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ABSTRACT 

 
A new low-toxicity diacetone acrylamide-based photopolymer is developed and characterized. The environmentally-

compatible photopolymer has been modified with the inclusion of glycerol. The incorporation of glycerol results in a 

uniform maximum refractive index modulation for recording intensities in the range of 1-20 mW/cm
2
. This may be 

attributed to glycerol’s nature as a plasticizer, which allows for faster diffusion of un-reacted monomer within the grating 

during holographic recording. An optimum recording intensity of 0.5 mW/cm
2
 is observed for exposure energies of 20-

60 mW/cm
2
. The modified photopolymer achieves a refractive index modulation of 2.2x10

-3
, with diffraction efficiencies 

up to 90 % in 100 µm layers. The photopolymer layers containing glycerol have improved stability and optical quality. 

 
Keywords: non-toxic photopolymer, holography, diffraction gratings 

 

 

 
1. INTRODUCTION 

 
The optimization and characterization of a new non-toxic Diacetone Acrylamide (DA) based photopolymer has 

previously been described
1
. The improved photopolymer composition is shown to have holographic recording features 

similar to that of the standard Acrylamide (AA) based photopolymer
2
, but with reduced toxicity due to the replacement 

low-toxicity monomer Diacetone Acrylamide
3-9

. It has also shown to surpass the holographic recording capabilities of 

other recently developed low toxicity photopolymer materials
10-12

. This materials non-toxic nature, wide dynamic range 

and high holographic sensitivity, together with its self-processing nature and low cost of production, make it an excellent 

candidate for applications such as holographic sensors, diffractive optics and in data storage.  

 

This paper details the effect of the addition of glycerol on the holographic recording properties of the new DA 

photopolymer. Glycerol is a transparent, viscous liquid which is reported to have low-toxicity
13

. It is widely used in the 

food and pharmaceutical industries as a solvent and lubricant. Glycerol has been shown to influence the maximum 

refractive index modulation’s dependence on recording intensity, the low-intensity response of the material, as well as 

the stability of the DA photopolymer samples.  

 

2. THEORY 

 
A typical photopolymer which reacts via a radical chain mechanism consists of a main monomer, a cross-linking 

monomer, an electron donor, a photosensitising dye, and a binder matrix, which holds all of the components together. 

These photopolymer components are spatially redistributed during holographic recording due to the polymerization 

reaction which occurs in the material on exposure to light. This reaction involves three steps: initiation, propagation and 

termination. When illuminated, dye molecules absorb photons of light, and are promoted to excited singlet states. 

 

•→+ XDhvXD
1

            (1)     

                                                                                                                                                           

These singlet states can re-emit this energy via fluorescence, or by radiationless energy transfer to another molecule. 
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hvXDXD +→•
1

     (2)

     

YXDYXD +→+•
1

         (3)                         

 

Alternatively, the singlet state can be converted to the more stable and longer lived excited triplet state dye molecule, via 

intersystem crossing.  

 

••→ XDXD
31

                                                                                                                                                                 (4) 

 

This triplet state dye molecule then reacts with the electron donor to produce a pair of radicals.  

 

•+→+• EDXDEDXD
3

                                                                        (5) 

 

These radicals react with the monomer to produce an initiating species.  

 

•−→+• MEDMED      (6) 

 

The growing chain continues to add more monomer units via propagation. 

 

( ) •→+•− 2MEDMMED
   (7) 

 

This propagation step will continue until one of two termination reactions occurs, namely combination or 

disproportionation.  

 

Oxygen quenching is another important process. It causes a reduction in the yield of singlet and triplet state dye 

molecules. 

 

•+→•+ 2

3

2

33 OXDOXD
        (8) 
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  (9) 

 

Oxygen-quenching can cause an inhibition period at the start of polymerization, and can lead to a reduction in the rate of 

photo-bleaching of the layer. Most of the oxygen in the layer must be used up during holographic exposure before 

polymerization can begin
14

. Glycerol is a known reducing agent and has been shown to stimulate the level of 

oxygenation in certain materials
15-16

. The effect of glycerol on photosensitive systems has been studied previously. 

