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ABSTRACT 

The main objective of this research was to design and develop a Hot Box to test the 

thermal properties of Eco-quilt multi-foil insulation. This work began by gaining an 

understanding into how multi-foil works, how it is installed and examining different 

variations of this insulation. It was clear at an early stage that there were two conflicting 

opinions on the thermal performance of multi-foils. One set of tests claimed that the 

insulation had a thermal resistance of approximately 5 m2oC/W. These tests were carried 

out in real weather conditions, where temperatures were fluctuating, although one 

laboratory test achieved similar results. The second types of tests were based on 

standardised EN ISO test methods and the results were in general agreement that the 

thermal resistance of multi-foils was approximately 1.7 m2oC/W.  

The results of initial tests conducted on multi-foil with a basic testing facility were in 

general agreement with the results of the EN ISO test methods. It was noted that this 

initial testing facility had certain limitations and it was decided to build a more 

advanced test rig to conduct further tests on Eco-quilt. Research was conducted into 

three types of Hot Box testing apparatus and a new testing facility, based on a Guarded 

Hot Box, was designed and constructed.  

A comparative test method was employed to evaluate Eco-quilt. This involved 

comparing insulation, with known thermal properties, directly with Eco-quilt while 

keeping the test conditions, for each test, as similar as possible. The results were in 

good agreement with the tests that found the thermal resistance equal to 1.7 m2oC/W. 

Other tests conducted showed that the performance of multi-foil is reduced when 

manufacturers’ installation procedures are not followed. 

It was found that the testing facility produced repeatable and meaningful results and 

could be used in the future to offer a good indication of the thermal performance of new 

insulations being developed.  
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NOMENCLATURE 

Ats  = Test specimen area (m2) 

Asp  = Surround panel area (m2) 

Aw  =Metering box wall area (m2) 

An  = Surface area normal to heat transfer (m2) 

Cp  = Specific heat capacity of air @ 20oC (1.007 kJ/kg oC) 

Cl  = Combined loss heat transfer coefficient (W/m2oC) 

h1  = Hot side test specimen surface coefficient (W/m2oC) 

h2  = Cold side test specimen surface coefficient (W/m2oC) 

Kts  = Test specimen thermal conductivity (W/moC) 

Ksp = Surround panel thermal conductivity (W/m oC) 

Kpolyiso  = Polyiso specimen thermal conductivity (W/m oC)  

Lts  = Test specimen thickness (m) 

Lsp  = Surround panel thickness (m) 

Lpolyiso  = Polyiso specimen thickness (m) 

m&   = mass flow rate (kg/s) 

Qts  = Heat transfer through test specimen (W) 

Qin   = Heat input to metering box (W) 

Qw             = Heat transfer through metering box walls (W) 

Qp  = Heat transfer parallel to test specimen (W) 

Qe  = Heat transfer through perimeter of test specimen/surround panel (W) 

Qfl  = Flanking loss heat transfer (W) 

Qsp  = Surround panel heat transfer (W) 

Qheater  = Heater power (W)  
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Ql  = Combined loss heat transfer (W)  

Rairgaps   = Air gap thermal resistance (m2oC/W) 

Rw   = Wall thermal resistance (m2oC/W) 

Rts   = Test specimen thermal resistance (m2oC/W) 

REco-quilt  = Eco-quilt thermal resistance (m2oC/W) 

Rmulti-foil  = Multi-foil thermal resistance (m2oC/W) 

Rs 1  = Hot side surface resistance (m2oC/W) 

Rs 2  = Cold side surface resistance (m2oC/W) 

T1  = Average temperature in metering box (oC) 

T2  = Average temperature in Guard box (oC) 

T3  = Average temperature in Cold box (oC) 

Tn1  = Metering box environmental temperature (oC) 

Tn2  = Cold box environmental temperature (oC) 

T hot ts  = Hot side test specimen surface temperature (oC) 

Tcold ts  = Cold side test specimen surface temperature (oC) 

T hot sp  = Hot side test surround panel surface temperature (oC) 

T cold sp  = Cold side test specimen surface temperature (oC) 

T hot air  = Hot side air temperature (oC) 

T cold air  = Cold side air temperature (oC) 

T inside walls  = Inside metering box wall surface temperature (oC) 

T outside walls  = Outside metering box wall surface temperature (oC) 

Usp  = Heat transfer coefficient of surround panel (W/m2 oC) 

Uts  = Heat transfer coefficient of test specimen (W/m2 oC)  

( )wUA   = Heat transfer coefficient for metering box walls per unit area (W/oC) 

UTT  = Thermal transmittance (W/m2 oC)  
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ΔTts  = Test specimen temperature difference (oC)   

ΔTsp  = Surround panel specimen temperature difference (oC)   

ΔTw  = Metering box wall temperature difference (oC)   

Δ Ta  = Air temperature difference (oC) 

V  = Volume flow rate (m3/s) 

V&   = Flow rate (l/s) 

airρ   = Air Density (1.18 kg/m3) 

ε   = Emissivity 
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CHAPTER 1 - INTRODUCTION 

1.1 Background 

In Ireland, energy demand is predicted to grow by 2-3 % annually until 2020 [1]. With 

overall energy import dependency reaching 91 % in 2006 [2] and with increasing fossil 

fuel prices, it is essential that this energy is used efficiently. The Kyoto Protocol is a 

legally binding agreement by developed nations to reduce global green house emissions. 

The European Union (EU) has committed to reducing their green house gas emissions 

by 8 % below 1990 levels between the years 2008-2012. For Ireland, this means that we 

have to reduce emissions to 13 % above 1990 levels (which was breached in 1997). By 

investing in Ireland’s renewable energy potential, reductions in CO2 emissions and 

energy dependence can only benefit Ireland’s economy in the future [1]. While reducing 

those parameters is important, making sure that this energy is used efficiently is vital.  

Energy consumption can be divided into five groups; industry, transport, residential, 

commercial/public and agriculture. At 24.5 %, the residential sector is only second to 

transport in energy consumption [2]. Of that 24.5 %, space and water heating accounts 

for approximately 70 % of the energy costs in a typical dwelling, and without adequate 

insulation much of that energy is being wasted [5]. It is, therefore, easy to see why 

having an energy efficient building house is so important. 

The Irish 1997 Building Regulations (Part L) sets minimum standards that buildings 

must meet to reduce energy consumption. These standards were further amended in 

2002 [3]. Furthermore, an EU directive on the Energy Performance of Buildings 

(EPBD) [4], which was brought into Irish law in 2006, contains provisions to improve 
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the energy performance of residential and non-residential buildings. As a result of this, 

new dwellings must have a Building Energy Rating (BER) certificate. Certificates range 

from an A1 rating to a G rating, with A1 the most energy efficient rating and G the most 

inefficient rating. This certificate clearly indicates the energy performance of a building 

to prospective buyers or tenants which in previous years would not have been available 

[5]. As a result, manufacturers of building materials became increasingly aware that 

they would need some recognised and accurate way of testing their product to ensure 

that the product would be able to meet these requirements. This also makes the product 

more attractive to prospective buyers.  

SmartRinsulations, an Irish company, manufacture a branded insulation called Eco-

quilt. Eco-quilt is a multi-foil type insulation that is relatively new to the Irish market. 

Although multi-foils have been used in Europe since the 1980’s, there has been 

considerable controversy to date over the thermal performance of the insulation. 

Conflicting test results show that when standardised test methods are employed [6], 

multi-foils perform poorly when compared to non-standardised tests. The standardised 

sets of tests were in general agreement that the thermal resistance of multi-foils was 

approximately 1.7 m2 oC/W, while test performed by multi-foil manufacturers showed 

that the insulation had a thermal resistance of approximately 5 m2 oC/W. 

SmartRinsulations and Enterprise Ireland commissioned this research to evaluate the 

thermal performance of Eco-quilt through agreed test methods. It was decided to base 

the tests in this research on the standardised Hot Box method as other test methods 

described in Section 2.4.1 – 2.4.4 were not recognised by the relevant authorities at the 

beginning of this project. Currently, there is no standardised Hot Box test facility in 
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Ireland and products must be sent to the UK where these test are carried out at great 

cost.  

A method of testing insulation was developed at DIT previous to this research. 

Preliminary tests were conducted with a testing facility, as part of this research, before a 

new and more advanced test facility was designed. The purpose of these tests will be to 

give manufacturers an indication of how their particular product will perform before the 

specimen is sent to the UK for certification. This offers potential saving as the tests 

could give a strong indication of the eventual performance in the Standardised Tests. 

1.2 Aims and Objectives 

The main aims and objectives of this research were to: 

1. Study multi-foil insulation and its thermal performance through defining multi-

foil insulation, comparing it to other types of insulation and examining test 

reports and procedures. 

2. Conduct preliminary thermal tests with the current testing facility at DIT, test 

Eco-quilt and gain a better understanding of how it performs. 

3. Study Hot Box designs, types and testing through examining ISO standards, 

papers and case studies. 

4.  Design and manufacture a Hot Box for testing Eco-quilt insulation. This 

includes sizing and selection of equipment and agreement on a test procedure 

with project sponsors. 

5. Calibrate the Hot Box and test multi-foil insulation with the use of calibration 
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panels. 

6. Compare the test results with other test data for multi-foil insulation and to 

examine the suitability of Eco-quilt for meeting building regulations. 

7. Provide a pre-test facility for industry. 

1.3 Layout of Thesis 

Chapter 1 is an introduction to the background of the research. The main goals of the 

project are also set out in this chapter. 

Chapter 2 contains a literature survey on thermal insulation. It begins with a brief 

overview of different types of insulation, before focussing on multi-foil or reflective 

insulation. The thermal performance of multi-foil is discussed, and different test 

methods are detailed.  

Chapter 3 contains a literature review of Hot Box testing apparatus and methodology. 

ISO Standards are also detailed in this chapter, along with relevant case studies on 

various Hot Box types.  

Chapter 4 gives a detailed account of the design process involved in the test facility. It 

outlines the preliminary test rig and its limitations, along with design considerations for 

the eventual facility. The final design, construction, sizing and the equipment involved 

are described in this chapter. 

Chapter 5 deals with the testing of the new test rig. Preliminary tests were conducted to 

ensure the equipment was working as intended, before calibration of the test facility 

took place. The remainder of the chapter describes tests performed on Eco-quilt, along 
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with an examination of the findings of the results of these tests. 

Chapter 6 presents the conclusions and findings of this research, along with some 

recommendations for future work. 
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CHAPTER 2 – THERMAL INSULATION 

2.1 Introduction 

This chapter begins by describing common types of insulation that are commonly used 

in buildings today. Multi-foil insulation is then discussed in detail, with aspects such as 

what defines a multi-foil, how it works and how it is installed described. The thermal 

performance of multi-foils is examined by describing various thermal test reports that 

were conducted on multi-foil and their results. Hot Box thermal testing facilities are 

examined and three different types are described in detail. Hot Box testing theory is also 

described. 

2.2 Thermal Insulation 

Thermal insulation is one of the most effective energy conservation measures for 

cooling and heating in buildings [7]. The thermal conductivity (k) of an insulation is a 

measure of the effectiveness of the material in conducting heat [13].  

Two other properties related to the thermal performance of insulation are the thermal 

resistance (R) and the thermal transmittance (U). The thermal resistance of a material 

can be defined as the measure of the resistance to heat flow as a result of suppressing 

conduction, convection and radiation. It is a function of material thermal conductivity, 

density and thickness [13]. The thermal transmittance is defined as the rate of heat flow 

through a unit area of a component with unit temperature difference between the 

surfaces of the two sides of the material. It is the reciprocal of the sum of the resistances 

of all layers composing that material plus the inside and outside air film resistances 
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[13].  

 Insulation types can be divided into four main groups [8]:  

• Cellular insulation 

• Fibrous insulation 

• Flake/Granular insulation 

• Reflective insulation [8] 

Figures 2.1 a, b and 2.2 a, b show some of the most common types of insulations used 

in the the construction industry. 

 

(a) 

 

(b) 

Figure 2.1: a - Polystyrene (Cellular) Insulation; b - Fibreglass (Fibrous) Insulation [9], 
[10]  
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(a) 

 
(b) 

Figure 2.2: a - Flake/Granular Insulation; b - Reflective Insulation [11], [12] 

 

Examples of cellular insulations are polystyrene, polyisocyanurate (Polyiso), foamed 

rubber and cork [13]. Some of these insulations can be sprayed into the cavities of walls 

and all of them are produced in rigid sheet form (shown in Figures 2.1 a). This 

insulation is used in walls, roofs and under floors. Fibrous insulation such as rock wool, 

sheep’s wool and fibreglass (shown in Figure 2.1 b) are commonly used for insulating 

attics and walls in buildings. They are generally manufactured in blanket rolls or rigid 

sheets [14]. Granular/Flake insulation consists of small nodules containing air pockets 

or small flakes that divide the air. They can be produced in the form of loose 

fill/pourable material or a mixing agent can be applied to achieve rigidity. An example 

of this is shown in Figure 2.2 a. This type of insulation is commonly used in attics. 

These types of thermal insulation are discussed in detail in the literature [7], [8], [13], 

[14], [15]. Table 2.1 shows a list of common types of insulation and some of their 

associated properties.  Reflective type insulation is discussed in detail in Section 2.3. 
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Cellular Insulation Fibrous Insulation Granular/Flake 

Insulation 

Property Polystyrene Polyiso Fibreglass Rockwool Vermiculite Perlite 

ρ  (kg/m3) 16-35 40-55 12-56 40-200 64-130 32-176 

k (W/m0C) 0.038-0.037 0.023 0.04-0.033 0.037 0.068-0.063 0.06-0.04 

Fire Rating Poor Poor Good Excellent Excellent Excellent 

Table 2.1: Characteristics of Some Insulations  

 

Alternative types of insulation that exist are aerogels, vacuum insulated panels and 

Phase Change Materials (PCMs). Aerogel is a translucent silica based insulation that 

can have a thermal conductivity as low as 0.013 W/moC with a density of 120 kg/m3 

[16]. Due to its translucency, aerogel allows natural light to enter a building but does 

not allow heat leave it and this natural light has been proven to improve the 

performance of operators and workers in a building [17]. “Vacuum insulation panels 

(VIPs) are micro porous core materials that are sealed in a gas tight envelope at a very 

low pressure” [18]. They can have a thermal conductivity as low as 0.005 W/moC, with 

a density from 80-140 kg/m3. Originally used in refrigeration systems, VIPs have only 

been developed for use in building envelopes in recent years [19]. 

Research and investigation of PCMs suggests that they could be installed in the building 

envelopes to assist insulation and achieve higher energy efficiency for a building. PCMs 

store heat from the sunlight available in the day and release that energy when 

temperatures drop. This is achieved by its changing phase or state over a small 
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temperature range.  Further information on the use of PCM along with conventional 

insulation can be found in the literature [20 - 22]. 

2.3 Reflective Insulation/Radiant Barriers 

2.3.1 Introduction 

Standard thermal insulation (e.g. fibreglass, foam etc.) are designed to lessen heat 

transfer by trapping air or a certain type of gas, thus reducing convection and 

conduction from one side of the insulation to the other. According to the Reflective 

Insulation Manufacturers Association (RIMA), radiation is often the major mode of heat 

transfer in a building envelope and some of the more conventional types of insulation 

are not well equipped to deal with this [23]. When discussing reflective insulation, it is 

important to distinguish between radiant barriers and reflective insulation (multi-foils). 

Reflective insulation differs from conventional insulation for the following reasons: 

1. Reflective insulation has very low emittance. 

2. Reflective insulation traps air with layers of aluminium or some other highly 

reflective surface. Conventional insulations use fibres of glass, particles of foam 

or ground-up paper etc. 

3. Reflective insulation does not have a large enough mass to absorb and retain 

heat [23].  

2.3.2 Radiant Barriers 

The generally accepted definition of a radiant barrier system is defined whereby one 
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reflective surface is facing an open air space [23]. Radiant barriers do not have a 

thermal resistance themselves and must be installed beside an air gap. Radiant barriers 

are fixed on the surface of building components, such as foil backed plasterboard or foil 

backed sheets of insulation, or can be situated on their own near a building component. 

Their main function is not to radiate energy, but rather to reflect radiation that strikes 

the barrier. This is achieved by the radiant barrier having a very low surface emittance 

(usually ε ≤  0.1) [24]. Figure 2.3 shows of a typical radiant barrier. 

 
Figure 2.3: Radiant Barrier Insulation [25] 

 

Studies carried out on radiant barriers show that heat loss in buildings can be reduced by 

using radiant barriers alone with no other insulation [26 - 29]. When radiant barriers 

were tested in conjunction with other insulation, heat loss through roof structures also 

fell. The effect of radiant barriers is reduced when the thermal resistance of insulation it 

is being used with increases. The performance of radiant barriers also varies in different 

climates [30, 31].  

2.3.3 Reflective Multi-foil Insulation 

Reflective insulations are defined as “Thermal Insulation consisting of one or more low 
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emittance surfaces, binding one or more enclosed air spaces”. 

Reflective insulation generally comprises of layers of highly reflective aluminium, 

paper and/or plastic to trap air and thus reducing convection. As the layers of aluminium 

are highly reflective, radiation heat transfer through the multi-foil insulation is reduced. 

It is claimed in the literature that the foil material can reduce radiant heat transfer by as 

much as 97 % [23]. The effectiveness of the insulation depends on the emittance of the 

materials, the size of the enclosed air space and the number of reflective layers. The 

smaller the air space, the less effect convection will have on the insulation. Therefore, 

the main function of multi-foil is to minimise radiation and convection heat transfer 

through the insulation by breaking an existing air space into several smaller cavities 

consisting of highly reflective layers. Figure 2.4 shows an example of multi-foil 

insulation. 

 
Figure 2.4: Example of Multi-foil Insulation [12] 

 

One advantage of reflective insulation is its non-toxic nature, which therefore means it 

can be classed as an environmentally safe product. As reflective insulation is recyclable, 

it can be termed a Green Building Material. It can also serve as an effective vapour 

barrier [23]. 
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2.3.4 Examples of Reflective Insulations  

There are many types of reflective insulations available in the marketplace today. As a 

generalisation, they can be separated into two groups. The first of these types are made 

of a number of layers of aluminium/plastic type reflective foil, separated by layers of 

plastic bubble wrap or some foam material. The second type also consists of multiple 

layers of aluminium, kraft paper and/or plastic with internal expanders [23].  Three 

multi-foils are described briefly. 

2.3.4.1 ACTIS Multi-foil Insulation 

ACTIS insulation, a French company, has manufactured multi-foil insulation for 25 

years and holds a 65% share of the total European multi-foil market [12]. They have 

two products; TRI-ISO Super 9 and TRI-ISO Super 10.  

TRI-ISO Super 9 consists of 14 separate layers and is 25 mm thick when uncompressed. 

The layers comprise of the following [32]:  

• 2 tear-resistant reinforced reflective films.  

• 2 layers of soft, flexible wadding.  

• 6 layers of closed cell foam.  

• 4 internal reflective films. 

TRI-ISO Super 10 is a newer product and consists of 19 separate layers and has an 

uncompressed thickness of 30 mm. The layers comprise of the following [12]:   

• 2 external reflective films with reinforced reflective films. 

• 3 wadding layers. 
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• 8 foam layers. 

• 6 internal reflective films. 

2.3.4.2 SmartRInsulations Multi-foil Insulation 

Eco-quilt, the insulation tested for the purposes of this research, is manufactured by 

SmartRInsulations. This insulation is similar to TRI-ISO Super 9 as it consists of 14 

separate layers and is 25 mm thick uncompressed. It consists of the following: 

• 2 tear-resistant reinforced reflective films.  

• 2 layers of soft, flexible wadding. 

• 6 layers of closed cell foam. 

• 4 internal reflective films. 

2.3.5 Uses of Reflective Insulation  

Multi-foil insulation is mainly installed in the roofs of dwellings. An air gap of at least 

25 mm on either side of the multi-foil is always recommended by the manufacturer for 

best performance. Figures 2.5 and 2.6 show two methods of how multi-foil insulation 

can be installed in a roof structure.  Figure 2.5 illustrates how the insulation is fitted 

between the breather membrane and the rafters. Battens are installed on top of the 

insulation to maintain the air gap between the multi-foil and the membrane. This is 

commonly referred to as over-rafter application. The installation procedure involves 

rolling out the insulation from the top of the roof and then stapling the rafters at 

approximately 500 mm intervals. The edges are overlapped and taped to ensure proper 

sealing. 
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Figure 2.5: Over Rafter Application of Multi-foil Insulation [12]  

 

 
Figure 2.6: Under Rafter Application of Multi-foil Insulation [12] 

 

If the tiles and the breather membrane are already present in a roof, the insulation can be 

stapled to the under-side of the rafters, a practice commonly referred to as under-rafter 

application. Figure 2.6 illustrates how the battens are fitted on the inside surface of the 

insulation (after the insulation has been stapled to the rafters) to maintain an air gap on 

either side of the insulation. Plasterboard would generally be screwed on to the battens 

to provide a finish for the inside attic space [12], [33], [34]. 
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Multi-foil insulation can also be used to insulate floors and walls. The method of 

installing this insulation is similar to that of the roof application. This method also 

recommends that an air gap of at least 20 mm between the wall battens and the 

plasterboard. The floor insulation also requires an air gap of at least 20 mm between the 

floor boards and the insulation, ensuring that the heat exchange occurs due to radiation 

and convection. This is shown in Figure 2.7 [35]. 

