circumstances do we obtain a random walk that 0, k<0

is statistically self-affine. The characteristic function (i.e. thgg, o ¢ < 1, f(z) is singular atk = 0 and the greatest

Fourier transform)P(k) of such a distributiorp(x:) was first - contribution to this integral is the inverse Fourier transform of
shown by levy to be given by (for symmetric dlStrIbUtIOﬂSH(k)k,q—l_ Noting that [27]

only)

P(k) =exp(—a|k|[?), 0<qg<2 ]
(ik)a| — al-a

whereq is a (positive) constant. l§ = 0, ) .
where F~! denotes the inverse Fourier transform, and that

17 ‘ ‘
p(x) = o / exp(—a) exp(ikx)dk = exp(—a)d(x) H(k) < 6(z) + Y 5(x), x— o0
T
) __OO_ ) ~ then, using the convolution theorem, we have
and the distribution is concentrated solely at the origin as

described by the delta functiai{z). Wheng = 1, the Cauchy F@) ~ g i1
distribution imx xl
o0 and thus
1 . 1 a 1
p(zr) = Py exp(—a | k |) exp(ikz)dk = P S p(z) ~ gy
o For 1 < ¢ < 2, we can integrate by parts twice to obtain
is obtained and whem = 2, p(x) is characterized by the o
Gaussian distribution Fa) = a /dkkq‘le""qe“‘“
1 oo 1T ;
p(z) = > / exp(—ak?) exp(ikz)dk
m e’
—0o0 _ i |:_1kq_16_kq€ik‘r:|
. T 1T k=0
m
= — /= exp|—2?/(4a)], oo
2\ a q ik q—2 —k1 g—112 —k9
+— [ dke™ (g — 1)kT%e™ " — q(k? )2

whose first and second moments are finite. The Cauchy distri- mr?
bution has a relatively long tail compared with the Gaussian 0
distribution and a stochastic field described by a Cauchy _
distribution is likely to have more extreme variations wher — [ dke™™*[(q—1)k" e —q(k""")%e "], 2 — co.
compared to a Gaussian distributed field. For values; of i 0

oo

5P Levy was the research supervisor of B Mandelbrot, the ‘inventor’ of $The author acknowledges Dr K | Hopcraft, School of Mathematical
‘fractal geometry’. Sciences, Nottingham University, England, for his help in deriving this result.
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The first term of this result is singular and therefore provides1) and that, in comparison, our approach to introducing a

the greatest contribution and thus we can write, fractional differential operator is based on postulation alone.
It is therefore similar to certain other differential operators, a

Fla) = q(¢ —1) /H etk (a2 7kq)dk notable example being Séidinger’s operator.
Coma? The fractional diffusion operator given above is appropriate

for modelling fractional diffusive processes that are stationary.
In this case, forl < ¢ < 2, the greatest contribution to thisFor non-stationary fractional diffusion, we could consider the
integral is the inverse Fourier transform o~ and hence, case where the diffusivity is time variant as defined by the
q(q — 1) 24 function a(t)._H_owever, a more interesting case arises Wh_en
f(@) ~ 5= — the characteristics of the diffusion processes change over time
becoming less or more diffusive. This is illustrated in terms
1 of the random walk in the plane given in Figure 7. Here, the
p(@) ~ g, T 00 walk starts off being fully diffusive (i.eH = 0.5 andq = 1),
changes to being fractionally diffusivé).b < H < 1 and
1 < ¢ < 2) and then changes back to being fully diffusive. The
result given in Figure 7 shows a transition from two episodes
that are fully diffusive which has been generated using uniform
ase distributions whose width changes framto 1.87 and
back to27. In terms of fractional diffusion, this is equivalent
tg having an operator

mx? a1
so that

which maps onto the previous asymptoticgas> 1 from the
above.

For ¢ > 2, the second moment of theélzy distribution
exists and the sums of large numbers of independent trials
Gaussian distributed. For example, if the result were a rand
walk with a step length distribution governed b)), ¢ > 2,
then the result would be normal (Gaussian) diffusion, i.e.
Brownian process. Far < 2 the second moment of this PDF 02 q 91

(the mean square), diverges and the characteristic scale of the o2 8th
walk is lost. This type of random walk is called aWyeflight. \whereq = 1,¢ € 0,Ti]; ¢ > 1,t € (T, Ta]; ¢ = 1,t €
(T3, T3] where T3 > Ty, > Ti. If we want to generallse

IX. THE FRACTIONAL DIFFUSION EQUATION such processes over arbitrary periods of time, then we should
We can consider a Hurst process to be a form of fractionednsiderg to be a function of time. We can then introduce a
Brownian motion based on the generalization non-stationary fractional diffusion operator given by
A(t) = at™, H € (0,1] 9 _ a9

022~ 7 o
TRfs operator is the theoretical basis for the Fractal Market
ypothesis considered in this paper.

