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Scattering from a Tenuous Random Medium with
Applications in Optics

Jonathan M Blackledge, Fellow, IET, Fellow, IMA, Fellow, IoP, Fellow, RSS

Abstract— Mathematical models for the scattering of light
(and other radiation) tend to fall into two categories based
on a weak field condition (single scattering processes) or a
strong field condition (multiple scattering processes). In the
latter case, the complexity of deterministic models coupled with
available solutions often fail to provide results that are of
value to engineering systems (e.g. imaging systems). For this
reason, multiple scattering problems are often approached using
stochastic modelling methods whose foundations lie in random
walk theory where the amplitude and phase of the scattered
field are taken to conform to an appropriate statistical process
and distribution. In the case of intermediate scattering processes
(scattering by a tenuous random medium), where the scattered
field is neither ‘weak’ or ‘strong’, the problem is reduced
to finding a suitable approach for constructing and solving a
mathematical model that is, ideally, of value to an engineering
system.

In this paper, we consider the basis for describing strong
scattering in terms of diffusive processes based on the diffusion
equation. Intermediate strength scattering is then considered in
terms of an (inhomogeneous) fractional diffusion equation which
is studied using results from fractional calculus. The diffusion
equation for modelling intermediate strength scattering is based
on a generalization of the diffusion equation to fractional form.
This equation can be justified in terms of the generalization
of a random walk model with no statistical bias in the phase
to a random walk that has a phase bias and is thus, only
‘partially’ or ‘fractionally’ diffusive. Green’s function solutions to
the fractional diffusion equation are studied and results derived
that provide a model for an incoherent image obtained from
light scattered by a tenuous medium. Applications include image
enhancement of star fields and other cosmological bodies imaged
through interstellar dust clouds, an example of which is provided
in this paper.

Index Terms— Random Media, Multiple Scattering, Diffusion,
Fractional Diffusion, Fractional Calculus, Astronomical Imaging

I. INTRODUCTION

IT is well known that the transformation from the object
to the image plane is given by a convolution of the Object

Function with the Point Spread Function (PSF) of the imaging
system [1], [2], [3]. For images generated by the scattering
of radiation in the object plane, this transform is based
on the weak scattering approximation under the assumption
that multiple scattering processes do not contribute to the
characteristics of the Object Function. However, in the case
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of radiation scattering from a dense random medium, multiple
scattering processes tend to contribute, often significantly,
to the recorded field. Multiple scattering typically leads to
random outcomes, particularly with regard to the scattering
of coherent radiation [6]. The random fluctuations in the
multiply-scattered intensity leads to noise in an image, which,
together with other background noise sources is incorporated
into an ‘additive noise function’. The mathematical model for
an image is then given by the convolution of the PSF with
the Object Function plus noise. This is the standard ‘imaging
model’ used in ‘Fourier Optics’ and other ‘scatter imaging’
systems.

A conventional approach to modelling light scattering in
random media is to consider the scattering function to be a
stochastic function with a characteristic Probability Density
Function (PDF) under the weak scattering approximation. In
the far field, the scattering amplitude is then given by the
Fourier transform of the scattering function. The intensity of
the scattered field (i.e. the measurable quantity, at optical
frequencies and above) is determined by the Fourier trans-
form of the autocorrelation of the scattering function. Various
autocorrelation models can then be considered with regard
to computing the intensity function. The inverse scattering
problem is reduced to estimating the correlation function by
Fourier inversion and then solving the phase reconstruction
problem [4], [5] to recover the scattering function from its
autocorrelation function.

Multiple scattering processes are often modelled using a
statistical approach [7]. The aim is to developed a model
of the PDF for the scattered field itself rather than for
the scattering function. This involves concepts traditionally
associated with the kinetic theory of gases in which the random
motion of particles undergoing elastic collisions and following
‘random walks’ are ‘replaced’ with the random scattering of
an electric field, for example, from multiple scattering sites.
The total contribution of the multiple scattering process after
N scattering interactions is given by [6]

E =
N∑
j=1

rj exp(iφj)

where the amplitude r, the phase φ and N are independent
random variables. While this approach provides physically
informative models for the PDF that can be used for statistical
image segmentation to locate statistically significant features,
it does not help in the development of algorithms for the
extraction of ‘information from noise’. On the other hand,
random walk models provide the basis for diffusion processes
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in general. This is the essential ‘link’ to modelling multiple
scattering processes in terms of solutions to the diffusion
equation [8] for the intensity of light.

In certain circumstances, multiple scattering may only in-
volve a small number of interactions such that the randomness
is not completely averaged out. This occurs when light inter-
acts with tenuous media, for example, and is considered to
be one of the most difficult scenarios to model accurately.
Diffusion processes are not applicable in such cases. In this
paper, we study an approach to solving this problem using
the fractional diffusion equation. Section II discusses the
limitations associated with using the scalar wave equation in
optics while Section III addresses formal direct and inverse
scattering solutions to the inhomogeneous wave equation.
Section IV introduces the conventional approach to modelling
scattering in random media where the scatterer is considered
to be a stochastic function under the weak field condition
(single scattering). Section V examines a statistical approach
for modelling the PDF of a scattered field under the strong field
condition (multiple scattering) using a random walk approach.
The basis for models relating to optical diffusion and fractional
diffusion are given in Sections VI and VII, respectively. These
models provide results where the inverse scattering problems
can be cast in terms the deconvolution of an image with the
PSFs defined for diffusion (multiple scattering from a dense
medium) and fractional diffusion (intermediate scattering from
a tenuous medium) processes, as presented in Section VIII. A
deconvolution algorithm is derived in this same section using
Bayesian estimation which is applied to the enhancement of
astronomical images as presented in Section IX.

II. THE INHOMOGENEOUS WAVE EQUATION IN OPTICS

The inhomogeneous wave equation for applications in optics
is based on certain limiting conditions which need to be
assessed in terms of the governing equations of electromag-
netism. For a charge-free non-conductive dielectric that is
linear, isotropic and inhomogeneous, Maxwell’s macroscopic
equations are, e.g. [8], [9], [10], [11] (using the International
Systems of Units and where r and t denote the three-
dimensional space vector r = x̂x + ŷy + ẑz and time
respectively)

∇ · εE = 0 (1)

∇ · µH = 0 (2)

∇×E = −µ∂H
∂t

(3)

∇×H = ε
∂E
∂t
. (4)

where E(r, t) is the electric field, H(r, t) is the magnetic
field, ε(r) is the permittivity and µ(r) is the permeability. The
isotropy condition used here implies that there is no directional
bias to the inhomogeneous characteristics of the medium, i.e.
the permittivity and permeability are scalar functions of space
only. The linearity condition implies that the medium is not
affected by the propagation of electromagnetic waves - the
dielectric is invariant of electric field strength [12].

Equations (1) - (4) can be decoupled to provide a wave
equation for the electric and magnetic fields. In the former
case, starting with equation (3), we divide through by µ and
take the curl of the resulting equation giving

∇×
(

1
µ
∇×E

)
= − ∂

∂t
∇×H.

By taking the derivative with respect to time t of equation (4),
we obtain

∂

∂t
(∇×H) = ε

∂2E
∂t2

so that, from the previous equation, we can then write

∇×
(

1
µ
∇×E

)
= −ε∂

2E
∂t2

.

Expanding the first term, multiplying through by µ and noting
that

µ∇
(

1
µ

)
= −∇ lnµ

we get

∇×∇×E + εµ
∂2E
∂t2

+ σµ
∂E
∂t

= (∇ lnµ)×∇×E. (5)

Form equation (1), we have

ε∇ ·E + E · ∇ε = 0 or ∇ ·E = −E · ∇ ln ε

and hence, using the vector identity

∇×∇×E = −∇2E +∇(∇ ·E),

from equation (5), we obtain the following inhomogeneous
wave equation for the electric field:

∇2E− 1
c2
∂2E
∂t2

= −∇(E · ∇ ln ε)− (∇ lnµ)×∇×E.

where c = 1/
√
εµ. This equation is inhomogeneous in ε, µ

(and thus, the wave speed c), and it models the behaviour of
an electric wavefield E in an inhomogeneous dielectric. In
optics, interest often focuses on the behaviour of the scattered
wavefield generated by variations in the material parameters ε
and µ which, for a random medium, are randomly distributed
in space. The model used is based on the inhomogeneous wave
equation (

∇2 − 1
c2
∂2

∂t2

)
U(r, t) = 0 (6)

for the scalar electric field U where I =| U |2 is the intensity
of the scattered field. In this case, the term (∇ lnµ)×∇×E
is usually set to zero under the condition that variations in
the permeability are negligible compared to variations in the
permittivity (i.e. µ = µ0 where µ0 is the permeability of
free space). However, in order to set ∇(E · ∇ ln ε) ∼ 0
without imposing any conditions on E, it is required to assume
that ∇ε/ε → 0, implying that the gradient in permittivity
is small compared to its magnitude. This is not always a
viable condition particularly for an inhomogeneity that is of
compact support with volume V and large values of ε. Further,
elimination of this term produces a scalar wave equation
which does not take into account polarization effects. Thus,
application of equation (6) as a governing wave equation must
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be understood to be a limiting approach to modelling scat-
tering processes in optics. However, with regard to multiple
scattering in a random medium (especially volume scattering),
polarization effects tend to get ‘averaged out’ as a result
of the many interactions that take place, each generating
an arbitrary change in polarization. The measured intensity
therefore becomes independent of polarization and a scalar
wave equation can be used although it should be noted that,
as a medium becomes more tenuous, polarization effects can
become more significant.