                  (a) 
 

                      (b) 

Figure 2.7:  a –Floor Installation; b - Wall Installation [35] 

2.4 Thermal Performance of Multi-foil Insulation 

There are two vastly different opinions on how multi-foil insulation performs. Some 

reports suggest that multi-foil insulation is equivalent to installing 200 mm wide of fibre 

glass which has an R-value of approximately 5 m2 oC/W [37, 38, 40, 42, 43].  Other 

reports claim that the R-value of multi-foil is circa 1.7 m2 oC/W [45, 47, 54]. This 

section describes the various different tests that have been performed on multi-foil and 

their conclusions.  

2.4.1 Sheffield Hallam University Testing 

The Centre for Infrastructure Management (CIM) is based in Sheffield Hallam 

University in the UK and offers advisory and independent testing services to the 
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construction and infrastructure industry. Two tests test were carried out by this 

organisation to evaluate the thermal properties of multi-foil insulation [36].  

2.4.1.1 Test 1: Evaluation of SuperQuilt Multi-layer Insulation Blanket in Roofs   

This test was performed between December 2004 and January 2005 [37]. The aim of 

this test was to monitor the power consumption of two custom built enclosures 

replicating an enclosed roof space, while maintaining an inside temperature of 21 oC. 

Both roof models were exposed to outside winter conditions. 

One of the enclosures was covered with 25 mm of SuperQuilt insulation (a multi-foil 

insulation). The other enclosure was covered with 200 mm of glass wool insulation.  

The conclusions of this study found that the power consumption of the SuperQuilt was 

26 % less than the power consumption of the glass wool enclosure while maintaining 

the required inside temperature.  

As this was a comparative test, and the test report stated that 200 mm glass wool had a 

widely accepted R-value of 4.5 m2 oC/W, it was calculated that the SuperQuilt had an 

effective thermal resistance of 6.1 m2 oC /W and was equivalent to 270 mm of glass 

wool.  

This report also stated that:  

• “SuperQuilt insulation material was much easier to apply compared to standard 

glass wool” [37] 

• “SuperQuilt provides a different insulating mechanism compared to standard 

glass wool. Heat was circulated more efficiently in the roof space insulated with 

SuperQuilt due to the highly reflective surface” [37] 
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2.4.1.2 Test 2: Assessment of Alumaflex Thermo-Reflective Insulation in Roofs  

This comparative test was carried out at the CIM Sheffield Hallam University in August 

2005. The aim of this test was to evaluate the thermal resistance of Alumaflex by 

comparing it to 200 mm of glass wool. Alumaflex consists of 14 separate layers and is 

30 mm thick.   

The main difference between this and the test outlined in 2.4.1.1 was that this 

experiment was carried out in a controlled environment. In the SuperQuilt test, the test 

rigs were exposed to outside weather conditions that were constantly changing. 

Accordingly, only one test enclosure was built, because the same conditions could be 

repeated for two different insulations on separate occasions.  

A custom-built enclosure representing a roof space was built and the power 

consumption was measured to maintain an inside temperature of 21 oC. A hot spot 

ceramic heater was used to heat the enclosure. Thermocouples (type T) were placed 

inside and outside the enclosure to observe interior and exterior temperatures. A 

diagram of the enclosure is shown in Figure 2.8. 

        
Figure 2.8: Diagram of Test Enclosure for Test 2.4.1.2 [38] 
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The enclosure consisted of a series of timber members. This timber frame was situated 

on a 100 mm polystyrene base. 100 mm of glass wool was fitted in between the rafters 

and an additional 100 mm was placed on top of the timber rafters. An air gap of 30 mm 

to 40 mm was maintained between the insulation and the external MDF boards. The 

same timber enclosure was used for Alumaflex. The reflective insulation was fitted over 

the outer surfaces of the rafters.  

The enclosure was tested in a controlled room environment. Three tests were conducted, 

the first with the surrounding temperature steady at -5 oC, and the subsequent tests at 0 

oC and +5 oC respectively. The duration of each test was 50 hours. Each test was given 

6 hours for steady state conditions to exist and the remaining 44 hours were used for 

calculations.   

Figure 2.9 illustrates the temperature profiles that occurred during the test. The 

temperature is on the Y-axis on the graph with the time on the X-axis. The time period 

for all tests was 50 hours. A measurement of the cumulative power consumption 

(quoted in KW in [38]) is also shown on the graphs. Figure 2.9 is the temperature 

profile for a controlled room temperature of 5 oC. The different temperatures 

measurements are colour coded and the key is shown.  
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Figure 2.9: Temperature Profiles @ 5 oC ( T0-T50 hrs)[38] 

Key: 

 
 

It was found that when the controlled room temperature was at -5 oC, Alumaflex was 

39.8% more efficient than the glass wool over a 44 hour monitoring period. For 
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controlled room temperatures of 0 oC and + 5 oC, Alumaflex was 8.7 % and 2.8 % more 

efficient respectively.  

As this was a comparative test, an effective thermal resistance was calculated by 

assuming that the glass wool had a thermal resistance of 5 m2 oC/W. This report 

concluded that the thermal resistance of Alumaflex was at least the same as installing 

200 mm of glass wool [38].   

2.4.2 TRADA Multi-foil Testing  

TRADA technology is an independent consultant company based in the UK and offers 

commercial services to companies to certify products. A BM TRADA certificate offers 

assurance to contractors and purchasers that certified products will perform to a certain 

standard. TRADA also provides CE marking certification [39].  

The tests took place in 2006 in High-Wycombe in the UK. Three identical roof 

structures were built with one insulated with ACTIS TRI-ISO Super 10 multi-foil 

insulation, one insulated with 200 mm of glass wool and one with no insulation. The 

aim of this test was to compare the power consumption required to keep the inside 

temperature of these structures at 23 oC over several weeks. Figure 2.10 shows the roof 

structures constructed for these tests. Underneath the tiles was a layer of breather 

membrane and 150 mm deep rafters were used to support the roof [40].   
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Figure 2.10: Outside View of Finished Test Structure, High-Wycombe [40] 

 

Figures 2.11a and b shows the glass wool and TRI-ISO roof structures from the inside. 

It can be seen that the glass wool is installed between the rafters and is covered with a 

vapour barrier. The TRI-ISO was situated on top of the rafters.  Figure 2.12 shows a 

how plasterboard was then fixed on the inside of the rafters to replicate how an actual 

roof would be finished. Both insulations were installed in accordance with the 

manufacturer’s instructions.  

                                (a)                                 (b) 

Figure 2.11: a; b - Pictures of Installed Insulation [40] 
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Figure 2.12: Plasterboard Lining on inside of Test Structures [40] 

 

The power consumption of each building was recorded over a 5 week period in 2006. 

TRI-ISO was found to perform better than the glass wool. These tests found that the 

TRI ISO was equivalent to 210 mm thick of glass wool [40]. 

2.4.3 Fraunhofer Institute for Building Physics (IBP) Multi-foil Testing  

Fraunhofer IBP carries out research, testing and consultant work in the field of building 

physics in Germany. They have several branches around Germany and the Holzkirchen 

branch, where the multi-foil tests were conducted, deals specifically with outdoor 

testing [41].  

Two identical test houses were built with the roof of one house insulated with 200 mm 

of glass wool (with a thermal resistance of 5 m2 oC/W), and the roof of the other test 

house insulated with ACTIS prototype multi-foil insulation. The aim of this test was to 

compare the power consumption required to keep the inside temperature of these 

structures at 21 oC over several weeks. Figure 2.13 shows a picture of the two identical 

test houses.   
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Figures 2.14 and 2.15 are sections through each of the roofs. The reference roof (Figure 

2.14) comprised of roof tiles sitting on battens, with under-tile lining beneath. The 200 

mm of glass wool was then fitted into the roof and a vapour barrier covered the inside of 

the roof, before a layer of plasterboard finished the inside.  The ACTIS roof (Figure 

2.15) comprised of roof tiles sitting on battens, underneath which lay under-tile lining. 

An air gap existed between the lining and the ACTIS multi-foil; another air gap existed 

between the multi-foil and the plasterboard.  

 
Figure 2.13: Holzkirchen Test House Image [42] 

 

 
Figure 2.14: Glass Wool Roof [42] (Reference adapted) 
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Figure 2.15: ACTIS Multi-foil Roof [42] (Reference adapted) 

 

Measurements were taken over a period of time from the 26th of January to the 2nd 

March 2007. The power consumption of the house with 200 mm of glass wool was 

found to be 747.7 kWh. The power consumption of the house with multi-foil was found 

to be 749.5 kWh. These results showed that the multi-foil performed approximately the 

same as the 200 mm of glass wool [42]. 

2.4.4 SFIRMM Testing of Multi-foil 

SFIRMM are a French organisation that aims to promote the use of reflective multi-foil 

insulation products and also lobby for the creation of a European certification of these 

products. The aim of these tests was to monitor the power consumption of three test 

houses required to maintain a temperature of 23 oC over a period of 89 days. The test 

location was in Limoux in France and took place from December 16th 2006 to March 

15th 2007.  

Figure 2.16 shows one of the test houses. The roof of one of the test houses was 

insulated with an ACTIS multi-foil. The other (identical) test house was insulated with 

200 mm of glass wool, with the last house having no insulation installed. The roof 

construction of the house with the glass wool and the multi-foil is shown in Figures 2.17 
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and 2.18 respectively. Although no specific details were given, Figure 2.17 show that 

the tiles were fixed on top of battens and that 200 mm of the glass wool was installed 

underneath the fixing battens. A layer of paper material was on the inside face of the 

glass wool, and the inside of the roof was finished with a layer of plasterboard. The 

configuration for the multi-foil roof was exactly the same as the glass wool roof except 

the layer of multi-foil (seen in blue in Figure 2.18) replaced the glass wool and paper 

combination.  

 
Figure 2.16: Limoux Test House [43] 

 

 
Figure 2.17: Glass Wool Roof Configuration [43] 

 

 
Figure 2.18: Multi-foil Roof Configuration [43] 
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Over the testing period, the multi-foil roof configuration was found to consume 28.4 % 

less power than 200 mm of glass wool [43]. 

2.4.5 National Physics Laboratory (NPL) Test Report  

The NPL is the national standards body of the United Kingdom and is known 

throughout the world to be a respected independent centre of research and development 

and knowledge transfer in measurement and material science [44]. 

This report was commissioned by Celotex Ltd. and issued on 13th August 2004. Celotex 

manufactures and sells polyiso insulation and is in direct competition with the multi-foil 

insulation industry.  

This Wall and Edge Guarded Hot Box test conformed to EN ISO 8990 and is certified 

by UKAS (United Kingdom Accreditation Service). UKAS certification is recognised 

by the building regulations in the UK.  

Hot Box testing is carried out under steady state conditions. The test rig has two 

chambers, one hot side and a cold side. The test specimen is placed in between the hot 

and the cold side and the heat flux (W/m2) through the specimen is measured and the 

thermal resistance is extrapolated from that [15]. This type of Hot Box is described in 

Section 2.5.4.1. 

The multi-foil being tested was ACTIS TRI-ISO Super 9. As multi-foil is primarily a 

roof insulator, this insulation was tested at an inclination of 45 o (the Hot Box is fully 

rotatable) to represent a roof structure. The multi-foil was tested with an air gap on 

either side of the insulation.  A diagram of how the test specimen was fitted, with the air 
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cavity on either side, into the surround panel of the Hot Box is shown in Figure 2.19.  

 
Figure 2.19: Test Specimen with Air Cavity [45] (Reference adapted) 

 

It can be seen from Figure 2.19 that the thermocouples were placed on the inside surface 

of the sheet of plywood. The measurement procedure is described by the following 

points. 

• The method of fixing the insulated quilt in the cavity and in the surround panel 

is shown in Figure 2.19.  

• The test specimen was fixed 25 mm from the inside surface of the plywood 

sheet on the cold side.  

• An expanded polystyrene support panel 10 mm thick x 85 mm high x 2000 mm 

long was fixed along the centre of the plywood sheet. This acted as a support to 

the quilted insulation during testing.  

• The temperatures of the inside surfaces of both of the cavity walls were each 

measured using thermocouples. 

• The thermal resistance of the cavity with the quilted insulation was then 



 

 

29

calculated using the heat flow rate through the test specimen and the 

temperature difference across the cavity. 

• The thermal resistance given for the insulated cavity was the mean value of four 

sets of readings taken at 2.5 hour intervals. The maximum variation between the 

four sets of readings was found to be less than 2 %.  

The results from the test found that the thermal resistance for the insulated cavity was 

found to be 1.71 m2 oC/W. This result differs greatly from the tests that were carried out 

by Sheffield Hallam University (a thermal resistance approximately three times greater 

than this test) [45]. 

The thermal performance of reflective insulation was discussed in a meeting held at the 

National Physics Laboratory (NPL) in February 2005. Two sample calculations were 

carried out to try and determine the best possible thermal resistance that reflective 

insulation could offer. There were two types of calculations involved [46].  

The boundary conditions for the first calculation are shown in Figure 2.20. It can be 

seen that the insulation is situated in the centre of an unventilated air cavity. The cold 

surface temperature is 10 oC and the hot surface temperature is 20 oC. The following 

points are a description of the steps and assumptions involved in the calculations [46]. 

• The emissivity of surfaces 1 and surface 2 were assumed to be 0.05. 

• No heat transfer due to radiation took place across the reflective insulation.  

• The thermal conductivity of the insulation was assumed to be the same as still 

air at 0.025 W/moC. (i.e. no convection across the insulation.) 
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• The thickness of the insulation remained constant at 50 mm.  

• Thermal resistance of each 25 mm air gap (using EN673 @ 450 with ε  = 0.05) 

= 0.636 m2 oC/W. 

 
Figure 2.20: Unventilated Air Cavities either side of Reflective Insulation [46] 

 

The thermal resistance of the insulation (with no convection and no radiation) plus the 

resistance of the air cavities on either side of the insulation was found to be 3.282        

m2 oC/ W.   

The boundary conditions for the second calculation are shown in Figure 2.21. It can be 

seen that the insulation is situated in large internal air spaces. The cold air temperature 

is 10 oC and the hot air temperature is at 20 oC. The following points are a description of 

the steps and assumptions involved in the calculations. 

• The emissivity of surfaces 1 and surface 2 were assumed to be 0.05. 

• No heat transfer due to radiation took place across the reflective insulation.  

• The thermal conductivity of the insulation was assumed to be the same as still 
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air at 0.025 W/moC (i.e. no convection across insulation).  

•  The thickness of the insulation remained constant at 50 mm.  

• The surface resistance of the cold side (using EN ISO 6946 ANNEX A –[heat 

flow upwards] ) = 0.189 m2 oC/W. 

• The surface resistance of the hot side (using EN ISO 6946 ANNEX A –[heat 

flow upwards] ) = 0.190 m2 oC/W. 

 
Figure 2.21: Reflective Insulation facing Large, Internal Air spaces [46] 

 
Using those conditions and assumptions, the total thermal resistance of 50 mm thick 

reflective insulation with each reflective surface facing a large internal air space was 

calculated to be 2.379 m2 oC/W. 

It was observed from the two calculations, even assuming that no heat transfer took 

place across the insulation due to radiation and convection, that the thermal resistance 

was lower than the tests described in Sections 2.4.1 – 2.4.4. The thickness of the 

insulation used for these calculations was 50 mm [46]. 
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2.4.6 The Thermal Performance of Multi-foil Insulation, BRE Scotland  

This paper describes in-situ thermal tests on wall, floor and roof structures that 

contained multi-foil insulation. The results were then compared to existing values that 

are quoted for multi-foil insulation. These tests were done to clarify the conflicting 

opinions that exist in industry today. The insulation being tested was TRI-ISO Super 9. 

The manufacturer of this insulation commissioned a report from a testing body known 

as TRADA Technology Ltd and it stated that “TRI-ISO SUPER 9 had insulating 

properties equivalent to 200 mm of glass wool insulation. This provides thermal 

equivalent of an overall thermal resistance of 5 m2  oC/W”.  

The tests were carried out in accordance with ISO 9869 with the use of heat flow meters 

100 mm in diameter. The tests took place in two separate locations. The first test took 

place on the walls of a Victorian flat that was dry lined with the insulation in Torry, 

Aberdeen. The second test took place on the roof and also on the floor of a temporary 

classroom in Alloa, Clackmannanshire. Starting from the inside and working out, each 

construction comprised of the following: 

1. External wall construction, Torry 

12.5  mm plasterboard/25 mm unventilated cavity/ TRI-ISO/ 25 mm unventilated 

cavity/ Granite.   

2. Flat (low-pitch) Roof construction, Alloa 

Plaster board/ 430 mm unventilated roof void/ TRI-ISO/ 15 mm slightly ventilated 

airspace/ Plywood/ Marleydek roof membrane. 

3. Floor construction, Alloa 
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Chipboard/ 15 mm unventilated airspace/TRI-ISO/ ventilated under-floor.  

The results for the tests are summarised in Table 2.2. 

 
Table 2.2: Measured U-values and Calculated U-values - Summary of Results [47] 

 

2.4.6.1 Test Results - Torry, Aberdeen 

Table 2.2 shows the results for the four walls tested in Torry. The third column 

(Measured Um) displays the results from the heat flow meter tests. These U-values  

ranged from 0.45 W/m2 oC to 0.52 W/m2 oC. The error estimation of each of the heat 

flow meter tests are shown in the fourth column. The fifth column (Calculated Uc), 

displays the results of a calculated U-value (Uc). The values used in the calculations 

were obtained in accordance with BS EN IS0 6946, but the R-value of the multi-foil 

insulation was assumed to be 5 m2 oC /W. It was found that there were significant 

differences between the calculated U-values and the measured U-value as can be seen in 

the last column where the ratio of the measured U-value against the calculated value are 

shown.  

At the time of the in-situ tests, inspection of the installation was not possible. It was 
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inspected some time later and the installation of the multi-foil was found to be fitted 

correctly. The conclusion for this test was that the thermal resistance for the in-situ tests 

were significantly less than the calculated results (assuming that multi-foil had a 

thermal resistance of be 5 m2 oC/W). An average U-value of 0.49 W/m2 oC for the four 

tests was taken and the calculation procedure was worked back to find that the 

resistance of the multi-foil insulation was estimated at 1.72 m2oC /W. This value was in 

excellent agreement with the tests that were carried out by the NPL.  

2.4.6.2 Test Results - Alloa, Clackmannanshire 

The U-values for the flat roof and the floor were measured and are shown in Table 2.2. 

The floors had a ventilated under-floor space. The measured U-values of the floors were 

between 0.43 W/m2 oC and 0.48 W/m2 oC. The results of this test also found that the 

measured U-values were significantly less than the calculated values of 0.19 W/m2 oC 

(assuming the insulation had an R-value of 5 m2 oC/W). Again, the measured results 

were in agreement with the NPL tests and not the calculated values.  

In the roof construction, the insulation was laid on the outer surface of the rafters, 

before the roof deck was laid. This resulted in the air space between the roof deck and 

the outer surface of the insulation being smaller than the recommended gap. There was 

a 430 mm cavity adjacent to the inside surface of the insulation. The measured U-values 

were 0.85 W/m2 oC and 0.76 W/m2 oC. These values are not in agreement with the tests 

performed by the NPL. The authors of this paper reported that they were unable to 

inspect the installation of the insulation and suggested that the smaller air gap on the 

outer surface may have contributed towards the decrease in the thermal resistance for 

the roof in these tests.  
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2.4.6.3 Discussion of In-Situ Results 

Table 2.3 shows the difference between the measured U-values (from the heat flow 

meter tests) and the calculated values when assuming the thermal resistance of the 

multi-foil insulation is 1.71 m2 oC/W. It can be seen that these results are much closer to 

each other than the measured and calculated results in Table 2.2. 

 
Table 2.3: Measured U-values and Re-calculated U-values – Summary of Results [47] 

 

This report found that the in-situ results were in good agreement with the tests that were 

carried out by the NPL on TRI-ISO insulation, and not in agreement with the tests on 

the same product that found the thermal resistance to be 5 m2 oC/W. The work in this 

report was supported by the Office of the Deputy Prime Minister in the UK [47]. 

2.4.7 ALBA Thermal Performance Appraisal of TRI-ISO Super 9  

This study was conducted by Alba Building Sciences Ltd to assess the thermal 

performance of ACTIS TRI-ISO Super 9 in two separate apartments, in the same 

apartment block, in Torry, Aberdeen, Scotland. Alba Building Sciences are building 
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performance consultants and are members of the United Kingdom Thermography 

Association [49]. This report was done at the request of ACTIS Insulation UK and took 

place over a seven day period commencing on the 25th January 2006.  

