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Understanding the molecular information contained in Principal 
Component Analysis of Vibrational Spectra of Biological 

Systems 
 

F. Bonnier, H.J. Byrne 
 
Focas Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, 
Ireland 
 

Abstract:  
 
K-means clustering followed by Principal Component Analysis (PCA) is employed to 

analyse Raman spectroscopic maps of single biological cells. K-means clustering 

successfully identifies regions of cellular cytoplasm, nucleus and nucleoli, but the 

mean spectra do not differentiate their biochemical composition. The loadings of the 

principal components identified by PCA shed further light on the spectral basis for 

differentiation but they are complex and, as the number of spectra per cluster is 

imbalanced, particularly in the case of the nucleoli, the loadings under-represent the 

basis for differentiation of some cellular regions. Analysis of pure bio-molecules, both 

structurally and spectrally distinct, in the case of histone, ceramide and RNA, and 

similar in the case of the proteins albumin, collagen and histone, show the relative 

strong representation of spectrally sharp features in the spectral loadings, and the 

systematic variation of the loadings as one cluster becomes reduced in number. The 

more complex cellular environment is simulated by weighted sums of spectra, 

illustrating that although the loading become increasingly complex; their origin in a 

weighted sum of the constituent molecular components is still evident. Returning to 

the cellular analysis, the number of spectra per cluster is artificially balanced by 

increasing the weighting of the spectra of smaller number clusters. While it renders 

the PCA loading more complex for the three-way analysis, a pair wise analysis 

illustrates clear differences between the identified subcellular regions, and notably the 



molecular differences between nuclear and nucleoli regions are elucidated. Overall, 

the study demonstrates how appropriate consideration of the data available can 

improve the understanding of the information delivered by PCA.  

 

Keywords: Cellular imaging; Raman Spectroscopy; Multivariate analysis; K-mean 
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1. Introduction 
 
The potential of Infrared and Raman spectroscopy as medical diagnostic tools has 

been well demonstrated [1-5]. The main advantages of these techniques are that they 

provide a non invasive, label free, molecular fingerprint of tissue and cells with a high 

specificity that can be used for the identification of different pathologies [6, 7] or 

variations in metabolism as a result of external agents [8, 9]. The two techniques are 

commonly described as complementary and are often performed in parallel for 

comparison purposes [10, 11] However, the different characteristics of the 

instrumentation can influence their applications. Although in the last few years, many 

further reaching applications have been described, including in radiobiology [12], 

toxicology and nanotoxicology [13, 14] and pharmacokinetics [15], Fourier 

Transform Infrared Spectroscopy (FTIR) remains widely used for analysis of tissue 

sections, mainly because the technique enables the analysis of large sample areas in a 

relatively short time and enables identification of pathological areas present in the 

tissue analysed [3, 16-18]. Nevertheless, due to the diffraction limit, the lateral 

resolution can be a major limitation in infrared spectroscopy. As it commonly 

employs optical or near infrared sources, Raman spectroscopy attains significantly 

higher lateral resolution enabling access to sub-cellular information [19, 20]. For this 

reason, it is often preferred for single cell analysis and imaging. Although the two 

techniques are based on different modes of interaction between the incident light and 

the sample, they suffer from similar concerns in terms of data processing and analysis. 

In both cases, the spectral background can be a combination of many signals 

contributing to and “contaminating” the spectra recorded. In FTIR microscopy, the 

physical origins of the broad undulating background [21] and the so-called dispersion 

artefact in transflection [22] and transmission [23] mode have recently been 



elucidated and the Extended Multiplicative Scattering Correction (EMSC) has been 

further evolved to correct for both [24, 25]. In Raman spectroscopy, the most 

commonly reported artefact is the presence of a broad background which can often 

swamp the sample signal [26, 27]. Different algorithms can be applied to subtract this 

background from the spectra [28] or, alternatively it has been demonstrated recently 

that recording the spectra in immersion, or in collagen gels, greatly improves the 

signal to background ratio [29].    

The improvements made in recent years through the development of new methods and 

approaches for sample analysis and data pre-processing have considerably increased 

the relevancy of the information contained in the data, facilitating the standardisation 

of methods for data analysis [30]. Different approaches such as PCA or K-means 

clustering are commonly used for the analysis of large amounts of data, allowing a 

discrimination of different samples or regions of a sample, according to differences in 

their biochemical content, and identification of the spectral features which manifest 

the highest degree of variability [1, 7, 31-33]. Although these methods are used 

routinely and are quite well developed, the question of the relevance and molecular 

specificity of the information contained in the data remains largely unaddressed. 

Notably, in an increasingly multidisciplinary field, the results and underlying 

processes are seldom scrutinised.     