III. FORMAL METHODS OF SOLUTION

Formal methods of solution are based on the inhomoge-
neous Helmholtz equation

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

which can be derived quite generally from the (inhomoge-
neous) time dependent wave equation(

∇2 − 1
c2
∂2

∂t2

)
U(r, t) = 0

by letting
1
c2

=
1
c20

(1 + γ)

where γ is a dimensionless quantity (the scattering function),
c0 = 1/

√
ε0µ0 is a constant (wave speed) and ε0 is the

permittivity of free space. With U(r, t) = u(r, ω) exp(iωt)
where ω is the (angular) frequency we have

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k)

where the wavenumber k is given by (for wavelength λ)

k =
ω

c0
=

2π
λ
.

Noting that ε = ε0εr where εr(r) ≥ 1 is the relative
permittivity, the scattering function is given by γ = εr − 1
and is assumed to be of compact support so that

γ(r) ∃ ∀ r ∈ V.

The general solution for u at a point r′ is [13], [14]

u(r′, k) = k2

∫
V

gγud3r +
∮
S

(g∇u− u∇g) · n̂d2r

where g is the ‘outgoing’ free space Green’s function given
by

g(r | r′, k) =
exp(ik | r− r′ |)

4π | r− r′ |
which is the solution to the equation

(∇2 + k2)g(r | r′, k) = −δ3(r− r′)

and n̂ is the unit vector perpendicular to the surface element
d2r of a closed surface S. To compute the surface integral, a
condition for the behaviour of u on the surface S of γ must
be chosen. Consider the case where the incident wavefield ui
is a simple plane wave of unit amplitude

exp(ik · r)

satisfying the homogeneous wave equation

(∇2 + k2)ui(r, k) = 0.

By choosing the condition u(r, k) = ui(r, k) on the surface
of γ, we obtain the result

u(r′, k) = k2

∫
V

gγud3r +
∮
S

(g∇ui − ui∇g) · n̂d2r.

Using Green’s theorem to convert the surface integral back
into a volume integral, we have∮

S

(g∇ui − ui∇g) · n̂d2r =
∫
V

(g∇2ui − ui∇2g)d3r.

Noting that
∇2ui = −k2ui

and that
∇2g = −δ3 − k2g

we obtain∫
V

(g∇2ui − ui∇2g)d3r =
∫
V

δ3uid
3r = ui.

Hence, by choosing the field u to be equal to the incident
wavefield ui on the surface of γ, we obtain a solution of the
form

u = ui + us

where, with r ≡| r |,

us(r, k) = k2g(r, k)⊗3 γ(r)u(r, k)

≡ k2

∫
V

g(r | r′, k)γ(r′)u(r′, k)d3r′.

Here, ⊗3 is taken to denote the three-dimensional convolution
integral as defined above. The function us is the scattered
wavefield.

A formal solution for u is obtained through the iteration
[17]

un+1(r, k), k) = ui(r, k) + k2g(r, k)⊗3 γ(r)un(r, k)

where n = 0, 1, 2, 3, .. with u0 = ui. If this series converges,
then it must converge to the solution. To investigate the
convergence, it is convenient to use operator notation and write

un+1 = ui + Îun

where Î is the convolution integral operator

Î = k2g ⊗3 γ.

At each iteration n, we consider the solution to be given by

un = u+ εn

where εn is the error associated with the solution at iteration
n and u is the exact solution. A necessary condition for
convergence is then: εn → 0 as n→∞. Since

u+ εn+1 = ui + Î(u+ εn) = ui + Îu+ Îεn
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we can write
εn+1 = Îεn

because u = ui + Îu. Thus

ε1 = Îε0; ε2 = Îε1 = Î(Îε0); ε3 = Îε2 = Î[Î(Îε0)]; ...

or
εn = Înε0

from which it follows that

‖εn‖ = ‖Înε0‖ ≤ ‖În‖ × ‖ε0‖ ≤ ‖Î‖n‖ε0‖.

The condition for convergence therefore becomes

lim
n→∞

‖Î‖n = 0

which requires that
‖Î‖ < 1

or
k2‖g(r, k)⊗3 γ(r)‖ < 1.

Since
‖g(r, k)⊗3 γ(r)‖ ≤ ‖g(r, k)‖‖γ(r)‖

by considering γ to be a sphere of radius R with volume V ,
using an `2 norm and considering an upper bound, we can
write this condition in the form

γ̄ <
1

k2R2

where γ̄ is the root-mean-square value

γ̄ =

√√√√√
∫
V

γ2d3r∫
V

d3r

which must be satisfied for the series to converge.

A. Weak and Strong Field Conditions

The scattered field can be written in the form

us(r, k) = k2g(r, k)⊗3 γ(r)ui(r, k)

+k4g(r, k)⊗3 γ(r)[g(r)⊗3 γ(r)ui(r, k)]

+...

which can be interpreted as follows:

Scattered wavefield
=

Wavefield generated by single scattering events
+

Wavefield generated by double scattering events
+

Wavefield generated by triple scattering events
+
...

Each term in this ‘Born series’ expresses the effects due to
single, double and triple etc. scattering, i.e. the wavefields
generated by an increasing number of interactions. A ‘strong

field’ is one in which the scattered field is generated by
many multiple scattering events (i.e. many terms in the series
solution given above). A ‘weak field’ is one in which the
scattered field is generated from single scattering events alone.
This requires that γ̄(kR)2 << 1 and provides a solution for
the scattered field given by

us(r, k) = k2g(r, k)⊗3 γ(r)ui(r, k)

which is known as the Born approximation. The condition re-
quired for this approximation to apply shows that, in principle,
large values of γ can occur so long as its root mean square
value over the volume V is small compared to (kR)−2 when
γ is said to be a ‘weak scatterer’. Note that when k or R
approach zero, this condition is easy to satisfy and that Born
scattering is more likely to occur in situations when λ/R >> 1
where λ is the wavelength. If λ/R ∼ 1 then the value of γ̄
must be small for Born scattering to occur.

For an incident plane wave, each term in the Born series
includes scaling by r−1, r−2, r−3 etc. so that multiple-
scattering gets ‘weaker by the term’. This is due to the form of
the Green’s function in three-dimensions which scales as r−1,
the intensity of the field being r−2 - the inverse square law.
Thus, if the scattering function is characterized by a number
of scattering ‘sites’ (i.e. isolated positions in space where γ is
non-zero and of compact support) then provided the distance
between these sites is large, the effect of multiple scattering
will be insignificant. However, if these sites are close together
where the effect of a multiple scattered wavefield falling off
as 1/r2, 1/r3 etc. is not appreciable, then multiple scattering
events will contribute significantly to the scattered field. In
this sense, we can interpret the meaning of a ‘weak field’ and
a ‘strong field’ in terms of the ‘density’ of scattering sites
over the volume V being low or high respectively. For λ ∼ R
where R is the characteristic size of the scatterer, the Born
approximation holds if γ̄ << 1. This is a quantification of
the principle that the density of isolated scattering sites, from
which a scattering function is composed, is low.

B. Weak Scattering in the Far Field

In the far field, the Green’s function has the from

g(r | r′, k) =
1

4πr′
exp(ikr′) exp(−ikn̂s · r),

r

r′
<< 1

where r =| r |, r′ =| r′ | and n̂s = r′/r′. Thus, when the
incident field is a (unit) plane wave

ui = exp(ikn̂i · r)

where n̂i points in the direction of the incident field, the Born
scattered field is given by (for some fixed value of r′ >> r)

us(n̂s, n̂i, k) =
exp(ikr′)

4πr′
A(n̂s − n̂i, k)

where A is the ‘scattering amplitude’ defined as

A(n̂s − n̂i, k) = k2

∫
V

exp[−ik(n̂s − n̂i) · r]γ(r)d3r.

From this result, it is clear that the scattered field is determined
by the Fourier transform of the scattering function γ and that,
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in principle, the scattering function can therefore be recovered
from the scattered field by Fourier inversion. Observe that
when n̂s = n̂i

A(k) = k2

∫
V

γ(r)d3r.

This is called the forward-scattered field. In terms of Fourier
analysis, it represents the zero frequency or ‘DC (Direct
Current) level’ of the spectrum of γ. Another special case
arises when n̂s = −n̂i. The scattered field that is produced in
this case is called the back-scattered field and is given by

A(n̂i, k) = k2

∫
V

exp(−2ikn̂i · r)γ(r)d3r.

C. Inverse Scattering

Using operator notation, the Born series can be written as

u = ui + Îiγ + Îi(γÎγ) + Ii[γÎ(γÎγ)] + ...

where γ is either the scattering potential (for Schrödinger
scattering) or k2γ (for Helmholtz scattering) and

Îi =
∫
d3ruig, Î =

∫
d3rg.

If we let εU = u− ui and [18]

γ =
∞∑
j=1

εjγj .

Then
εU = Îi[εγ1 + ε2γ2 + ε3γ3 + ...]

+Îi[(εγ1 + ε2γ2 + ε3γ3 + ...)Î(εγ1 + ε2γ2 + ε3γ3 + ...)]

+Îi{(εγ1 + ε2γ2 + ε3γ3 + ...)Î[(εγ1 + ε2γ2 + ε3γ3 + ...)

Î(εγ1 + ε2γ2 + ε3γ3 + ...)]}+ ...

Equating terms with common coefficients ε, ε2 etc. we have
For j = 1 :

U = Îiγ1; γ1 = Î−1
i U.