Two external walls were examined in two different apartments, 141b and 139a. Starting 

from the outside, the composition of both apartment walls were as follows: 

1. Torry Apartment – 141b 

530 mm Granite External Wall/100 mm air gap/TRI-ISO Super 9/25 mm air 

gap/12.5 mm plasterboard 

2. Torry Apartment – 139a 

300 mm Granite External Wall/100 mm air gap/ TRI-ISO Super 9/25 mm air 

gap/12.5 mm plasterboard 

The air gaps were created by using timber battens as spacers. The heat flux through each 

wall was measured using an Alba Genius Device and temperature sensors monitored the 

inside and outside temperatures of the walls. No technical details were available for the 

device. Using data that was collected over a number of days, a heat transfer coefficient 

for each wall was calculated. Thermography was also used in the same part of the walls 

where the Alba Genius Device was used. Figure 2.22 shows this equipment in place on 

one of the walls. A picture of the external wall is also shown. 
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Figure 2.22: Alba Genius Device used to measure U-value of a Wall [48] 

2.4.7.1 Test Results 

The U-value for the apartment walls was found to be 0.446 W/m2 oC for apartment 139a 

and 0.259 W/m2 oC for apartment 141b. The report accounted for the difference between 

the two values in the thermography results. These results showed some cold spots in 

both walls, but found more for the wall in apartment 139a. A thermal image for both 

test areas is shown in Figures 2.23a and 2.23b, illustrating the cold air leakage was 

greater in apartment 139a.  The report concluded that possible cold air infiltration 

occurred through both the multi-foil insulation test walls due to poor installation 

procedures and warned that incorrect installation would hamper the performance [48]. 

                            (a)                             (b) 

Figure 2.23: a, b - Thermal Image of Apartments 141b and 139a [48] 
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2.4.8 ASA (Advertising Standards Authority) Adjudication 

The Advertising Standards Authority (ASA) in the UK recently made adjudication on 

the thermal performance of ACTIS TRI-ISO Super 9 Multi-foil insulation. A complaint 

was made concerning a brochure that was released by ACTIS in 2005. The complaint 

challenged the claim that the insulation was “Thermally equivalent to 200 mm of 

mineral wool” and quoted thermal resistance of “RT = 5”. The claim was based on tests 

that were conducted and certified by BM TRADA in Limoux in France in early 1997.   

The adjudication found that the building was not representative of a real building and 

found evidence that the mineral wool was not installed properly which would lead to 

poor performance. ACTIS maintained that TRADA were aware of the issues and that 

the problems had been rectified. The adjudication, however, did not find sufficient 

evidence in the test report to show that the problems had been addressed.  

The adjudication also understood that the claim “RT = 5” was a symbol of thermal 

resistance and had the units of m2 oC/W. ACTIS agreed to include the units in future 

publications. The ASA used a field expert to examine the test report and from the 

recorded test data, the expert found that the thermal resistance of the multi-foil could be 

estimated between 1.6 m2 oC/W to 1.8 m2 oC/W and not 5 m2 oC/W. ACTIS did not 

agree with these findings. The report also noted that ACTIS have stopped advertising 

TRI-ISO Super 9. ACTIS maintain this was because “it has been replaced by their new 

product TRI-ISO Super 10” [50]. 

2.4.9 Multi-foil Research Conclusions 

Two types of tests for multi-foil insulation were described in the previous sections. One 
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type of test was to compare the performance of multi-foil with 200 mm of glass wool by 

recording the power usage to maintain a pre-determined temperature inside a structure. 

Table 2.4 shows a summary of the first type of tests. 

Location Power Usage 
for Multi-foil 

kWh 

Power Usage 
for 200 mm  

Glass Wool 
kWh 

Average Result 

TRADA UK  
[40] 

 

- 

 

- 

Multi-foil equivalent to 210 mm of 
glass wool 

IBP Germany 

[42] 

747 749.5 Multi-foil used 0.2% more power 
than 200 mm glass wool 

SFIRMM 
France [43] 

666 930 Multi-foil Used 28.4 % less power 
than 200 mm glass wool 

Sheffield UK 1 

[37] 

- - Multi-foil Used 26% less power 
than 200 mm glass wool 

Sheffield UK 2 

(Three tests @ 
Different 

temperatures) 
[38] 

152.5 

 

120.8 

 

92.3 

198.0 

 

116.0 

 

74.0 

Best result: Multi-foil used 39.8 
% less power than 200 mm of 

glass wool. 

Worst Result: Multi-foil Used  
2.8 % less power than 200 mm of 

glass wool 

  

Table 2.4: Summary of Comparative Tests Reviewed 

 

 In the second type of tests, the thermal characteristics of the test elements were directly 

measured and a thermal resistance was calculated from those tests. Table 2.5 shows a 

summary of those test results. 
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Location Test Specimen Average Thermal 

Resistance (m2o C/W) 

BRE Tests UK (in-situ)  

[47] 

Walls With Multi-foil 

Roofs With Multi-foil 

Floors with Multi-foil 

2.04 

1.24 

2.2 

Alba Tests, UK (in-situ) 

[48] 

Wall with Multi-foil 

Wall with Multi-foil 

2.24 

3.86 

NPL Tests UK 
(Laboratory) [45] 

Unventilated Multi-foil 
with air cavity 

1.71 

Table 2.5: Summary of Calculated Tests Reviewed 

 

The test results fell into two categories. All the comparative tests suggested that multi-

foils with an air cavity on either side had a thermal resistance of at least 5 m2 oC/W. 

These values were based upon the fact that glass wool has a widely accepted thermal 

conductivity of 0.04 W/ moC. and that a 200 mm thick sheet of glass wool would have a 

thermal resistance of 5 m2 oC/W. Where the multi-foils performed better than the glass 

wool, it was suggested that the thermal resistance was even greater. The tests conducted 

by ALBA building consultants aimed to show that the thermal performance of multi-

foils is highly dependent on the installation of the insulation. The test methods used for 

all these tests are not standardized or recognized by the EN ISO standards. The tests 

conducted by the NPL and BRE were in good agreement that the thermal resistance of 

multi-foil (with an air gap either side) was approximately 1.71 m2 oC/W. They both used 
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recognised and standardised testing apparatus and procedures for these tests.  

The manufacturers of multi-foil accept the results of the standardised tests but maintain 

that the testing methods are not suited to multi-foil as they “do not take into account 

temperature variation, changes in humidity and the impact of real life conditions such as 

wind, sun and rain have on the thermal performance of the material”. The test described 

in Section 2.4.1.2 detailed a steady state test performed in a laboratory where all 

conditions were kept constant; this test found that multi-foil performed better that 200 

mm of glass wool which had a thermal resistance of 5 m2 oC/W.  This result was in good 

agreement with the other field tests conducted where the multi-foil was tested in real 

weather conditions. 

2.4.9.1 Multi-foil Certification 

At present, the prescribed way to certify multi-foil insulation with an EU national 

accreditation service certificate, is to test the material in accordance with BS EN 8990 

(Hot Box testing), BS EN 12664 or BS EN 12667 (Hot-plate testing) [3], [51].  Multi-

foil is better suited to Hot Box testing as it can be tested with an air gap either side of it. 

In 2006, the UK Building Regulations were updated and made particular reference to 

multi-foil insulations. Paragraph 11 of AD L1b of these regulations stated that “U-

values must be calculated using the methods and conventions set out in the 2006 version 

of BR 443” [80]. BR 443 stated that multi-foil must be tested by a “Notified body 

accredited for thermal testing by an EU national accreditation service” [51]. This meant 

that multi-foil insulations would not be accepted as having a thermal resistance of 

around 5 m2 oC/W, and that the field tests and certifications such as the BM TRADA 

certificate would not be recognised by the UK Building Regulations.   
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As a result of this change in the regulations, ACTIS Insulation were successful in 

bringing a case against the DCLG (Department for Communities and Local 

Government) in the UK for the publication of the BR443 document. In November 2007, 

a judgment found it unfair that the DCLG did not consult with multi-foil manufacturers 

when adapting the building regulations and found that it would damage the multi-foil 

industry. As a result of this judgment, Local Building Authorities in the UK can now 

use their discretion in allowing other test methods to be accepted under the building 

regulations while the regulations are being re-assessed [52].  

It is not clear what the outcome of this amendment to the building regulations will be. It 

does offer a reprieve for the multi-foil industry but does not offer any guarantee that 

their method of testing will be accepted. The members of the Confederation of Multi-

foil Manufacturers (CMM) are currently working with the European organisation for 

Technical Approval (ETA) to establish a specific test method for multi-foil insulation 

[53].  

Thinsulex insulation is the only multi-foil insulation that has BBA certification (British 

Board of Approval.) This insulation was tested using the Hot Box method, a procedure 

that is recognised by EU National Accreditation Service. The tests showed that 

Thinsulex had a thermal resistance of 1.69 m2 oC/W when installed with an air gap on 

either side. Thinsulex can meet the Building Regulations if it is used in conjunction with 

other insulations. This certificate ensures that all local building authorities can use this 

insulation [54]. 

After studying the thermal performance of multi-foil insulation, it was noted that in all 

the tests that claimed a thermal resistance of approximately 5 m2 oC/W, the multi-foil 
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had been compared with glass wool insulation. It is difficult to achieve a consistent 

thickness when using glass wool as it is a loose-knitted material which is easily 

compressed and stretched. This would imply that the thermal resistance of glass wool 

would not be uniform. As fibre glass works by trapping air within the fibres, it is 

important that a layer of plastic is used to stop mass air transfer from one side of the 

insulation to the other. Any perforations or punctures in the plastic sheeting would also 

lead to reduced thermal performance. Comparing multi-foil with a rigid insulation 

would alleviate the possible problems with glass wool as it has a constant thickness, a 

stable thermal conductivity and is not porous. For these reasons, it was decided to avoid 

using a fibrous form of insulation for the purposes of testing in this research.
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CHAPTER 3 HOT BOXES 

3.1 Introduction 

Through consultation with the sponsors of this project, it was decided to design a test 

facility, based on the Hot Box method and to test the Eco-quilt multi-foil insulation.  

This section details the design of various types of Hot Box.  

3.2 General Information on Hot Boxes 

The primary purpose of a Hot Box is to test the thermal properties of a particular 

material or a composition of materials. This is achieved by trying to quantify the total 

heat flow through the material. After obtaining this information, it can be converted into 

a heat transfer coefficient or a U-value for that material [55].  

There are many different designs of Hot Boxes used around the world. These different 

designs can generally be split into two groups; Guarded Hot Box (GHB), and a 

Calibrated Hot Box (CHB). There are other types of methods being used in the Baltics, 

but they are not widely used and are changing their approach to suit the CEN standards 

[55]. 

Hot Boxes are commonly used to measure building envelopes with a composition of 

different materials such as cavity walls [56 - 60]. Even though the individual thermal 

properties of a composition might be known, aspects such as thermal bridging [61 - 63], 

heat transfer by convection and radiation inside the composition need to be physically 

tested to obtain a thermal resistance for the whole test specimen. Hot Boxes are also 

frequently used to test window structures [64 - 66]. By controlling the relative humidity 
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and the temperature on either side of the test specimen, moisture transfer within 

building envelopes can also be tested [67]. With the use of computer modelling, Hot 

Boxes are often used to validate the thermal properties of building components that 

have been calculated [68].  

3.3 Calibrated Hot Box (CHB)  

One of the earliest CHB to be built was in the 1970’s [69]. CHBs can vary in their 

design from the more conventional CHB [70] (similar to Figure 3.1) to the Hot Box 

built by Mamow [71]. Figure 3.1 shows a cross section of a simple CHB. The CHB 

consists of two chambers, the metering box (also referred to as the indoor chamber or 

hot side) and the cold side (can be referred to as the outdoor or environmental chamber) 

[72]. Both chamber walls are made from a material with a very high thermal resistance. 

The walls are made very thick to try and keep the heat loss to the surroundings at a 

minimum. This has to be the case as the energy flow, through the test specimen, from 

hot to cold is being measured; therefore, major losses would lead to inaccuracies. 

The test specimen is fixed into the surround panel that is located between the two 

chambers. This is also made from a highly resistive material. The thickness of the 

surround panel varies according to the standard the Hot Box adheres to. 

As suggested in the name, the Hot Box has to be calibrated with a test specimen of 

known U-value in order to calculate all the losses to the surrounding environment [55]. 
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Figure 3.1: Calibrated Hot Box [6] 

3.3.1 Case Study: Design and Calibration of a Rotatable Thermal Test Facility  

This paper describes the design, building, instrumentation and preliminary calibration of 

the testing facility. One unique aspect to this paper is that it describes a rotatable facility 

and it gives a detailed description of how a frame was constructed in order to make the 

Hot Box rotate. This rotatable CHB was built from early 1979 to late 1981 at the 

University of Massachusetts at Amherst. The total cost of the testing facility amounted 

to approximately $100,000 [73].  

The CHB was designed to measure the heat transfer through various specimens. The 

heat transfer was found by measuring the input power of the metering chamber. The 

heat transfer through the metering chamber walls and the flanking losses around the 

perimeter of the specimen were taken into account. Calibration runs on different 

calibration panels produce these values. The losses through the metering walls were 

minimised by using polyiso foam insulation.  



 

 

47

The rotatable CHB was designed to provide horizontal through vertical testing. In each 

hot and cold chamber, a small fan in a sheet metal duct drives the air. This in turn is 

connected to a linear air diffuser that distributes the air evenly between the baffles and 

the test specimen. The baffles are painted matt black so that the test specimen sees a 

high emittance low reflectivity surface. An open wire electric coil in the metal duct 

heats the warm air. The cold air circulates in the opposite direction as the warm air is 

cooled by an evaporator freezing coil.   

The walls of each chamber are covered with eleven layers of one inch thick foam. These 

were glued together using construction adhesive and subjected to heavy weights to 

improve the contact. The walls were then attached to an internal wooden frame, 

constructed of lengths of 50 mm x 4 mm wooden batons. A diagram of the CHB is 

shown in Figure 3.2.  

 
Figure 3.2: Schematic of CHB Test Facility [73] (Reference adapted) 
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The primary objective of the metering chamber is to provide a controlled temperature 

and to enable parameters such as wind velocity and heat transfer through the specimen 

to be measured. When steady state is reached the input power to the metering chamber 

is equal to the heat transfer through the test specimen minus the losses. These losses are 

found through calibration tests, and, as this is a CHB, there is no guard area and the heat 

loss through the walls of the apparatus must be accounted for. 

The outer dimensions of the hot side are 3.04 m x 3.04 m x 0.76 m deep externally and 

2.43 m x 2.43 m x 0.45 m deep internally. The external surface of the box was covered 

with 12 mm plywood to add rigidity to the box. All the joints were caulked to seal the 

metering chamber.  A diagram of the metering chamber is shown in Figure 3.3. 

 
Figure 3.3: Hot Chamber [73] (Reference Adapted) 

 

As the weight of the metering chamber was considerable, a rocker frame was built to 

hold the metering chamber in place when in the vertical position and when rotation was 
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taking place. The rocker frame was supported by two adjustable steel stands. These 

were only used when the apparatus was in the vertical position. There were also four 

steel rollers that acted as a guide and a support when the hot side was rotated. These 

rollers travelled along v-shaped tracks at the back of the hot side. 

The crane mechanism provided the force to rotate the hot side. The square frame was 

constructed with an aluminium I-beam and was permanently bolted to the floor. Two 

pulleys were used to rotate the hot side and were located at the top of the frame. A steel 

chord fixed to one side of the frame passes through these pulleys and two follower 

boxes that are connected to the hot side. The follower boxes were constructed with two 

steel plates with plastic rollers and provided easy sliding into the slots in the aluminium 

frame. These slots, in the aluminium frame, are used to halt the rotation of the box at a 

given angle. Schematics of the crane mechanism are shown in Figures 3.4 and 3.5. 

 
Figure 3.4: Crane Mechanism Square Frame [73] 
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Figure 3.5: Operation of the Crane Mechanism [73] (Reference Adapted) 

 

The climatic chamber is where the rotatable part of the CHB lies and was constructed 

similarly to the hot chamber. The power input to the refrigeration system did not have to 

be measured as the temperatures were held to a constant value. 

The external dimensions of the cold chamber were 3.1 m x 3.1 m x 1.2 m and the 

internal dimensions were 2.4 m x 2.4 m x 0.9 m. The cold side of the chamber was 

deeper than the hot side because the refrigeration system had to be placed in the cold 

side. A steel frame around the perimeter supported the chamber. This frame was bolted 

to the rotating hubs that are on either side of the chamber. These hubs allowed the 

chamber to be rotated 360o about its axis. The hubs were welded to follower boxes that 

slid up or down the uprights on either side. Schematics of the cold chamber are shown 

in Figure 3.6. 
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Figure 3.6: Cold Side [73] (Reference adapted) 

 

The function of the surround panel is to hold the test specimen in place and also to 

provide high resistance perimeter insulation. The surround panel walls were constructed 

with the same material (poyiso) that was used to insulate both chamber walls. The 

surface that the specimen fits into is in contact with reinforced fibre glass plastic. This 

has a higher thermal conductivity than the polyiso, but the reinforced fibre glass plastic 

is more durable. The CHB must be calibrated each time the orientation of the Hot Box 

changes as the losses may not be the same as before [73]. The location of the surround 

panel is illustrated in Figure 3.2. 

3.4 Guarded Hot Boxes (GHB) 

The first GHB was built in the late 1930’s to test over 120 different wall configurations 

[69]. The main difference between this and the CHB is that the GHB has a metering box 

inside a guard box. This reduces the heat loss through the metering box to a minimum 

as the metering box and the guard box temperatures are kept the same [55]. This is 
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shown in Figure 3.7. 

 
Figure 3.7: Guarded Hot Box [74] (Reference adapted) 

 

The CHB is, in the main, better suited to testing full-scale systems since they measure 

total heat transfer through a complete test specimen. GHBs can test the centre portion of 

larger assemblies [75], and it is more accurate as it has fewer losses to the environment. 

One problem with the GHB is that it takes smaller test specimens than the CHB, (for the 

same exterior size) because of the extra enclosure on the hot side of the box. The costs 

to build these would generally be the same, as the cost of having very thick walls for the 

CHB would approximately be equal to the cost of constructing an extra wall in the 

GHB. Figure 3.7 is a conventional GHB design and is similar to the Hot Boxes 

described by Versluis [76], Kosney [77] and Nussebaumer [78]. A GHB built by the 

National Research Council Canada [79], to test skylight windows, shows that alternative 

designs can be used when building GHBs.  

3.4.1 Case Study: University of Ulster Guarded Hot Box  

The author visited this testing facility in November 2006. As part of this research, a 
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Guarded Hot Box was built to test the insulating properties of evacuated glazing, and 

the research was completed in 2002. This GHB was built in accordance with BS EN 

ISO 8990. Figure 3.8 shows a cross-section of the GHB [80]. 

 
Figure 3.8: Cross-section of GHB [81] (Reference adapted) 

 

The metering box was constructed from plywood and its inner dimensions were 1600 

mm high x 1600 mm wide x 550 mm deep. A 20 W DC heater and electric fan was used 

to heat the metering box. These two components can affect the uniformity of the 

temperature inside the metering box because of their radiative exchange with the box 

walls.  To eliminate this risk, a 1100 mm x 1100 mm x 2 mm thick baffle was installed 

parallel to the test specimen as shown in Figure 3.8. A smaller baffle was installed 

behind the DC heater. The thermocouples (marked with an x in Figure 3.8) were all 

connected to a 64-channel Data Logger that recorded all the temperatures in the 

Metering Box. A rubber sealant was fixed around the perimeter of the metering box to 
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achieve air tightness.  

The guard box was built to reduce the heat flow through the metering box walls to a 

negligible level.  Inside the guard box, four electric fans were installed to eliminate 

stagnant air pockets, along with a 60 W AC electric heater to heat the guard box. The 

guard box heater was controlled with a custom-built PID (Proportional Integral and 

Derivative) controller that kept the air temperature difference between the metering box 

and the guard box to less than 0.1 oC. This resulted in heat transfer through the metering 

box walls close to 0 W. The guard box was constructed with sheets of 150 mm 

Styrofoam insulation.  

The cold box provided controlled low temperature conditions between 0 oC and 5 oC.  

To achieve this, a 6 m long cooling coil was installed in the cold box and was connected 

to a chiller. Another 1100 mm x 1100 mm copper baffle was fixed parallel to the test 

specimen to avoid radiative exchanges between the specimen and the cooling pipes. A 

40/60 mix with antifreeze and water was used in the reservoir of the chiller. A 20 W 

electric fan was mounted above the cooling coil to provide the air circulation. The air 

velocity over the specimen was measured to be 2 m/sec. All the thermocouples were 

connected to the 64 channel Data Logger.  

The dimensions of the surround panel were 2400 mm x 2400 mm x 300 mm thick with 

a 500 mm x 500 mm aperture cut out for the test specimen to be inserted.  The surround 

panel was constructed from Styrofoam IB insulation, a mass type insulation with a 

thermal conductivity of 0.033 W/moC and a density of 28 kg/m3. Two moveable 

platforms were designed to support the GHB and to separate the cold side from the hot 

side when different specimens had to be placed onto the surround panel. All the 
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different enclosures were clamped together with ratchets and straps when thermal tests 

were being performed. The thermal testing facility is shown in Figure 3.9 [80].  