Meyer et al.
17

 and Galassi
18

 report that increasing the concentration of glycerol causes up to an order of magnitude drop 

in the photobleaching rate for two very different photosensitive systems. Slower rates of photobleaching are desirable for 

holographic photopolymers, as less dye molecules are bleached initially, allowing for longer exposure times before 

saturation is reached. This allows for the formation of longer polymer chains and hence a higher refractive index 

modulation. Glycerol is reported to have a pronounced effect the sensitivity of photopolymer systems also
16

.  

 

After preliminary optimization, the optimum concentration of glycerol of in the stock photopolymer solution
1
 was found 

to be 3.85 % vol/vol. The modified photopolymer (DAG) has been characterized in terms of its refractive index 

modulation dependence on recording intensity, exposure energy and spatial frequency of recording. The modified 

composition has been compared with the original DA composition (DA0). 
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3. EXPERIMENT: 

 
3.1 Preparation of photopolymer layers 

 

The two photopolymer compositions tested were prepared as described in Table 1. The photopolymer solution was then 

deposited on to glass slides (76 x 26mm) and allowed to dry for 12-24 hours in darkness under normal laboratory 

conditions (20-25ºC, 40-60% RH). Layer thickness was measured using a white-light surface profiler (Micro XAM S/N 

8038). 

 

3.2 Experimental set-up 

 

A two-beam holographic optical setup (see Figure 1) with an angle of 30º between the beams was used to record 

unslanted transmission gratings using a 532nm Nd:YVO4 laser. Gratings were recorded in the layers with exposure 

energies of 20-100 mJ/cm
2
 at a spatial frequency of 1000 ± 10 lines/mm. The absorption of the photopolymer at 633nm 

is negligible, so a 633nm He-Ne laser was used as the probe beam at the Bragg angle. An optical power meter (Newport 

1830-C) was used to record the intensity of the diffracted beam and LabVIEW software was used to plot the data in real-

time. In order to measure the diffracted intensity dependence on the incident angle of the probe beam, the grating was 

placed on a rotational stage (Newport, ESP 300). 

 

 
Table 1. Composition of DA photopolymer solutions. 

 

Photopolymer Compositions 

 DA0 DAG  

PVA 10% wt/vol (ml) 20 20  

TEA (ml) 2 2  

Diacetone Acrylamide (g) 1 1  

Bisacrylamide (g) 0.2 0.2  

Erythrosin B 0.11% wt/vol 

(ml) 

4 4  

Glycerol (ml) - 1  

 

 

 

 

 
 

Figure 1. Experimental setup: S: shutter, HWP: half wave plate, BS: polarizing beam splitter, SF: spatial filter, C: 

collimator, VA: variable aperture, M: mirror.  
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4. RESULTS AND DISCUSSION: 

 
4.1 Dependence of refractive index modulation on recording intensity  

 

The intensity dependence of the modified photopolymer at 1000 l/mm was investigated. Transmission gratings were 

recorded in photopolymer layers using a recording intensity which was varied from 1-5 mW/cm
2
, with constant exposure 

energy of 100 mJ/cm
2
. As can be seen from figure 2, while DA0 (composition containing no glycerol) has an obvious 

optimum intensity at 2 mW/cm
2
, the intensity dependence for DAG (composition containing glycerol) is approximately 

uniform for the range of intensities tested. This is probably due to glycerol’s nature as a plasticizer, which allows the un-

reacted monomer to diffuse more quickly into the illuminated regions within the layer. For the composition DA0 which 

contains no glycerol, there is more obvious intensity dependence as the monomer moves slower. The decrease in 

refractive index modulation for the DAG composition containing glycerol can be explained by the lower percent weight 

of monomer in the modified composition. Refractive index modulation matching that of the DA composition without 

glycerol has been obtained by increasing the percent weight of overall monomer from 17.31 % to 23.25 %. However this 

results in a reduction in the optical quality of the photopolymer layers, and therefore repeatability of results is an issue. 