For j = 2 :

0 = Îiγ2 + Îi(γ1Îγ1); γ2 = −Î−1
i [Îi(γ1Îγ1)]

and so on. By computing the functions γj using this iterative
method, the scattering function γ is obtained by summing γj
for ε = 1. This approach provides a formal exact inverse
scattering solution but it is not unconditional, i.e. the inverse
solution is only applicable when the Born series converges to
the exact scattering solution.

For j = 1, the solution γ1 is that obtained under the Born
approximation, i.e. given that

u = ui + Îiγ = ui(r, k) + k2g(r, k)⊗3 γ(r)ui(r, k)

then
γ = Î−1

i (u− ui).

IV. SCATTERING FROM RANDOM MEDIA

Analysis of scattering from a random medium ideally
requires a model for the physical behaviour of the random
variable(s) that is derived from basic principles. This involves
modelling the scattered field in terms of its interaction with an
ensemble of ‘scattering sites’ based on an assumed stochastic
process. If the density of these scattering sites is low enough
so that multiple scattering is minimal, then we can apply Born
scattering to develop a model for the intensity of a wavefield
interacting with a ‘random Born scatterer’.

In the far field, the Born scattered field (i.e. the scattering
amplitude) is given by the Fourier transform of the scattering
function. If this function is known a priori, then the scat-
tering amplitude can be determined. This is an example of
a deterministic model. If the scattering function is stochastic
(i.e. a randomly distributed scatterer) such that it can only
be quantified in terms of a statistical distribution (i.e. the
probability density function (PDF) - denoted by Pr) then we
can simulate the (Born) scattered field by designing a random
number generator that outputs deviates that conform to this
distribution. The Fourier transform of this stochastic field then
provides the Born scattering amplitude. Thus, given a three
dimensional Helmholtz scattering function γ(r), r ∈ V with
Pr[γ(r)] known a priori, the scattering amplitude A is given
by

A(N̂, k) = k2

∫
V

exp(−ikN̂ · r)γ(r)d3r

where N̂ = n̂s − n̂i and γ(r) is a stochastic function whose
deviates conform to the PDF Pr[γ(r)].

The intensity of the scattering amplitude is given by

I(N̂, k) =| A(N̂, k) |2= A(N̂, k)A∗(N̂, k)

= k4

∫
V

exp(−ikN̂ · r)γ(r)d3r
∫
V

exp(ikN̂ · r′)γ∗(r′)d3r′.

Using the autocorrelation theorem, we have

I(N̂, k) = k4

∫
V

exp(−ikN̂ · r)Γ(r)d3r

where Γ is the autocorrelation function given by

Γ(r) =
∫
V

γ(r′)γ∗(r′ + r)d3r′ =
∫
V

γ(r′)γ(r′ + r)d3r′

since γ = εr − 1 is real.
This result allows us to evaluate the intensity of the Born

scattered amplitude by computing the Fourier transform of the
autocorrelation of the scattering function which is taken to
be composed of a number of scatterers distributed at random
throughout V . This requires the autocorrelation function to
be defined for a particular type of random scatterer. Thus, a
random medium can be characterized via its autocorrelation
function by measuring the scattered intensity and inverse
Fourier transforming the result.
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From the autocorrelation theorem, the characteristics of the
autocorrelation function can be formulated by considering its
expected spectral properties since

Γ(r)↔| γ̃(k) |2

where γ̃ is the Fourier transform of γ, k is the spatial
frequency vector and ↔ denotes the transformation from
real space r to Fourier space k. Hence, in order to evaluate
the most likely form of the autocorrelation function we can
consider the properties of the power spectrum of the scattering
function. If this function is ‘white’ noise, for example (i.e.
its Power Spectral Density Function or PSDF is a constant),
then the autocorrelation function is a delta function whose
Fourier transform is a constant. However, in practice, we can
expect that few scattering functions have a PSDF characterized
by white noise, rather, the PSDF will tend to decay as the
frequency increases. For example, we can consider a model
for the PSDF based on the Gaussian function

| γ̃(k) |2= γ̃2
0 exp

(
−k

2

k2
0

)
where γ̃0 = γ̃(0), k =| k | and k0 is the standard deviation
which is a measure of the correlation length. This PSDF yields
an autocorrelation function which is of the same type, i.e. a
Gaussian function. If the ‘geometry’ of the scattering function
is statistically self-affine, then we can model the scattering
function as a random fractal whose PSDF is characterized
by (for a Topological Dimension of 3 and Fractal Dimension
denoted by DF ) [15]

| γ̃(k) |2∼ 1
k11−2DF

where 3 < DF < 4, the autocorrelation function being
characterized by [15]

Γ(r) ∼ 1
rDF−2.5

.

Other issues in determining the nature of the autocorrelation
function are related to the physical conditions imposed on the
stochastic characteristics of the scatterer.

The method discussed above can be used to model the
(Born) scattered intensity from a random medium which
requires an estimate of the autocorrelation of the scattering
function to be known. However, this approach assumes that the
density of scattering sites from which the scatterer is composed
is low so that the Born approximation is valid. When the
density of scattering sites increases and multiple scattering is
present, the problem become progressively more complex. One
approach to overcoming this problem is to resort to a stochastic
theory which involves developing a statistical model, not for
the scattering function, but for the scattered field itself. This
is discussed in the following section.

V. STATISTICAL MODELS

Random walk methods are used as the basis for gener-
ating stochastic scattering models where the scattering of a
wavefield from one scattering site to another is taken to be a
random walk in the (complex) plane with arbitrary amplitude

and phase variations. We consider the wavefield E (e.g. the
electric field) to be given by

E =
N∑
j=1

rj exp(iφj) = R exp(iΦ)

where r, φ and N are independent random variables. Both r
and φ are assumed to be continuous random variables and N
is discrete. We can write E as a vector, whose components
are the real and imaginary parts of E, i.e.

E = (Ereal, Eimag).

It is useful to work in terms of the characteristic function of
a complex random variable

U = (Ureal, Uimag)

defined as (2D inverse Fourier transform)

C(U) = 〈exp(iE ·U)〉 =
∫

exp(iE ·U)P (E)dE

where the integral is taken to over all E and where P (E) is
the Probability Density Function (PDF) of E. Thus, P can be
computed from C via the 2D Fourier transform, i.e.

P (E) =
1

(2π)2

∫
exp(−iE ·U)C(U)dU

where the integral is taken over all U.
The aim of this calculation is to find an expression for P .

This is done by first computing C(U) = 〈exp(iE ·U)〉 and
then taking the inverse Fourier transform to evaluate P . The
calculation of the characteristic function will be based on the
following assumptions: (i) The phase is uniformly distributed
which represents strong scattering; (ii) the scattering events
at each site are independent; (iii) N conforms to a negative
binomial distribution of the form

PN =
(
N + α− 1

N

)
(N̄/α)N

(1 + N̄/α)N+α

where N̄ is the mean of the distribution and α is a ‘bunching’
parameter. Clearly α > N̄ for PN to be a proper PDF.
Assumption (iii) above is based on a birth-death-migration pro-
cesses which is representative of the distribution of scatterers.

To find 〈exp(iE ·U)〉 we write E and U in terms of their
real and imaginary components, i.e.

E = (R cos Φ, R sin Φ), U = (U cosχ,U sinχ)

where U ≡| U |. Here R is the resultant amplitude and Φ is
the resultant phase that is detected:

E ·U = R cos ΦU cosχ−R sin ΦU sinχ

= U

N∑
j=1

rj(cosφj cosχ−sinφj sinχ) = U

N∑
j=1

rj cos(φj+χ).

Hence, the characteristic function for a random walk with N
steps is

CN (U) = 〈exp[iU
N∑
j=1

rj cos(φj + χ)]〉.
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Since

exp(x1+x2+...+xN ) = exp(x1) exp(x2) exp(x3)... exp(xN ),

CN (U) = 〈
N∏
j=1

exp[iUrj cos(φj + χ)]〉.

The variables r, φ and N are independent. Assumption (ii)
given above means that rj is independent of rk, i.e. a scattering
event at site j is independent of a scattering event at site k.
The net effect of this assumption is to eliminate conditional
probabilities from the scattering process. In this case, the
product can be taken outside the average, giving

CN (U) =
N∏
j=1

〈exp[iUrj cos(φj + χ)]〉.

The term 〈exp[iUrj cos(φj + χ)〉 is an average over both the
amplitude distribution and the phase distribution. Assuming
that the phases are uniformly distributed (strong scattering),
the integral for the phase can be written as

〈exp[iUrj cos(φj + χ)]〉φ =
∫
∀φ

exp(iUrj cos(φ+ χ)Pj(φ)dφ

where Pj is the uniform phase distribution defined as

Pj(φ) =

{
1

2π , −π ≤ φ < π;
0, otherwise.

Consider the integral

I =

π∫
−π

exp[iUrj cos(φ+ χ)]dφ.

To evaluate this integral we use the following identity

exp(iα cos θ) = J0(α) + 2
∞∑
k=1

ikJk(α) cos kθ

where Jk is the Bessel function of order k. Then

I =

π∫
−π

[
J0(α) + 2

( ∞∑
k=1

ikJk(α) cos kθ

)]
dθ

= [J0(α)θ]π−π +

[
2
∞∑
k=1

ik

k
Jk(α) sin kθ

]π
−π

= 2πJ0(α).

Hence,

〈exp(iE ·U)〉φ = 〈exp[iUrj cos(φj + χ)]〉φ = J0(Urj)

where
U =

√
U2

real + U2
imag

and

CN (U) =
N∏
j=1

〈J0(Urj)〉r

where

〈J0(Urj)〉r =

∞∫
0

J0(Ur)Pj(r)dr.