Given that incoherent random walks describe processes wh
macroscopic behaviour is characterised by the diffusion eq
tion, then, by induction, Hurst processes should be charac-
terised by generalizing the diffusion operator

82 8 [=1n]
o2 "ot
to the fractional form w0l
0? g 9°
o2~ o Il

whereq € (0,2] and D = 1/c is the fractional diffusivity.
Fractional diffusive processes can therefore be interpret 1of
as intermediate between classical diffusive (random phe
walks with H = 0.5; diffusive processes witly = 1) and
‘propagative process’ (coherent phase walks fér = 1; 86 o 10 = =0 40 s so 70 80 @0
propagative processes with= 2), e.g. [39], [40] and [38]

- references therein. Fractional diffusion equations can algg. 7. Non-stationary random phase walk in the plane.

be used to model évy distributions [41] and fractal time

random walks [42], [43]. However, it should be noted that the

fractional diffusion operator given above is the result of a phe-

nomenology. It is no more (and no less) than a generalisation X. FRACTIONAL DYNAMIC MODEL

of a well known differential operator to fractional form which \We consider an inhomogeneous non-stationary fractional
follows from a physical analysis of a fully incoherent randorgiffusion equation of the form

process and it generalisation to fractional form in terms of the 92 500

Hurst exponent. Note that the diffusion and wave equations can —_ _ ga®)

be derived rigorously from a range of fundamental physical Oz? ot
laws (conservation of mass, the continuity equation, Fourieshere F' is a stochastic source term with some PDF and
law of thermal conduction, Newton’s laws of motion and s@ the stochastic field whose solution we require. Specifying

u(z,t) = F(x,t)
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q to be in the range) < ¢ < 2, leads to control over the poses a fundamental problem which is how to define and work
basic physical characteristics of the equation so that we oaith the term
define an anti-persistent field z,¢) whengq < 1, a diffusive
field wheng = 1 and a propagative field whenp= 2. In this

case, non-stationarity is introduced through the use of a time ota®) u(@, ).
varying fractional derivative whose values modify the physic@iven the result (for constanm)
characteristics of the equation.
The range of values af is based on deriving an equation 94 1 7
that is a generalisation of both diffusive and propagative @) =5 /(iw)qU(%w)eXP(iwt)dw
processes using, what is fundamentally, a phenomenology. “o

When g = 0 V¢, the time dependent behaviour is determine\lee might generalize as follows:
by the source function alone; when= 1 Vt, u describes '
a diffusive process wher® = ¢! is the ‘diffusivity’; when

q = 2 we have a propagative process wherie the ‘slowness’ 91(7) 1 N S a() ,
(the inverse of the wave speed). The latter process should 5tq(r)“($’t> ~ on /<’w) U(z,w) exp(iwt)dw.
be expected to ‘propagate information’ more rapidly than a —0o0

diffusive process leading to transients or ‘flights’ of some typ@jowever, if we consider the case where the Fourier dimension
We refer tog as the ‘Fourier Dimension’ which is related tojg g relatively slowly varying function of time, then we can
the Hurst Exponent byy = H + Dy /2 where Dy is the |egitimately consider(t) to be composed of a sequence of
Topological Dimension and to the Fractal Dimensibm by gifferent states; = ¢(t;). This approach allows us to develop
q=1—Dp+3Dr/2 as shown in Appendix I. a stationary solution for a fixeg over a fixed period of time.
Since ¢(t) ‘drives’ the non-stationary behaviour af, the Non-stationary behaviour can then be introduced by using the

way in which we model(¢) is crucial. It is arguable that same solution for different values gfover fixed (or varying)
the changes in the statistical characteristica:ofrhich lead periods of time and concatenating the solutions forgall

to its non-stationary behaviour should also be random. Thus,
suppose that we let the Fourier dimension at a timbe

. . Xl. GREEN S FUNCTION SOLUTION
chosen randomly, a randomness that is determined by some

PDF. In this case, the non-stationary characteristics wiill We consider a Green's function solution to the equation
be determined by the PDF (and associated parameters) alone.

Also, sincegq is a dimension, we can consider our model to be 52 91

based on the ‘statistics of dimension’. There are a variety of (axz - Uqatq> u(z,t) = F(z,t), —o0<g<oo

PDFs that can be applied which will in turn affect the range of

¢. By varying the exact nature of the distribution considereWhen F(z,t) = f(z)n(t) where f(z) and n(t) are both

we can ‘drive’ the non-stationary behaviour ofin different Stochastic functions. Applying a separation of variables here
ways. However, in order to apply different statistical model§ not strictly necessary. However, it yields a solution in
for the Fourier dimension, the range @tan not be restricted Which the terms affecting the temporal behaviourugt:, ¢)

to any particular range, especially in the case of a norn@fié clearly identifiable. Thus, we require a general solution to
distribution. We therefore generalize further and consider tHee €quation

equation o2 o4
2 " (52~ o533 ) ut) = fahntt)

o o) 0 u(z,t) = F(z,t), —oo < ¢(t) < 0o, V. 0a? ot

Ox2 ota®) Let
which allows us to apply different PDFs fay covering 1 7 ‘
arbitrary ranges. For example, suppose we consider a system u(@,t) = 5 / U(z,w) exp(iwt)dw
which is assumed to be primarily diffusive; then a ‘normal’ —o0
PDF of the type and

1 2 2 1 7 .
Prg(t)] = G exp[—(¢ —1)7/207], —co<g<oo n(t) = o / N(w) exp(iwt)dw.