The composition will need to be further optimized to improve the optical quality for higher monomer concentrations. 

 

4.2 Dependence of refractive index modulation on exposure energy 

 

As is shown in figure 3, DAG reaches an optimum refractive index modulation at 0.5 mW/cm
2
, for the lower exposure 

energies (20-60 mJ/cm
2
). This is not as prominent at the higher exposure energies of 80-100 mJ/cm

2
. This can be 

explained by considering the key factor that contributes to grating formation; the ratio of the rate of polymerization to the 

rate of monomer diffusion
19

.  

 
 

Figure 2. Refractive index modulation vs. recording intensity for the DA0 (no glycerol), DAG (with glycerol) compositions 

at 1000 l/mm for an exposure energy of 100 mJ/cm2.  
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Figure 3. Refractive index modulation vs. recording intensity for DAG over a range of exposure energies. 

 

At lower recording intensities, the rate of polymerization is slow due to the low number of initiating species. Therefore 

the increased rate of diffusion due to the addition of glycerol ensures that the maximum refractive index modulation is 

reached quickly, as the un-reacted monomer molecules can easily diffuse into the illuminated areas and be polymerized. 

This explains the trend seen in figure 3. There is a more obvious optimum recording intensity of 0.5 mW/cm
2
 at the 

lower exposure energies (20-60 mJ/cm
2
), as the exposure times needed to reach the maximum refractive index 

modulation are shorter. This is possibly due to the increased rate of diffusion relative to the rate of polymerization, 

caused by glycerol. Therefore the refractive index modulation is higher at the lower exposure energies of 20-60 mJ/cm
2
 

for a recording intensity of 0.5 mW/cm
2
. As the intensity is increased beyond 0.5 mW/cm

2
, the rate of polymerization 

overtakes the rate of diffusion, and so the maximum refractive index modulation achieved decreases and levels out. 

Higher recording intensities of 10 and 20 mW/cm
2
 were then investigated, and the results of this are shown in figure 4. 

The value for refractive index modulation decreases by a maximum of 8.93% as the recording intensity is increased from 

2-20 mW/cm
2
 over the range of exposure energies tested. The uniform intensity response of the DA material is a 

desirable feature for holographic applications. The use of high recording intensities allows for much faster recording, 

which is necessary for hologram production on a large scale. 

 
 

Figure 4. Refractive index modulation vs. exposure energy for DAG samples tested at low (2 mW/cm2) and high (10 and 20 

mW/cm2) intensities. 
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4.3 Dependence of refractive index modulation on spatial frequency  

 

The maximum refractive index modulation for different recording intensities was investigated for the DAG 

photopolymer at 3000 l/mm. The result of this is shown in figure 5. At the higher spatial frequency of 3000 l/mm, the 

maximum refractive index modulation achievable for DAG falls off, as is also the case for DA0. DAG reaches a 

maximum RIM of ~3.5x10
-4

, which is lower than that achieved with the DA0 composition. However DAG retains its 

linear intensity dependence over the range of recording intensities tested. 

 

 
 

Figure 5. Refractive index modulation vs. recording intensity for the DA0 (no glycerol) and DAG (with glycerol) 

compositions at 3000 l/mm for an exposure energy of 100mJ/cm2.  

 

5. CONCLUSION: 
 

The effect of the addition of glycerol to a new non-toxic holographic photopolymer material has been studied. Addition 

of glycerol to the photopolymer composition causes the maximum refractive index modulation at low recording 

intensities to be reached quickly. This implies that the diffusion rates are increased. Glycerol has also shown to improve 

the stability and optical quality of the photopolymer layers. Further optimization of the percent weight of monomer will 

be carried out, in order to optimize the maximum achievable refractive index modulation of the modified composition. 

Characterization of the new material’s holographic recording capabilities in the reflection mode is currently being carried 

out.  
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