K-means clustering has been employed widely in tissue analysis, providing the 

possibility of grouping the spectra into different clusters based on spectral similarity 

and therefore identifying common biochemical signatures and their spatial 

distributions. The clustering is based on the molecular information contained in the 

individual spectra and the results are commonly displayed as false colour maps of the 

average spectra of each cluster. While the technique is valuable for visualisation of 



the spectrally differentiated regions of the sample, the maps themselves do not show 

the original spectral data, and the mean spectrum representing each cluster can often 

under represent subtle differences between the different regions of the sample. PCA is 

a powerful approach for the analysis of large spectral data sets. It represents the 

spectra in data groupings of similar variability, allowing the identification and 

differentiation of different spectral groups. This approach is widely used to evaluate 

the possibility of discriminating different data sets (and therefore samples or regions 

of samples) using scatter plots [29]. However, the strength of this technique resides in 

the loadings, which give a representation of the spectral origin of the variations which 

differentiate the data grupings according to the wavenumbers [34-36]. A combination 

of K-means clustering followed by PCA constitutes a well adapted tool for analysis of 

spectral data [19]. Nevertheless, the analysis of the PCA loadings is not trivial and the 

relevance of the information contained in the plots often remains enigmatic.  

In this study, Raman spectral mapping of single biological cells is presented and 

analysed using a combination of K-means cluster followed by PCA. In order to better 

understand the information obtained through the analysis, Raman spectra of 

individual biomolecular components are analysed using PCA. The observations made 

from the scatter plots are correlated with the different loadings calculated using 

simple models based on these samples, and the influence of spectral differences and 

number per dataset group are examined. The observations made are applied to the 

more complex data sets derived from sub-cellular maps recorded from single cells, 

demonstrating that a better understanding of the molecular contributions to the 

spectral variances can improve the data analysis process.       

 

2. Materials and Methods 
 



2.1. Sample preparation 

A549 cells from a human lung adenocarcinoma with alveolar type II phenotype were 

obtained from ATTC (Manassas, VA, USA). Cells were cultured in DMEM (Sigma), 

penicillin and streptomycin (Gibco) and 10% foetal calf serum (FCS, Biochrom, 

Berlin) in a humidified atmosphere containing 5% CO2 at 37ºC. Cells were loaded, at 

a concentration of 4  104 cells, onto CaF2 and were incubated for 24h at 37°C, 95% 

CO2. Before measurements, the cell samples were fixed using a 10% formalin 

solution for 10 mins. A number of studies on the effect of cell fixation using Raman 

spectroscopy and can be found in the literature [34, 37, 38]. By comparison between 

live cells and fixed cells using different fixation procedures, it has been demonstrated 

than the closest model for live cells is achieved using 10% formalin fixation. This is 

explained by the fact that while many fixation techniques require drying of the 

sample, formalin fixation keeps the cells in a hydrated state. Moreover, although the 

formalin could affect the protein, it also maintains the lipid content relatively intact 

compared to fixation methods employing alcohol. After fixation, the cells were 

washed 3 times using PBS and kept in this solution during the measurements.   

Pure samples of biomolecular components were analysed by Raman spectroscopy to 

simulate biologically variable systems. In order to achieve the best homogeneity, 

samples were dissolved in appropriate solvents before deposition on CaF2 substrates. 

Lyophilised ribonucleic acid, albumine and histones (Sigma-Aldrich, Ireland) were 

dispersed in water. Lyophilised deoxyribonucleic acid from calf thymus, ceramide 

and L-phosphatidyl-ethanolamine (Sigma-Aldrich, Ireland) were dispersed in 

chloroform. Collagen solution in acetic acid at a concentration of 5mg/mL (Gibco, 

Ireland) was deposited from acetic acid solution. For all biomolecular samples, the 

Raman signals were stable over prolonged measurement periods (~1hr). Signal 



variations were largely due to inhomogeneity in the deposited sample and variation in 

the background present in the spectra collected. 

The spectra were also utilised help identify the biochemical origins of the features of 

PC loading spectra. Isolation of the different biomolecular components from cells 

would present the best references for the characterisation of the cellular content. 

However, comparisons are qualitative only, and moreover, the similarity existing 

between the pure bio-molecules tested and the spectra recorded from the cells is 

satisfactory and gives a good representation of the information delivered by the PCA.  

 

2.2. Raman spectroscopic measurements 

A Horiba Jobin-Yvon LabRAM HR800 spectrometer was used throughout this work. 

For the measurements, either a x100 objective (MPlanN, Olympus), for the recording 

of spectra from the pure compounds, or a x100 immersion objective (LUMPlanF1, 

Olympus), for cell mapping, was employed, each providing a spot diameter of ~1m 

at the sample. The confocal hole was set at 100m for all measurements, the specified 

setting for confocal operation. The 785 nm laser line was used for this study, 

delivering a power of ~40 mW at the sample. The system was spectrally calibrated to 

the 520.7 cm-1 spectral line of silicon.  

The LabRAM system is a confocal spectrometer that contains two interchangeable 

gratings (300 and 600 lines/mm respectively). In the following experiments, the 300 

lines/mm grating was used, providing a spectral dispersion of approximately 1.5 cm-1 

per pixel. The backscattered Raman signal was integrated for 10 second intervals over 

the spectral range from 400 to 1800 cm-1. The detector used was a 16-bit dynamic 

range Peltier cooled CCD detector. 100 spectra were collected for each different bio-

molecular component tested. The spectra recorded from single cells have been 

obtained using the mapping function of the Labspec software using a 1 m step size. 