Here Pj(r) is the PDF for r. Now, if all the scattering
processes are similar, then they will all have the same PDF
and therefore

N∏
j=1

〈J0(Urj)〉r = 〈J0(Ur)〉Nr =

 ∞∫
0

J0(Ur)P (r)dr

N

.

This result depends on the number of steps N which is itself
a random variable, and, in order to proceed further, we must
consider a PDF for N . For this purpose we consider the
negative binomial distribution - assumption (iii) - and develop
an expression for the characteristic function for the mean N̄
of N . This is given by

CN̄ (U) =
∞∑
N=0

PNCN (U)

=
∞∑
N=0

(
N + α− 1

N

)
(N̄/α)N

(1 + N̄/α)N+α
〈J0(Ur)〉Nr

=
∞∑
N=0

(N + α− 1)!
N !(α− 1)!

(
(N̄/α)〈J0(Ur)〉r

1 + N̄/α

)N 1
(1 + N̄/α)α

=
1

(α− 1)!(1 + N̄/α)α

∞∑
N=0

(N + α− 1)!
N !

µN

where

µ =
(N̄/α)〈J0(Ur)〉r

1 + N̄/α
.

Now,
∞∑
N=0

(N + α− 1)!
N !

µN

= (α−1)!
(

1 + αµ+
α(1 + α)

2!
µ2 + ...

)
= (α−1)!(1−µ)−α

and therefore we can write

CN̄ (U) =
(α− 1)!

(α− 1)!(1 + N̄/α)α
1

(1− µ)α

=
(1 + N̄/α)α

(1 + N̄/α)α(1 + N̄/α− (N̄/α)〈J0(Ur)〉r)α

=
(

1 +
N̄

α
(1− 〈J0(Ur)〉r)

)−α
.

The calculation of 〈J0(Ur)〉r is based on a small but important
modification whereby we scale r according to r → r/

√
N̄ .

Thus, we consider

〈J0(Ur)〉r =

∞∫
0

P (r)J0(Ur/
√
N̄)dr.

As N̄ →∞, this modification of the definition of 〈J0(Ur)〉r
allows us to employ the Frobenius series for J0, i.e.

J0(x) = 1− x2

4
+
x4

26
− ...

then
〈J0(Ur)〉r
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=

∞∫
0

P (r)dr − 1
4

∞∫
0

U2r2

N̄
P (r)dr +

1
26

∞∫
0

U4r4

N̄2
P (r)dr − ...

= 1− 1
4
U2

N̄
〈r2〉+

1
26

U4

N̄2
〈r4〉 − ...

where

〈rn〉 =

∞∫
0

rnP (r)dr.

Hence, we can write
CN̄ (U)

=
[
1 +

N̄

α

(
1−

(
1− 1

4
U2

N̄
〈r2〉+

1
26

U4

N̄2
〈r4〉 − ...

))]

=
(

1 +
1
4
U2

α
〈r2〉 − 1

26

U4

N̄α
〈r4〉+ ...

)−α
and

C(U) = lim
N̄→∞

CN̄ (U) =
(

1 +
1
4
U2

α
〈r2〉

)−α
.

This result allows us to compute the PDF of E = R exp(iΦ)
which can be obtained by evaluating the Fourier integral of
C(U), i.e.

P (E) =
1

(2π)2

∫
∀U

exp(−iE ·U)C(U)dU

=
1

(2π)2

π∫
−π

∞∫
0

exp(−iE ·U)(
1 + 1

4
U2

α 〈r2〉
)αUdUdχ.

Integrating over χ generates a Bessel function as before

P (E) =
1

2π

∞∫
0

UJ0(UR)(
1 + 1

4
U2

α 〈r2〉
)α dU.

Evaluating the final integral gives

P (E) =
1

2π2α−1

Rα−1

Γ(α)

(
4α
〈r2〉

) 1+α
2

Kα−1

[
R

(
4α
〈r2〉

) 1
2
]

where Kα−1 is a modified Bessel function. The PDF of the
amplitude follows by integrating P (E) over all values of the
phase Φ. However, P (E) is independent of Φ and so this
integral yield 2π, i.e.

P (R) =

π∫
−π

P (E)RdΦ = 2πRP (E)

P (R) can therefore be written as

P (R) =
β1+α

2α−1Γ(α)
RαKα−1(βR)

where

β =
(

4α
〈r2〉

) 1
2

.

This is the so called ‘K-distribution’ whose calculation illus-
trates the way in which the PDF of an image can be derived

subject to a model for the distribution of the phase (in this case,
a uniform phase distribution representing strong scattering)
and a statement of the characteristics of the random walk (in
this case, a negative binomial distribution for the number of
steps N ). The PDF derived can then be used to characterize
a signal or image (that has been generated by strong and
coherent scattering processes) statistically by computing the
parameters α, β and 〈r2〉. Although this approach may be
of value to the statistical analysis of a signal/image, it does
not provide a solution to the inverse scattering problem. For
this purpose, optical diffusion models for strong scattering are
required as discussed below.

VI. OPTICAL DIFFUSION

When light is scattered by one localized centre, the single
scattering approximation can be used, but when these centres
are grouped together, multiple light scattering occurs. The
randomness of multiple interactions tends to be averaged out
by the large number of scattering events that occur leading to
a deterministic distribution of intensity. This is exemplified by
a light passing through thick fog, for example. In this sense,
multiple scattering is highly analogous to diffusion, and the
terms multiple scattering and diffusion are interchangeable in
many contexts. Optical elements designed to produce multiple
scattering are thus known as diffusers. The diffusion equation
can then be used to model such systems in the same way
as it can be used to model temperature distributions and
particle concentrations, for example, and any system that is
the result of a large ensemble of particles/waves undergoing
random elastic collisions/interactions (at least when there is
no directional bias associated with the scattering processes).

Suppose we consider the three-dimensional diffusion of
light to be based on a three-dimensional random walk. Each
scattering event is taken to be a point of the random walk
in which a ray of light changes its direction randomly (any
direction between 0 and 4π radians). The light field is taken
to be composed of a complex of rays, each of which prop-
agates through the diffuser in a way that is incoherent and
uncorrelated in time. If this is the case, then the propagation
of light can be considered to be analogous to the process of
(classical) diffusion. Instead of modelling the process in terms
of the (inhomogeneous) wave equation (as discussed in Section
III) (

∇2 − 1
c2(r)

∂2

∂t2

)
u(r, t) = 0

with intensity given by I(r, t) =| u(r, t) |2 we consider the
intensity to be given by the solution of the homogeneous
diffusion equation(

∇2 − 1
D

∂

∂t

)
I(r, t) = 0

with initial condition I(r, t) = I0(r) at t = 0. This assumes
that the diffusivity D is constant throughout the diffuser which
is taken to be an isotropic medium. This is analogous to
assuming that Pr[c(r)] for a random scattering model (based
on a solution to the wave equation) is the same throughout
the diffuser and thus, that the autocorrelation function Γ(r)
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required to compute the intensity (as discussed in Section IV)
is stationary.

In multiple wave scattering theory, we consider a wavefront
travelling through space and scattering from a site that changes
the direction of propagation. The mean free path is taken to be
the average number of wavelengths taken by the wavefront to
propagate from one interaction to another as described by the
free space Green’s function. After scattering from many sites,
the wavefront can be considered to have diffused through the
‘diffuser’. Here, the mean free path is a measure of the density
of scattering sites, which in turn, is a measure of the diffusivity
of the medium D. As D becomes larger, the medium is taken
to be increasingly tenuous allowing for a greater ‘flux’ of light
(i.e. Ficks law for the diffusion flux J given by J = −D∇C
where C is the ‘concentration’) with diffusion length

√
Dt

which is a measure of how far the field has ‘propagated’ by
diffusion in time t. In the following section, we derived a
diffusion equation for light intensity | u(r, k) |2 given the
homogeneous wave equation for the light field u(r, k).

A. Derivation of the Diffusion Equation

Consider the three-dimensional homogeneous time depen-
dent wave equation

∇2u− 1
c20

∂2

∂t2
u = 0

where c0 is taken to be a constant (light speed) and I =| u |2
defines the intensity of light Let

u(x, y, z, t) = φ(x, y, z, t) exp(iωt)

where it is assumed that field φ varies significantly slowly in
time compared with exp(iωt) and note that

u∗(x, y, z, t) = φ∗(x, y, z, t) exp(−iωt)

is also a solution to the wave equation. Differentiating

∇2u = exp(iωt)∇2φ,

and
∂2

∂t2
u = exp(iωt)

(
∂2

∂t2
φ+ 2iω

∂φ

∂t
− ω2φ

)
' exp(iωt)

(
2iω

∂φ

∂t
− ω2φ

)
when ∣∣∣∣∂2φ

∂t2

∣∣∣∣ << 2ω
∣∣∣∣∂φ∂t

∣∣∣∣ .
Under this condition, the wave equation reduces to

(∇2 + k2)φ =
2ik
c0

∂φ

∂t

where k = ω/c0. However, since u∗ is also a solution,

(∇2 + k2)φ∗ = −2ik
c0

∂φ∗

∂t

and thus,

φ∗∇2φ− φ∇2φ∗ =
2ik
c0

(
φ∗
∂φ

∂t
+ φ

∂φ∗

∂t

)

which can be written in the form

∇2I − 2∇ · (φ∇φ∗) =
2ik
c0

∂I

∂t

where I = φφ∗ =| φ |2. Let φ be given by

φ(r, t) = A(r, t) exp(ikn̂ · r)

where n̂ is a unit vector and A is the amplitude function.
Differentiating, and noting that I = A2, we obtain

n̂ · ∇A =
2
c0

∂A

∂t
or (

∂

∂x
+

∂

∂y
+

∂

∂z

)
A(x, y, z, t) =

2
c0

∂

∂t
A(x, y, z, t)

which is the unconditional continuity equation for the ampli-
tude A of a wavefield

u(r, t) = A(r, t) exp[i(kn̂ · r + ωt)]

where A varies slowly with time.
The equation

∇2I − 2∇ · (φ∇φ∗) =
2ik
c0

∂I

∂t

is valid for k = k0 − iκ (i.e. ω = ω0 − iκc0) and so, by
equating the real and imaginary parts, we have

D∇2I + 2Re[∇ · (φ∇φ∗)] =
∂I

∂t

and
Im[∇ · (φ∇φ∗)] = −k0

c0

∂I

∂t

respectively where D = c0/2κ, so that under the condition

Re[∇ · (φ∇φ∗)] = 0

we obtain
D∇2I =

∂I

∂t
.