whereo is the standard deviation, will ensure thais entirely
diffusive wheno — 0. However, asr is increased in value, Then, using the result
the likelihood of ¢ = 2 (and ¢ = 0) becomes larger. In oo
iati i 04 1
other words, the standard deviation provides control over the u(z,t) = o / U(x,w)(iw)? exp(iwt)dw
s

likelihood of the process becoming propagative. ota
Irrespective of the type of distribution that is considered, e
the equation we can transform the fractional diffusion equation to the form
2
b o(0) 91t

02 7 B

2
u(x,t) = F(x,t) (;;2 + Q?,) U(z,w) = f(z)N(w)
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where we shall take B. Diffusion Equation Solution

Q, = i(iws)} Wheng =1 and; = iViwo,
and ignore the case f6!, = —i(iwo)?. Defining the Green’s _ 1 /
function g to be the solution of [44], [45] u(@o,t) = 2 def(@)-.

(82 +Q2>g(x|az w) = d(x — x0) ® S
72 0 = — 40 1 _ ; _
0 — / exp( W(,T |2 = |)N(w) exp(iwt)dw.
where/ is the delta function, we obtain the following solution: e
0 For p = iw, we can write this result in terms of a Bromwich
U(zg,w) = N(w) / g(x | zo,w) f(x)dx (3) integral (i.e. an inverse Laplace transform) and using the
e convolution theorem for Laplace transforms with the result
where [36] T
p(—ay/p) 1
/ wf exp(pt)dp = = expl—a?/(41)],
g(x | 20, k) = ﬁeXP(ZQq | — w0 ) c—ioco
. we obtain
under the assumption that and 0u/0x — 0 asx — +oo.
This result reduces to conventional solutions for cases when u(zo,t) =
q = 1 (diffusion equation) ang = 2 (wave equation) as shall
now be shown. — 4t
/ dof(x /eXp —ol@o x) /( 0)}n(t — to)dto.
2\F Vrto

0
A. Wave Equation Solution . . .
. Now, if for example, we consider the case whers a delta
Whengq = 2, the Green'’s function defined above provides function, the result reduces to

solution for the outgoing Green’s function. Thus, with =

—wo, we have u(zo,t) =
Nw) [ .
U(zo,w) = QiEuwa) / exp(—iwo | z — zo |) f(2)dz. 2\/7? / f(z)exp[—o(zo — )?/(4t)]dx, t >0

Fourier inverting and using the convolution theorem for thghich describes classical diffusion in terms of the convolution
Fourier transform, we get of an initial sourcef(z) (introduced at time = 0) with a

s Gaussian function.
1
u(xo, t) = % / dzf(x)...
—00 C. General Series Solution

N The evaluation ofu(zg,t) via direct Fourier inversion for
/ ﬁexp(_iwg | & — x0 |) exp(iwt)dw arbitrary values ofg is not possible due to the irrational
w nature of the exponential functiasxp(i€2, |  — x |) with

1
2

- respect tow. To obtain a general solution, we use the series
0o t representation of the exponential function and write
1
d t— — dt
— 5 [ dof@ [ntt—olo—a)
—o00 —o0 ZMO

U(zo,w) =

which describes the propagation of a wave travelling at veloc-
ity 1/o0 subject to variations in space and time as defined by
(x) andn(t) respectively. For example, whefandn are Where
both delta functions,

oo
| M) = [ 5(0) o= a0 " da,
u(wo,t) = 5o H(t— o |~ o ). o
This is a d’Alembertian type solution to the wave equatiowe can now Fourier invert term by term to develop a series
where the wavefront occurs at= o | x — z | in the causal solution. Given that we considefoo < ¢ < oo, this requires

case. us to consider three distinct cases.
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1) Solution forq = 0: Evaluation ofu(xg,t) in this case the third term is an infinite series composed of fractional

is trivial since, from equation (3) differentials of increasing ordetg/2. Also note that the first
M (o) M{(zo) term _is scaled by a factor invol_ving*ff/2 whereas the third
U(zo,w) TN(W) or u(zo,t) = 5 n(t) term is scaled by a factor that include$?/2.
3) Solution forg < 0: In this case, the first term becomes
where
Mizo) = [ exp(= |2 =0 ) (e)da. 2 | an,  owlwnd
2) Solution forq > 0: Fourier inverting, the first term in 0 a1 - o ' My o d?
equation (4) becomes == 025 | N)(w)? exp(ivt)dw = — =0 7 n(t).
S iN(w)Mo exp(iwt)dw = The second term is the same is in the previous casey (fon)
2 ) 2y and the third term is
%0 My 1 [ Nw)i
My 1 N(w) . 2 2 / exp(iwt)dw
=l e RO 2227 | w8 P
gy ¥ My 11 T(59) 7
_ M, 1 (R ne _ Mo . 2 / ) e
S t@yva Ty ) Gogram™ 220002 (201w T'(3) J (t=g@
The second term is Evaluating the other terms, by induction we obtain
Mo (z0)oc?/? d4/? My (x
o )« S By )
——— [ N(w)exp(iwt)dw n(t). dt
2 27 2 -
The third t - i U M) L F< : >
e third term is ka2 =
2k=1 k+1 /2 (2i)ka\/T F(%)
ng 1 M2U% d% T n(f)
N(w t)dw = ————n(t
291 21 / (iwa)* exp(iwt) 2.21 dt3 n(?) / (t — £)1-(ka/2) dg