The Raman cellular map presented in this paper has been selected for illustration 

purposes. It is a typical example and matches observations made in a large cell 

screening study as presented in previous work [19].  

 

2.3 Data preprocessing 

Data analysis was performed using Matlab (Mathworks, USA). Before statistical 

analysis, a Savitsky-Golay filter (5th order, 7 points) was applied to smooth the 

spectra and the reference spectrum constituting the background signal was subtracted. 

The data sets have also been corrected for baseline and vector normalized to facilitate 

comparison.  

 

2.4 Data Analysis 

K-means clustering analysis is one of the simplest unsupervised learning algorithms 

used for spectral image analysis. It groups the spectra according to their similarity, 

forming clusters, each one representing regions of the image with identical molecular 

properties. The distribution of chemical similarity can then be visualised across the 

sample image. The number of clusters (k) has to be determined a priori by the 

operator before initiation of the classification of the data set. K centroids are defined, 

ideally as far as possible from each other, and then each point belonging to a data set 

is associated to the nearest centroid. When all the points have been associated with a 

centroid, the initial grouping is done. The second step consists of the calculation of 

new centroids as barycentres of the clusters resulting from the previous step. A new 

grouping is implemented between the same data points and the new centroids. These 

operations are repeated until convergence is reached and there is no further movement 



of the centroids. Finally, k clusters are determined, each containing the most similar 

spectra from the image, and represented by the mean of all spectra of that cluster. 

False color maps can then be constructed to visualise the organisation of the clusters 

in the original image. 

PCA is a method of multivariate analysis broadly used with datasets of multiple 

dimensions [30]. It allows the reduction of the number of variables in a 

multidimensional dataset, although it retains most of the variation within the dataset. 

The order of the principal components (PCs) denotes their importance to the dataset. 

PC1 describes the highest amount of variation, PC2 the second highest, and so on. 

Therefore, var (PC1) ≥ var (PC2) ≥ var (PCp), where var (PCi) represents the variance 

of PCi in the considered data set. Generally, the first three PCs represent the highest 

variance present in the data sets, up to 99%, giving the best visualisation of the 

differentiation of the different clusters [39, 40]. However, when recording Raman data 

from single cells, the noise present in the spectra can increase the intra-group 

variability, thus reducing the specificity of the PCA. In such cases, typically the 10 

first PCs can be taken into account for specific analysis [41]. Nevertheless, the PCs 

contribute less in decreasing order, meaning that the first PCs contain the most 

information [42]. In order to simplify interpretation of experimental observations, this 

study is aimed at understanding the molecular information contained in the first two 

PCs. It is considered that the observations made in this work can be applied for all the 

different PCs calculated using PCA.  

PCA was employed for this study to highlight the variability existing in the spectral 

data set recording during the different experiments. The other advantage of this 

method is the observation of loadings which represent the variance for each variable 

(wavenumber) for a given PC. Analysing the loadings of a PC can give information 



about the source of the variability inside a dataset, derived from variations in the 

molecular components contributing to the spectra.  

 
3. Results and discussion 
 

 

Figure 1. I: (A), Typical confocal microscope image of an A549 cell. The different 
structures such as membrane (a), cytoplasm (b) and nucleus (c) are clearly 
identifiable. The nucleolus present inside the nucleus can also be seen. The area 
delineated by red indicates a “typical area” selected for Raman mapping (B), 
Example of K-means reconstructed image from a Raman map recorded on the nuclear 
area of an A549. In both X and Y directions, 1 pixel corresponds to a mapping step of 
1 µm. II: Mean spectrum calculated for the different clusters obtained after K-means 
clustering analysis corresponding to the nucleoli (A), nucleus (B) and cytoplasm (C). 
III: Scores plot of the first two principal components after PCA performed on Raman 
spectra recorded from A549 cells. The individual data points have been colour coded 
according to the results of K-means cluster analysis; nucleus (green), nucleolus (blue) 
and cytoplasm (red). IV: Plot of the loadings of PC1 (A) and PC2 (B). Different 
features corresponding to the lipids, proteins and nucleic acids can be identified. 
 

 

 

 



3.1 Single cell analysis 

For the purpose of this study, rather than a full cellular analysis [18], the objective 

was to differentiate only three different types of spectra, and for this reason the 

acquisition was focused in the nucleus including some neighbouring cytoplasm. An 

optical image of a typical A549 cell is shown in Figure 1 IA. It has been previously 

demonstrated that Raman spectroscopy can effectively identify and discriminate the 

cytoplasm as well as nucleoli within the nucleus [18, 19]. Using K-means clustering 

analysis, three different clusters can thus be identified, corresponding to nucleoli, the 

nucleus and cytoplasm, as shown in the example of figure 1 IB. Note, the black region 

represents areas which were not sampled spectroscopically, rather than a fourth K-

means cluster. Mean spectra corresponding to the different clusters were derived from 

the K-means clustering and are shown in figure 1 II. The three different spectra are 

rather similar and only small variations can be seen between the different structures, 

illustrating that although the analytical technique is very efficient at identifying sub-

cellular regions, the mean spectra give little insight into the basis of differentiation on 

a molecular basis.  