 
Figure 3.9: GHB at University of Ulster [82] 

3.5 Wall and Edge Guarded Hot Box (WGHB) 

This is a third type of Hot Box and is described as a combination of the GHB and the 

CHB. With this type of Hot Box, the metering walls are guarded with plate metal 

heaters in the wall of the hot side. This ensures that there is no temperature difference 

therefore, no heat transfer can take place between the inside surface and the outside 

surface of the metering box [83]. This design can be the most accurate of all, but the 

control system is quite complex. It also requires highly skilled operators to perform the 

tests. This type of Hot Box was originally developed in the UK [83]. 
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3.5.1 Case Study: The National Physics Laboratory (NPL), Rotatable Wall and 

Edge Guarded Hot Box  

A Rotatable WGHB was designed and built by the NPL to perform thermal tests on 

insulating panels, windows and door configurations as well as wall and roof structures. 

This Hot Box is an improved version of the original Wall Guarded Hot Box and retains 

all of its advantages. This WGHB was developed because it offered better control over 

the operating environment and is more compact than the traditional calibrated Hot Box.   

The maximum size of the test specimen that the WGHB can accommodate is 2.4 m x 

2.4 m x 0.15 m. The cold side temperature ranges from -20 oC to + 20 oC. The hot 

chamber has a maximum temperature of 35 oC.  The minimum temperature of the hot 

chamber is limited to 3 oC above the surrounding room temperature.  

In the original GHB, the primary function of the guard box is to reduce the heat flow 

through the metering box walls to a minimum. Although this system works, it reduces 

the size of the metering box, thus reducing the size of the test specimen. In the 

RWGHB, the two-box system is eliminated by controlling the temperature of the 

outside surface of the metering box to the same temperature inside the metering box.  

This means that there is now no guard area in the apparatus and that a larger test 

specimen can be used [84]. 

This type of Hot Box was designed to be fully rotatable. This permits the RWGHB to be 

arranged at any orientation from the cold side horizontally positioned above the Hot 

Box, through the vertical position, to the hot side being located above the cold side. A 

photograph and a schematic of the apparatus is shown in Figures 3.10 and 3.11. 
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Figure 3.10: Photograph of NPL WGHB [84] 

 

 
Figure 3.11: Cross-section of NPL WGHB [84] (Reference adapted) 
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The heaters on the wall guard are self-adhesive silicon heater pads. These are attached 

consistently around the edges that are made from 6 mm plate of aluminium. The 

temperature in the plates is controlled using a thermistor inserted into the one of the 

plates. The heater system is separated into different areas. The bottom area is controlled 

comparatively to the top area. Each area is independently heated and the temperatures 

are then matched. Heat flow meters are fitted into the Hot Box walls to measure the 

amount of heat flow through them with great accuracy. 

The collar guard heater system is shown in the Figure 3.11. These are located all around 

the test specimen perimeter and are attached to the support panel. They comprise of 

heater strips that are connected to a 0.5 mm thick stainless steel plate and are attached 

close to the edge of the hot chamber. The opposite side of the stainless steel plate is 

gripped by a copper cooling fin that extends 75 mm into the cold box. This creates a 

temperature gradient for the edge guarding. Thermocouples are attached to the centre of 

the stainless points to establish the mean temperature. This system minimises losses 

from the edge of the test specimen to the surrounding room. The heaters are controlled 

to match closely the temperature gradient across the test specimen. This facility has a 

repeatability of 1.1 % and an uncertainty of +/- 3.6 % when measuring the thermal 

resistance of a homogeneous specimen [84].   

3.6 ISO Standards on Hot Box Testing 

EN ISO 8990 “Thermal insulation – Determination of steady state thermal transmission 

properties – Calibrated and Guarded Hot Box” refers to the minimum requirements 

that are in place for the design and construction of a CHB or GHB. It also gives 

information on how the Hot Boxes should be calibrated and how to deal with losses 
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that lead to inaccuracies in the tests. It gives a description on how the test procedure 

should be carried out and a description of the apparatus needed to comply fully with the 

standard.  

3.6.1 Hot Box Losses 

As described earlier, there are two main types of Hot Box, the calibrated Hot Box and 

the Guarded Hot Box. Although they are quite similar, the losses that occur in each are 

different.  

Figure 3.12 is a schematic of a GHB illustrating the losses that it can incur. Losses 

through the metering box are kept to a minimum by maintaining similar conditions in 

the guard box and the metering box. These conditions also minimise lateral heat flow 

parallel to the test specimen. In an ideal situation, when a homogenous test piece is in 

the test apparatus, the guard box and metering box temperatures are equal, and the cold 

side temperatures and the surface coefficients are uniform, a temperature balance for the 

air on both sides implies a state of equilibrium on the surface. This suggests that the 

imbalance heat flow rate parallel to the specimen and the heat flow rate through the 

metering walls are equal to zero. This means that the input power will equal the energy 

transfer through the test specimen. In reality, this is never likely to happen. This is 

referred to as an imbalance. A basic heat balance is shown in Equation 3.1 for the GHB 

that shows all the losses that can occur in this type of Hot Box. 
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Figure 3.12: Guarded Hot Box Losses [6] (Reference Adapted) 

 

wpints QQQQ −−=  

Where; 

Qin = Total power input (W) 

Qts = Heat transfer through test specimen (W) 

Qp = Heat transfer parallel to test specimen (W) 

Qw = Heat transfer through metering box walls (W) 

3.1

As described earlier, the CHB is surrounded, on both sides, by a thick highly thermal 

resistive wall. This is to keep the losses through the metering box at a minimum. The 

total power input has to be corrected to accommodate for this loss. Another loss that 

occurs is the Flanking Loss, Qfl. This is heat loss around the edges of the test specimen. 

A correction for this loss is found by calibrations on specimens with known thermal 

properties. When accounting for this loss, the known specimen should cover the same 

thickness and the same thermal resistance range of the unknown specimen. It should 
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also be tested over the same temperature range. The CHB losses are illustrated in Figure 

3.13. Equation 3.2 shows a heat balance for CHB. 

 
Figure 3.13: Calibrated Hot Box Losses [6] (Reference Adapted)  

 

flwints QQQQ −−=  

Where; 

Qfl  = Flanking loss heat transfer (W) 

3.2

3.6.2 Calibration of Hot Box 

By using calibration panels with known thermal properties, the losses in both Hot Boxes 

can be calculated or minimised to an acceptable level. In the GHB, the imbalance heat 

flow parallel to the test specimen can be made very small by keeping the temperature 

uniformity between the metering box and the guard box as close as possible, so that the 
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imbalance heat flow is negligible compared to the heat flow through the test specimen. 

Applying sufficient insulation to the outside of the test specimen can reduce the 

peripheral loss, Qe in the GHB to a negligible level. By recording the temperature 

difference across the calibration panel (with known thermal properties) and the total 

power input, the losses for the metering box walls can be calculated using Equation 3.1. 

This principle can also be applied to the CHB where the metering box wall losses (Qw) 

and flanking losses can be found using Equation 3.2. Surface temperatures are measured 

in such a way as not to affect the temperature of the surface at that point. This can be 

achieved by using thermocouples with a diameter less than 0.25mm, with at least 

100mm of adjoining wire that is in thermal contact with the surface. Cement or tape 

with similar emissivity to the test specimen can be used to fix the thermocouple to the 

test specimen. 

Once the losses have been accounted for, a specimen with unknown thermal properties 

can be tested. The thermal resistance of the specimen can be calculated using Equation 

3.3.  

hot ts cold ts(T T )ts
ts

ts

AR
Q
−

=  

Where; 

Rts = Test specimen thermal resistance (m2 oC/W) 

Ats  = Test specimen area (m2) 

T hot ts = Hot side test specimen surface temperature (oC) 

Tcold ts = Cold side test specimen surface temperature (oC) 

3.3

For the thermal transmittance calculations, heat transfer into and out of the specimen 

through radiation and convection are taken into account. The radiation heat transfer is 
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dependent on the radiation exchange between the specimen and the surfaces seen by the 

specimen. Heat transfer by convection is dependent on the air temperature and the air 

velocity over the specimen. The thermal transmittance for a test specimen can be written 

as Equation 3.4. 

1 2( )
ts

TT
t s n n

QU
A T T

=
−

 3.4

The surface coefficients are expressed in Equations 3.5 and 3.6. 

1
1 hot ts( T )

ts

t s n

Qh
A T

=
−

 3.5

2
cold ts 2( )

ts

t s n

Qh
A T T

=
−

 

Where; 

Tn1   = Metering box environmental temperature (oC) 

Tn2   = Cold box environmental temperature (oC) 

UTT = Specimen thermal transmittance (W/m2 oC) 

h1    = Hot side test specimen surface coefficient (W/m2 oC) 

h2    = Cold side test specimen surface coefficient (W/m2 oC) 

3.6

The concept of the environmental temperature, Tn, combines the air and radiant 

temperatures used to calculate the thermal transmission. It is a calculated value and is a 

function of air temperatures, mean radiant temperatures, mean surface temperatures and 

the heat flux per unit area.   Further reading on the environmental temperature can be 

found in this standard [6]. Hot Boxes built to this standard can achieve accuracies of +/- 

5 % [84]. For more detailed requirements for standardised Hot Boxes, further reading is 

also found in References [85], [86].   
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3.7 Flanking Losses in Hot Boxes 

To evaluate the specimen heat flow in a Hot Box, the heat input must be known and the 

losses accounted for. Originally, it was thought that all the losses occurred through the 

metering walls and the specimen heat flow was calculated after that. Further 

developments showed that there was an additional loss between the metering chamber 

and the cold chamber that was occurring through the specimen frame (surround panel). 

This heat flow is called flanking loss and it is found during the calibration procedures. 

Flanking losses are mainly a function of air to air temperature difference between the 

hot and cold side and also the specimen thickness. Varying test specimen conductivity 

does not strongly affect the flanking loss [87]. Flanking losses always occur in the CHB 

because the test specimen comes into contact with the surround panel in the metering 

box. It only occurs in the GHB when the test specimen is smaller than the metering box 

area. This can be seen in Figure 3.8 (Ulster University), where the test specimen sits in 

the aperture of the surround panel in the metering chamber. Figure 3.12 shows a GHB 

where flanking losses (Qfl) do not occur as the test specimen area is greater than the 

metering area.  

Yuan [64] used test specimens (with known thermal properties) of different thicknesses, 

while maintaining the same air-to-air temperature difference, to calibrate a CHB for 

flanking losses. This CHB was used for testing window structures. Figure 2.38 shows a 

schematic of the CHB used. It can be seen that the test specimen is smaller than the 

metering area and a 102 mm thick surround panel holds the test specimen in place. A 

heat balance for the CHB is shown in Equation 3.7. 
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flspwints QQQQQ −−−=  

Where; 

Qsp = Surround panel heat transfer (W) 

3.7

 

 

 
Figure 3.14: CHB Flanking Loss [64] (Reference adapted) 

 

The wall losses and heat flow through the surround panel and test specimen were 
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known from previous calibration testing. The results for the flanking loss calibration 

tests are shown in Figure 3.15.  

 
Figure 3.15: Flanking Losses v. Specimen Thickness [64] 

 

It can be seen from Figure 3.15 that the flanking losses decrease with increasing 

specimen thickness. When the test specimen thickness is equal to the surround panel 

thickness, the flanking losses do not exist. A relationship between the flanking loss and 

specimen thickness was found through regression analysis and is described by Equation 

2.8 [64]. 

2)(0044.0)(08475798.40 tstsfl LLQ +−=        (0 < Lts <102 mm) 

Where; 

Lts = Test specimen thickness (m) 

3.8

Tests were then conducted on a double glazed window, with a frame thickness of 68 

mm. This thickness was used to calculate the flanking losses for the window (Lts) in 

Equation 2.8. The thermal transmittance of the window was found to be 1.95 W/m2 oC. 
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The heat transfer coefficient for the 60 mm calibration panel was approximately 0.45 

W/m2 oC. Although there was a big difference between the thermal properties, this 

method showed that thermal conductivity does not have a big effect on the flanking 

losses and that when the air to air temperatures are held constant, the only other major 

factor influencing the flanking losses is the specimen thickness. This research was part 

of an inter laboratory project and this result was compared with other tests on the same 

type of window from different laboratories around Europe. All these tests achieved very 

similar results [64].  

3.8 Hot Box Research Conclusions 

Three types of Hot Box were analysed before the design of the new testing facility took 

place. Standards on Hot Box design helped gain an understanding on the losses that 

occur in each type of Hot Box as well as the standardised calibration procedures for 

those losses. By reading case studies, knowledge on the different materials and 

equipment used to build Hot Boxes was gained. This information was used to help with 

the design of the new test facility.  
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CHAPTER 4 -TESTING FACILITY DEVELOPMENT 

4.1 Introduction 

There were two separate testing facilities used in this project. The design of the first test 

rig was based on the Calibrated Hot Box (CHB) and was developed prior to the current 

research. A series of tests were conducted with this test rig and the results can be found 

in Appendix A. On completion of these tests, the facility was evaluated, and based on 

this assessment, a new and more advanced test rig was designed and produced. This 

chapter describes the preliminary test rig and the design and construction of the new 

facility.   

4.2 Preliminary Hot Box 

Tests were carried out with this apparatus to gain an indication of the thermal properties 

of the multi-foil insulation. These tests took place between late January and early March 

2007.  

4.2.1 Description 

Figure 4.1 shows the initial Hot Box prototype. The inside of the box acted as the hot 

side with the surrounding room acting as the cold side. The walls of the hot chamber 

were constructed with 80 mm polyiso insulation, with an inner and outer shell of 12 mm 

plywood to add stability to the box. The surround panel (that holds the specimen in 

place) was originally constructed with 80 mm polyiso insulation and supported with 

plywood on both sides.  
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Figure 4.1: Preliminary Hot Box 

 

A new surround panel was constructed to accommodate a thicker test specimen for the 

preliminary tests. The test specimen was fixed into the surround panel and sealed 

around its perimeter to ensure that no mass transfer occurred. A frame was constructed 

to keep the hot chamber off the ground and also to enable it to rotate through 360°.  

Seven Type T thermocouples were used for temperature measurement. Six 

thermocouples were positioned inside the hot chamber, and one thermocouple was 

outside the hot chamber. These were used to monitor the air temperatures on both sides 

of the specimen during testing. A simple On-Off controller was used to regulate the 

temperature inside the box and was wired to a 100 W AC enclosure heater. A 12 W AC 

fan circulated the air inside the box to create a uniform temperature. A baffle was placed 

in front of the heater and the inside surfaces of the hot chamber were painted matt black 

to reduce radiative effects (from the heater) to the test specimen. 

The temperature readings were captured by the data logger which recorded readings of 
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the thermocouples every minute. This was then outputted to an Excel spreadsheet. 

Kilowatt-hour meters recorded the power input to the Hot Box throughout the duration 

of the tests.  

4.2.2 Testing Procedure  

The calibration test determined the heat losses through the metering box walls and the 

surround panel. This was done by testing specimens with known thermal properties. If 

the thermal resistance of the specimen was known, the losses could be found by using 

the temperature differences across the specimen and the average power used during the 

test. These losses were then represented by a heat transfer coefficient for the box walls 

and surround panel.  

4.2.2.1 Calibration Panel Tests 

The inside of the hot chamber was heated to a set temperature and left for 

approximately 12 hours for steady state conditions to exist. Figure 4.2 illustrates a test 

specimen in the test rig. T1 represents the hot air temperature and T2 represents the cold 

air temperature. This results in a temperature gradient existing across the test specimen.  

The hot temperature and cold temperatures were recorded during this period to ensure 

that they remained relatively constant. At the start of the testing the kilowatt-hour 

meters were switched on to record the power consumption (Qin) into the hot side. 

Newton’s Law of Cooling [88] was applied to the heat transfer across the test specimen 

in Equation 4.1 and also applied to a heat balance for the test rig as shown in Equation 

4.3.  

 



 

 

71

 
Figure 4.2: Temperature Gradient across Test Specimen 

 

atsTTts TAUQ Δ=  

Where; 

Δ Ta = Air temperature difference (oC) 

4.1 

As the temperatures being measured across the test specimen were air temperatures, a 

surface resistance at either side of the test specimen existed. These surface resistances 

were approximated using EN ISO 6946 [93]. TTU  in Equation 4.1 is calculated as in 

Equation 4.2.  

21

1

stss
TT RRR

U
++

=  

Where; 

Rs 1  = Hot side surface resistance (m2 oC/W) 

Rs 2 = Cold side surface resistance (m2 oC/W) 

4.2 

A heat balance for the test rig is shown in Equation 4.3 
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tswin QQQ +=  4.3 

Re-arranging Equation 4.3 with the heat flow through the walls and surround panel as 

the subject of the heat balance gives 

tsinw QQQ −=   

Substituting Equation 4.1 into 4.2 and applying Newton’s law of cooling to wQ  gives 

)()( atsTTinaw TAUQTUA Δ−=Δ  

Where; 

( )wUA  = Heat transfer coefficient for metering box walls per unit area (W/oC) 

 

All values were known except wU . The heat transfer coefficient for the box walls was 

calculated using Equation 4.4.  

    
a

atsTTin
w T

TAUQ
UA

Δ
Δ−

=
))((

)(           
4.4 

4.2.2.2 Unknown Test Specimen 

Once a heat transfer coefficient for the box walls and surround panel was found, a 

specimen with unknown thermal properties could be tested and a heat transfer 

coefficient for the unknown specimen could be computed. The heat balance for the test 

rig is shown in Equation 4.5, with the heat flow through the test specimen as the subject.   

wints QQQ −=  4.5 

Since the losses through the walls and surround panel were found from calibration 

procedure, Equation 4.4 could be used to solve for the test specimen thermal 

transmittance. This is shown in Equation 4.6. Possible errors associated with the 

specimen thermal transmittance are discussed in section 4.2.3.  
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4.6 

4.2.3 Limitations of Testing Facility 

It was apparent from some of the preliminary tests conducted, and from observations 

made, that the test rig had some limitations. This was an important part of the research 

as it resulted in determining many of the design requirements that had to be employed in 

order for a new and better test facility to be built. The following is a list of possible 

errors that could be associated with the estimation of UTT. 

• Absence of a cold side 

• Metering box wall errors 

• Lack of equipment  

It became apparent from an early stage of testing that a cold side to the Hot Box would 

be required. Successful testing would depend on the room temperature remaining 

relatively constant throughout the test. This proved to be problematic because of 

significant temperature differences between night and day. Many tests had to be delayed 

or cancelled due to this problem. Another problem that occurred was that the air 

velocity across the surface of the cold side of the test specimen could not be kept 

constant for the duration of the test. The absence of a cold side also allowed radiation 

from hot surfaces (such as roofs heated by the sun or through windows) in the 

surrounding room to interact with the surface of the test specimens. This led to 

inaccuracies as the environmental conditions could vary during and between tests.  

Another possible source of error was that the metering box walls may have been 
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subjected to a change in room temperature during testing. This affected the temperature 

difference between the inside and outside of the walls which resulted in the box losses 

varying between the tests. 

There were only seven thermocouples used to gather data from the test rig. More 

thermocouples would give better information and improved temperature profile inside 

and outside the test rig. Placing thermocouples on the surfaces of the test specimens and 

walls could give more accurate and accountable thermal resistances for them. Other 

factors also had to be taken into account and are discussed in Section 4.2.4.  

4.2.4 Other Design Considerations 

The following design considerations are discussed: 

• Hot box size 

• Health and safety 

• Installation of measurement components 

• Sealing of the Hot Box 

This first step in the design process was to size the Hot Box. As the Hot Box was to be 

constructed in a different location to where the tests would be conducted, the apparatus 

had to be small enough to enable movement between locations. This was a constraint 

that affected the exterior dimensions and in turn affected the size of the test specimen.  

The Hot Box was also designed so that it could be operated by one person. The 

surround panel, for example, would have to be manageable in terms of handling and 

ease of movement. In addition, the test specimens would have to be fixed into the 

surround panel with the minimum of effort.  
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The heating and measuring equipment, including the heater, fan and thermocouples, 

would need to be accommodated inside the Hot Box. Specified holes would have to be 

drilled through the walls to feed electrical connections to these components.  

One major factor that would affect the success of the tests was sealing of the Hot Box. 

All the joints, inside and out, would require careful sealing so that no air would leak 

through the walls. Joints between the surround panel and the metering box, and between 

the guard box and the surround panel, would also have to be airtight. Another concern 

was the joint between the perimeter of the surround panel and the test specimen. All of 

these parameters were considered during the design process.      

4.3 Design of Testing Facility 

After studying the different methods and test rigs used in industry, the relevant ISO 

standards [6] [85] [86], and the preliminary test rig, a testing facility was designed that 

was suitable for the type of tests conducted in this project. From the outset of this 

project, it was clear that not all of the conditions of the ISO standards could be met due 

to practical and budgetary constraints. The key to the design was to balance those 

constraints with the information received in the relevant standards and case studies and 

arrive with the best possible solution. 

The Hot Box was designed with the aid of Solid Works. Solid Works is a drawing 

computer package which aids in the design of products and structures. Once a series of 

parts were drawn up they could be assembled together in a drawing. If certain parts did 

not fit into the assembly as intended, that part could be altered without making changes 

to the overall drawing. This was helpful in the design of the Hot Box as dimensions for 



 

 

76

different parts were refined and finalised before construction took place. Possible 

difficulties in construction could also be seen before they took place. 