and the fourth and fifth terms become whereq =| ¢ |, ¢ < 0. Here, the solution is composed of

three terms: a fractional differential, the source term and an

M. 1 i Mac? d4 infinite series of fractional integrals of ordér/2. Thus, the
= / N(w)i?(iwo)? exp(iwt)dw = ——>-——n(t)  roles of fractional differentiation and fractional integration are
2.3 27 2.3 dta : 9
“ reversed ag; changes from being greater than to less than
and zero. All fractional differential operators associated with the
equations above and hence forth should be considered in terms
S of the definition for a fractional differential given by
z%i / N(w)i3(iw0)% exp(iwt)dw = Moz d= n(t) d"
2.41 27 P T o4l g% DIf(t) = (""" f(B)], n—q>0

respectively with similar results for all other terms. Thusyhere I is the fractional integral operator (the Riemann-
through induction, we can write(z,t) as a series of the Liouville transform),

form t e
o) = P10 =50 | G
= , p>0 5
A U=t ) o ®)
Mo(zo) 1 T (5% n(§) de -
209/2 (24)4\/T p(%) (t —¢)1-(a/2) The reason for this is that direct fractional differentiation
- can lead to divergent integrals. However, there is a deeper
M (z0) 1, (—1)k+ dka/? interpretation of this result that has a synergy with the issue
- 12 Cn(t) + §Zka+l($0)0kq/2 gia;a()- over whether a macroeconomic system has ‘memory’ and
k=1 ’ is based on observing that the evaluation of a fractional

Observe that the first term involves a fractional integral (ttdifferential operator depends on the history of the function in
Riemann-Liouville integral), the second term is composegliestion. Thus, unlike an integer differential operator of order
of the source functiom(t) alone (apart from scaling) andn, a fractional differential operator of ordgrhas ‘memory’
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becau;e the value aff—"f(¢) at a timet depend; on 'the qvalue | t-space w-space (PSDF) Name
behaviour of f(¢) from —co to ¢ via the convolution with
t(n=9)=1/P(n — ¢). The convolution process is of course ] -
dependent on the history of a functigiit) for a given kernel ¢=0 | ;®n) 1 White noise
anq thus,.in this context, we can consider a fraction.al derivative | , _ 4 L @n() . Pink noise
defined via the result above to have memory. In this sense, the
t

operator 92 ga(t) qg=2 [ n(t)dt 712 Brown noise

= g9

Ox2 ota®) g>2 |t lenw) | Black noise
decribes a process, compounded in a field, t), that has a
non-stationary memory association with the temporal charac- TABLE |

teristics of the system it is attempting to model. This is not

an intrinsic charcteristic of systems that are purely diffusivE®'SE CHARACTERISTICS FOR DIFFERENT VALUES Of. NOTE THAT THE
q= 1 or prOpagatlve] —9. RESULTS GIVEN ABOVE IGNORE SCALING FACTORS

D. Asymptotic Solutions for an Impulse

We consider a special case in which the source functionNote thaty = 0 defines the Hilbert transform ef(¢) whose
f(z) is an impulse so that spectral properties in the positive half space are identical to
n(t) because

M (20) = / §(z) | —wo |™ dw =[ xo [™ . 1 ®@ n(t) < —imsign(w)N (w)
— 00 t
This result immediately suggests a study of the asymptoi'lV ere 1 w > 0:
solution sign(w) =< 7’ '
-1, w<O.
u(t) = mloiglou(;vo,t) (6)  The statistical properties of the Hilbert transformsgf) are
Loy oo therefore the same agt) so that
1 1 (Y f n(§) d¢, ¢ > 0;
2002 2077 T(§) o (=@ ’ Pr[t~! @ n(t)] = Pr[n(t)].
=3 r@®) —0-
2 q=0; Hence, ag — 0, the statistical properties af(t) will ‘reflect’
3 iq/z”(t)» g <0. those ofn, i.e.
The solution for the time variations of the stochastic field p 1 _p
for ¢ > 0 are then given by a fractional integral alone and ! tl-q/2 ®n(t)| =Pr[n(®)], ¢—0.

for ¢ < 0 by a fractional differential alone. In particular, for
g > 0, we see that the solution is based on the convoluti
integral (ignoring scaling)

é—|owever, as; — 2 we can expect the statistical properties of
u?t) to be such that the width of the PDF oft) is reduced.
This reflects the greater level of coherence (persistence in time)

1 associated with the stochastic fieldt) for ¢ — 2.
ult) = 5o ©nlt). >0

where® denotes convolution and in-space (ignoring scaling) E. Other Asymptotic Solutions

