A New Reinforced Fibrin Collagen Glycosaminoglycan Material to Resist Tissue Contraction in Heart Valves

Claire Brougham
Technological University Dublin, claire.brougham@tudublin.ie

Gerard Cooney
Trinity College Dublin

Stefan Jockenhoevel
Aachen University of Technology

Thomas Flanagan
University College Dublin

Fergal O'Brien
Royal College of Surgeons in Ireland

Follow this and additional works at: https://arrow.tudublin.ie/engschmanconn

Part of the Other Medical Sciences Commons

Recommended Citation

This Conference Paper is brought to you for free and open access by the School of Manufacturing and Design Engineering at ARROW@TU Dublin. It has been accepted for inclusion in Conference Papers by an authorized administrator of ARROW@TU Dublin. For more information, please contact yvonne.desmond@tudublin.ie, arrow.admin@tudublin.ie, brian.widdis@tudublin.ie.

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 License
A New Reinforced Fibrin Collagen Glycosaminoglycan Material to Resist Tissue Contraction in Heart Valves

Claire M. Brougham1,2, Gerard Cooney1,3, Stefan Jockenhoevel4, Thomas C. Flanagan5, Fergal J. O’Brien1,3,6

1 Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; 2 Trinity Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; 3 Trinity Centre for Bioengineering, TCD, Ireland; 4 Helmholtz Institute for Biomedical Engineering & Institute for Textile Engineering, University Hospital Aachen | RWTH Aachen University; 5 School of Medicine & Medical Science, University College Dublin, Ireland; 6 Advanced Materials & Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland

INTRODUCTION

• Heart valve (HV) prostheses for paediatric patients have well documented shortcomings, predominantly related to the need for multiple surgeries as the child grows.

• A tissue engineering approach may provide an effective alternative by allowing the implanted valve to grow and remodel with the patient.

• Fibrin has been shown to be an excellent scaffold for HV tissue engineering studies, however, fibrin based constructs have shown an inability to maintain an appropriate seal upon closure, as a result of cell-mediated contraction of the HV leaflets [1,2].

• We are currently investigating how a collagen glycosaminoglycan (GAG) scaffold, infiltrated with fibrin, can provide a fully natural scaffold, which has sufficient stiffness to resist the contractile forces of cells acting upon it and thus resist this cell mediated contraction.

• Collagen and GAGs are ideal natural materials to support fibrin in this application, as collagen is the major extracellular component of the native HV, while GAGs provide necessary fatigue resistance against the repeated shearing between the different layers of the native heart valve.

AIMS

• To develop and characterise a cross-linked, multicomponent scaffold of collagen, GAG, and fibrin (CGF) in a HV shape.

• To assess vascular smooth muscle cell (VSMC) distribution, and response within this CGF scaffold.

• To investigate the cell-mediated contraction of this CGF scaffold when containing VSMCs.

METHODS

• The infiltration of fibrin throughout the CG was assessed using Masson’s Trichrome staining (see Figure 3).

• Mechanical properties of the scaffolds were tested using a Zwick/Roell Z050 machine (see Figure 4).

• Vascular smooth muscle cells (VSMCs) were successfully seeded into 5mm thick CG scaffold discs using an injection technique with fibrin itself as the carrier and cultured over 7 days (see Figure 5).

• The diameters of the discs were recorded and comparisons drawn to the fibrin control, which was seeded at the same seeding density (see Figure 6).

• VSMC proliferation was measured using a PicoGreen assay (see Figure 7) and live dead cell staining allowed cell viability to be assessed (see Figure 8).

RESULTS

• A HV shaped collagen-GAG (CG) scaffold was fabricated through freeze drying a CG slurry in a custom built mould (see Figure 1). Parameters were optimised to produce a CG scaffold with a homogenous pore size structure.

• Once freeze dried, scaffolds were crosslinked physically by dehydrothermal (DHT) treatment at 105°C for 24 hours and crosslinked chemically using 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDAC) in the presence of N-hydroxysuccinimide (NHS) solution, which stiffens the scaffold while maintaining elasticity.

• Different concentrations of both collagen and GAG were assessed to find the most stable concentration of CG to work with. 0.75%Collagen together with 0.044%GAG was found to be the most stable once injected with fibrin (see Figure 2).

CONCLUSIONS

A crosslinked, multicomponent scaffold of collagen, GAG and fibrin has been characterised for heart valve applications. Fibrin gels reinforced with a 0.75% collagen, 0.044% GAG scaffolds can resist VSMC induced contraction significantly more than fibrin-only gels, while allowing cell proliferation and maintaining excellent cell viability. This improvement in structural integrity may facilitate the use of fibrin based materials for heart valve tissue engineering.

REFERENCES

ACKNOWLEDGMENTS

• RCSI Tissue Engineering Research Group
• Irish Heart Foundation
• Dublin Institute of Technology

@TissueEngDublin