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Abstract 

The issue of excessive vibration of footbridges due to pedestrian loading is now well 

documented. Bridge vibrations produced from a crowd of pedestrians have been 

estimated by modifying the effect caused by a single pedestrian by an enhancement 

factor to take crowd synchronization into account. In this paper this approach is 

extended to account for the fact that all pedestrians will not have the same pacing 

frequencies, and the effects of distributions of pacing frequency and other parameters 

on the enhancement factor are investigated. It is shown that this more faithful 

representation of pedestrian crowd walking behaviour gives reduced vibration 

response compared to the fully homogenous crowd case. Based on these results, 

enhancement factors for predicting the response due to a crowd from the predicted 

accelerations of a single pedestrian are proposed. Further, the results are compared 

with published test results to indicate that the model is reasonable. 

 

Keywords:   Bridges, Pacing frequency, Pedestrian, Stride, Synchronization, Vertical 

 

 

1.  Introduction 

 

Recent developments in the design of structures, and increasing pressure on designers 

to deliver more aesthetically-pleasing structures, have led to longer and lighter 

footbridges. Increasingly, these structures are experiencing serviceability problems due 

to excessive vibration. This occurs when the natural frequency of the structure is 

within the range of pedestrian excitation frequencies. This can lead to discomfort for 

pedestrians traversing the bridge. Well known examples of footbridges that 

experienced vibrations due to the dynamic loading of pedestrians are, the Millennium 

Bridge, London (Dallard et al, 2001), the Pont du Solferino, Paris (Danbon and 

Grillaud, 2005) and the T-Bridge, Japan (Fujino et al, 1993).  

 

1.1  Pedestrian Induced Vertical Loading 
 

In this work, only the vertical vibrations induced by pedestrians are examined. Kala et 

al (2009) carried out research to investigate the vertical component of pedestrian force 

on a rigid surface using three sensors placed 0.9 m apart. They also examined the force 

transmitted by the heel to toe strike on impact with a solid walking surface and report 

that an increase in pacing velocity led to an increase in step length and peak force. 

Pacing frequency is one of the most important parameters and corresponds to the 

application of vertical forces. It is classified as the inverse of time from the initial 

contact of the left foot with the surface to the initial contact of the right foot 
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immediately thereafter (Archbold, 2008). Pacing frequency is often described using a 

normal distribution, and numerous parameter values have been published, Table 1. 

From these, ‘meta-parameters’ for the distribution have been derived. Where a range is 

given, a mean and standard deviation using a confidence interval (CI) of 95% are 

calculated.  

 

Table 1 – Parameters of Normal distribution of pacing frequency from the literature. 

 

Reference 
Mean 

(Hz) 

Standard 

Deviation (Hz) 

Coefficient of 

variation 

Dallard et al (2001) 1.9 0.25 0.13 

Matsumoto (1978) 2.0 0.173 0.087 

Grundmann and Schneider (1990) 2.0 0.22 0.11 

Bachmann and Ammann (1987) 2.0 0.13 0.065 

Pachi and Ji (2005) 1.83 -- -- 

Ebrahimpour et al (1996) 1.8 -- -- 

Kramer (1979) 2.2 0.3 0.14 

Derived Meta Parameters 1.96 0.209 0.1064 

 

 

1.2  Crowd Loading 
 

The dynamic loading from a crowd for low-frequency footbridges has not been 

researched extensively (Kala et al, 2009). In a crowd loading situation, vibrations 

produced by one pedestrian may be reduced or damped by the presence of others due 

to destructive interference. Conversely, constructive interference can also take place. 

Grundmann et al (1993) highlighted that under crowd loading, footbridges with a 

natural frequency close to 2 Hz are likely to experience higher levels of vibration than 

those induced by a single pedestrian. This is as a result of the synchronisation of the 

steps of some of the pedestrians in the group.  

The level of synchronisation within a crowd is reported with respect to the number 

of pedestrians on the bridge, N. Grundmann et al (1993) use a value of 0.135N, Fujino 

et al (1993) use 0.2N, whilst Bachmann and Ammann (1987) use √N. However, none 

of the quoted values have been applied to structures other than those from which they 

were obtained. Further, the literature does not cover higher levels of synchronization. 

Recent tests carried out on the Sean O’Casey Bridge, Dublin, suggest that there is a 

threshold vibration response beyond which the vibration response levels off as the 

number of pedestrians increases (Fanning and Healy, 2008). This result highlights the 

need for further investigation into crowd loading on bridges. 