N(w) A similar result to the asymptotic solution far, — 0 is
Ulw) = (iw)a/?" obtained when the diffusivity is large, i.e.
This result is the conventional random fractal noise model for lin% u(xg, t)
Fourier dimensiory. Table | quantifies the results for different o
values ofg With conventional name associatién3he fieldu _ My(zg) 1 T (17;1) 7 n(€) gt
has the following fundamental property fore (0, 2): = 20972 (2i)iy/7 T (%) (t— )=/

AY2Pr[u(t)] = Prlu(At)]. M (o)
1(Zo

This property describes the statistical self-affinityuofThus, _Tn(t)’ q>0. (7)

the asymptotic solution considered here, yields a result that o ) ) )
describes a random scaling fractal field characterized by &€ the solution is the sum of fractal noise and white noise.
PSDF of the forml/ | w |? which is a measure of the time Further, by relaxing the conditiom — 0 we can consider the

correlations in the signal. approximation

1— o0
“Note that Brown noise conventionally refers to the integration of white £) ~ Mo(l'o) 1 I (Tq) ”(f)
noise but that Brownian motion is a form of pink noise because it classifiesu(xo’ ) = 254/2 (20)4/7 T (g) (t — é‘)l—(q/Q)
diffusive processes identified by the case whes 1. 2

dg

— 00
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Mg(%‘o) q/2 dq/2
RO ey T 7

n(t), ¢>0, o<<1 or
(8)

in which the solution is expressed in terms of the sum @fhere C = Inc. The problem is therefore reduced to im-

fractal noise, white noise and the fractional differentiation plementing an appropriate method to computéand C) by

InP(w)=C+qlnw

white noise. finding a best fit of the lindn P(w) to the dataln P(w).
Application of the least squares method for computing
F. Equivalence with a Wavelet Transform which is based on minimizing the error
The wavelet transform is defined in terms of projections of e(q,C) = || In P(w) —In P(w,q, )3

f(t) onto a family of functions that are all normalized dilations

and translations of a prototype ‘wavelet’ functian[47], i.e. with regard tog and C, leads to errors in the estimates for
g which are not compatible with market data analysis. The

7 reason for this is that relative errors at the start and end
WIf()] = Fr(t) = / f(rywr (7, t)dr of the dataln P may vary significantly especially because
—o0 any errors inherent in the dafa will be ‘amplified’ through
where application of the logarithmic transform required to linearise
wi (7, 1) = Lw (T — f) . L>0. fche problem._ln general, _ap_plication ofa Iegst squares approgch
VL L is very sensitive to statistical heterogeneity [48] and in this

The independent variabldsandt are continuous dilation and @pplication, may provide values afthat are not compatible
translation parameters respectively. The wavelet transforn¥gith the rationale associated with the FMH (i.e. valued ef

tion is essentially a convolution transform wheseg (¢) is the ¢ < 2 that are intermediate between diffusive and propagative
convolution kernel with dilation variablé. The introduction Processes). For this reason, an alternative approach must be
of this factor provides dilation and translation properties intéonsidered which, in this paper, is based on Orthogonal Linear
the convolution integral that gives it the ability to analys&egression (OLR).

signals in a multi-resolution role (the convolution integral is APPIying a standard moving windowg(t) is computed by

now a function ofL), i.e. repeated application of OLR based on the m-code available
from [49]. Sincegq is, in effect, a statistic, its computation
Fi(t) =wr(t) ® f(t), L>0. is only as good as the quantity (and quality) of data that

In this sense, the asymptotic solution (ignoring scaling) IS available for its computation. For this reason, a relatively
large window is required whose length is compatible with:

1 . . .. .
u(t) = A= @n(t), ¢>0 z—0 (i) the number of samples available; (ii) the autocorrelation
function and long-term memory effects as discussed in Section

is compatible with the case of a wavelet transform where |, an example of theq(t) signal obtained using a 1000

wi(t) = 1 element window is given in Figure 8 which includgs) after
t1—aq/2 it has been smoothed using a Gaussian low-pass filtered to
for the stationary case and where, for the non-stationary cak/eal the underlying trends in Inspection of the data (i.e.
1 closer inspection of the time series than is shown in Figure 8)
wi(t,7) = A ez clearly illustrates a qualitative relationship between trends in
the financial data ang(¢) in accordance with the theoretical
XIl. FTSE ANALYSIS USING OLR model considered. In particular, over periods of time in which
We consider the basic model for a financial signal to B increases in value, the amplitude of the financial signal
given by u(t) decreases. Moreover, and more importantly, an upward
1 trend ing appears to be a pre-cursur to a downward trend in
u(t) = t1—q/2 ®n(t), ¢>0 u(t). A more detailed example of this behviour is shown in

which has characteristic spectrum Figure 9 for close of day FTSE data over a smaller period of
N(w) time (i.e. from 1994 to 1997), a correlation that is compatible
_ with the idea that a rise in the value aqf relates to the
(iw)a/? ‘system’ becoming more propagative, which in stock market
and is a solution to the fractional diffusion equation terms, indicates the likelihood for the markets becoming ‘bear’

92 91 dominant in the future.
(82 - 0q8t(1> u(z,t) = d(x)n(t), ©—0
xXr

The PSDF is thus characterised hy %,w > 0 and our

problem is thus, to computgfrom the dataP(w) =| U(w) |2 . :
“w > 0. For this data, we consider the PSDF The results of using the method discussed above not only

R . provides for a general appraisal of different macroeconomic

Pw) = — financial time series, but, with regard to the size of selected

“ window used, an analysis of data at any point in time.