This is the diffusion equation for the intensity of light I . The
condition required to obtain this result can be justified by
applying a boundary condition on the surface S of a volume
V over which the equation is taken to conform. Using the
divergence theorem

Re
∫
V

∇ · (φ∇φ∗)d3r = Re
∮
S

φ∇φ∗ · n̂d2r

=
∮
S

(φr∇φr + φi∇φi) · n̂d2r.

Now, if

φr(r, t)∇φr(r, t) = −φi(r, t)∇φi(r, t), r ∈ S

then the surface integral is zero and

D∇2I(r, t) =
∂

∂t
I(r, t), r ∈ V.

This boundary condition can be written as

∇φr
∇φi

= −tanθ
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where θ is the phase of the field φ which implies that the
amplitude A of φ is constant on the boundary (i.e. A(r, t) =
A0, r ∈ S, ∀t), since

∇A0 cos θ(r, t)
∇A0 sin θ(r, t)

= −A0 sin θ(r, t)∇θ(r, t)
A0 cos θ(r, t)∇θ(r, t)

= −tanθ(r, t), r ∈ S.

Suppose we record the intensity I of a light field in the
xy-plane for a fixed value of z. Then for z = z0 say,

I(x, y, t) ≡ I(x, y, z0, t)

so that
∂

∂t
I(x, y, t) = D∇2I(x, y, t).

Let this two-dimensional diffusion equation be subject to the
initial condition

I(x, y, 0) = I0(x, y).

Then, at any time t > 0, it can be assumed that light diffusion
is responsible for blurring the image I0 and that as time
increases, the image becomes progressively more diffused,
the solution being given by (see Appendix I), for the infinite
domain [8], [14]

I(x, y, t) =
1

4πDt
exp

[
−
(

(x2 + y2)
4Dt

)]
⊗2 I0(x, y)

where ⊗2 denotes the two-dimensional convolution integral.

B. Inverse Solution

If we record an image at a time t = T then by Taylor
expanding I at t = 0 we can write

I(x, y, 0) = I(x, y, T ) +
∞∑
n=1

(−1)n

n!
Tn
[
∂n

∂tn
I(x, y, t)

]
t=T

From the diffusion equation

∂2I

∂t2
= D∇2 ∂I

∂t
= D2∇4I

∂3I

∂t3
= D∇2 ∂

2I

∂t2
= D3∇6I

and so on. Thus, by induction, we can write[
∂n

∂tn
I(x, y, t)

]
t=T

= Dn∇2nI(x, y, T ).

Substituting this result into the series for I0 given above, we
get

I0(x, y) = I(x, y, T ) +
∞∑
n=1

(−1)n

n!
(DT )n∇2nI(x, y, T ).

∼ I(x, y, T )−DT∇2I(x, y, T ), DT << 1.

VII. HURST PROCESSING AND FRACTIONAL DIFFUSION

The diffusion equation models a macroscopic field which
is the result of an ensemble of incoherent random walks
characterised by a

√
t scaling law. Hurst processes, describe

random walks that have a directional bias and are characterised
by the scaling law tH , H ∈ (0.5, 1] [21]. As the value of
H approaches 1, the random processes become increasingly
persistent. In terms of the multiple scattering of light from
a random medium, increasing persistence relates to multiple
scattering from fewer sites so that the light path has a greater
directional bias. We consider the characterisation of this by
generalizing the diffusion operator

∇2 − σ ∂
∂t

to the fractional form [22], [23]

∇2 − σq ∂
q

∂tq

where q ∈ [1, 2] and Dq = 1/σq is the fractional diffusivity.
Fractional diffusive processes can therefore be interpreted
as intermediate between diffusive processes proper (random
phase walks with H = 0.5; diffusive processes with q = 1)
and ‘propagative processes’ (coherent phase walks for H = 1;
propagative processes with q = 2). It should be noted that
the fractional diffusion operator given above is the result
of a phenomenology. It is a generalisation of a well known
differential operator to fractional form which follows from a
physical analysis of a fully incoherent random process and its
generalisation to fractional form, just as the Hurst exponent
H is a generalisation of the

√
t scaling law. The solution to

fractional partial differential equations of this type requires
application of the fractional calculus [24] - [28] which is
developed in the following section. For readers that are not
familiar with fractional calculus, Appendix II provides a brief
overview of the subject area and introduces results that are
used throughout the rest of this paper.

A. Solution to the Fractional Diffusion Equation

Consider the fractional diffusion equation for the intensity
I(x, y, t) of light in the image plane z given by

∇2I(r, t)− σq ∂
q

∂tq
I(r, t) = I0(r)δ(t)

where r = x̂x + ŷy and I0(r) is a source function with an
impulse at t = 0. For q = 1, the solution to this equation in
the infinite domain is (with r =| r | and I(r, t = 0) = 0 as
shown in Appendix I)

I(r, t) = I0(r)⊗2 G(r, t)

where, for t > 0,

G(r, t) =
1

4πt
exp

[
−
(
σr2

4t

)]
which is the solution of(

∇2 − σ ∂
∂t

)
G(r, t) = −δ2(r)δ(t).
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For the fractional diffusion equation, we consider a similar
(Green’s function) solution but where the Green’s function is
given by the solution of(

∇2 − σq ∂
q

∂tq

)
G(r, t) = −δ2(r)δ(t).

Using the Fourier based operator for a fractional derivative,
we can transform this equation into the form

(∇2 + Ω2
q)g(r | r′, ω) = −δ2(r− r′)

where

g(r | r′, ω) =

∞∫
−∞

G(r | r′, t) exp(−iωt)dt,

Ω2
q = −iωσ, Ωq = ±i(iωσ)q/2.

Note that for q = 2, this equation becomes

(∇2 + k2)g(r | r′, ω) = δ2(r− r′)

where k = ±ωσ. This equation defines the Green’s function
for the time independent wave operator in two-dimensions, the
‘out going’ Green’s functions being given by [8], [16], [14]

g(r | r′, k) =
i

4
H0(k | r− r′ |)

' 1√
8π

exp(iπ/4)
exp(ik | r− r′ |)√

k | r− r′ |
, k | r− r′ |>> 1

where H0 is the Hankel function. Generalizing this result, for
q ∈ (1, 2), by writing the exponential function in its series
form, with R =| r− r′ | we have, for Ωq = i(iωσ)q/2,

G(R, t) =
1

2π

∞∫
−∞

dω exp(iωt)
exp(iπ/4)√

8π
exp[−(iωσ)q/2R]√

iR(iωσ)q/4

=
1√
8πR

1
2π

∞∫
−∞

dω exp(iωt)...

...

(
1

(iωσ)q/4
− (iωσ)q/4R+

1
2!

(iωσ)3q/4R2 − ...
)

=
1√
8πR

1
σq/4t1−q/4

−
√
R

8π
σq/4δq/4(t)

+
1√
8π

∞∑
n=1

(−1)n+1

(n+ 1)!
R(2n+1)/2σ3nq/4δ3nq/4(t).

Simplification of this infinite sum can be addressed be con-
sidering suitable asymptotics, the most significant of which
(for arbitrary values of R) is the case when the (fractional)
diffusivity D is large. In particular, we note that as σ → 0,

G(R, t) =
1√

8πRσq/4t1−(q/4)
.

Thus, we can consider a solution to the two-dimensional
fractional diffusion equation (for a tenuous medium when
σ → 0) (

∇2 − σq ∂
q

∂tq

)
I(r, t) = I0(r)δ(t)

of the form

I(x, y) =
1

2
√

2π
1

(DT )1−q/4
1

(x2 + y2)
1
4
⊗2 I0(x, y).

Comparing this solution with the solution to the two-
dimensional diffusion equation, i.e.

I(x, y) =
1

4πDT
exp

[
−
(
x2 + y2)

4DT

)]
⊗2 I0(x, y),

we observe that when the diffusivity is large and the diffusion
time t = T is small such that DT = 1, the difference between
an image obtained by a full two-dimensional diffuser and a
fractional diffuser is compounded in the difference between
the convolution of the initial image with (ignoring scaling)
the functions exp(−R2/4) and 1/

√
R, respectively. Compared

with the Gaussian (at least for DT ≥ 1), the function R−1/2

decays more rapidly and hence will have broader spectral
characteristics leading to an output that is less ‘diffused’ than
that produced by the convolution of the input with a Gaussian.
In terms of the fractional diffusion equation being used to
model scattering in a tenuous medium, this is to be expected.

B. Inverse Solution

Let I0 be represented as a Taylor series at some time T > 0,
i.e.

I(r, 0) = I(r, T )+T
[
∂

∂t
I(r, t)

]
t=T

−T
2

2!

[
∂2

∂t2
I(r, t)

]
t=T

+...