4.3.1 Choice of Hot Box Type 

The first step of the design process was to make a decision on which type of Hot Box to 

build. As discussed in detail in the literature survey, there are generally three types of 

Hot Boxes used for testing materials: Calibrated Hot Box (CHB), Guarded Hot Box 

(GHB) and Wall and Edge Guarded Hot Box (WGHB). The first stage of the design 

process was to decide which of the three Hot Box types the design would be based 

upon.  

The WGHB is a design that is based on the CHB. This was the first design to be 

discarded because of the following points.  

• Expensive to build. 

• Silicon pad heaters are required on the outside perimeter of the metering 

chamber and heaters were required around the edges of the specimen. This was 

deemed overly complex to implement for the time frame allowed.    

• A complex control system would have to be designed to cater for all the heaters.  

After considering the benefits and disadvantages of both the GHB and the CHB, a 

decision was made to design the test rig based on the GHB. The deciding factor was 

based on analysis of the surrounding room in which the testing facility would be 

located. From performing tests with the preliminary test rig, it was noted that there was 

significant temperature variations in the room throughout the day. This temperature had 

an undesirable affect on the temperature inside the metering box that caused it to 
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fluctuate. Through building a GHB, this error was significantly reduced as the guard 

box temperature was controlled to keep the temperature variation as small as possible 

even when the room temperature was varying a considerable amount. Air velocities in 

the metering chamber, cold chamber and guard areas would also be constant due to fans 

moving the air around the guard box to maintain a uniform temperature. This was also 

beneficial as the air velocity in the test room would be affected by doors or windows 

being left open.  

The ISO Standards outlined in Section 3.6 recommend a negligible heat transfer through 

the metering box walls into the guard box area. This would require the design of a 

custom PID controller along with the acquisition of the relevant equipment.  Minor 

fluctuations in the conditions either side of the metering box walls would cause heat 

transfer in or out of the metering box and would have to be accounted for.  However, it 

was decided to employ a comparative method of testing as outlined in Section 5.5 for 

practical reasons, as the limits outlined in the ISO Standards could not be attained with 

the available equipment and in the specified time.  

The comparative testing method is based on maintaining a higher temperature in the 

metering box than in the guard box. Maintaining an average temperature difference 

would mean that the losses through the metering box walls would be constant and 

therefore produce repeatable results. An arbitrary average temperature difference of 2    

oC was chosen.  

4.3.2 Guarded Hot Box Dimensions 

The first course of action was to determine the overall dimensions of the Hot Box. This 
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process started by trying to keep the test specimen size as large as possible while 

keeping in mind the maximum dimensions possible in order for the test facility to be 

moved into any test location. The maximum allowable height that the Hot Box could 

reach was found to be 1.96 m with a maximum possible width of 1.4 m.  

As described in Section 3.6, one of the losses associated with the GHB is the peripheral 

loss. This is a heat flow parallel to the specimen at the edge of the specimen. To 

minimise this loss, the surround panel would have to be made with a material of high 

thermal resistance and also have a significant distance between the perimeter of the test 

element and the inner surface of the metering box. As a balance between protecting the 

test specimen from these losses while maintaining a meaningful test specimen size, a 

distance of 200 mm was chosen. As a result of this, different test specimens could be 

inserted into the surround panel, but the peripheral loss through the surround panel 

would remain constant. 

The distance between the perimeter of the metering box and the inside of the guard box 

walls was chosen to be 150 mm. This was done to achieve a uniform temperature in the 

guard box and reduce the risk of stagnant air pockets forming, while remaining within 

the maximum height allowed.  

4.3.3 Material Selection 

The material chosen to manufacture the shell of the Hot Box was plywood sheeting. 

Plywood is strong, relatively cheap and can be cut easily. It was also used in the Hot 

Boxes described in Sections 4.3.1 and 4.4.1.  

Polyiso was chosen to insulate the walls of the metering box and guard box. Polyiso 
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foam is a rigid foam that has the highest insulating values of any conventional foam 

insulation available in industry today. It can be seen in Table 2.1 that 50 mm thick 

polyiso offers approximately 40 % better thermal performance than polystyrene of the 

same thickness. Along with the very low conductivity of the foam, there are also gases 

trapped in the foam that add to its thermal resistance. Polyiso is moisture resistant, 

dimensionally stable and air tight.  

4.3.4 Hot Side Overview 

Figure 4.3 shows the hot side of the GHB with the key to the diagram. It can be seen 

that the metering box sits inside the guard box. A gap of 150 mm between the outside 

perimeter of the metering box and inside perimeter of the guard box was chosen to 

avoid any stagnant air pockets in the guard area.  

 

Key: 
1: Guard box 

2: Metering box 

 

Figure 4.3: Hot Side Drawing 

4.3.4.1Guard Box Design 

 

Key: 
1: Outside plywood shell 

2: Guard box insulated wall 

3: Inner plywood shell 

4: Metering box holders 

Figure 4.4: Section View – Guard Box (Dimensions: mm) 
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The inner dimensions of the guard box were designed to be 1730 mm high x 1730 mm 

wide and 700 mm deep. This provided enough space above and between the perimeter 

of the metering box and guard box for air to circulate. This also allowed for an air gap 

behind the metering box for a fan and heater to be fitted to the inside of the guard box. 

This resulted in the outer dimensions of the guard box to be 1927 mm high x 1927 mm 

wide and 798.5 mm deep. The outer dimensions of the guard box were below the 

maximum allowable dimensions set out in Section 4.2.2. 

4.3.4.2 Metering Box Design 

The metering box sits inside the guard box on the hot side of the test specimen. It was 

designed by taking into account some of the dimension requirements addressed in 

Section 4.2.2. A sectional view of the metering box is shown in Figure 4.5.  

 

Key: 
1: Baffle 

2: Timber Battens 

3: Insulation 

4: Plywood Shell  

 

Figure 4.5: Section View through Metering Box (Dimensions: mm) 

 

The metering box had to be wide enough to be able to facilitate the heaters and fans to 

fit behind the baffle. The width of the metering box was designed to be 360 mm. The 

dimensions that were chosen for the test specimen were 950 mm x 950 mm and 
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that resulted in the inner dimensions being 1350 mm high x 1350 mm wide.    

The composition of the metering box was the next stage in this part of the design. There 

were two main choices. The first was to put the wooden sheet on the outside of the 

metering box with the insulation on the inside. The second was to put the wood sheeting 

on the inside with the insulation on the outside. The latter was chosen because it offered 

a strong fixing surface for the heaters, fans and baffle to be attached to the inside of the 

metering box walls.  

The inside surface of the wooden sheeting would be painted a matt black colour so that 

the radiation from the hot surface of the heaters would not be reflected from the box 

walls to the specimen surface. Surfaces seen by the test specimen should achieve a 

desired emissivity of at least 0.8 because of this [6]. A 1030 mm high x 1350 mm wide 

x 2 mm thick matt black aluminium baffle was installed in the metering box to shield 

the specimen surface from direct radiative heat transfer from the heaters and fans. 

4.3.5 Cold Box Design 

The cold box was designed to provide a cold and stable environment for the test 

specimen and surround panel. An isometric view of the cold side is shown in Figure 4.6. 

The structure was strong enough to be clamped to the surround panel and hot side. From 

a practical point of view, the cold box was designed to be easily manoeuvrable. This 

was because the guard box combined with the metering box was a heavy structure and 

could not be moved easily. Having a light and moveable cold side would make it easier 

for the for test specimens to be fitted into and removed from the surround panel by one 

person. This was achieved by having a single shell of plywood sheeting, and covering 
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the outside of the structure with a light reflective multi-foil insulation.  

Figure 4.7 shows a section view of the cold box. The inside dimensions were designed 

to be 1902 mm high x 1902 mm wide x 348 mm deep. The height and width of the cold 

box had to be at least the same size as the guard chamber. A 1200 mm high x 1902 mm 

wide x 1.5 mm thick matt black aluminium baffle was installed in the cold box to shield 

the specimen surface from direct radiative heat transfer from the cold air ducts and cold 

box walls. The cold box had to be deep enough to facilitate the refrigeration ducts and 

the baffle. The battens that are labelled 4 in Figure 4.7 were designed to hold the baffle 

in place. The baffle was designed to be installed into the cold box to shield the test 

specimen from radiative transfer with the cold box walls.  

 
Figure 4.6: Cold Box Isometric View 
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Key: 
1:Reflective quilted insulation 

2: Plywood shell 

3: Baffle 

4, 4a: Timber Battens 

 

 

Figure 4.7: Section View through Cold Box (Dimensions: mm) 

 

During a test, the cold box was to be clamped up against the surround panel. As the 

surround panel was constructed from polyiso insulation, too small a contact area (12.5 

mm wood sheeting) would create indentations into the surround panel. 50 mm x 25 mm 

battens (labelled 4a in Figure 4.7) were fixed to the perimeter of the cold side to 

increase the area of contact between the cold side and the surround panel thus protecting 

the surround panel from damage.  

4.3.6 Surround Panel Design 

Figures 4.8 a and b show drawings of the surround panel. The outer dimensions of the 

surround panel were designed to be 1902 mm high x 1902 mm wide. These dimensions 

were the same as the exterior dimensions of the insulation in the guard box. The test 

specimen sits into the surround panel and the dimensions of the test specimen were 

designed to be 950 mm high x 950 mm wide. The surround panel was designed to be 

160 mm wide. This was the maximum intended width of the test specimens.  
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(a) 

 
(b) 

Figure 4.8 a) Isometric View Surround Panel b) Section View 

4.3.7 Finished Design 

Figure 4.9 shows a section view of the complete design of the GHB. All the separate 

designed parts were assembled together to make up the final design of the GHB. This is 

the intended assembly of the GHB during a test. The metering box is designed to sit into 

the guard box and is fixed to the metering box holders. The surround panel is located 

between the hot side and cold side. 

as 

Key: 
1: Guard Box 

2: Metering Box 

3: Surround Panel 

4: Cold Box 

 

Figure 4.9: Section View of GHB 
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4.4 Associated Guarded Hot Box Equipment 

4.4.1 Introduction 

All the control and monitoring equipment associated with the GHB is summarised 

below: 

 To control and maintain a uniform temperature inside the guard box, the following 

were used: 

• A 100 W AC enclosure resistance heater. 

• 12 W AC fan. 

• PID temperature controller with a solid state relay. 

To control and maintain a uniform temperature inside the metering box, the following 

were used: 

•  4 PTC element enclosure heater 15W (12 V-24 V DC). 

• 2 VAPO bearing axial fan each with a with a volumetric flow rate of 32.8 m3/hr 

(12 V DC). 

• DC power supply. Two channels. Max voltage 30 V, max current 3 A. 

To control and maintain a uniform temperature inside the cold box, the following was 

used: 

• Refrigeration unit from laboratory.  

4.4.2 Guard Box Heater Selection 

The guard box heater was chosen after some preliminary calculations were carried out 

to size it. The heat created by the fan was ignored for calculation purposes and it was 
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assumed that the total power input to the guard box was from the heater alone.  

A maximum temperature difference between the inside and outside of the guard box 

was chosen to be 35 oC. This was an over-estimated figure to ensure that the heater 

would not be undersized. The thermal resistance of the guard box walls and surround 

panel were approximately 3.5 m2 oC/W and 7 m2 oC/W respectively. Equation 4.7 was 

used to estimate the heater size [94]. 

n n
heater

w

A x TQ
R
Δ

=      

Where; 

Qheater = Heater power (W)  

Rw = Wall thermal resistance (m2 oC/W) 

4.7 

Area of guard box walls                   = (1.73 x 1.73) + 4(1.73 x .70) = 7.84 m2 

Area of surround panel in guard box = 4(1.52 x 1.73)  = 1.05 m2 

( )7.84 35
3.5heater

xQ =  + ( )1.05 35
7
x      

64.83=heaterQ W  

As a result of this a 100 W AC enclosure resistance heater was chosen. The type of 

heater used is shown in Figure 4.10.  

 
Figure 4.10: Enclosure Heaters [93] 
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4.4.3 Metering Box Heater Selection 

The same procedure as described in Section 4.3.1 was used to size the heaters. A DC 

heater was used because it was important to be able to accurately know the heat input to 

the metering box. DC power can be more accurately recorded than AC power [85].  

A temperature difference between the inside and outside surfaces of the metering box 

was chosen to be 2 oC. The resistance of the metering box walls and surround panel was 

conservatively estimated to be 0.7 m2 oC/W and 7 m2 oC/W respectively. The lowest 

thermal resistance envisaged for the test specimen was 2 m2 oC/W. Equation 4.7 was 

used to estimate the heater size.  

 

Area of metering box walls = 3.82 m2 

Area of surround panel in metering box = 1.08 m2 

Area of test specimen in metering box = 0.90 m2 

heaterQ  = ( )3.82 2
0.7

x  + ( )1.08 35
7
x + ( )0.90 35

2
x   

16.32=heaterQ W  

Four PTC 12V-24V DC element enclosure heaters, each with an output of 15 W, were 

chosen for the metering box. [89]. Even though three of these heaters would have 

delivered enough power into the metering box, four were chosen to speed up the heating 

time for the metering box to arrive at the desired temperature.  

4.4.4 Guard Box Fan Selection 

The function of the fan was to circulate the air and to achieve a uniform air temperature 
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throughout the guard box. The major factor in determining the uniformity of the air 

temperature in an enclosure is the fan’s air flow. The fans were sized on this basis. A 

desired air temperature difference of 1 oC was chosen. This would ensure that the 

surface temperature of the outside of the metering box walls would remain uniform.  

A 12 W, 230 V AC fan was chosen. It was used in the preliminary test rig and no 

technical data was available. It was noted that the air temperature difference in the 

preliminary test facility was less than 1 oC and therefore would perform the same task in 

the guard box.  

4.4.5 Metering box fan selection 

The same method used by Ye [94] was employed to size the metering box fan. Equation 

4.8 was used to calculate the required mass flow rate. 

heater pair aQ mC T= Δ&  

Where; 

m&       = mass flow rate (kg/s) 

Cp air  = Specific heat capacity of air @ 20oC (1.007 kJ/kg oC) 

4.8 

m& = 
007.1
032.0 kg/sec  

m& = 032.0  kg/sec  

From there, the mass flow rate was converted to air velocity in litres per second by 

using Equation 4.9. 

V airm ρ=&  4.9 
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Where; 

airρ  = Air Density  (1.18 kg/m3) 

V     = Volume flow rate (m3/s) 

V&  = Flow rate (l/s) 

 
18.1
032.0

=V  

 

0271.0=V  m3/ sec   

V& = 27.1 l/sec  

Two 12V DC VAPO bearing axial fans were chosen. Each fan has an airflow rate of 

15.55 l/sec [93]. A picture of the fans is shown in Figure 4.11.  

 
Figure 4.11: Metering Box Fans [89] 

4.4.6 Guard Box Temperature Control  

The temperature in the guard box had to be controlled in order to keep the outside 

temperature of the metering box walls constant. A (PID) temperature controller was 

chosen to carry out that task. This would have to be connected to a certain type of relay 

that could switch the heater on and off to maintain the temperature in the guard box. 

A DATALOGIC QS/QD PID controller was chosen for this. This controller could be 

powered by mains voltage. The controller then sent a 12 V DC signal to a relay to turn 

the heater on and off. The controller had to be programmed before use.  When using a 

PT 100 platinum resistance thermometer as the sensor input a temperature uniformity of 
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+/- 0.2 oC could be achieved [90]. A solid state relay was chosen as a method of 

switching the heater on and off. 

4.4.7 Metering Box Temperature Control 

As well as controlling the temperature in the metering box, the power consumption also 

had to be measured.  A two-channel IPS2303 DC power supply was used to provide 

power to the fans and the heaters in the metering box. A digital readout on the power 

supply displayed the current and voltage on each channel. The accuracy of the voltage 

and current readings were not clear from the specifications. For this reason, two 

multimeters with known accuracy were used during testing to record these parameters. 

The fan and heater voltages were measured using a Fluke 70 III multimeter with an 

accuracy of 0.3 % [91]. The voltage display from the power supply read to the nearest 

0.1 V while the multimeter read to the nearest 0.01 V. Although the multimeters were 

always used for recording test data, the power supply readout always agreed with the 

multimeter to the nearest 0.1 V.  

A Fluke 189 True RMS multimeter was used to measure the heater current in the 

metering box with an accuracy of +/- 0.5 % [89]. The current display on the power 

supply read to the nearest 0.01 A. The difference between the two readings never 

deviated by more than 0.01 A. As the Fluke 189 True RMS multimeter was used to 

measure the heater current, it could not be used to measure the fan current. As the 

voltage and current fan settings were intended to stay constant for all tests, and the 

power supply readings were in excellent agreement with the multimeter readings, the 

current drawn by the fans was recorded from the power supply.   
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4.4.8 Temperature Measurement and Recording 

Type T thermocouples were chosen to measure the temperatures of the test specimens, 

walls and air temperatures. These thermocouples give a large signal output per oC and 

offer high stability [94]. They were also used by Ye [94], Fang [81], and Yuan [64]. To 

record and save the temperatures, a PICO TC08 data logger was used. When used in 

conjunction with the PICO data logger, a temperature resolution of at least 0.1 oC could 

be achieved [92]. The data logger had eight channels available at any time to read the 

temperatures and had in-built cold junction compensation. A sample number of 

thermocouples were connected to the data logger and the temperature readings were 

compared with an ISOTECH Venus Calibrator thermometer calibration device. The 

liquid bath in the calibration device was set to three different temperatures covering the 

intended range of temperature measurements. The readings from the Venus calibrator 

agreed with the data logger readings to the nearest 0.1 oC (See Appendix C).  

4.4.9 Cold Box Temperature Control 

A refrigeration unit was needed to keep the temperature stable in the cold box. A 

refrigeration unit that was available from the thermodynamics laboratory was used. It 

had a controller installed in it to set the temperature. The refrigeration unit was designed 

to be situated outside the cold box with flexible plastic ducting used to deliver and 

remove the air in and out of the cold box. A fan in the refrigeration unit was constantly 

blowing air into the cold box with the refrigerator switching on and off each time the air 

temperature rose above or below the set point.  This resulted in a constant airflow in the 

cold box that maintained a uniform temperature. There was no technical data available 
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on the refrigeration unit but it was found to be suitable through tests that were carried 

out when the GHB was built and are shown in Section 5.2.1.  

4.5 Construction of Guarded Hot Box 

The construction of the GHB took place from late June 2007 to early September 2007.  

This process included not only the construction of the main elements of the GHB but 

also the installation of all the associated equipment. 

4.5.1 Hot Side Construction 

The hot side of the GHB comprised of the guard box and the metering box. 

 4.5.1.1 Guard Box Construction 

The outer shell of the guard box was constructed from sheets of 12 mm plywood cut to 

the size required and then screwed together. Sheets of polyiso, 80 mm thick, were then 

glued to the inside of the outer shell to act as the insulation in the guard box wall. The 

guard box was then finished by gluing sheets of 6 mm plywood to the inside of the 

insulation. To ensure a proper contact between the insulation and the plywood each side 

was glued separately with weights placed on the surface. Each side took approximately 

24 hours for the glue to set.  All the joints were sealed with silicon to ensure an airtight 

guard box during testing.  The sheets of plywood added the required strength and 

stability to the structure to accommodate the metering box and to provide a solid fixing 

surface for the heaters and fans. Figure 4.12 shows the constructed hot side. 

4.5.1.2 Metering Box Construction 

The metering box was built from 12 mm of plywood and 25 mm of polyiso insulation. 



 

 

93

The plywood was used as the inner shell, with the polyiso glued to its outside surface. A 

1.5 mm thick aluminium baffle was situated in the metering box to encourage uniform 

airflow over the specimen and to shield the specimen surface from direct radiative heat 

transfer from the heater and the fans. A rubber draught excluder was installed around 

the perimeter where the metering box meets the surround panel to stop air transfer 

between the metering box and the guard box during testing. The inside surfaces and the 

baffle of the metering box were painted matt black. The constructed metering box, 

along with the guard box, is shown in Figure 4.12. 

 
Figure 4.12: Hot Side Image 

4.5.2 Surround Panel Construction 

The surround panel separates the metering and guard box from the cold side. The 

surround panel also accommodates the test specimen. Polyiso insulation was chosen to 
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fabricate the surround panel. Two sheets of 80 mm polyiso were glued together and then 

the aperture for the test specimen to sit into was cut out of the centre of the surround 

panel. The glue took approximately 24 hours to set. A thin green strip of polyester was 

then glued to the aperture of the surround panel. This was done to protect the polyiso 

from wear as different test specimens would be inserted and removed from test to test, 

possibly resulting in damage to the aperture. The surround panel is shown in Figure 

4.13.  

 
Figure 4.13: Surround Panel with Test Specimen  

4.5.3 Cold Box Construction 

The cold box was constructed with 12 mm plywood and reflective insulation. A 2 mm 

aluminium shield was fixed into the cold side to shield the specimen from radiative 

affects from the cold box walls. Battens were then screwed on to the inside walls on the 
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open face of the cold box (facing the surround panel). This was done to keep the 

dimensions of the cold box square and to increase the contact area between the cold box 

and the surround panel when the whole test facility was clamped together. A picture of 

the cold box and the hot side is shown in Figure 4.14, the cold box being on the left side 

of Figure 4.14. 