 

 

2.  Numerical Modelling 

 

2.1  Problem Formulation 
 

The work presented here is based on a moving force model, similar to those employed 

in current design standards. This model may be conservative, as it does not consider 

interaction between the pedestrian and the moving bridge surface (Archbold, 2004).  
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Bridge 

The bridge is considered to be a simply-supported, 50 m long beam. The section 

properties used are: mass of 500 kg/m; width of 2 m, and; depth of 0.6 m. A flexural 

rigidity of EI = 7.2×10
9 

Nm
2
 was used. Thus the fundamental natural frequency of the 

bridge is 2.38 Hz. This is similar to the bridge used by Archbold (2008). Damping is 

taken to be 0.5% for the first two modes, with Rayleigh damping assumed thereafter. 

It is acknowledged that this will dampen the influence of higher modes. 

 

Pedestrians 

Adult pedestrian weight was represented by a log-normal distribution with a mean of 

4.28 kg and a standard deviation of 0.21 kg. This is equivalent to an average weight of 

72.2 kgs (Portier et al, 2007). Although design codes prescribe a stride length of 0.90 

m, the stride length is taken here to be normally distributed with a mean of 0.66 m 

(Barela et al, 2008), and based on a coefficient of variation of 10%, a standard 

deviation of 0.066 m. As reported in Table 1, the pacing frequency is considered as 

normally distributed with a mean of 1.96 Hz and standard deviation of 0.209 Hz. 

 

Crowd 

A crowd length of 100 m and a width of 2 m were used to establish a representative 

crowd on the bridge at any point in time. The phase angle of the pedestrians is 

uniformly random in the interval 0 to 2π . Crowd densities of 0.75 p/m
2
 (where 'p' is 

the number of pedestrians) and 1.5 p/m
2
 are used, thus giving an average number of 

150 and 75 pedestrians respectively on the bridge during the simulation. Pedestrians’ 

starting locations are based on a Poisson arrival process and are described by the 

exponential distribution. The mean gap is a function of density and is 0.33 m/p and 

0.66 m/p for the densities 0.75 p/m
2
 and 1.5 p/m

2
, respectively. 

 

Synchronization 

The proportion of pedestrians taken to be synchronized; that is, walking in step, is 

termed the level of synchronization and therefore ranges from 0 to 1. The 

synchronization levels quoted by Grundmann et al (1993), Fujino et al (1993) and 

Bachmann and Ammann (1987) given previously, are specifically examined in this 

work. More specifically, seven synchronization levels of 0, 0.135, 0.2, 0.5, 0.75 and 

1.0 are considered, in addition to that of Bachmann and Ammann (1987), which 

depends on N. The pedestrians deemed to be synchronized are given the same pacing 

frequency and phase angle. These parameters are randomly selected according to their 

respective distributions previously given. The synchronized pedestrians are randomly 

distributed throughout the crowd.  

 

 

2.2  Finite Element Modelling 
 

A finite element model of the bridge was developed in Matlab. The beam was 

modelled using 10 one-dimensional beam elements, with lumped mass assumed. 

Transient solutions are obtained using the Newmark-β method. Each pedestrian is 

described by a moving force which varies with time (Archbold, 2004) according to: 

 

 ( ) ( )1 sin 2
p

P t W r f tπ = +   (1) 
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In which, W is the pedestrian weight, 
p

f  is the pacing frequency, and r is the dynamic 

force component, given by: 

 

 0.25 0.1
p

r f= −  (2) 

 

Each moving force is distributed to the adjacent nodes according to the beam element 

shape functions as described in Wu et al (2000). The forces on the bridge due to the 

crowd at any point in time are taken as the superposition of the individual pedestrian 

forces. 

 The finite element model was verified using a closed form solution for a single 

moving force (Frýba, 1999) and for two moving pulsating forces using a 

corresponding finite element model in ANSYS. 

 

2.3  Vibration Response 
 

The vibration response in this work is assessed using a 5-second root-mean-square 

(RMS) moving average value from the acceleration history. The maximum of this 

RMS from any one particular scenario is taken as the response of the bridge to that 

particular loading scenario. 

 

2.4  Enhancement Factor 
  

Following investigations into the enhancement factors used by Grundmann et al 

(1993), Fujino et al (1993) and Bachmann and Ammann (1987), the crowd loading 

enhancement factor is defined as: 

 

 C

SP

R
m

R
=  (3) 

 

In which RC is the response due to the crowd and RSP is the single pedestrian response. 

In this manner, the response due to a crowd can be estimated from that of a single 

pedestrian. Since the response due to a single pedestrian is easier to model, the idea of 

the enhancement factor has the potential to be used in codes of practice.  