PCA can provide further insight into the source of the spectral variability and 

therefore differentiation of the different sub-cellular regions. In figure 1 III, the data 

are colour coded according to their classification by the K-means clustering analysis, 

but the PCA clusters are widely spread and not clearly differentiated. The spectra 

have been recorded from cells and the signal is relatively weak, resulting in relatively 

noisy spectra. Also, variations can be present due to the spatial non uniformity of the 

sample. Unavoidably, spectra of the nucleus will have varying contributions from the 

overlying cell membrane and cytoplasm, and the spatial separation of the sub-cellular 

regions is not necessarily distinct, within the measurement resolution and stepsize (1 



µm), although this can be partially alleviated in confocal operation. Nevertheless, the 

three different groups are relatively well discriminated using this method. PC1, which 

accounts for 35% of the variance, discriminates the nuclear spectra from those of the 

cytoplasm, whereas PC2 accounts for 8% of the variance and allows discrimination of 

the spectra from within the nucleus.  

Beyond differentiation and classification, the potential of PCA lies in the possibility 

to derive information regarding the basis for discrimination from the loadings 

corresponding to each PC. A clear representation of the spectral variability can be 

seen, and moreover these loadings can be compared to pristine Raman spectra for 

comparison [18].  

The loadings of the principal components are shown in figure 1 IV. The plots are 

offset for clarity, the dotted line indicating the zero point in each case. PC1 has peaks 

which can be attributed to biochemical constituents such as nucleic acids (788, 1080, 

1339 cm-1), proteins (1003, 1268, 1339, 1437 cm-1) and lipids (715, 872, 1066, 1080, 

1299, 1437 cm-1) (for detailed assignments, see for example [8, 10, 43, 44]). Their 

respective negative and positive loadings contribute substantially to the differentiation 

of the nuclear (negative) and cytoplasmic (positive) spectra in the scores plot of figure 

1 III. Differentiation of nucleus and cytoplasm based on nucleic acid and lipidic 

content is somewhat trivial, however, and the loading is rich in features which further 

contribute to the differentiation, although a detailed analysis is complex. Furthermore, 

PC2 is rather noisy, and it is difficult to extract specific information relating to 

biomolecular constituents which differentiate the nuclear and nucleoli datasets in the 

scores plot.  

It should be noted that PCA is an unsupervised technique, and does not differentiate 

between variability within the dataset groupings and variability between the 



groupings. Thus, intra – group variability can contribute substantially to the variance 

and loadings which differentiate the groups [40, 41]. Nevertheless, in the case of the 

differentiation of cytoplasm and nucleus/nucleoli by PC1 and nucleus and nucleoli by 

PC2, there is a clear separation of the groups according to positive and negative 

scores, indicating that the loadings are representative of underlying biological 

differences. 

PCA, in combination with K-means clustering, sheds further light on the basis for 

differentiation of the cellular regions. However, the loadings are complex or 

inconclusive, rendering interpretation of the underlying biology nontrivial. In order to 

further elucidate factors which govern the differentiation of spectral groups, a series 

of studies on pure biomolecular compounds was conducted. 

 

3.2 Understanding the PCA 

In an effort to better elucidate the process of differentiation by PCA, based on 

biochemical content, a comparison was made of the Raman spectra collected from 3 

structurally distinct bio-molecules: RNA, histone (protein) and ceramide (lipids). 100 

spectra were recorded for each sample. Figure 2 I presents mean spectra calculated for 

each of the samples recorded offset for clarity. These molecules are commonly found 

in biological samples and have been specifically selected for their high degree of 

dissimilarity in the spectra range 400-1800 cm-1.  

 

 



 

 

Figure 2. I: Mean Raman spectra recorded from RNA (A), histone (B) and ceramide 
(C) on CaF2 windows. II: Scores plot of the 2 first principal components after PCA 
performed on Raman spectra recorded from RNA, histone and ceramide. III: Plot of 
the loadings of PC1 (blue dot line) compared with the difference spectrum calculated 
from the mean spectrum of ceramide minus the mean spectrum of RNA (red dash line). 
The loadings are compared with spectra recorded from ceramide (A) and RNA (C), 
both offset for clarity. IIIB: Plot of the loadings of PC2 (blue dot line) compared with 
the difference between the mean spectrum of histone minus the average mean 
spectrum of RNA and ceramide (red dash line).   
 

 

 

The three data sets were loaded in Matlab and PCA was performed on the entire 

spectral window used for the acquisition. As expected, the three groups are well 

discriminated in the scores plot, as shown in Figure 2 II. PC1 represents 70% of the 

explained variance and allows the discrimination between the three groups. Notably, 

the histones are grouped at ~zero on the PC1 axis, while the RNA and Ceramide 

spectra are symmetrically grouped at the negative and positive extremes, respectively. 