Now, since
∂u

∂t
=

∂1−q

∂t1−q
∂q

∂tq
u

then from the fractional diffusion equation

∂u

∂t
= Dq ∂

1−q

∂t1−q
∇2u

and
∂2

∂t2
u

=
∂

∂t

(
∂u

∂t

)
=

∂

∂t

(
Dq ∂

1−q

∂t1−q
∇2u

)
= Dq ∂

1−q

∂t1−q
∇2 ∂u

∂t

= Dq ∂
1−q

∂t1−q
∇2

(
Dq ∂

1−q

∂t1−q
∇2u

)
= D2q ∂

1−q

∂t1−q

(
∂1−q

∂t1−q
∇4u

)
so that in general,

∂nu

∂tn
= Dnq ∂

n(1−q)

∂tn(1−q)∇
2nu.

Because (see Appendix II)

∂−q

∂t−q
I(r, t) =

1
Γ(q)t1−q

⊗ I(r, t)

we can write the Taylor series for the field at t = 0 in terms
of the field at t = T as

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

− T
2D2q

2!Γ(2q)

[
∂2

∂t2

(
1

t1−2q
⊗∇4I(r, t)

)]
t=T



12 ISAST TRANSACTIONS ON ELECTRONICS AND SIGNAL PROCESSING

+
T 3D3q

3!Γ(3q)

[
∂3

∂t3

(
1

t1−3q
⊗∇6I(r, t)

)]
t=T

− ...

Note that for T << 1,

I(r, 0) = I(r, T ) +
TDq

Γ(q)

[
∂

∂t

(
1

t1−q
⊗∇2I(r, t)

)]
t=T

and under the condition that[
∂

∂t

(
1

t1−q
⊗ I(r, t)

)]
t=T

= I(r, T )

we can write

I(r, 0) = I(r, T ) +
TDq

Γ(q)
∇2I(r, T ).

VIII. DECONVOLUTION

In the presence of additive noise n(x, y), the deconvolution
problem is as follows: Given that

I(x, y) = p(x, y)⊗2 I0(x, y) + n(x, y)

where Pr[n(x, y)] is known (ideally), find an estimate for
I0. This is a common problem in optics (digital image pro-
cessing) known as the deconvolution problem whose solution
is fundamental to image restoration and reconstruction [2],
[3]. In terms of the material presented in this paper, there
are two Point Spread Functions (PSF) p(x, y) that have been
considered: For full diffusion (strong scattering)

p(x, y) =
1

4πDT
exp

[
−
(

(x2 + y2)
4DT

)]
and for fractional diffusion (intermediate scattering in a tenu-
ous medium with large diffusivity)

p(x, y) =
1

2
√

2π
1

(DT )1−q/4
1

(x2 + y2)
1
4
.

We note that

1
4πDT

exp
[
−
(

(x2 + y2)
4DT

)]
↔ exp[−4DT (k2

x + k2
y)]

and [15]
1

2
√

2π
1

(DT )1−q/4
1

(x2 + y2)
1
4

l
√
πΓ(0.75)

Γ(0.25)(DT )1−q/4
1

(k2
x + k2

y)3/4

where Γ denotes the Gamma function. In the latter case, the
filter is a ‘fractal filter’ and thus, if I0 is characterised by white
noise, then the output I is a Mandelbrot surface with a fractal
dimension of 2.5 [19], [20], [15]. In the absence of noise, the
inverse solution for I0 can be written in the form (evaluating
the Gamma functions)

I0(x, y) = 1.67(DT )1−q/4∇ 3
2 I(x, y),

a result that is based on the application of the fractional
Laplacian or Riesz operator [15]

∇q ↔| k |q .

Figure 1 shows the effect of filtering an image using full
diffusion and fractional diffusion for DT = 1. Comparison
of the results shows that fractional diffusion does not blur
the image to the same extent which is to be expected given
the physical characteristics under which fractional diffusion
processes are taken to occur, i.e. in terms of intermediate
multiple scattering events in a tenuous rarefied medium.

Fig. 1. Comparison between the effect of diffusion (centre) and fractional
diffusion (bottom) on a binary image (top) for DT = 1.

There are a range of approaches to solving the one-
dimensional and two-dimensional deconvolution problem in
practice (i.e. with additive noise) leading to the classification
of different ‘inverse filters’. If a priori information on the
statistics of the noise function and the object function is
available, then Bayesian estimation methods are preferable in
the design of filters whose performance will then depend on
statistical parameters such as the standard deviation. In some
cases, an estimate of Pr[n(x, y)] can be obtained by taking
an image (and a number of images to obtain a statistically
significant result) with zero input, i.e. with I0 = 0. This
provides a method of validating an idealised PDF through data
fitting and, thus, determination of the statistical parameters
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from which a theoretical PDF is composed. In cases when
experimental determinism is not practically possible, statistical
models are used directly. This includes models such as the
K-distribution discussed and derived in Section V. However,
with regard to incoherent imaging systems, the noise function
tends to be Gaussian distributed - a result of the noise being a
linear combination of many different independent noise source
which combine to produce Gaussian noise (a consequence of
the Central Limit Theorem).

A. Bayesian Estimation

Using Bayes rule, the aim is to find an estimate for I0 such
that

∂

∂I0
ln Pr[n(x, y)] +

∂

∂I0
ln Pr[I0(x, y)] = 0.

Consider the following models for the PDFs: (i) Gaussian
statistics for the noise when (ignoring scaling and where σ2

n

is the standard deviation of n)

Pr[n(x, y)] =

exp
(
− 1
σ2
n

∫ ∫
[(I(x, y)− p(x, y)⊗2 I0(x, y)]2dxdy

)
.

(ii) Gaussian statistics for the object function where (ignoring
scaling and where σ2

I0
is the standard deviation of I0)

Pr[I0(x, y)] = exp
(
− 1
σ2
I0

∫ ∫
I2
0 (x, y)dxdy

)
.

Differentiating, these statistical models yield the equation

I(x, y)�2p(x, y) =
σ2
n

σ2
I0

f(x, y)+[p(x, y)⊗2f(x, y)]�2p(x, y)

where �2 denotes the two-dimensional correlation integral. In
Fourier space, this equation becomes

Ĩ(kx, ky)P ∗(kx, ky) =
1

Γ2
Ĩ0(x, y)+ | P (kx, ky) |2 I0(kx, ky)

The filter F (kx, ky) for Gaussian statistics is therefore given
by

F (kx, ky) =
P ∗(kx, ky)

| P (kx, ky) |2 +σ2
n/σ

2
I0

where σn/σI0 defines the signal-to-noise ratio of I(x, y). and
Ĩ0(kx, ky) = F (kx, ky)Ĩ(kx, ky). The reconstruction for I0 is
then given by

I0(x, y) =

1
(2π)2

∫ ∫
F (kx, ky)Ĩ(kx, ky) exp(ikxx) exp(ikyy)dkxdky

(7)

B. Adaptive Filtering

Given P (kx, ky), the performance of this filter depends
on the value of Σ = σ2

n/σ
2
I0

. In general, as Σ → 0 the
reconstruction sharpens but at the expense of ’ringing’. Thus,
an optimum value of Σ is obtained by computing I0 over a
range of values of Σ and, for each reconstruction, computing
the ratio of the number of zero crossings Zc to the sum of the
magnitude of a digital gradient

∑
| DI0[i, j] |, i.e.

R =
Zc∑

| DI0[i, j] |
This ratio is based on the principle that an optimum recon-
struction is one which provides a sharp image with minimal
ringing, i.e. a reconstruction for which R is a minimum. This
principle has been applied in the example results given in
the following section. Note that the Fourier based approach
to image restoration relies on the ability to implement the
convolution and correlation theorems. This requires that the
data has been recorded by an (optical) imaging system that is
isoplanatic (i.e. the Point Spread Function is stationary).

IX. EXAMPLE APPLICATIONS: IMAGE ENHANCEMENT IN
ASTRONOMY

We consider examples of image reconstruction based on
equation (7) for fully diffusive and fractional diffusive models
using the optimization procedure discussed in the previous
section for the following ’digital Laplacian’

DI0[i, j] =

 0 1 0
1 −4 1
0 1 0

 .

A. Deconvolution for Full Diffusion

Figure 2 shows the application of equation (7) where
(ignoring scaling and with σ = 4DT )

P (kx, ky) = exp[−σ(k2
x + k2

y)].

In this example, the diffusion of the object has been generated
by turbulence of the earths atmosphere through which light
from the object has been fully diffused. In this case, the
reconstruction depends on the value of both σ and Σ and
an optimization scheme based on computing I0[i, j;σ,Σ] for
minR.

B. Deconvolution for Fractional Diffusion

Fractional diffusion models apply to scattering processes
that occur in a tenuous and extremely rarefied medium. In
applied optics, one of the most common examples of this
phenomena occurs in astronomy and the processes associated
with light scattering from cosmic dust which is composed
of particles which are a few molecules to the order of
10−4 metres in size. Cosmic dust is defined in terms of its
astronomical location including intergalactic dust, interstellar
dust, interplanetary dust and circumplanetary dust (such as
in a planetary ring). In our own Solar System, interplanetary
dust is generated from sources such as comet dust, asteroidal
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Fig. 2. Diffusion based deconvolution (below) of an image of Saturn observed
by a ground based telescope with light diffused by the atmosphere (above).

dust, dust from the Kuiper belt and interstellar dust pass-
ing through our solar system. This dust is responsible for
zodiacal light which is produced by sunlight reflecting off
dust particles. Cosmic dust can be categorised in terms of
different types of nebulae associated with different physical
causes and processes. These include: diffuse nebula, infrared
reflection nebula, supernova remnants and molecular clouds,
for example. However, in a more general sense, cosmic dust
often characterises the interstellar medium which is the gas
and dust that pervade interstellar space. This medium consists
of an extremely dilute (by terrestrial standards) mixture of
ions, atoms, molecules, and larger dust grains, consisting of
about 99% gas and 1% dust by mass. Densities range from
a few thousand to a few hundred million particles per cubic
meter with an average value in the Milky Way Galaxy, for
example, of a million particles per cubic meter. In comparison
with the scattering of light from earth-based random media,
for example, the interstellar medium is highly diffuse and
therefore ideal for applying light scattering models based on
fractional diffusion when D →∞.