 

 

3.  Results and Discussion 

 

3.1  Single Pedestrian Response 
  

Critical Parameter for Single Pedestrian Excitation 

The response of the structure to a single pedestrian was investigated by considering 

permutations of randomly distributed and deterministic parameters. When each 

parameter is not varied according to its distribution, it is assigned the mean value, 

described previously. As expected, it was found that the response is most sensitive to 

the pacing frequency. The response function to pacing frequency was established by a 

pacing frequency sweep from 1.3 to 2.8 Hz, and is given in Figure 1(a). To estimate 

the distribution of RMS response to the population of pedestrians, varying only the 

pacing frequency, 10
6
 pacing frequency samples were taken, and the corresponding 

RMS noted. The resulting distribution of RMS is given in Figure 1(b).  
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From Figure 1(a), it can be seen that there is a significant increase in the response at 

2.36 Hz, which is close to the natural frequency of the bridge (2.38 Hz), as may be 

expected. As the frequency of the beam is two standard deviations away from the 

mean pacing frequency, less than 5% of the pedestrians walk at this frequency. Figure 

1(b) shows that there are a high number of incidences of low RMS. This is as a result 

of the mean pacing frequency being lower than that of the bridge. 
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Figure 1 – Single pedestrian: (a) Response function; (b) distribution of RMS 

accelerations from 10
6
 samples (only non-zero values shown). 

 

Characteristic Single Pedestrian Response  

Since there is not a single representative pedestrian, the response of the bridge for 

1000 crossings of single pedestrians, with all parameters varied according to their 

representative statistical distributions, is determined. The characteristic response, RSP, 

is defined as that below which 95% of samples are expected to fall, and is found in 

this case to have a value of 0.28 m/s
2
. This is well below the limits prescribed in 

common design codes. 

 

3.2  Crowd Loading Response 
  

Typical Crowd Response 

The response of the bridge to a typical crowd is given in Figure 2. This crowd has a 

density of 0.75 p/m
2
 and 20% synchronization. From Figure 2, it can be seen that the 

peak acceleration response occurs when a cluster of synchronized pedestrians arrives 

onto the bridge at about 25 seconds. The midspan response then builds until it reaches 

a peak at about 38 seconds, when about 75 pedestrians are on the bridge. 

Consequently, the peak RMS is noted about 5 seconds later at 43 seconds. 
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Figure 2 – Typical crowd response for 20% synchronization and 0.75 p/m
2
. 

 

Characteristic Crowd Response 

For the crowd densities of 0.75 p/m
2
 and 1.5 p/m

2
, and for each of the 7 levels of 

synchronization given earlier, 1000 sample crowd responses were determined. The 

characteristic response (the 95-percentile) was then determined for crowd scenario. 

The corresponding enhancement factors are determined from Equations (3) with the 

value of RSP found previously as 0.28 m/s
2
. The results are given in Figure 3. 

Figure 3 represents an improvement on existing enhancement factors which can 

state that if the synchronization is zero, the enhancement factor is zero. This implies 

that the response due to each pedestrian in a crowd is cancelled by that of another. 

Further, Figure 3 shows that the enhancement levels off for the lower crowd density. 

This may correspond to the threshold response identified in Fanning and Healy (2008). 

Figure 4 compares the enhancement factors obtained in this work to those of: 

• Bachmann and Ammann (1987), 
B

m N= , with synchronization of 1 N ; 

• Grundmann et al (1993), 0.135
G

m N= , with synchronization of 13.5%; 

• Fujino et al (1993) , 0.2
F

m N= , with synchronization of 20%; 

The results show a reasonable correlation with the work of these authors at the 

specified levels of synchronization. The enhancement factors for a density of 1.5 p/m
2
 

found here are higher than those reported by Bachmann and Ammann (1987) and 

Grundmann et al (1993), but lower than those reported by Fujino et al (1993). The 

present enhancement factors are higher than those of the other authors for the crowd 

density of 0.75 p/m
2
. 
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Figure 3 – Crowd loading enhancement factors for two densities. 
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Figure 4 – Comparison of enhancement factors with those from literature 

 

4.  Summary 

 

This research used a moving force finite element formulation to determine the vertical 

response of a bridge due to pedestrian excitation. Statistical distributions of pedestrian 

parameters were used to derive characteristic responses, for various synchronization 

levels and crowd density. The response to a single pedestrian was examined in detail, 

and a characteristic response established. The enhancement factors to be applied to the 

single pedestrian response, to obtain the characteristic crowd response were derived. 

 It was found that the enhancement factor is not zero for zero synchronization. 

Further, the enhancement factors found compare reasonably well to those of the 

literature. Additional research is required to investigate the levelling off of the crowd 

response for the lower crowd density as found by Fanning and Healy (2008). 
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