PC2 represents 29% of the variance and discriminates the histone spectra from the 

RNA and ceramide spectra. For this PC, little or no discrimination between RNA and 

ceramide is observed. In the example presented in the figure 2 II, the bio-molecules 

tested present highly different Raman signatures therefore the intra-group variability 

is very low and the different spectra for each group are closely grouped. The RNA 

sample was observed to be physically slightly more heterogeneous than the other 

materials after drying, resulting in significant differences in the intensity of the signal 

recorded. Thus, even after background and baseline correction, some variation 

persists. However, the groups are well defined and discriminated across the scores 

plots indicating that the PCs are a clear representation of inter-group variance. 

Figure 2 III compares the loading of PC1 (figure 2 IIIB) with the spectra of pure 

ceramide (figure 2 IIIA) and RNA (figure 2 IIIC). The primary observation is that all 

the peaks corresponding to the ceramide appear as positive features in PC1, whereas 

those from the RNA correspond to negative features of PC1. In relation to the zero-

line, the loadings are almost a perfect representation of each pure spectrum, the one of 

RNA being inverted. Notably, histone features are totally absent in this plot and have 

absolutely no influence on the information contained in PC1, as might be expected 

from figure 2 II. To illustrate this effect, the loading obtained from the PCA of the 

data sets of the RNA and ceramide alone was calculated and was found to overlap 

exactly with the loading 1 obtain using the 3 data sets (data not shown). However, this 

loading overlaps perfectly with figure 2 IIIB and so is not discernible. Notably, 

although all spectra have been normalised before analysis, PCA identifies the histone 

as having the lowest variability, perhaps because of the lack of sharp individual 

spectral features in comparison with the other species (Figure 2 I).   



An interesting observation is the correlation existing between the values of the 

loading and the positions of the spectra in the PCA plot. The spectra of the RNA are 

negative with respect to the loading of PC1 whereas the spectra from the ceramide are 

positive. Thus, a link exist between the composition of the samples analysed and the 

profile of the loading of PC1, or, more precisely, the loading of PC1 in this case is a 

representation of the molecular composition of each sample. To understand the 

information contained in the loadings calculated from the PCA, a simple comparison 

is made in figure 2 III. The loading of PC1, which discriminates the RNA from the 

ceramide, is compared to the difference spectrum between the mean spectrum of 

ceramide and the mean spectrum of RNA. The two spectra overlap almost exactly and 

no major variations can be seen.  

A similar relationship between the source molecular spectra and the PC loadings can 

also be demonstrated for PC2. In figure 2 IIIB, the loading of PC2 has been plotted, 

but in order to find a match, the mean spectra of RNA and ceramide have first been 

averaged before being subtracted from the mean spectrum of the histones. The 

resulting spectrum contains all the same peaks as the loading of PC2 and only slight 

variations in relative peaks intensities are observed.  

Thus, PCA can provide information on the molecular composition or underlying 

biochemical differences of the data sets analysed and the results presented are 

comparable to the difference spectra that can be calculated by simple subtraction. A 

direct correlation exists between the position of the spectra in the scores plot and the 

value of the loadings. The negative scores are as informative as the positives ones, but 

correspond to two different directions in the scatter plot. Using the scale present for 

each PC, the negatives and positive peaks can be attributed to the different groups of 



the plot and using different reference spectra these peaks can be then matched with 

specific features for the molecular characterisation of the samples. 

 

3.3 Sensitivity of PCA  

In the previous section, PCA was applied to three significantly different bio-

molecules having strong dissimilarities in their Raman signatures. In this section, the 

histone spectra are compared to those of albumin and collagen. These three samples 

are proteins and therefore have more similar Raman profiles. Figure 3 I presents the 

mean spectra of albumin and collagen compared to the histone spectrum, offset for 

clarity. The three spectra contain many similar features and only the regions around 

1300-1350 cm-1 and 800-950 cm-1 exhibit obvious differences between the three 

different molecules.  

Despite the similarities of their spectra, PCA clearly discriminates the molecules as 

shown in the scores plot of Figure 3 II. As observed in the previous section, the intra-

group variance is very low in comparison to the inter-group differentiation suggesting 

that the loading is s good representation of the spectral variation between the different 

bio-molecules tested. PC1 describes 71% of the observed variance, and PC2 26%. 

Albumin and collagen are largely discriminated by PC1, although they are not placed 

symmetrically about the origin, and they are also discriminated somewhat by PC2. 

Histone is differentiated from the other two proteins largely by PC2, although in this 

instance it does not sit at the origin of PC1 and so is somewhat discriminated by PC1. 

As in this case both PC1 and PC2 contribute to the differentiation of all three species, 

the loadings are more complex and are not as clearly derived from the individual 

molecular components as for the previous example. However, in comparison to the 

spectra of collagen and albumin, specific features for each of them can be identified in 



the loadings. As expected, the loading of PC1 is dominated by these two components, 

as shown in figure 3 III. Indeed, the loading of the PC which differentiates a dataset of 

just collagen and albumin is almost identical to that which discriminates the three 

proteins (data not shown). As in the previous example, the loading of PC1 can be 

accurately reproduced by taking the difference of the mean spectra of albumin and 

collagen, as shown in figure 3 III. 