8As defined by equation (5). The output can be interpreted in terms of ‘persistence’ and

Ulw) =
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16 XIII. DISCUSSION

1.4 | -

This paper is concerned with the introduction and theoretical
analysis (in terms of general a solution) associated with the
1 non-stationary fractional diffusion operator

2 t
9 o(6) H1(t)

] 922~ 7 oe®
in the context of a macroeconomic model. By considering a
o o B S0 o0 S0 gaoo source function of the typ&(z)n(t) wheren(t) is white noise,
we have shown that, far — 0, the fractional diffusive field
(t) at time T is given by (ignoring scaling)

1.2 -

q

0.5

(=N =]

0.4

oz

Fig. 8. Application of OLR using a 1000 element window for analysin
financial time series composed of FTSE values (close-of-day) from 02-0

1984 to 13-02-2008. The plot shows the time varying Fourier Dimension 1
q(t) (green) onto which is superimposed a Gaussian low-pass filtered version u(t, 7—) = ® n(t)
of the signal (red) and the FTSE time series after normalisation. tla(r)/2
which has Power Spectral Density Function characterised by
> | w |~9(7)/2 - a random scaling fractal. It should be noted,

that the data analysis reported in this paper is based on an
asymptotic solution (i.ex — 0) used to obtain equation (6)
and is thus, limited in the extent to which it ‘reflects’ the
physical principles upon which the model has been established.
1 However, it is noted that the computation oft) in the

oal 1 presence of additive white noise is equivalent to the inversion
cal | of equation (7) forg (and for arbitrary values of,) when

. . . . o — 0. In this sense, the power spectrum method used to
=0 on =00 =22 computeq(t) is valid under the assumption that a fractional

4 o . , _diffusive process occurs with high diffusivity and a high
Fig. 9. Application of OLR using a 1000 element window for analysing .

financial time series composed of FTSE values (close-of-day) from 05- |gnal-to-n0|s_e rat'(_) ("e”Ml(IO)_H — 0). For the case when
1994 to 24-12-1997. The plot shows the time varying Fourier Dimensian << 1, the inversion of equation (8) to compugefrom

q(t) (green) onto which is superimposed a Gaussian low-pass filtered Versf?ﬁght be possible using an iterative approach which can be
of the signal (red) and the FTSE time series after normalisation. extended to solve the general case as required.
The non-stationary nature of this model is taken to ac-

count for stochastic processes that can vary in time and are
‘anti-persistence’ and in terms of the existence or absenggermediate between diffusive and propagative or persistent
of after-effects (macroeconomic memory effects). For thogehaviour. Application of Orthogonal Linear Regression to
periods in time wheny(t) is relatively constant, the existingmacroeconomic time series data provides an accurate and
market tendencies usually remain. Changes in the existifghust method to compuigt) when compared to other statis-
trends tend to occur just after relatively sharp changes tigal estimation techniques such as the least squares method.
q(t) have developed. This behaviour indicates the possibilizs a result of the physical interpretation associated with the
of using the time serieg(t) for identifying the behaviour fractional diffusion equation and the ‘meaning’ oft), we
of a macroeconomic financial system in terms of both integan, in principal, use the signalt) as a predictive measure in
market and between-market analysis. These results supporttfitesense that as the valuegdf) continues to increases, there
possibility of usingq(t) as an independent macroeconomigs a greater likelihood for volatile behaviour of the markets.
volatility predictor. It is noted that, at the time of writingThis is reflected in the data analysis that is compounded in
this paper, the value af(t) associated with those days afteFigure 8 for the FTSE close-of-day between 1980 to 2007
approximately day 4800 in Figure 8 (representing the lattghd in other financial data, the results of which lie beyond the
half of 2007) indicate the growth of propagative behaviour angtope of this papet. It should be noted that because financial
thus the macroeconomic instability compounded in the terfilne series data is assumed to be self-affine, the computation
‘Credit Crunch’. This is not surprising if it is assumed that thef ¢(¢) can be applied over any time scale, and that the FTSE
downward trend from approximately day 3000 to day 370§ose-of-day is only one example that has been used in this
shown in Figure 8 is a natural consequence of the effect ohaper as an illustrative case study.
higher inflationary global economy resulting from the end of |n a statistical senseyt) is just another measure that may,
the cold war and that the upward trend from approximately d@y otherwise, be of value to market traders. In comparison
3700 to 5000 is a consequence of credit policies adopted Rjith other statistical measures, this can only be assessed
banks in an attempt to compensate for this natural inflationa®tough its practical application in a live trading environment.
pressure. Under this assumption, the ‘Credit Crunch’ of 20@Qfowever, in terms of its relationship to a stochastic model

represents a transition that is compounded in a reappraisafgf macroeconomic datay(t) does provide a measure that
the definition of poverty, namely, that poverty is not a measure

of how little one has but a measure of how much one owes. 9Similar results being observed for other major stock markets.
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. . . . . . . Fractal type Fractal Dimension
is consistent with .the phy5|cal'pr|n.c:|ples gssoplated Wlth a Fractal DUt 0<Dp <1
random walk that includes a directional bias, i.e. fractional Fractal Curve 1< Dp <2
Brownian motion. The model considered, and the signal Eracta: \S/ulrface §<gF<i