 
Figure 4.14: Cold Box and Hot Side 

4.5.4 Refrigeration Unit 

Figure 4.15 shows the refrigeration unit with the adaptations that were made. The three 

plastic ducts coming out of the top of the unit all carry the cold air into the cold box. 

These were fixed in three separate positions behind the baffle, the left side, the right and 

the middle of the cold box. The flexible ducting at the bottom of the unit carries air out 

of the cold box. This air was fed back into the air intake fan of the refrigeration unit to 

reduce the energy consumption of the unit.  
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Figure 4.15: Refrigeration Unit 

4.6 Testing facility Development Conclusions 

A Hot Box based on the GHB was designed and manufactured. The design began by 

evaluating the preliminary test rig and trying to improve the testing procedure and 

conditions. The exterior dimensions of the GHB were curtailed by the requirement to 

move it into different locations and the rest of the dimensions were based around that 

factor.  Heaters and fans were sized and appropriate equipment was chosen to control 

the temperature in all enclosures.  
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CHAPTER 5 - TESTING OF THE GUARDED HOT BOX 

5.1 Introduction 

Once the GHB was designed and built, the testing stage of this research could begin. 

The first set of tests were conducted to ensure the equipment was performing as it was 

intended to. This chapter describes the preliminary tests that took place and the testing 

procedure employed to calibrate the GHB and test the multi-foil insulation. The results 

of these tests are then discussed.  

5.2 Preliminary Testing of the Guarded Hot Box 

The preliminary tests began in early October to November 07.  

5.2.1 Air Temperature Distribution Testing of Guarded Hot Box 

Before calibration took place, a series of tests were carried out to ensure the equipment 

was performing as intended. These tests examined the temperature distribution in the 

different enclosures associated with this GHB. Three tests were carried out. 

• Cold side air temperature distribution. 

• Metering box air temperature distribution. 

• Guard box air temperature distribution. 

Figures 5.1, 5.2 and 5.3 show the locations of the thermocouples in the different 

enclosures for the three tests that were completed. The red circles represent the 

thermocouple positions in the relevant enclosures. Six thermocouples were used for the 

cold side test and eight thermocouples were used for both the metering box test and the 
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guard box test. All thermocouples for all tests were fixed to the surfaces with small 

strips of masking tape.   

Figures 5.4, 5.5 and 5.6 are graphs of the maximum and minimum temperatures in each 

enclosure, at the given location, over a period of time. All the other temperatures that 

are not shown lie in between the maximum and minimum and are not included in the 

graphs for clarity. 

The results of these tests showed that the temperature distribution in each enclosure was 

small, and therefore proved the air flow in each enclosure was sufficient to achieve 

temperature uniformity throughout the GHB. The maximum air temperature differences 

for the cold box, the metering box and the guard box air temperatures were found to be 

0.47 oC, 0.56 oC and 0.77 oC respectively.  

 
Figure 5.1: Thermocouple Placement for Cold Box 
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Figure 5.2: Thermocouple Placement in Metering Box for Preliminary Tests 

 

 
Figure 5.3: Thermocouple Placement in Guard Box for Preliminary Tests 
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Figure 5.4 T: Air Temperature Distribution in the Cold Box (T600-T750) 
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Figure 5.5: Air Temperature Distribution in the Metering Box (T0-T133) 
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Figure 5.6: Air Temperature Distribution in the Guard Box (T0-T133) 
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5.2.2 PID Temperature Controller Test 

The PID controller was chosen to control the temperature in the guard box. A PID 

controller would not fluctuate as much as an On – Off controller around the set 

temperature and therefore was deemed the most suitable type of controller to use. Due 

to the lack of ports available in the data logger, it was decided to monitor the 

temperatures in the metering box and the cold box before, during and after tests and 

assume that the outer wall metering box temperature remained constant in between data 

collection periods. To ensure this assumption was valid, a preliminary test was carried 

out to show that the controller kept the temperature of the outer walls of the metering 

box constant over a period of time.  Figure 5.7 shows the results from this test. The 

power to the metering box was constant. A detailed description of the data collection 

procedure is described in Section 5.4.1.   
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Figure 5.7: Metering Box wall Temperature Vs. Time (T0-T1300) 

 

The conditions in the metering box and the cold box were recorded throughout the 

testing. The temperature difference across the metering box walls was an important 
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part of the tests and it was essential that the guard box temperature remained constant 

throughout the test. The maximum fluctuation in temperature during the 24 hour test 

period was 0.3 oC. The location of the thermocouple used for this test is shown in 

Figure  5.8. 

5.3 Thermocouple Placement for Guarded Hot Box Tests 

The results from the air distribution tests showed that the temperature variation in the 

GHB was small and the calibration for the GHB could take place. A decision on the 

thermocouple placement for these tests was made and implemented. 35 thermocouples 

were used for the tests. A breakdown of the thermocouple placement was as follows and 

is shown in Figures 5.8, 5.9: 

5 Thermocouples on the outside surface of metering box walls. 

5 Thermocouples on the inside surface of metering box walls. 

2 Thermocouples on the metering box baffle. 

2 Thermocouples for metering box air temperature. 

4 Thermocouples on the hot side surface of the surround panel. 

4 Thermocouples on the cold side surface of the surround panel. 

5 Thermocouples on the hot side surface of the test specimen. 

5 Thermocouples on the cold side surface of the test specimen. 

2 Thermocouples on the cold side baffle. 

1 Thermocouple for the cold box air temperature.  
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         Figure 5.8: Thermocouple Placement in Hot Side 

 

  
Figure 5.9: Cold Box and Surround Panel/Test Specimen Thermocouple Placement 

5.4 Data Acquisition Method 

The data logger available for this testing had 8 ports available at any one time to record 

the temperatures which meant that all 35 temperature readings could not be read at the 

same time. To overcome this problem a specific procedure was employed.  

Temperatures in the metering box and cold box were observed for approximately 16 

hours before each test. This was done to ensure that steady state conditions 
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existed. Following this, readings from all the other thermocouples were recorded three 

times in one day: morning, afternoon and evening. During and after the readings, the air 

and baffle temperatures in the metering box and the cold box were recorded to ensure 

that the temperatures in both chambers did not fluctuate to a large degree.  

5.4.1 Data Collection Procedure 

Once steady state conditions were reached, the testing period lasted approximately ten 

hours. This comprised of approximately one hour of collecting data in all 

thermocouples, on two occasions, in the morning. These temperatures were recorded 

once every minute for five minutes in two consecutive cycles. This started by recording 

the surround panel temperatures on the hot and cold sides. Then the test specimen 

temperatures were recorded, followed by the inside and outside walls of the metering 

box and then the air and baffle temperatures in the hot and cold chambers. The process 

was immediately repeated for the second cycle. This resulted in the data from each 

thermocouple being recorded for ten minutes in the morning, afternoon and evening. 

Temperatures in the metering box and cold box were recorded in between these data 

collection procedures to ensure that the temperatures did not change during a test.  The 

thermocouples were physically labelled and the time interval of each thermocouple 

reading was known. The readings from the data logger could be opened in Microsoft 

Excel where all the necessary calculations were conducted. 

Figure 5.10 shows readings from the data logger that was opened in an Excel 

spreadsheet. In column A, it can be seen that the time of each reading is given. 

Temperatures recorded from channels 1 to 8 are in columns B-I, and the cold junction 
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temperature is given in column J. For each time interval (e.g. 0 – 7 in the example in 

Figure 5.10), the identity of the thermocouple was known. Following the procedure that 

was outlined above, the first set of temperatures recorded were the surround panel 

temperatures on the hot and cold side (from channel 1 – 8). The data logger could then 

be paused and eight more thermocouples inserted into the data logger, and then the next 

8 channels recorded were the test specimen readings (time reading 11 – 17). The 

procedure was exactly the same for every test that was completed. 

 
 Figure 5.10: Example of Data Logger Readout 

5.5 Test Development 

The test development began by examining the GHB test procedure in case studies and 

standards discussed in the Chapter 3. By applying knowledge gained in this analysis, the 

most suitable testing procedure for the designed GHB was determined.  



 

 

106

5.5.1 Heat Balances in the Guarded Hot Box 

When steady state conditions have been reached in a GHB, all the losses must be known 

to find the specimen’s thermal characteristics. Evaluating these losses involved 

measuring the heat input into the metering box and then subtracting all the losses 

through the metering box walls, surround panel etc. Figure 5.11 shows a section view 

through the GHB with the heat balance shown in Equation 5.1.  

 
Figure 5.11: Heat Balance of GHB with Flanking Loss 

 

The temperature in the metering box, T1, was designed to be higher than the 

temperature in the Guard box, T3. This ensured that no heat flow into the metering box 

from the guard box would occur. Equation 5.1 shows the heat balance.  
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pwflspints QQQQQQ −−−−=  5.1

The heat input into the metering box, inQ , was the only known parameter as it could be 

determined from the power supply. All the other parameters could be found from 

carrying out calibration tests. Some of the heat is lost through the surround panel, spQ . 

It can be seen in Figure 5.11 that the test specimen is not as wide as the surround panel. 

This is when flanking losses, flQ , have an effect on the heat balance in Equation 5.1. As 

discussed in Section 3.7, flanking losses are mainly a function of temperature difference 

across the test specimen and specimen thickness. This loss could be reduced almost to 

zero by using calibration panels the same thickness as the surround panel and by 

keeping the temperature difference across the specimen the same. This made it possible 

to find the other unknown parameters without having to consider the flanking losses.  

As the metering box temperature was designed to be greater than the guard box 

temperature, losses through the metering box walls, wQ , and parallel loss through the 

surround panel, pQ , would exist. These losses were combined and termed lQ  and this 

is shown in Equation 5.2.  A testing procedure was developed to evaluate this loss.  

pwl QQQ +=  

Where; 

Ql = Combined loss heat transfer (W) 

5.2

5.5.2 Guarded Hot Box Testing Procedure  

A comparative test method was employed in the GHB to be used to calibrate the Hot 

Box and to test specimens with unknown thermal properties. The basis of this method 
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was to use the calibration tests to evaluate the losses in the GHB, while keeping the 

conditions in all compartments as similar as possible for all tests. A heat transfer 

coefficient for the combined losses was found and used to calculate the thermal 

properties of an unknown test specimen.  

5.5.2.1 Calibration Procedure 

 Figure 5.12 is a sectional view of the GHB and shows that the test specimen is the same 

thickness as the surround panel. The thickness of the surround panel was kept the same 

for all tests conducted in order for flanking losses to be neglected. Heat balance for the 

GHB is shown in Equation 5.3. 

sptsinl QQQQ −−=  5.3

The surround panel was designed to be made with insulation with known thermal 

properties. The calibration test specimen also had known thermal properties. The 

surface temperatures on both sides of the surround panel and test specimen were 

recorded. From these readings, spQ  and tsQ  could be calculated using Equation 5.4 to 

calculate the heat transfer coefficients for the surround panel and test specimen, and 

then substituting those values into Newton’s Law of Cooling shown in its general form 

in Equation 5.5 [88].  

 spts U U =  = 
L
k  

Where; 

Usp = Heat transfer coefficient of surround panel (W/m2 oC) 

Uts = Heat transfer coefficient of test specimen (W/m2 oC)  

kts = Thermal conductivity (W/m oC) 

L    = Thickness (m) 

5.4
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Q UA T= Δ  5.5

 
Figure 5.12: Heat Balance without Flanking Loss 

 

The combined loss heat transfer, lQ , was found by solving Equation 5.3 and from that, a 

heat transfer coefficient for this combined loss, lC , was found from Equation 5.6. This 

coefficient was presented as a function of the metering box wall area and the 

temperature difference across the walls.    

ww

l
l ΔTA

Q
C =  

5.6

5.5.2.2 Unknown Test Specimen 

Once the combined loss heat transfer coefficient was found, a specimen with unknown 
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thermal properties could be tested. When testing a specimen with unknown properties, 

the combined loss heat transfer, lQ ,was found by solving Equation 5.6. Substituting this 

value into Equation 5.3, the heat transfer through the test specimen was found. Using 

the temperature difference across the test specimen from the test data, and the known 

area, the heat transfer coefficient for the unknown specimen was found by using 

Equation 5.7. 

tsts

ts
ts ΔTA

Q
U =  

5.7

5.6 Calibration Tests 

The calibration tests were designed to obtain the combined loss coefficient for the 

metering box walls. In order to get the best possible results, the temperatures in all the 

chambers were kept as similar as possible for all the tests. Five tests were carried out to 

calibrate the GHB. This was done to ensure the results from the GHB were repeatable. 

By keeping as many parameters as possible constant between tests, a direct comparison 

could be made between test specimens with unknown thermal properties and the 

calibration test specimen. For example, varying the temperature difference between the 

metering chamber and the guard chamber would change the temperature difference of 

the surround panel from the metering chamber to the guard chamber. This would, in 

turn, affect the combined loss heat transfer.  

5.6.1 Description of Calibration Specimens 

The calibration specimen was made from the same material (polyiso) and was the same 

thickness as the surround panel. The panels were cut to the size of the surround 
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panel aperture, which was 950 mm x 950 mm. The specimen was then inserted into the 

surround panel and was sealed with duct tape to seal the hot side from the cold side to 

ensure air tightness. A picture of the surround panel with the calibration panel in place 

is shown in Figure 5.13. The thermal conductivity of the surround panel and the 

calibration specimen were known from hot plate tests carried out by the manufacturer of 

the insulation. 

 
Figure 5.13: Surround Panel with Calibration Test Specimen in place 

5.6.2 Calibration Results 

Figure 5.14 is a graph of the air temperature in the metering box of calibration Test 2 in 

Table 5.1 over the testing period. The three gaps in the graph are the periods where the 

other data was collected from the other thermocouples i.e. the morning, afternoon and 

the evening. The readings were taken over a 36 hour period. Over that time the 

temperature fluctuation in the metering chamber was approximately 0.2 oC. Figure 5.15 

is a graph from the same calibration test over the same period of time from the cold box. 

The cold box temperature was more difficult to control due to the room 
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temperature changing. The temperature fluctuation in the cold side was approximately 

0.7 oC over the 36 hour period. The thermocouple placements locations for Figures 5.14 

and 5.15 are illustrated in Figures 5.8 and 5.9.  

M. Box Air Temperature Vs Time

40.0

40.5

41.0

1900 2400 2900 3400 3900

Time (mins)

Te
m

pe
ra

tu
re

 (o
C

) 

Thermocouple 14
Thermocouple 12Morning 

Readings
  Noon
Readings

Evening 
Readings

 
Figure 5.14: Metering Box Air Temperature during Testing (T1900-T4117) 
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Figure 5.15: Cold Box Air Temperature during Testing (T1900-T4117) 

 

Table 5.1 is a summary of the results of the five calibration tests that were conducted. 

The combined loss heat transfer coefficient was calculated from the data for each test 

and is highlighted in yellow in Table 5.1. The values ranged from 1.19 W/m2 oC to 1.20 
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W/m2 oC. The results of the tests showed that the GHB was capable of giving repeatable 

results.  

Parameter Test 1 Test 2 Test 3 Test 4 Test 5 

Qin   (W) 16.24 16.30 16.34 16.23 16.2 

ΔTsp   (oC) 25.9 26.5 26.1 26.1 26.2 

ΔTts   (oC) 25.8 26.2 25.9 25.7 25.9 

ΔTw   (oC) 2.2 2.2 2.2 2.2 2.18 

KSP  (W/m oC) 0.021 0.021 0.021 0.021 0.021 

Kts  (W/m oC) 0.021 0.021 0.021 0.021 0.021 

L sp, ts  (m) 0.16 0.16 0.16 0.16 0.16 

Usp (W/m2 oC) 0.13 0.13 0.13 0.13 0.13 

Uts (W/m2 oC) 0.13 0.13 0.13 0.13 0.13 

Aw  (m2) 3.82 3.82 3.82 3.82 3.82 

Ats  (m2) 0.90 0.90 0.90 0.90 0.90 

 Asp  (m2) 0.92 0.92 0.92 0.92 0.92 

Qsp  (W) 3.12 3.20 3.15 3.15 3.17 

Qts  (W) 3.05 3.10 3.07 3.04 3.07 

Ql  (W) 10.06 10.01 10.11 10.05 10.00 

Cl (W/m2 oC) 1.20    1.19 1.20 1.19 1.19 

Table 5.1: Calibration Tests Results 

5.6.3 Sample Calculations 

Using the theory in Section 5.5 and the test results for Test 1 in Table 5.1, the combined 

loss heat transfer coefficient was calculated as follows: 
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spK , tsK , sp/tsL , spU , tsU , wA , tsA  and spA  were all known before testing took place. The 

data gathered from carrying out the tests was inQ , spTΔ ,  tsTΔ  and  wTΔ . The remaining 

terms were calculated. The heat transfer coefficient for the surround panel and the 

calibration test specimen was calculated using Equation 5.4. 

spU = tsU = 0.021( / )
0.16( )

oW m C
m

 W/m2 oC 

spU = tsU = 0.13  W/m2 oC 

Heat transfer through surround panel was calculated using Equation 5.5. 

).)( .)(. =(Qsp 9259201310  W 

 W. = Qsp 123  

Heat transfer through calibration test specimen was calculated using Equation 5.5. 

).)( .)(.=(Qts 8259001310  W 

 . = Qts 053 W 

The combined loss heat transfer was calculated using Equation 5.3. 

Qin = 16.24 W 

0531232416 . - . - .= Ql  W 

 .=Ql 0610 W 

Finally, the combined loss heat transfer coefficient was calculated using Equation 5.6. 

)22.2)(82.3(
06.10

=lC  W/m2 oC 

 . = Cl 191  W/m2 oC  

The GHB was now calibrated and the tests were found to be successful. The combined 
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loss heat transfer coefficient deviated very little over the five tests. Figures 5.15 and 

5.16 shows that the GHB had the ability to keep the temperatures and power supply 

constant over a long period of time to give repeatable results.  

5.6.4 Discussion of Calibration Results 

The data collection for each test occurred three times a day: in the morning, afternoon 

and evening. As these tests were comparative, the conditions for all tests had to be kept 

similar to achieve the best possible results. Table 5.2 is a breakdown of the calibration 

results that were recorded over the testing period for Test 2 in Table 5.1.  

It can be seen from Table 5.2 that the average hot and cold temperatures remained 

consistent over the testing period. The biggest variation in temperature was in the 

surround panel cold temperature (Tcold sp) where the temperature varied by 

approximately 0.5 oC. The power input (Qin) varied by 0.09 W over the testing period.  

Test data for the calibration tests are shown in Appendix B. Errors in testing are 

discussed in Section 5.8.   
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Parameter Morning Afternoon Evening Average ΔT 

Thot SP    (oC) 40.0 40.1 40.1  

Tcold SP (oC) 13.7 13.8 13.3  

ΔTSP    (oC) 26.3 26.3 26.8 26.5 

Tinside walls  (oC) 40.7 40.7 40.7  

Toutside walls ( 
oC) 38.6 38.5 38.6  

ΔTw    (oC) 2.2 2.2 2.2 2.2 

Thot ts    (oC) 40.3 40.3 40.3  

Tcold ts    (oC) 14.1 14.3 14.1  

ΔTts    (oC) 26.2 26.0 26.2 26.2 

Thot air    (oC) 40.9 40.8 40.8  

Tcold air    (oC) 13.5 13.6 13.6  

ΔTair    (oC) 27.4 27.5 27.3  

Qin 16.25 16.34 16.33 16.30 

Table 5.2: Calibration Test Data 

5.7 Multi-foil Testing 

 The temperatures for the Eco-quilt tests were kept as similar as possible to the 

calibration tests in order to make a direct comparison between the multi-foil and the 

calibration panel. The heat transfer coefficient for the metering box walls was used in 

these tests to calculate the heat transfer through the test specimen. The multi-foil 
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insulation was tested in two different ways. One test was carried out with the 

recommended unventilated air gap on either side of the multi-foil. The other test was 

conducted with only one air gap. This was done to replicate a situation where one side 

of the multi-foil insulation would be in contact with a ventilated cavity in a building. In 

all these tests, the multi-foil was tested in conjunction with 40 mm polyiso. Polyiso was 

included in these tests because it was clear from other tests described in Section 4.2 that 

a layer of multi-foil alone would not meet the building regulations. The results for these 

tests are shown in Appendix A. By using the polyiso sheet with known thermal 

properties along with the multi-foil, the results would show if the multi-foil insulation 

could be used along with another insulation to meet the 0.16 W/m2 oC required for the 

roofs of new buildings [3]. 

5.7.1 Specimen Preparation and Description 

Figures 5.16 a and b show how the Eco-quilt specimen was prepared. A wooden frame 

was constructed from 50 mm x 25 mm battens. The height and width of the frame was 

940 mm wide x 940 mm high. This left the dimensions 10 mm short of the height and 

width of the surround panel aperture. The Eco-quilt was then wrapped around the 

perimeter of the frame and stapled to it. This allowed the specimen to be tightly 

installed into the surround panel. 
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Figure 5.16: Eco-quilt Test Specimen a) Front view b) Rear view 

5.7.2 Eco-quilt Testing with Two Cavities 

Figure 5.17 shows a sectional view schematic of the surround panel with the test 

specimen in place. The test specimen consisted of three elements, the 40 mm sheet of 

polyiso, the sheet of multi-foil and a sheet of foiled back plasterboard. The polyiso was 

on the hot side of the surround panel. The multi-foil was in the middle of the aperture 

with an air gap on either side. In order to create an unventilated air gap on the cold side, 

foiled back plasterboard was mounted on the cold side of the surround panel. An air gap 

of 50 mm existed between the plasterboard and the Eco-quilt, and an air gap of 

approximately 32 mm existed between the polyiso and the Eco-quilt.   