 

 

Figure 3. I: Mean Raman spectra recorded from albumin (A) collagen (B) and 
histone (C) on CaF2 windows. II: Scores plots of the first two principal components 
after PCA performed on Raman spectra recorded from albumin (green), histone (red) 



and collagen (blue). III: Plot of the loadings of PC1 (blue dotted line) compared with 
the difference between the mean spectrum of collagen minus the mean spectrum of 
albumin (red dashed line). The loadings are compared with spectra recorded from 
collagen (A) and albumin (C), both offset for clarity. IV: Plot of the loadings of PC2 
(blue line) compared with the difference between the mean spectrum of collagen 
minus the mean spectrum of albumin (red line). V: Plot of the loadings of PC2 (blue 
dotted line) compared with the simulated weighted sum of the different spectra 
according to their position on the scatter plot (red dashed line).   
 
 

 

In the case of PC2, however, the loading is not easily associated with the spectrum of 

any one of the individual components, although some of the stronger features can be 

identified, including the disulfide stretching at 509 cm-1, the C–C twisting mode of 

Phe (proteins) at 623 cm-1, the C-C stretching (proteins) at 816 cm-1, the C–C 

aromatic ring stretching in Phe at 1005 cm-1 or the amide I band region around 1655 

cm-1 [10, 45-47] (figure 3 IV). However, when summed according to their scores in 

the scores plot, (0.065 x (albumin spectrum) + 0.035 x (collagen spectrum)) – 0.1 x 

(histone spectrum), an excellent match to the loading of PC2 is achieved, as shown in 

figure 3 V. Notably, when weighted by the number of datapoints per group, (100), the 

respective sums of the negative and positive loadings each equals 1. Thus, although 

the principal components for more complex systems are not easily identifiable with 

the spectra of constituent biomolecular components of the sample, they are clearly 

determined by weighted sums of the spectra of those components. 

 

 

3.4 Influence of imbalanced spectral datasets on PCA 

As described in the previous section, the weighted sum of the spectra from the 

different components determines the profiles of the loadings when the number of 

spectra in each datasets is equal. However, when working on biological samples, 



especially when the spectra are extracted from large maps, the numbers of spectra 

present in each group is usually determined by the relative sizes of the tissue or 

cellular regions, the laser spot size and sampling step size, and thus can be imbalanced. 

To illustrate the effect of such an imbalance in the datasets on the PCA, the numbers 

of the spectra composing the dataset recorded from the albumin was gradually 

reduced from 100 to 75, 50, 25 and finally 10 spectra, while the number of spectra of 

histone and collagen was kept constant. PCA was run for each dataset and the final 

plots are merged in figure 4 I, to visualise the evolution of the position of each cluster 

in the scatter plot.  

The first observation is that although the number of spectra in only one group has 

been varied, the entire scores plot is affected and the positions of the data sets 

corresponding to the histone and collagen vary considerably. As the number of 

albumin spectra is systematically varied, they both move toward the zero position of 

PC2, approaching zero when the group corresponding to the albumin is reduced to 10 

spectra. At this point they are predominantly discriminated by PC1 alone. Their 

positions also evolve according to PC1, their relative spacing increasing such that in 

the last data set of 10 albumin spectra, they are almost equidistant from the zero 

position of PC1. Simultaneously, the cluster corresponding to albumin is also 

significantly shifted when its number of spectra is reduced. When the groups have 

equal numbers, this cluster is positioned near the zero position of PC2, but gradually 

moves away from it as its constituent number is reduced. Although less pronounced, 

the cluster drifts to lower (negative) values of PC1, such that the position of the 

albumin data set and histone data sets is almost aligned with respect to PC1 when the 

number of spectra for albumin is reduced to 10 spectra. 

 



 

 

Figure 4. I: Scores plot of the first two principal components after PCA performed on 
Raman spectra recorded from albumin (Alb - green), histone (H -red) and collagen 
(COL -blue). The data set corresponding to the albumin has been systematically 
reduced from 100 to 75, 50, 25 and 10 spectra. II: Plot of the loadings of PC1 (B) 
corresponding respectively to the first principal component resulting from the PCA 
analysis for Alb n = 100 (blue) and Alb n=10 (red). These loading have been 
compared with spectra recorded from collagen (A) and histone (C) and albumin (D). 
III: Scores plot of the first two principal components of PCA performed on Raman 
spectra recorded from protein mixtures. For all data sets, filled circles correspond to 
PCA with 50/30/20 histone/DNA/RNA, whereas unfilled squares correspond to PCA 
with 50/45/5 histone/DNA/RNA. IV: Plot of the loading of PC1 (C) of the PCA 
analysis for proteins mixture. This loading is compared with spectra recorded from 
different compounds such as ceramide (A) and albumin (B) and RNA (D), DNA (E) 
and histone (F). V: Plot of the loadings of PC2 of the PCA analysis for protein 
mixtures with the data set H 50% DNA 30% RNA 20% (C) and H 50% DNA 45% 
RNA 5% (D). The loading are compared to spectra recorded from different 
compounds such as histone (A) and RNA (B) and DNA (E).  