. . T . ractal Volume < Dp <
processing algorithm proposed, has a close association with Fractal Time 1<Dp<5

re-scaled range analysis for computing the Hurst expohent Hyper-fractals 5< Dp <6

since forDr = 1, ¢ = H + 1/2 (see Appendix I) [48]. In : :

this sense, the principal contribution of this paper has been to

consider a model that is quantified in terms of a physically TABLE Il

significant (but phenomenological) model that is compounded  r;actaL TYPES AND CORRESPONDING FRACTAL DIMENSIONS

in a specific (fractional) partial differential equation. As with

other financial time series, their derivatives, transforms etc., a

range of statistical measures can be used to charactgrise

an example being given in Figure 8 and Figure 9 whgrg transparency articulate the degree of coherence of information

has been smoothed to provide a measure of the underlyftgy through an organisation from one level to another. In

trends. effect, the sustained organisational approach to managing
In terms of the non-stationary fractional diffusive modegontinuous change is the basis for a portfolio in whj¢h) > 1

considered in this work, the time varying Fourier dimensio@nd increases with time.

q(t) can be interpreted in terms of a ‘gauge’ on the charac-The FMH and the self-affine nature of organisations in

teristics of a dynamical system. This includes the managgeneral provides a model in which the work-force at any one

ment processes from which all modern economies may lswel (i.e. department/section/group etc.) of an organisation

assumed to be derived. In this sense, the FMH is based a@&n empathise with all other levels by cultivating an under-

three principal considerations: (i) the non-stationary behaviosending in which each level is a reflection of their own, e.g.

associated with any system undergoing continuous change trglems/solutions at middle management are a reflection of

is driven by a management infrastructure; (i) the cause atte same type of problems/solutions at executive level. This

effect that is inherent at all scales (i.e. all levels of manageme@mpathy’ is a two-way entity which differs only in terms

hierarchy); (iii) the self-affine nature of outcomes relating tef its scale. Sustained organisational change and the example

points (i) and (ii). In a modern economy, the principal issu@ethods of implementing it is a self-affine process and should

associated with any form of financial management is based s be introduced with this aspect in mind [50]. In tackling

the flow of information and the assessment of this informatigifoblems at any level within an organisation, one is, in effect,

at different points connecting a large network. In this send@king consideration of such problems above and below that

a macroeconomy can be assessed in terms of its informatfsine level in terms of the dynamic behaviour of the ‘system’

network which consists of a distribution of nodes from whichs a whole, a macroeconomy being the antithesis of such a

information can flow in and out. The ‘efficiency’ of the systenisystem’.

is determined by the level of randomness associated with the

direction of flow of information to and from each node. The APPENDIX |

nodes of the system are taken to be individuals or sm&ELATIONSHIP BETWEEN THEHURST EXPONENT AND THE

groups of individuals whose assessment of the information TOPOLOGICAL, FRACTAL AND FOURIER DIMENSIONS

they acquire together with their remit, responsibilities and Suppose we cut up some Simp|e one-, two- and three-

initiative, determines the direction of the information flowjimensional Euclidean objects (a line, a square surface and

from one node to the next. The determination of the efficiengy cube, for example), make exact copies of them and then

of a system in terms of randomness is the most critical in termagep on repeating the copying process. Nebe the number

of the model developed. It suggests that the performancedifcopies that we make at each stage and-lbe the length

a business is related to how well information flows througsf each of the copies, i.e. the scaling ratio. Then we have

an organisation. If the information flow is entirely random, D

then we might surmise that the decisions made which ‘drive’ Nrot =1, Dr=1,2,3,...

the direction of the ‘system’ are also entirely random. Thghere D is the topological dimension. The similarity or
principal point here is that the flow of information has a diregtactal dimension is that value @ which is usually (but not
relationship on the management decisions that are made fjfjays) a non-integer dimension ‘greater’ that its topological

behalf of an organisation. dimension (i.e. 0,1,2,3,... where 0 is the dimension of a point
The non-stationary but statistically self-affine nature of thgy 3 line) and is given by

markets leads directly to the use of the Fourier dimension as
T o , log(N)

a measure for quantifying their ‘state of coherence’. Just as Dp=— .

this parameter can be used as a market index for managing a log(r)

financial portfolio, so, it may be of value in quantifying the The fractal dimension is that value that is strictly greater

‘state’ of any organisation undergoing change (managemerktjan the topological dimension as given in Table Il. In each