 

 
                                (a) 

 
                                (b) 
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Figure 5.17: Eco-quilt with Two Air Gaps Configuration 

5.7.2.1 Test Results 

There were four tests carried out on the Eco-quilt with the air gaps on either side. The 

average combined loss heat transfer coefficient, lC , calculated from the calibration tests, 

was used in these tests to calculate the combined loss heat transfer, lQ . Table 5.3 shows 

the results for the four tests that were conducted. The heat transfer coefficient for the 

test specimen, tsU , is highlighted in yellow.  

The heat transfer coefficient for the polyiso/Eco-quilt configuration varied from 0.27 

W/m2 oC to 0.30 W/m2 oC. The thermal resistance of Eco-quilt, quiltEcoR − , was calculated 

by subtracting the known thermal resistance of the polyiso from the thermal resistance 

of the test specimen, ts R . This calculated thermal resistance ( quiltEcoR − ) was for the Eco-

quilt with an unventilated air gap on either side plus the sheet of plasterboard. As the 

thermal resistance of the plasterboard was not known, it could not be subtracted from 

the   test specimen thermal resistance (Rts). The data for these tests can be found in 
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Appendix B.  

Parameter Test 1 Test 2 Test 3 Test 4 

Qin   (W) 18.76 18.76 18.73 19.64 

ΔTsp   (oC) 25.6 25.6 25.8 25.8 

ΔTts   (oC) 24.7 24.5 24.9 24.8 

ΔTw  (oC) 2.1 2.0 2.0 2.3 

Cl (W/m2 oC) 1.19    1.19    1.19 1.19 

Aw  (m2) 3.82 3.82 3.82 3.82 

Ats  (m2) 0.90 0.90 0.90 0.90 

 Asp  (m2) 0.92 0.92 0.92 0.92 

Usp (W/m2 oC) 0.13 0.13 0.13 0.13 

Qsp  (W) 3.09 3.09 3.11 3.11 

Ql  (W) 9.55 9.09 9.09 10.46 

Qts  (W) 6.12 6.58 6.53 6.08 

Kpolyiso (W/moC) 0.021 0.021 0.021 0.021 

Lpolyiso (m) 0.040 0.040 0.040 0.040 

Uts  (W/m2 oC) 0.27 0.30 0.29 0.27 

R ts (m2  oC/W) 3.70 3.33 3.45 3.70 

Rpolyiso (m2  oC/W) 1.86 1.86 1.86 1.86 

REco-quilt  (m2  oC/W) 1.84 1.47 1.59 1.84 

Table 5.3: Results for Eco-quilt with Air Gap on either side 

5.7.2.2 Sample Calculation 

Using the testing procedure in Section 5.5 and the test results for Test 1 in Table 5.3, the 



 

 

121

heat transfer coefficient for the metering box walls was calculated. The constants known 

before the tests were  , A, A, C, U, L, L , KK tswlsppolyisosp/tspolyisosp and spA . The data 

gathered from carrying out the tests were inQ ,  spΔT ,  tsΔT  and  wΔT . The remaining 

terms were calculated. Using Equation 5.5 the heat transfer through the surround panel 

was calculated. 

).)(.)(.=(Qsp 6259201310 W 

 .= Qsp 093 W 

The combined loss heat transfer was calculated using Equation 5.5.  

) .)(.)(.= (Ql 12823191 W 

  .=Ql 559 W 

Then using Equation 5.3 the heat transfer through the test specimen was found. 

0935597618 . -. -.= Qts W 

 6.12= Qts W 

The heat transfer coefficient for the test specimen was found using Equation 5.7. 

  = tsU 6.12
(0.90)(24.7)

 W/m2 oC 

 270  .= U ts  W/m2 oC 

27.0
1= Rts  m2  oC/W 

  .=Rts 703  m2  oC/W 

The thermal conductivity and the thickness of the sheet of polyiso were known. This 

meant that the thermal resistance could be calculated by using Equation 5.8: 
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polyisoR = 
polyiso

polyiso

K
L

 
5.8

polyisoR = 
0215.0
04.0  m2  oC/W 

polyisoR = 86.1  m2  oC/W 

Using Equation 5.8, the thermal resistance of the Eco-quilt with an air gap on either side 

was calculated: 

 -R=RR polyisotsEco-quilt   

 =REco-quilt 86.170.3 −  m2  oC/W 

 =REco-quilt 84.1  m2  oC/W 

5.7.3 Testing of Multi-Foil with One Cavity 

Figure 5.18 shows a schematic of the surround panel with the test specimen in place. 

The test specimen consisted of the 40 mm sheet of polyiso, and a sheet of multi-foil. 

The polyiso was on the hot side of the surround panel. The multi-foil was situated on 

the cold side of the surround panel.  There was an air gap of 95 mm between the polyiso 

and the multi-foil. Two different multi-foils were tested: one was Eco-quilt, and the 

other was a prototype multi-foil developed by SmartRinsulations. The aim of these tests 

was to observe the effect of having the multi-foil with only one unventilated air gap and 

to compare Eco-Quilt with an alternative multi-foil configuration. 

The SmartRinsulation multi-foil consisted of the following: 

• 2 outer layers of tear-resistant reinforced reflective films. 

• 4 layers of bubble wrap with a reflective film on one side. 
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• 1 internal reflective film. 

• 2 layers of closed cell foam. 

 
Figure 5.18: Eco-quilt with One Air Gap Configuration 

 

5.7.3.1 Test Results 

Table 5.4 shows the results from the two tests that were conducted. The heat transfer 

coefficient for the test specimens is highlighted in yellow. The results show that when 

the Eco-quilt was tested with one cavity, the heat transfer coefficient of the test 

specimen was found to be 0.35 W/m2 oC. This equates to a thermal resistance of 2.86   

m2 oC/W. The average thermal resistance of the Eco-quilt with two air gaps was 3.54 

m2 oC/W. This showed that the thermal resistance was reduced with one air gap and that 

multi-foil insulation performs best when it is in between two unventilated air gaps. The 

heat transfer coefficient for the variation of multi-foil was found to be 0.39 W/m2 oC. 

This equates to a thermal resistance of 2.56 m2 oC/W, which is slightly less than the 

Eco-quilt. The thermal resistance of Eco-quilt ( quiltEcoR − ) and the alternative multi-foil 

( foilmultiR − ) was calculated by subtracting the known thermal resistance of the polyiso 
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from the thermal resistance of the test specimen, ts R .The calculation procedure for these 

tests was the same as the procedure described in Section 5.7.3.2. The data for these tests 

can be found in Appendix B.  

Parameter Eco-Quilt Multi-foil 

Qin   (W) 21.37 20.96 

ΔTsp   (oC) 26.7 27.1 

ΔTts   (oC) 25.5 25.9 

ΔTw  (oC) 2.2 1.9 

Cl (W/m2 oC) 1.19    1.19    

Aw  (m2) 3.82 3.82 

Ats  (m2) 0.90 0.90 

 Asp  (m2) 0.92 0.92 

Usp (W/m2 oC) 0.13 0.13 

Qsp  (W) 3.22 3.27 

Ql  (W) 10.00 8.64 

Qts  (W) 8.15 9.06 

Kpolyiso (W/moC) 0.0215 0.0215 

L polyiso (m) 0.040 0.040 

UTS  (W/m2 oC) 0.35 0.39 

R ts (m2 oC/W) 2.86 2.56 

Rpolyiso (m2 oC/W) 1.86 1.86 

REco-quilt, multi-foil  (m2 oC/W) 1.00 0.70 

Table 5.4: Results for Multi-foil with one Air gap 
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5.7.3.2 Sample Calculation 

Using the testing procedure in Section 5.5 and the test results for the Eco-quilt test in 

Table 5.4, the heat transfer coefficient for the metering box walls was calculated. The 

constants known before the tests were 

 , A, A, C, U, L, L , KK tswlsppolyisosp/tspolyisosp and spA . The data gathered from carrying out 

the tests were inQ ,  spΔT ,  tsΔT  and  wΔT . The remaining terms were calculated. Using 

Equation 5.5 the heat transfer through the surround panel was calculated. 

).)(.)(.=(Qsp 7269201310 W 

223.= Qsp W 

The combined loss heat transfer was calculated using Equation 5.5.  

) .)(.)(.= (Ql 22823191 W 

00.10=Ql W 

Then using Equation 5.3 the heat transfer through the test specimen was found. 

22300.1037.21 .- -= Qts W 

8.15= Qts W 

The heat transfer coefficient for the test specimen was found using Equation 5.7. 

  = tsU
)5.25)(90.0(

15.8  W/m2 oC 

 350  .= U ts  W/m2 oC 

35.0
1= Rts  m2  oC/W 

 =Rts 86.2  m2  oC/W 
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The thermal conductivity and the thickness of the sheet of polyiso were known. This 

meant that the thermal resistance could be calculated by using Equation 5.8: 

polyisoR = 
polyiso

polyiso

K
L

 
5.8

polyisoR = 
0215.0
04.0  m2  oC/W 

polyisoR = 86.1  m2  oC/W 

Using Equation 5.8, the thermal resistance of the Eco-quilt with an air gap on either side 

was calculated: 

 -R=RR polyisotsEco-quilt   

 =REco-quilt 86.186.2 −  m2  oC/W 

00.1=REco-quilt  m2  oC/W 

This calculated thermal resistance ( Eco-quiltR ) was for the Eco-quilt and 1 unventilated air 

gap. 

5.7.4 Discussion of Multi-foil Testing Results 

Even though the Eco-quilt was tested with 40 mm polyiso, the heat transfer coefficient 

was not found to be near the 0.16 W/m2 oC required for the roofs of new buildings [3]. 

The heat transfer coefficient of the sheet of polyiso was known to be 0.54 W/m2 oC 

before the tests took place. Using that heat transfer coefficient, the average thermal 

resistance of the Eco-quilt with an air gap on either side of the insulation plus the sheet 

of plasterboard was found to be 1.68 m2 oC/W. This value would be equivalent to using 
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67 mm of fibre glass, with a conductivity of 0.04 W/moC, or 36 mm of polyiso 

insulation.  

A sample calculation was performed to estimate the thermal resistance of the Eco-quilt 

insulation with no air gaps on either side. This was done by estimating the thermal 

resistances of each unventilated air gap and the sheet of plasterboard and subtracting 

this resistance from 1.68 m2 oC/W. BS EN ISO 6946 outlines the following procedure to 

estimate the thermal resistance of unventilated air gaps [93]. The resistance of each air 

gap (Rairgaps) was estimated using Equation 5.9. 

Rairgaps = 
ra hh +

1  

Where; 

ha =The conduction/convection coefficient (W/m2 oC) 

hr =The radiative coefficient (W/m2 oC)  

5.9 

For horizontal heat flow, ha is the larger of 1.25 W/m2 oC and 0.025/d (W/m2 0C) [93]. 

Where ; 

d = The thickness of the airspace (m) 

hr  is given by Equation 5.10 

hr = Ehro 

Where; 

E    = The intersurface emittance  

hro =The radiative coefficient for a black body surface (W/m2 oC)  

5.10 

hro was chosen to be 5.1 W/m2 oC  from a table A1 in this standard [93]. The 

intersurface emittance was calculated using Equation 5.11  
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E = 
111

1

21

−+
εε

 

Where;  

1ε , 2ε = Emissivities of the surfaces bounding the air space 

5.11 

By assuming 1ε and 2ε  for both air gaps were 0.08, the intersurface emmitance was 

found to be 0.041 from Equation 5.11.Using this value and hro = 5.1 W/m2 oC, the 

radiative coefficient was calculated to be 0.212 W/m2 oC using equation 5.10. Using  ha 

= 1.25 W/m2 oC , the thermal resistance of each air gap was estimated to be 0.68          

m2 oC/W. The thermal conductivity of the 12.5mm thick plasterboard was assumed to be 

0.25 W/m oC [51], giving it a calculated thermal resistance of 0.05 m2 oC/W.  

The total thermal resistance of the two air layers plus the sheet of plasterboard 

amounted to 1.41 m2 oC/W. Although this was only an estimation, it suggests that the 

thermal resistance of Eco-quilt with no air gaps on either side is quite small (estimated 

to be 0.27m2 oC/W) and that the thermal performance of  multi-foil is highly dependant 

on having an air gap on either side of the insulation.  

Figure 5.19 compares some of the test results described in the literature survey with the 

average result for Eco-quilt with two air gaps. Both tests conducted by Sheffield Hallam 

University (see Section 2.4.1) quoted a thermal resistance of 6.1 m2 oC/W and at least 5 

m2 oC/W respectively.  The second of those tests was conducted under steady state 

laboratory conditions. The TRADA (see Section 2.4.2) tests found the thermal 

resistance of TRI-ISO Super 10 to be 5.25 m2 oC/W. These test results were not in good 

agreement with this research. Tests conducted by the NPL and the BRE found the 

thermal resistance of the multi-foils to be 1.71 m2 oC/W and 1.72 m2 oC/W respectively. 
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These results were in excellent agreement with this research. The main difference 

between these tests and this research was that a different type of multi-foil insulation 

was examined and that most of the test specimens were tested at an inclination that 

replicated a pitched roof. This research tested the multi-foils with horizontal heat flow 

(instead of an inclined angle), which would have affected the thermal resistances of the 

air gaps when comparing the results. The extra thermal resistance of the plasterboard is 

also incorporated into the 1.68 m2 oC/W that was found in this research. The conditions 

for each of the tests also varied. It is still quite clear, however, that this research is in 

good agreement with the tests carried out by the NPL and the BRE, even though the 

testing conditions may not have been exactly the same.  

 
Figure 5.19: Comparison of Multi-foil Test Results with Two Air Gaps 

 

Where multi-foil was tested with only one air gap, results showed that its thermal 

performance is reduced. After subtracting the thermal resistance for the known sheet of 

polyiso, Rpolyiso, from the test specimen, Rts, Eco-quilt had a thermal resistance of 1.00 

m2 oC/W with the other multi-foil being 0.76 m2 oC/W. For the Eco-quilt, this 
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would be equivalent to using 40 mm of fibre glass, with a conductivity of 0.04 W/m oC 

or 22 mm of polyiso insulation.   

5.8 Error Sources 

The heat transfer coefficient for the test specimen ranged from 0.27 W/m2 oC to 0.30 

W/m2 oC, where Eco-quilt was tested with two air gaps. This amounted to a 10 % 

difference over the four tests. The difference in these values can be attributed to the 

conditions not being exactly the same for all of the tests. Every effort was made (see 

Section 5.9) to keep the testing conditions the same but due to the room conditions not 

being the same for each test, other values such as cold box temperature, and the 

temperatures in the guard box changing affected the results. It can be seen in the 

calibration results (see Section 5.6.2) that the average temperature difference across the 

metering box wall was constant at 2.2 oC but in the Eco-quilt tests with two air gaps, the 

temperature difference varied from 2.0 oC to 2.3 oC. The maximum fluctuation in the 

input power for any one test fluctuated by 0.2 W and can be seen in Appendix B. In 

most tests conducted, the input power fluctuation was less than 0.1 W. Temperatures 

and input power for calculation purposes were collected three times a day for each test. 

This could have caused an error as minor fluctuations in between the data collection 

periods could have occurred.  

5.9 Problems Encountered in Early Stages of Testing 

One of the main problems encountered was controlling the cold box temperature over a 

long period of time. The GHB was located in a room in which the temperature changed 

regularly due to the weather varying from day to day. This affected the refrigeration unit 
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because the room temperature was sometimes colder than the set temperature on the 

unit and this in turn affected the air temperature travelling into the cold box.  

Figure 5.20 is a graph that shows a graph of the cold side of the surround panel 

temperature over a period of approximately eight hours. Four thermocouples were 

monitoring the temperature on the cold side of the surround panel. The thermocouple 

that is shown on Figure 5.20 was located on the Left side of the surround panel.  The 

other three temperature readings are not included in the graph for clarity of viewing.  It 

can be seen that the temperature varies significantly over this time.   
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        Figure 5.20: Cold Side Temperature Variation 

 

Another problematic aspect of this testing was that the test data (e.g. readings of all 

thermocouples for calculation procedures) was collected once a day over a period of 

two hours. This also may not have been representative of the conditions due to the 

weather conditions.  

The room temperature had to be raised above the set temperature in the cold box to 

solve this problem. The location of the testing facility was changed from an industrial 
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unit to a much smaller room and is shown in Figure 5.22. A 1 kW heater wired up to a 

thermostat was used to heat the room. A fan was used to circulate the air around the 

room. A picture of the fan and heater is shown in Figure 5.21. This resulted in a more 

uniform temperature in the cold box over a period of time. The result of changing the 

test location can be seen in Figure 5.15. It is clear that the cold box air temperature was 

more uniform and more reliable than the previous method.  A test could now be 

completed without having to rely on weather conditions.   

 
Figure 5.21: Fan and Heater in Place 

 



 

 

133

 
Figure 5.22: New Testing Location 

 

The data collection procedure was also changed. Test results were taken three times a 

day as opposed to once during initial testing. These measures were taken to ensure the 

temperatures in the GHB did not fluctuate during tests and was found to be a more 

accountable method of testing that produced repeatable results. This procedure is 

explained in Section 5.4.1. The observation period of temperatures before tests was also 

increased. 

5.10 Testing Conclusions 

The testing began by examining the air temperature distribution in the guard box, the 
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metering box and the cold box. These tests showed that the equipment was functioning 

the way it was designed to by achieving relatively uniform air temperature in each 

enclosure. A comparative test method was developed by analysing the losses in the 

GHB and combining the metering box wall losses with the parallel losses in the 

surround panel to calibrate the GHB and then test a specimen with unknown thermal 

properties.  

The calibration tests evaluated this combined loss, and by repeating the tests, it was 

shown that the GHB was capable of giving meaningful and repeatable results. Four tests 

were conducted testing Eco-quilt insulation with an air gap on either side with 40 mm of 

polyiso insulation. The tests conditions were kept as similar as possible to the 

calibration tests and the results showed that Eco-quilt was closer to the thermal 

resistance of 1.71 m2 oC/W than the thermal resistance of 5 m2 oC/W quoted in the 

literature survey.  Tests conducted on multi-foils with only one air gap showed that the 

thermal resistance of Eco-quilt and the other multi-foil insulation is reduced.  

Possible errors in the GHB were discussed by examining the test results. This chapter 

also highlighted the problems that occurred in the early stages of testing. By changing 

the testing location and taking measures to control the surrounding room temperature 

these problems were overcome. The test procedure was also changed as a result of these 

problems.  
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CHAPTER 6 – CONCLUSIONS AND 

RECOMMENDATIONS 

6.1 Conclusions 

The main aim of this research was to test and examine the thermal properties of Eco-

quilt multi-foil insulation. In order to achieve this, a list of project objectives are set out 

in Section 1.5.  

 The properties and characteristics of multi-foil insulation were researched and it was 

found that there was differing opinions on its thermal resistance. The difference in 

opinions is generally based on the test method that is used to evaluate multi-foils.  All 

the tests that were conducted in real weather conditions found that multi-foils performed 

better than 200 mm of glass wool and, from that, it was claimed that the multi-foils had 

a thermal resistance of approximately 5 m2 oC/W. Only one steady state test conducted 

agreed with these results. Other steady state tests found the thermal resistance was 

approximately 1.7 m2 oC/W. 

Eco-quilt was tested with two separate test rigs. The first test rig was constructed prior 

to this research and tests conducted using this rig offered a general idea of how multi-

foils would perform. The results for these tests were in agreement that the thermal 

resistance of multi-foils was closer to 1.7 m2 oC/W. These results indicated that Eco-

quilt would have to be used with an additional insulation in order to meet the current 

building regulations.  

There were some limitations with the preliminary test rig and, accordingly, a new 
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improved testing facility was successfully designed and manufactured to ensure the 

reliability and accountability of these results. Three different types of Hot Box were 

studied and a decision to base the design on a GHB was made. Key parameters such as 

the GHB dimensions, heaters and fans sizing and selection, and temperature and power 

measurements were all taken into account in the design. Evaluating the disadvantages of 

the preliminary test rig also helped in the design of the GHB.   

A comparative test method was used to calibrate the GHB. This was done by using a 

test specimen with known thermal properties to evaluate the losses in the GHB. The 

same test was conducted on five different occasions and the combined loss heat transfer 

coefficient ranged from 1.19 W/m2 oC to 1.20 W/m2 oC. The results showed that the 

GHB produced repeatable results.  