These modifications in the relative positions of the different groups reflect the 

variation in the relative contribution of each compound to the loadings corresponding 

to the different PCs. To illustrate these variations, the PC1 loadings calculated when 

the groups are balanced with the same number of spectra has been compared to the 

PC1 obtained when the albumin has been reduced to 10 spectra (figure 4 II).   

As the group is located in the negative part of the scores plot with respect to PC1, the 

peaks related to the histones in the loadings are negative. The comparison between the 

two loadings clearly highlights the diminution of the specific features related to the 

albumin in the loading of PC1, when under-represented compared to the other groups. 

In quantitatively constructing the loadings from the spectra of the constituent spectra, 

a general formula can be applied: 

PCjSjNjj()         Equation 1 

where j is the number of groups in the scatter plot, Sj is the average score of group j, 

Nj is the number of spectra contained in the group and j is the constituent spectrum 

as a function of frequency, . Thus, in the case where a group is represented by a 

lower number of constituent spectra, the average score is substantially reduced 

compared to the larger group, as is the contribution to the loading of the PC. 

In the reduced dataset, however, specifics peaks corresponding to the histones are 

identifiable more easily, as they play a more significant role in the discrimination 

from the date set corresponding to the collagen. Moreover, the positive peaks in the 

loading of PC1 are also affected and specifics features corresponding to the collagen 

are also better defined when the groups are imbalanced. This is due to the increased 

differentiation of the two clusters according to PC1. Notably, therefore, in the reduced 

dataset, the molecular origin of the discrimination of the two majority clusters 

becomes clearer.  



 

3.5 PCA of Complex Mixtures 

The studies outlined above illustrate how PCA can differentiate structurally (and 

therefore spectrally) distinct and similar molecular species. In biological samples such 

as tissues or cells, however, these species are spatially mixed, and therefore within a 

typical sampling area are spectrally mixed. In order to simulate such mixed spectra, 

mixed data sets were constructed using weighted sums of the spectra of individual 

compounds. Initially, a dataset of the three groups was constructed: (i) 50/50 

albumin/ceramide, (ii) 50/50 histone/DNA, and (iii) 50/30/20 histone/DNA/RNA. The 

mixtures thus mimic regions of equal protein content, but which are relatively rich in 

either lipidic (i) or nucleic acid (ii), or have differing nucleic acid (iii) content. In a 

simplistic approach, these can be proposed to represent (i) cytoplasmic/membrane, (ii) 

nuclear and (iii) nucleolar regions.  

As expected, PCA effectively differentiates the three simulated spectral groups, as 

shown in figure 4 III (filled circles for all groups). PC1 represents 96% of the variance 

and largely differentiates the albumin/ceramide cluster from the histone/DNA and 

histone/DNA/RNA groups. The loading of PC1, shown in figure 4 IV, is dominated 

by albumin and ceramide spectral features in the positive sense, and by nucleic acid 

features in the negative sense. Again, the sharp features of the lipidic spectra 

contribute strongly loading. PC2 (figure 4 VC) differentiates the histone/DNA and 

histone/DNA/RNA groups and its loading is dominated by features of RNA (positive) 

and DNA (negative). As the relative contributions of DNA and RNA to group (iii) are 

varied from 50/30/20 to 50/45/5, the differentiation of groups (ii) and (iii) as 

described by PC2 is reduced considerably, although little change is seen with respect 

to the differentiation of clusters (i), (ii) and (iii), with respect to PC1 (Figure 4 III, 



squares for all groups), consistent with the negligible contributions of nucleic acid 

peaks to the loading of PC1. The loading for PC2 is relatively unchanged, however, as 

shown in Figure 4 VD, due to the similarity of the spectra of DNA and RNA, 

although subtle differences can be seen.   

 

3.6 Single cell analysis revisited 

Analysis of the results of PCA on imbalanced datasets illustrates that the groups with 

smaller numbers are unrepresented in the loadings which differentiate them. In the 

case of the cellular analysis in section 3.1, the classifications as identified by K-

cluster analysis result in three groupings corresponding to cytoplasm, nucleus and 

nucleoli. Within these, the number of spectra assigned to nucleus is the highest 

(n=143) followed by cytoplasm (n=126) and nucleoli (n=27). Thus, PC1, has strong 

contributions from lipids, and although some features of DNA are discernible, neither 

PC1 nor PC2 exhibit peaks which can unambiguously be ascribed to the nucleoli. The 

number of spectra per cluster cannot be determined a priori as it is dictated by the 

relative areas of the subcellular features. The imbalance can be overcome in a number 

of ways however: (a) reduction of the numbers of the larger clusters to the numbers of 

the smallest group (b) an increase in the number of the smaller clusters by for 

example duplication of randomly selected spectra, or means of a number of randomly 

selected spectra (c) increasing the relative strength of the spectra in the smaller data 

sets. For illustrative purposes, approach (b) has been chosen, and the numbers of 

spectra in the nucleoli (originally n=27) and cytoplasmic (originally n=120) groups 

was increased to the number of the nuclear group (n=143) by random selection and 

duplication of existent spectra.  