Figure 2 shows the application of equation (7) where
(ignoring scaling)

P (kx, ky) =
1

(k2
x + k2

y)3/4

from an optical image obtained with the Hubble Space Tele-
scope. This image is part of the constellation of Perseus as
observed through an interstellar dust cloud that covers nearly
4 degrees on the sky observed 1,000 light-years away.

X. CONCLUSIONS

We have considered different approaches to modelling light
scattering through random media including: formal scattering

Fig. 3. Fractional diffusion based deconvolution (right) for σn/σI0 = 1 of
a dust clouded star field (left) in the constellation of Pegasus.

methods, cross-correlation models for a scattering function
under the weak field condition, statistical modelling of the
wavefield and application of the diffusion equation for mod-
elling multiple scattering processes. The formal scattering
approach provides inverse solutions that are, in general, not
of any practical value to signal and image processing. Cross-
correlation methods are of value in modelling the intensity
distribution but are not generally applicable to image pro-
cessing problems. While statistical modelling methods are
useful for developing theoretical PDFs of images and their
statistical evaluation, they are not directly applicable for image
enhancement.

The use of a fully diffusive process for modelling strong
(multiple) scattering provides a result that is applicable in
terms of solving the inverse scattering problem which is
compounded in terms of developing a suitable deconvolution
algorithm. We have extended this approach to model interme-
diate scattering by generalizing the diffusion equation to the
fractional form(

∇2 − σq ∂
q

∂tq

)
I(r, t) = I0(r)δ(t)

where I(x, y, t) is a light intensity image, D−1 is the fractional
diffusivity and q ∈ (1, 2). A solution has been considered
based on a Fourier transform representation of a fractional
derivative for which the initial condition I(r, t = 0) (used to
solve the diffusion equation) is not required. An asymptotic
result has then been derived for the case when σ → 0 that is
compounded in an Optical Transfer Function given by (k2

x +
k2
y)−0.75.

APPENDIX I
THE DIFFUSION EQUATION

The homogeneous diffusion equation [8]

∇2u(r, t) = σ
∂

∂t
u(r, t), σ =

1
D

where D is the ‘Diffusivity’, differs in many aspects from
the scalar wave equation. The most important single feature is
the asymmetry of the diffusion equation with respect to time.
For the wave equation, if u(r, t) is a solution, so is u(r,−t).
However, if u(r, t) is a solution of

∇2u = σ
∂u

∂t
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the function u(r,−t) is not; it is a solution of the quite
different equation,

∇2u(r,−t) = −σ ∂
∂t
u(r,−t).

Thus, unlike the wave equation, the diffusion equation differ-
entiates between past and future. This is because the diffusing
field u represents the behaviour of some average property of an
ensemble (e.g. of particles) which cannot in general go back to
an original state. Causality must therefore be considered in the
solution to the diffusion equation. This in turn leads to the use
of the one-sided Laplace transform (i.e. a causal transform) for
solving the equation with respect to t (compared to the Fourier
transform - a non-causal transform - used to solve the wave
equation with respect to t).

A. Green’s Function for the Diffusion Equation

To obtain a general solution to the diffusion equation, we
need to evaluate the Green’s function G for the diffusion
equation subject to the causality condition

G(r | r0, t | t0) = 0 if t < t0.

This can be accomplished for one-, two- and three-dimension
simultaneously [14]. With R =| r − r0 | and τ = t − t0 we
require the solution of the equation(

∇2 − σ ∂

∂τ

)
G(R, τ) = −δn(R)δ(τ), τ > 0

where n is 1, 2 or 3 depending on the number of dimensions.
One way of solving this equation is to first take the Laplace
transform with respect to τ , then solve for G (in Laplace
space) and inverse Laplace transform. This requires an initial
condition to be specified (the value of G at τ = 0). Another
way to solve this equation is to take its Fourier transform with
respect to R, solve for G (in Fourier space) and then inverse
Fourier transform. Here, we adopt the latter approach. Let

G(R, τ) =
1

(2π)n

∞∫
−∞

G̃(k, τ) exp(ik ·R)dnk

and

δn(R) =
1

(2π)n

∞∫
−∞

exp(ik ·R)dnk.

Then the equation for G reduces to

σ
∂G̃

∂τ
+ k2G̃ = δ(τ)

which has the solution

G̃ =
1
σ

exp(−k2τ/σ)H(τ)

where H(τ) is the step function

H(τ) =

{
1, τ > 0;
0, τ < 0.

Hence, the Green’s functions are given by

G(R, τ) =
1

σ(2π)n
H(τ)

∞∫
−∞

exp(ik ·R) exp(−k2τ/σ)dnk

=
1

σ(2π)n
H(τ)

 ∞∫
−∞

exp(ikxRx) exp(−k2
xτ/σ)dkx

 ...

By rearranging the exponent in the integral, it becomes pos-
sible to evaluate each integral exactly. Thus, with

ikxRx − k2
x

τ

σ
= −

(
kx

√
τ

σ
− iRx

2

√
σ

τ

)2

−
(
σR2

x

4τ

)

= − τ
σ
ξ2 −

(
σR2

x

4τ

)
where

ξ = kx − i
σRx
2τ

,

the integral over kx becomes
∞∫
−∞

exp
[
−
( τ
σ
ξ2
)
−
(
σRx
4τ

)]
dξ

= e−(σR2
x/4τ)

∞∫
−∞

e−(τξ2/σ)dξ =
√
πσ

τ
exp

[
−
(
σR2

x

4τ

)]
with similar results for the integrals over ky and kz giving the
result

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−
(
σR2

4τ

)]
H(τ).

The function G satisfies an important property which is valid
for all n: ∫ ∞

−∞
G(R, τ)dnr =

1
σ
, τ > 0.

This is the expression for the conservation of the Green’s
function associated with the diffusion equation. For example,
if we consider the diffusion of heat, then if at a time t0 and at a
point in space r0 a source of heat is introduced instantaneously
(i.e. a heat impulse), then the heat diffuses out through the
medium characterized by σ in such a way that the total heat
energy is unchanged.

B. Green’s Function Solution to the Diffusion Equation

Working in three dimensions, let us consider the general
solution to the equation(

∇2 − σ ∂
∂t

)
u(r, t) = −f(r, t)

where f is a source function of compact support (r ∈ V ) and
define the Green’s function as the solution to the equation(

∇2 − σ ∂
∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0)
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It is convenient to first take the Laplace transform of these
equations with respect to τ = t− t0 to obtain

∇2ū− σ[−u0 + pū] = −f̄

and
∇2Ḡ+ σ[−G0 + pḠ] = −δ3

where

ū(r, p) =

∞∫
0

u(r, τ) exp(−pτ)dτ,

Ḡ(r | r0, p) =

∞∫
0

G(r | r0, τ) exp(−pτ)dτ,

f̄(r, p) =

∞∫
0

f(r, τ) exp(−pτ)dτ.

u0 ≡ u(r, τ = 0) and G0 ≡ G(r | r0, τ = 0) = 0.

Pre-multiplying the equation for ū by Ḡ and the equation for
Ḡ by ū, subtracting the two results and integrating over V we
obtain∫
V

(Ḡ∇2ū−ū∇2Ḡ)d3r+σ
∫
V

u0Ḡd
3r = −

∫
V

f̄ Ḡd3r+ū(r0, p).

Using Green’s theorem and rearranging the result gives

ū(r0, p) =
∫
V

f̄(r, p)Ḡ(r | r0, p)d3r+σ
∫
V

u0(r)Ḡ(r | r, p)d3r

+
∮
S

(ḡ∇ū− ū∇ḡ) · nd2r.

Finally, taking the inverse Laplace transform and using the
convolution theorem for Laplace transforms, we can write

u(r0, τ) =

τ∫
0

∫
V

f(r, τ ′)G(r | r0, τ − τ ′)d3rdτ ′

+σ
∫
V

u0(r)G(r | r0, τ)d3r

+

τ∫
0

∮
S

[G(r | r0, τ
′)∇u(r, τ − τ ′)

−u(r, τ ′)∇G(r | r0, τ − τ ′)] · n̂d2rdτ ′.

The first two terms are convolutions of the Green’s function
with the source function and the initial field u(r, τ = 0)
respectively.

By way of a simple example, suppose we consider the
source term to be zero and the volume of interest is the infinite
domain, so that the surface integral is zero. Then we have

u(r0, τ) = σ

∫
V

u0(r)G(r | r0, τ)d3r.

In one dimension, this reduces to

u(x0, τ) =
√

σ

4πτ

∞∫
−∞

exp
[
−σ(x0 − x)2

4τ

]
u0(x) dx, τ > 0.

Observe that the field u at a time t > 0 is given by the
convolution of the field at time t = 0 with the (Gaussian)
function √

σ

4πt
exp

(
−σx

2

4t

)
.