The results for the Eco-quilt with an air gap on both sides and 40 mm polyiso ranged 

from 0.27 W/m2 oC to 0.30 W/m2 oC. These results further showed that the GHB was 

successful due to the consistency of the results. The average thermal resistance of the 

Eco-quilt with two air gaps was found to be 1.68 m2 oC/W. This result was in good 

agreement with the tests that were conducted on other multi-foils using EN ISO test 

methods. These tests were conducted on ACTIS TRI-ISO Super 9 insulation, which 

consists of the same amount of layers and has the same thickness as Eco-quilt.    

When Eco-quilt was tested with one air gap and with the sheet of polyiso, the results 

showed that its thermal performance is reduced. Another type of multi-foil was also 

tested in this configuration to compare it to Eco-quilt. The Eco-quilt performed better, 

with a heat transfer coefficient of 0.35 W/m2 oC as opposed to 0.39 W/m2 oC for the 

other multi-foil.  
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 The test results show that the GHB used in this research can offer a good estimation of 

the thermal properties of different materials. This could be of benefit to companies 

developing new forms of insulation or looking to improve an already existing product.    

Tests could also be conducted to test different methods of installing insulation and its 

effect on the thermal performance. For example, the tests conducted on multi-foil with 

only one air gap showed that its thermal resistance was reduced.  

6.2 Recommendations 

1 The tests that were conducted took place in a small, poorly-insulated room in an 

out-building. Over all the calibration and multi-foil tests, the room temperature 

varied by approximately 9 oC. By having a well insulated room for this testing 

where the temperature variation could be reduced, the repeatability of the GHB 

could be improved. Adding more layers of insulation around the guard area 

would also improve the repeatability.  

2 By using a data logger with many more ports available, all the different 

temperatures could be measured at the same time during the testing period. Also, 

increasing the number of thermocouples would give a better and more accurate 

temperature profile for the different enclosures.  

3 Inclusion of a method for continuously measuring the power input to the 

metering box could improve the average input power measurements for 

calculations.       

4 The temperature difference across the metering box walls is currently controlled 

by setting the temperature on the PID controller in the guard box and adjusting 
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the power input into the metering box to achieve a temperature difference of 

approximately 2 oC. Designing a PID controller whose set point is controlled to 

keep the temperature difference across the metering box walls constant would 

also improve the repeatability of the GHB tests.  
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APPENDIX A – PRELIMINARY TEST RESULTS 

A-1 Introduction 

A series of tests were conducted with a preliminary test rig and the results are detailed 

in this section. The aim of these tests was to measure the thermal resistance of three 

types of multilayer reflective insulation in different configurations. 

The apparatus used was a simplified Rotatable Calibrated Hot Box developed in the 

academic year of 05/06. This apparatus and testing theory is discussed in Section 4.2. 

All the tests were carried out at an angle of approximately 30o to represent a roof 

structure as seen in Figure A1.  

 
Figure A1: Picture of Test Rig 

 

A-2 Specimen Preparation and Description 

The specimen size for all tests was 1130 mm x 1380 mm. The plasterboard and the 
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polyisocyanurate were cut to size with a hand saw. As multi-foil is quilted, a suitable 

skeleton frame was built from 50 mm x 22 mm battens to support the material and avoid 

the sagging of the quilt during testing. The multi-foil was then stapled to the wooden 

frame using 14 mm staples. This is shown in Figure A2.  

 
Figure A2: Preparation of Multi-foil Specimen 

 

There were three types of multi-foil insulation being tested. One was Eco-quilt, another 

had a type of foam wadding and the last had no wadding present. All insulations were 

25 mm thick. A description of each type of insulation follows: 

 Eco-quilt: 

• 2 tear-resistant reinforced reflective films.  

• 2 layers of soft, flexible wadding. 

• 6 layers of closed cell foam. 

• 4 internal reflective films. 
 

Multi-foil with Wadding (W)*: 
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• 2 outer layers of tear-resistant reinforced reflective films. 

• 4 layers of bubble wrap with a reflective film on one side.  

• 1 layer of soft flexible wadding.  

 Multi-foil with no wadding (NW)**: 

• 2 outer layers of tear-resistant reinforced reflective films. 

• 4 layers of bubble wrap with a reflective film on one side. 

• 1 internal reflective film. 

• 2 layers of semi transparent plastic foam. 

* = With wadding 

** = No Wadding 

A-3 Test Methodology 

All tests were carried out as follows: 

1. All test specimens were placed in the surround panel and duct tape was used 

around the perimeter of the test specimen to ensure no mass transfer (air 

leakage) occurred. 

2. The surround panel was then clamped to the Hot Box using ratchets and straps. 

3. The heaters were switched on and left for approximately 20 hours for steady 

state conditions to exist.  

4. Power meters and the data logger were then used to collect the relevant data.  

The inside temperature of the hot box was controlled by a thermostat and kept at 

approximately 39 oC. 
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A-4 Results 

A-4-1 Calibration Test 

The first test that was carried out was a calibration test. 12.5 mm plasterboard and 80 

mm of polyiso insulation were tested together. The thermal properties of both were 

known. Table A1 gives all the parameters required to calculate the heat transfer 

coefficient (highlighted in yellow) in W/oC for the box walls and surround panel. All 

thermocouples recorded air temperatures, and no surface temperature measurements 

were taken.  

Conductivity polyiso (W/m oC) 0.0215 
L  (m)  0.08 
Rs1  (m2 oC/W) 0.13 
Rs2  (m2 oC/W) 0.04 
R PB (m2 oC/W 0.038 
Qin (W) 53 

TΔ a(oC)      28.9 
Ats  (m2) 1.56 
    
RTT  (m2 oC/W) 3.93 
Qts  (W) 11.49 
UAw (W/ oC) 1.45 
UTT (W/ m2 oC) 0.25 

Table A1: Calibration Results 

The sample calculations use the testing theory discussed in Section 4.2.2. The thermal 

transmittance was known before testing. The two surface resistances were chosen from 

EN ISO 6946 and substituted into equation 4.2 [93].  
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Using Equation 4.4 the heat transfer coefficient for the metering box walls was: 
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A-4-2 Multi-foil Test results 

Ten tests were conducted on the three types of Multi-foil in different configurations. 

The configuration of the test specimen is given with the thermal resistance for each test 

highlighted in yellow in the following tables. The theory described in section 4.2.2 was 

used to calculate the thermal resistance of each test specimen. 
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Test 2 - Plasterboard - air gap - sheet of multi-foil (NW) 

Qin (W) 84.0 

Δ T (oC) 31.5 

Ats  (m2) 1.56 

Qw (W) 46.0 

Qts (W) 38.0 

UTT (W/m2 oCK) 0.77 

RTT (m2 oC/ W) 1.30 

Table A2: Data for Test 2 

 

• Equivalent to 52 mm of fibre glass or 30 mm of polyiso insulation. 

Test 3 – Plasterboard - air gap – sheet of multi-foil (NW) - air gap – sheet of multi-

foil (NW) 

Qin (W) 84.0 

Δ T (oC) 37.3 

Ats  (m2) 1.56 

Qw (W) 54.0 

Qts (W) 30.0 

UTT ( W/m2 oCK) 0.52 

RTT (m2 oC/ W) 1.92 

Table A3: Data for Test 3 

• Equivalent to 76 mm of fibre glass or  41 mm of polyiso insulation
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Test 4 -Plasterboard - air gap - sheet of multi-foil (W) 

Qin (W) 100 

Δ T (oC) 35.8 

Ats  (m2) 1.56 

Qw (W) 52 

Qts (W) 48 

Uts (W/m2 oCK) 0.86 

RTT (m2 oC/W) 1.16 

Table A4: Data for Test 4 

• Equivalent to 46 mm of fibre glass or  25 mm of polyiso insulation 

Test 5 - Plasterboard - air gap – sheet of multi-foil (W) - air gap – sheet of multi-

foil (W) 

Qin (W) 85 

Δ T (oC) 34.8 

Ats  (m2) 1.56 

Qw (W) 50 

Qts (W) 35 

UTT (W/m2 oCK) 0.64 

RTT (m2oC/ W) 1.56 

Table A5: Data for Test 5 

• Equivalent to 62 mm of fibre glass or  34 mm of polyiso insulation 
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Test 6 - Plasterboard – 25 mm polyiso - air gap – sheet of multi-foil (W)  

Qin (W) 71 

Δ T (oC) 31.6 

Ats  (m2) 1.56 

Qw (W) 46 

Qts (W) 25 

Uts (W/m2 oC) 0.51 

RTT (m2oC/ W) 1.96 

Table A6: Data for Test 6 

• Equivalent to 78 mm of fibre glass or 42 mm of polyiso insulation. 

Test 7 - Plasterboard -25 mm polyiso - air gap – sheet of multi-foil (W) - air gap – 

sheet of multi-foil (W) 

Qin (W) 72 

Δ T (oC) 32.7 

Ats  (m2) 1.56 

Qw (W) 47 

Qts (W) 25 

Uts (W/m2 oC) 0.49 

RTT (m2oC/ W) 2.04 

Table A7: Data for Test 7 

• Equivalent to 82 mm of fibre glass or 44 mm of polyiso insulation 
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Test 8 - Plasterboard – 25 mm polyiso - air gap – sheet of multi-foil (NW)  

Qin (W) 79 

Δ T (oC) 36.6 

Ats  (m2) 1.56 

Qw (W) 53 

Qts (W) 26 

Uts (W/m2 oCK) 0.46 

RTT (m2oC/ W) 2.17 

Table A8: Data for Test 8 

• Equivalent to 87 mm of fibre glass or 47 mm of polyiso insulation. 

Test 9 - Plasterboard -25 mm polyiso - air gap – sheet of multi-foil (NW) - air gap – 

sheet of multi-foil (NW) 

Qin (W) 77 

Δ T (oC) 37.2 

Ats  (m2) 1.56 

Qw (W) 54 

Qts (W) 24 

Uts (W/m2 oCK) 0.40 

RTT (m2oC/ W) 2.50 

Table A9: Data for Test 9 

• Equivalent to 100 mm of fibre glass or 53 mm of polyiso insulation 
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Test 10 - Plasterboard - air gap – Eco-quilt - air gap – Plasterboard 

Qin (W) 59 

Δ T (oC) 25.4 

Ats  (m2) 1.56 

Qw (W) 37 

Qts (W) 22 

UTT (W/m2 oCK) 0.56 

RTT (m2oC/ W) 1.79 

Table A10: Data for Test 10 

• Equivalent to 72 mm of fibre glass or 38 mm of polyiso insulation 

Test 11 - Plasterboard - air gap – Eco-quilt  

Qin (W) 77 

Δ T (oC) 27.2 

Ats  (m2) 1.56 

Qw (W) 39 

Qts (W) 38 

Uts (W/m2 oCK) 0.90 

RTT (m2oC/ W) 1.11 

Table A11: Data for Test 11 

• Equivalent to 44 mm of fibre glass or 24 mm of polyiso insulation 

This sample calculation is for the results shown in Table A2 for Test 2. For test 

specimens with unknown thermal properties, Equation 4.5 is used to calculate the heat 

transfer through the test specimen.  
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Finally Equation 4.6 was used to calculate the thermal transmittance for the unknown 

test specimen. 

tsa

ts

tsa

awin
TT AT

Q
AT

TUAQ
U

Δ
=

Δ
Δ−

=
)()))((   

77.0=TTU W/m2 oC 

RTT = 1.30 m2 oC/W 
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APPENDIX B – GUARDED HOT BOX TEST DATA 

RESULTS 

B-1 Introduction 

The following tables correspond to the raw data for the calibration and multi-foil tests 

discussed in Chapter 5. The methodology applied in collecting the data is outlined in 

section 5.6.4. 

B-2 Calibration Tests 

Tables B1 – B4 display data collected from the calibration tests. Note that the data for 

calibration test 2 is shown in table 5.2. 

  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.1 40.1 40.1   
Tcold SP (oC) 14.6 14 14   
ΔTSP    (oC) 25.5 26.1 26.1 25.9 
Tinside walls  (oC) 40.7 40.7 40.7   
Toutside walls ( 

oC) 38.5 38.5 38.5   
ΔTwalls    (oC) 2.2 2.2 2.2 2.2 
Thot ts    (oC) 40.3 40.2 40.2   
Tcold ts    (oC) 14.8 14.2 14.2   
ΔTts    (oC) 25.5 26 26.1 25.8 
Thot air    (oC) 40.8 40.8 40.8   
Tcold air    (oC) 13.9 13.5 13.4   
ΔTair    (oC) 26.8 27.3 27.4 27.2 
Qin 16.13 16.34 16.25 16.24 

Table B1: Calibration Test 1 
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  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.1 40.1 39.9  
Tcold SP (oC) 14.1 14 13.9  
ΔTSP    (oC) 26 26.1 26.2 26.1 
Tinside walls  (oC) 40.8 40.8 40.7  
Toutside walls ( 

oC) 38.6 38.5 38.5  
ΔTwalls    (oC) 2.2 2.3 2.2 2.2 
Thot ts    (oC) 40.4 40.3 40.4  
Tcold ts    (oC) 14.6 14.4 14.5  
ΔTts    (oC) 25.8 26 26 25.9 
Thot air    (oC) 41 40.9 40.9  
Tcold air    (oC) 13.8 13.6 13.6  
ΔTair    (oC) 27.2 27.3 27.3 27.3 
Qin 16.34 16.33 16.33 16.33 

Table B2: Calibration Test 3 

 

  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40 39.9 40  
Tcold SP (oC) 13.8 14.1 13.8  
ΔTSP    (oC) 26.1 25.8 26.3 26.1 
Tinside walls  (oC) 40.7 40.6 40.6  
Toutside walls ( 

oC) 38.4 38.4 38.4  
ΔTwalls    (oC) 2.3 2.2 2.2 2.2 
Thot ts    (oC) 40.2 40.2 40.2  
Tcold ts    (oC) 14.5 14.7 14.4  
ΔTts    (oC) 25.7 25.5 25.8 25.7 
Thot air    (oC) 40.8 40.8 40.8  
Tcold air    (oC) 13.7 13.8 13.5  
ΔTair    (oC) 27.1 27 27.2 27.1 
Qin 16.21 16.25 16.23 16.23 

Table B3: Calibration Test 4 
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  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40 40 40.1  
Tcold SP (oC) 13.7 13.9 13.7  
ΔTSP    (oC) 26.3 26.1 26.3 26.2 
Tinside walls  (oC) 40.7 40.7 40.7  
Toutside walls ( 

oC) 38.5 38.4 38.6  
ΔTwalls    (oC) 2.2 2.3 2.1 2.2 
Thot ts    (oC) 40.3 40.3 40.3  
Tcold ts    (oC) 14.4 14.4 14.4  
ΔTts    (oC) 25.9 25.9 26 25.9 
Thot air    (oC) 41 40.9 40.9  
Tcold air    (oC) 13.8 13.5 13.5  
ΔTair    (oC) 27.2 27.4 27.4 27.3 
Qin 16.22 16.24 16.25 16.24 

Table B4: Calibration Test 5 

B-3 Eco-quilt with Two Air Gaps  

Tables B5 – B8 display data collected from the Eco-quilt tests with two air gaps. 

  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.2 40.1 40.2  
Tcold SP (oC) 14.4 14.6 14.7  
ΔTSP    (oC) 25.8 25.5 25.5 25.6 
Tinside walls  (oC) 40.6 40.6 40.6  
Toutside walls ( 

oC) 38.6 38.5 38.5  
ΔTwalls    (oC) 2 2.1 2.1 2.1 
Thot ts    (oC) 39.8 39.7 39.8  
Tcold ts    (oC) 14.9 15 15.2  
ΔTts    (oC) 24.9 24.8 24.6 24.7 
Thot air    (oC) 40.8 40.8 40.8  
Tcold air    (oC) 13.6 13.6 13.7  
ΔTair    (oC) 27.3 27.2 27.1 27.2 
Qin 18.76 18.77 18.74 18.76 

Table B5: Eco-quilt Test 1 
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  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.3 40.1 4.03  
Tcold SP (oC) 14.6 14.8 14.6  
ΔTSP    (oC) 25.7 25.3 25.7 25.6 
Tinside walls  (oC) 40.5 40.5 40.5  
Toutside walls ( 

oC) 38.5 38.5 38.6  
ΔTwalls    (oC) 2 2.1 2 2 
Thot ts    (oC) 39.8 39.7 39.8  
Tcold ts    (oC) 15.2 15.3 15.2  
ΔTts    (oC) 24.5 24.5 24.6 24.5 
Thot air    (oC) 40.8 40.7 40.8  
Tcold air    (oC) 13.7 13.9 13.7  
ΔTair    (oC) 27.1 26.8 27.1 27 
Qin 18.77 18.74 18.76 18.76 

Table B6: Eco-quilt Test 2 

  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.3 40.2 40.3  
Tcold SP (oC) 14.4 14.7 14.3  
ΔTSP    (oC) 25.9 25.5 26 25.8 
Tinside walls  (oC) 40.7 40.4 40.6  
Toutside walls ( 

oC) 38.7 38.5 38.8  
ΔTwalls    (oC) 2 1.9 2.1 2 
Thot ts    (oC) 39.8 39.8 39.8  
Tcold ts    (oC) 14.8 15.1 14.8  
ΔTts    (oC) 25 24.7 25 24.9 
Thot air    (oC) 40.8 40.8 40.9  
Tcold air    (oC) 13.4 13.5 13.4  
ΔTair    (oC) 27.4 27.3 27.5 27.4 
Qin 18.78 18.66 18.74 18.73 

Table B7: Eco-quilt Test 3 
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  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.5 40.5 40.5  
Tcold SP (oC) 14.7 14.7 14.7  
ΔTSP    (oC) 25.8 25.8 25.8 25.8 
Tinside walls  (oC) 40.8 40.8 40.8  
Toutside walls ( 

oC) 38.6 38.5 35.5  
ΔTwalls    (oC) 2.2 2.3 2.3 2.3 
Thot ts    (oC) 40.2 40 40.1  
Tcold ts    (oC) 15.1 15.4 15.2  
ΔTts    (oC) 25.1 24.6 24.8 24.8 
Thot air    (oC) 41 41 41.1  
Tcold air    (oC) 13.7 13.7 13.6  
ΔTair    (oC) 27.4 27.3 27.4 27.3 
Qin 19.65 19.63 19.63 19.64 

Table B8: Eco-quilt Test 4 

B-4 Multi-foil Testing- with One Air Gap 

Table B9 displays data collected from the Eco-quilt tested with one air gap and table 

B10 displays data collected from a multi-foil variant test also with one air cavity.  

  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.5 40.6 40.6  
Tcold SP (oC) 13.9 13.9 13.8  
ΔTSP    (oC) 26.7 26.6 26.8 26.7 
Tinside walls  (oC) 41 41 41  
Toutside walls ( 

oC) 38.8 38.8 38.8  
ΔTwalls    (oC) 2.2 2.2 2.2 2.2 
Thot ts    (oC) 40.1 40.1 40  
Tcold ts    (oC) 14.6 14.7 14.5  
ΔTts    (oC) 25.5 25.4 25.5 25.5 
Thot air    (oC) 41.2 41.2 41.2  
Tcold air    (oC) 13.4 13.6 13.4  
ΔTair    (oC) 27.8 27.6 27.8 27.7 
Qin 21.33 21.37 21.4 21.37 

Table B9: Eco-quilt Test with One Air Gap  
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  Morning Afternoon Evening Average ΔT 
Thot SP    (oC) 40.3 40.4 40.4   
Tcold SP (oC) 13.1 13.3 13.3   
ΔTSP    (oC) 27.2 27.1 27.1 27.1 
Tinside walls  (oC) 41 41 41   
Toutside walls ( 

oC) 39.1 39.1 39.1   
ΔTwalls    (oC) 1.9 1.9 1.9 1.9 
Thot ts    (oC) 40.1 40.1 40.1   
Tcold ts    (oC) 14.1 14.3 14.2   
ΔTts    (oC) 26 25.8 25.9 25.9 
Thot air    (oC) 41.1 41.2 41.2   
Tcold air    (oC) 12.5 12.6 12.6   
ΔTair    (oC) 28.6 28.6 28.6 28.6 
Qin 20.9 20.89 21.08 20.96 

Table B10: Multi-foil Variant Test with One Air Gap  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

166

APPENDIX C – THERMOCOUPLE CALIBRATION 

C1- Introduction 

Type T thermocouples were used for temperature measurement in this research. The 

thermocouples were connected up to a PICO TCO8 data logger for the testing of the 

GHB. This data logger contains software that was compatible with Type T 

thermocouples and a temperature resolution of 0.1oC could be achieved. To check this, 

the readings from the data logger were compared with an ISOTECH Venus Calibrator.  

C2- Procedure 

The ISOTECH Venus Calibrator has a liquid bath and the set-point temperature of the 

liquid can be adjusted. A digital readout displays the temperature of the bath. Three 

temperatures were chosen (20oC, 25oC and 40oC) to compare the thermocouple readings 

with the readings of the ISOTECH calibrator. These temperatures were chosen because 

it was similar to the intended testing temperatures that were used in the GHB tests.  Ten 

thermocouples were chosen from different parts of the GHB and were placed in the 

bath. The temperature readings from the digital readout on the calibrator and the data 

logger were compared and observed. This procedure was repeated before and after each 

testing period.  

C3- Results 

The readings from the ISOTECH Venus Calibrator always agreed with the readings 

from the data logger to the nearest 0.1 oC.       
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