Figure 5 I shows the resultant PCA scores plot, which is significantly different than 

that of the imbalanced groups (Figure 1 III). Although this should be a more accurate 

reflection of differentiation of the clusters, notably, the discrimination of the different 

clusters according to either PC1 or PC2 is no longer as clear. PC2 differentiates the 

nucleus from the nucleoli and cytoplasm clusters whereas in figure 1 III the nucleoli 

cluster was well discrimiated from the other two clusters. PC1 now does not provide a 

clear differentiation between clusters. Although the nucleoli seems to be well 

discriminated from the cytoplasm cluster, the spectra from the nucleus are unequally 

distributed about the origin, meaning these spectra will influence the loadings 

unevenly. By direct comparison, in figure 1 III, the nucleus and cytoplasm clusters are 

positioned on respectively the negative and positive sides of the scores plot according 

to PC1 which indicates a better differentiation.  

The main limitation in this example is the presence of a high intra-group variability 

which can distort the information contained in the loadings. The nuclear spectra are 

distributed on the negative and positive side of PC1 and thus the contribution to the 

loading of PC1 is difficult to interpret. In terms of PC2, the intra-group variability of 

the cytoplasm spectra is higher than the difference existing between the nucleoli and 

nucleus clusters. Therefore the specificity of loading of PC2 is reduced. Therefore, as 

shown for the pure bio-molecules in section 3.2, a clearer interpretation of the 

loadings is provided by a direct comparison of individual clusters. Thus PCA of the 

balanced cytoplasmic and nuclear regions shows them to be exclusively differentiated 

by PC1 (data not shown). 



 

 

 

Figure 5. I: Scores plot of the first two principal components of PCA performed on 
Raman spectra of A549 cells with numerically balanced groups. The spectra have 
been selected from the K-means clusters corresponding to the nucleus (green), 
nucleoli (red) and cytoplasm (blue). II: Plot of the loadings of PC1 of the PCA 
analysis based on 2 clusters (C). The loadings are compared with spectra recorded 
from different compounds such as L-phosphatidyl-ethanolamine (A), ceramide (B), 
RNA (D), DNA (E) and histone (F). III: Plot of the loadings of PC1 resulting from the 
PCA analysis based on 2 clusters (C). These loadings have been compared with 
spectra recorded from different compounds such as L-phosphatidyl-ethanolamine (A), 
ceramide (B), RNA (D), DNA (E) and histone (F). 



The loading is similar to that obtained for the imbalanced groups, which might be 

expected as the two original groups are not hugely different in size. Intragroup 

variability is still relatively large, but the fact that the number of spectra in each group 

is now balanced results in a balanced distribution of the two groups negatively or 

positively with respect to PC1, as seen with pure biomolecules, reducing the impact of 

the intra-group variability. Many different intense positive peaks can be identified in 

PC1 (figure 5 II), mostly related to the lipidic composition of the cytoplasm. The 

spectra of pure L-phosphatidyl-ethanolamine and ceramide have been plotted for 

comparison (figure 5 IIA and 5 IIB). The regions of interest have been highlighted in 

grey. Concerning the negative peaks, most of them can be found in the spectra of the 

RNA and DNA (figure 5 IID and 5 IIE). However, no match is found to the histone 

spectrum (figure 5 IIF) which is expected as this protein is specific to the nucleoli. 

For the case of the nucleus and nucleoli only, PCA for the balanced groups also shows 

a clear differentiation according to PC1 (data not shown). The loading is now 

considerably less noisy and more detailed than that for the imbalanced groups (Figure 

5 III). The positive peaks can be partially attributed to the presence of lipid in the 

structure of the nucleus (figure 5 IIIA and 5 IIIB). The negative peaks are related to 

the composition of the nucleolus and peaks specific for DNA and RNA can be found 

(figure 5 IIID and 5 IIIE).  Most notably, specific features of histone are now 

discernable (figure 5 IIIF), such as the C-H in-plane Phe located at 1033 cm-1, the ν C-

C, ν C- N and ν C-O band at 1103 cm-1, the C–O stretch and COH bend at 1173 cm-1, 

the amide III (β-sheet, protein) at 1247 cm-1 and the C-H at 1321 cm-1 [43, 44, 48].     

 

4. Conclusion 



Although Raman spectroscopy is a powerful tool for the analysis of biochemical 

content at a sub-cellular level, analysis of the spatial distribution of spectral signatures 

requires complex multivariate analytical techniques. K-means clustering analysis 

provides an elegant map of spectrally differentiated regions, but little basis for the 

underlying biochemical differences between the identified regions. In conjunction 

with K-means cluster analysis, PCA loadings in principle provide this information, 

but they can be a complex mixture of many contributing molecular components. The 

loadings are strongly weighted by sharply varying features, such as those of lipids or 

nucleic acids. They are also weighted by the number of spectra within the individual 

clusters and thus molecular contributions to lower number clusters can be 

misrepresented. Balanced clusters provide the best representation of relative 

contributions to loadings, but ultimately, the best results are provided by a pair wise 

analysis of identified sub cellular regions, which yield a clearer representation of the 

underlying biochemical differences. 
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