In two-dimensions, the equivalent result is

u(x, y, t) =
σ

4πt
exp

[
−
(
σ(x2 + y2)

4t

)]
⊗2 u0(x, y). (5)

APPENDIX II
OVERVIEW OF FRACTIONAL CALCULUS

Fractional calculus (e.g. [24], [25], [26], [27], [28]) is the
study of the calculus associated with fractional differentials
and a fractional integrals which, in the main, are based on
generalizations of results obtained using integer calculus. For
example, the classical fractional integral operators are the
Riemann-Liouville transform [24]

Îqf(t) =
1

Γ(q)

t∫
−∞

f(τ)
(t− τ)1−q dτ, q > 0

and the Weyl transform

Îqf(t) =
1

Γ(q)

∞∫
t

f(τ)
(t− τ)1−q dτ, q > 0

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt.

For integer values of q (i.e. when q = n where n is a non-
negative integer), the Riemann-Liouville transform reduces
to the standard Riemann integral. This transform is just a
(causal) convolution of the function f(t) with tq−1/Γ(q).
For fractional differentiation, we can perform a fractional
integration of appropriate order and then differentiate to an
appropriate integer order. The reason for this is that direct
fractional differentiation can lead to divergent integrals. Thus,
the fractional differential operator D̂q for q > 0 is given by

D̂qf(t) ≡ dq

dtq
f(t) =

dn

dtn
[În−qf(t)].

where

Îq−nf(t) =
1

Γ(n− q)

t∫
−∞

f(τ)
(t− τ)1+q−n dτ, n− q > 0

in which the value of Îq−nf(t) at a point t depends on the
behaviour of f(t) from −∞ to t via a convolution with the
kernel tn−q/Γ(q). The convolution process is dependent on
the history of the function f(t) for a given kernel and thus,
in this context, we can consider a fractional derivative defined
via the result above to have memory.
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A. The Laplace Transform and the Half Integrator

It informative at this point to consider the application of
the Laplace transform to identify an ideal integrator and then
a half integrator. The Laplace transform is given by

L̂[f(t)] ≡ F (p) =

∞∫
0

f(t) exp(−pt)dt

and from this result we can derive the transform of a derivative
given by

L̂[f ′(t)] = pF (p)− f(0)

and the transform of an integral given by

L̂

 t∫
0

f(τ)dτ

 =
1
p
F (p).

Now, suppose we have a standard time invariant linear system
whose input is f(t) and whose output is given by

s(t) = f(t)⊗ g(t)

where the convolution is causal, i.e.

s(t) =

t∫
0

f(τ)g(t− τ)dτ.

Suppose we let

g(t) = H(t) =

{
1, t > 0;
0, t < 0.

Then, G(p) = 1/p and the system becomes an ideal integrator:

s(t) = f(t)⊗H(t) =

t∫
0

f(t− τ)dτ =

t∫
0

f(τ)dτ.

Now, consider the case when we have a time invariant linear
system with an impulse response function by given by

g(t) =
H(t)√
t

=

{
| t |−1/2, t > 0;
0, t < 0.

The output of this system is f ⊗ g and the output of such a
system with input f ⊗ g is f ⊗ g ⊗ g. Now

g(t)⊗ g(t) =

t∫
0

dτ
√
τ
√
t− τ

=

√
t∫

0

2xdx
x
√
t− x2

= 2
[
sin−1

(
x√
t

)]√t
0

= π.

Hence,
H(t)√
πt
⊗ H(t)√

πt
= H(t)

and the system defined by the impulse response function
H(t)/

√
πt represents a ‘half-integrator’ with a Laplace trans-

form given by

L̂

[
H(t)√
πt

]
=

1
√
p
.

This result provides an approach to working with fractional
integrators and/or differentiators using the Laplace transform.
Fractional differential and integral operators can be defined
and used in a similar manner to those associated with con-
ventional or integer order calculus and we now provide an
overview of such operators.

B. Operators of Integer Order

The following operators are all well-defined, at least with
respect to all test functions u(t) say which are (i) infinitely
differentiable and (ii) of compact support (i.e. vanish outside
some finite interval).

Integral Operator:

Îu(t) ≡ Î1u(t) =

t∫
−∞

u(τ)dτ.

Differential Operator:

D̂u(t) ≡ D̂1u(t) = u′(t).

Identify Operator:

Î0u(t) = u(t) = D̂0u(t).

Now,

Î[D̂u](t) =

t∫
−∞

u′(τ)dτ = u(t)

and

D̂[Îu](t) =
d

dt

t∫
−∞

u(τ)dτ = u(t)

so that
Î1D̂1 = D̂1Î1 = Î0.

For n (integer) order:

Înu(t) =

t∫
−∞

dτn−1...

τ2∫
−∞

dτ1

τ1∫
−∞

u(τ)dτ,

D̂nu(t) = u(n)(t)

and
În[D̂nu](t) = u(t) = D̂n[Înu](t).

C. Convolution Representation

Consider the function

tq−1
+ (t) ≡| t |q−1 H(t) =

{
| t |q−1, t > 0;
0, t < 0.

which, for any q > 0 defines a function that is locally
integrable. We can then define an integral of order n in terms
of a convolution as

Înu(t) =
(
u⊗ 1

(n− 1)!
tn−1
+

)
(t)
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=
1

(n− 1)!

t∫
−∞

(t− τ)n−1u(τ)dτ

=
1

(n− 1)!

t∫
−∞

τn−1u(t− τ)dτ

In particular,

Î1u(t) = (u⊗H)(t) =

t∫
−∞

u(τ)dτ.

These are classical (absolutely convergent) integrals and the
identity operator admits a formal convolution representation,
using the delta function, i.e.

Î0u(t) =

∞∫
−∞

δ(τ)u(t− τ)dτ

where
δ(t) = D̂H(t).

Similarly,

D̂nu(t) ≡ Î−nu(t) =

∞∫
−∞

δ(n)(τ)u(t− τ)dτ = u(n)(t).

On the basis of the material discussed above, we can now
formally extend the integral operator to fractional order and
consider the operator

Îqu(t) =
1

Γ(q)

∞∫
−∞

u(τ)tq−1
+ (t− τ)dτ

=
1

Γ(q)

t∫
−∞

u(τ)tq−1
+ (t− τ)dτ

where

Γ(q) =

∞∫
0

tq−1 exp(−t)dt, q > 0

with the fundamental property that

Γ(q + 1) = qΓ(q).

Here, Iq is an operator representing a time invariant linear
system with impulse response function tq−1

+ (t) and transfer
function 1/pq . For the cascade connection of Iq1 and Iq2 we
have

Îq1 [Îq2u(t)] = Îq1+q2u(t).

This classical convolution integral representation holds for all
real q > 0 (and formally for q = 0, with the delta function
playing the role of an impulse function and with a transfer
function equal to the constant 1).

D. Fractional Differentiation

For 0 < q < 1, if we define the (Riemann-Liouville )
derivative of order q as

D̂qu(t) ≡ d

dt
[Î1−qu](t) =

1
Γ(1− q)

d

dt

t∫
−∞

(t− τ)−qu(τ)dτ,

then,

D̂qu(t) =
1

Γ(1− q)

t∫
−∞

(t− τ)−qu′(τ)dτ ≡ Î1−qu′(t).

Hence,
Îq[D̂qu] = Îq[Î1−qu′] = Î1u′ = u

and D̂q is the formal inverse of the operator Îq . Given any
q > 0, we can always write λ = n− 1 + q and then define

D̂λu(t) =
1

Γ(1− q)
dn

dtn

t∫
−∞

u(τ)(t− τ)−qdτ.

Dq is an operator representing a time invariant linear system
consisting of a cascade combination of an ideal differentiator
and a fractional integrator of order 1− q. For Dλ we replace
the single ideal differentiator by n such that

D̂0u(t) =
1

Γ(1)
d

dt

t∫
−∞

u(τ)dτ = u(t) ≡
∞∫
−∞

u(τ)δ(t− τ)dτ

and

D̂nu(t) =
1

Γ(1)
dn+1

dtn+1

t∫
−∞

u(τ)dτ

= u(n)(t) ≡
∞∫
−∞

u(τ)δ(n)(t− τ)dτ.

In addition to the conventional and classical definitions of
fractional derivatives and integrals, more general definitions
are available including the Erdélyi-Kober fractional integral
[29]

t−p−q+1

Γ(q)

t∫
0

τp−1

(t− τ)1−q f(τ)dτ, q > 0, p > 0

which is a generalisation of the Riemann-Liouville fractional
integral and the integral

tp

Γ(q)

∞∫
t

τ−q−p

(τ − t)1−q f(τ)dτ, q > 0, p > 0

which is a generalization of the Weyl integral. Further def-
initions exist based on the application of hypergeometric
functions and operators involving other special functions such
as the Maijer G-function and the Fox H-function [28]. More-
over, all such operators leading to a fractional integral of the
Riemann-Liouville type and the Weyl type to have the general
forms (through induction)
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Îqf(t) = tq−1

t∫
−∞

Φ
(τ
t

)
τ−qf(τ)dτ

and

Îqf(t) = t−q
∞∫
t

Φ
(
t

τ

)
τ q−1f(τ)dτ

respectively, where the kernel Φ is an arbitrary continuous
function so that the integrals above make sense in sufficiently
large functional spaces. Although there are a number of
approaches that can be used to define a fractional differen-
tial/integral, there is one particular definition, which has wide
ranging applications in signal and image processing and is
based on the Fourier transform, i.e.

dq

dtq
f(t) =

1
2π

∞∫
−∞

(iω)qF (ω) exp(iωt)dω

where F (ω) is the Fourier transform of f(t).
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