The conceptual basis associated with the Fourier dimensicase, as the value of the fractal dimension increases, the fractal

and the system behaviour that it reflects leads directly to Becomes increasingly ‘space-filling’ in terms of the topological

approach to management where the principles of openness dimlension which the fractal dimension is approaching. In each
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case, the fractal exhibits structures that are self-similar. gxoperties over all scales. However, for the discrete (sampled)
self-similar deterministic fractal is one where a change in thield

scale of a functionf(z) (which may be a multi-dimensional Do _ <1n N(5)>

function) by a scaling facton produces a smaller version, Ind

reduced in size by, i.e. where we choose values andd, (i.e. the upper and lower
FOx) = Mf(x). bounds) satisfyingdy < 6 < dJo over which we apply

an averaging processes denoted (by. The most common
A self-affine deterministic fractal is one where a change @mpproach is to utilise a bi-logarithmic plot af N(§) against
the scale of a functiorf(x) by a factorA produces a smaller In §, choose valued; andd, over which the plot is uniform

version reduced in size by a factaf, ¢ > 0, i.e. and apply an appropriate data fitting algorithm (e.g. a least
\a) — A7 squares estimation method or, as used in this paper, Orthogonal
Fx) = A1f(2). Linear Regression) within these limits.
For stochastic fields, the expression The relationship between the Fourier dimensipand the
fractal dimensionDr can be determined by considering this
Pr[f(Az)] = A"Pr[f(z)] method for analysing a statistically self-affine field. For a

describes a statistically self-affine field - a random scalifffctional Brownian process (with unit step length)

fractal. As we zoom into the fractal, the shape changes, but Alt)=t", He(0,1]
the distribution of lengths remains the same.

There is no unique method for computing the fractal dwhere H is the Hurst dimension. Consider a fractal curve
mension. The methods available are broadly categorized if@vering a time period\t = 1 which is divided up intaV =
two families: (i) Size-measure relationships, based on recursivgAt equal intervals. The amplitude incremertsi are then
length or area measurements of a curve or surface usBigen by
different measuring scales; (ii) application of relationships AA = AtH — 1 - N"H
based on approximating or fitting a curve or surface to a known NH
fractal function or statistical property, such as the variance The number of lengthd = N—! required to cover each

Consider a simple Euclidean straight lideof length L(¢) interval is

over which we ‘walk’ a shorter ‘ruler’ of length. The number AAAL — Nt _ Nl-H
of steps taken to cover the lin¥[L(¢), ¢] is thenL/§ which N1
is not always an integer for arbitrady and$. Since so that
N(6) = NN'H = N27H
NIL(0),6) = 2O — pps, |
0 Now, since .
o1 InL(¢) —In N[L(£), ] _ In N[L(¥),0] —In L(¢) N(8) = e §— 0,
Ind Ind H by i ]
then, by inspection,

which expresses the topological dimensiby- = 1 of the y Insp
line. In this caseL(?) is the Lebesgue measure of the line Dp=2—-H.

and if we normalize by settind.(¢) = 1, the latter equation

can then be written as Thus, a Brownian process, wheié = 1/2, has a fractal

dimension of 1.5. For higher topological dimensiabg

1:—lim{

5—0

sl

since there is less error in counting§) asé becomes smaller. This algebraic equation provides the relationship between the
We also then haveV(J) = §~!. For extension to a fractal fractal dimensionDr, the topological dimensio®; and the
curve f, the essential point is that the fractal dimension shoukdurst dimensionH. We can now determine the relationship
satisfy an equation of the form between the Fourier dimensianand the fractal dimension

Dp.
_ —Dp
N[E(f). 8] = F(f)d Consider a fractal signgi(z) over an infinite support with

where N[F(f),é] is ‘read’ as the number of rulers of size a finite samplefx (x), given by

Dp=Dr+1-H.

needed to cover a fractal stwhose measure i8'(f) which
. . : f(z), 0<z<X;
can be any valid suitable measure of the curve. Again we may fx(z) = 0 otherwise
normalize, which amounts to defining a new measkfeas ’
some constant multiplied by the old measure to get A finite sample is essential as otherwise the power spectrum
In N (6) diverges. Moreover, iff (z) is a random function then for any
Dp = —gip% [ s } experiment or computer simulation we must necessarily take
— n

a finite sample. Lef’x (k) be the Fourier transform ofx (z),
where N (§) is taken to beN[F'(f), d] for notational conve- Px (k) be the power spectrum art{ k) be the power spectrum
nience. Thus a piecewise continuous field has precise fraatélf(x). Then
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Px(k) = & [Fx (k)

21

Thus, since

Fx (k) exp(ikz)dk, Dp=Dr+1-4H,

then3 = 5 — 2Dy for a fractal signal and = 8 — 2D for
a fractal surface so that, in general,

and B8=2(Dr+1—-Dp)+ Dy =3Dr+2—-2Dp

P(k)

lim Px (k).
X oo and

The power spectrum gives an expression for the power of a

signal for particular harmonicsP(k)dk gives the power in Dp =Dr+1—-H =Dr+1— 5 B .
the rangek to k + dk. Consider a functiory(z), obtained ) ] ] ) ]

from f(z) by scaling ther-coordinate by some > 0, the f- the Fourier dimension being given lay= (/2.

coordinate byl /a’ and then taking a finite sample as before,

B-Dr 3Dp+2-8
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Gx (k) = =

b'e
/0 9x () exp(—ikz)dx
X iks
#L f(S) exp <—a>d3

wheres = axz. Hence
1 k
oH+1 Fx (a)

and the power spectrum gfy (x) is
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