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ABSTRACT

The hypothesis is tested that – 

Acoustic materials are available or can be developed and applied to Heavy Goods 
Vehicles and ancillaries, which effectively and economically abate the noise caused 
by night deliveries

The MPhil is a part of a wider innovation research partnership that aimed to develop 
sustainable solutions for the growing trend to night deliveries in Dublin city centre. 

The methodology involves; a review of international best practice for urban traffic 
noise abatement: a social and commercial justification for developing low noise 
products and procedures: field trials of kerb-side deliveries to city centre shops to 
identify the “peak” noise events and their associated signature frequencies: an 
identification of the HGV components and ancillaries to which noise attenuation 
solutions might best be applied: the selection, matching and pre-screening of suitable 
acoustic coatings for application to HGV trailer bodies and tail lifts: the development 
and evaluation of a hush-kit for easy retro-fitting to steel roll-cages. Laboratory and 
field experiments and special test equipment were designed to support and to validate 
the research.  

The research concentrates on bringing forward two sets of solutions (a) the application 
of an acoustic coating to the HGV trailer unit and tail-lift platform and (b) the 
development of a hush-kit for the steel roll-cages. The focus is on attenuating the 
identifiable peak impact noises by matching these with a coating and materials that 
can dampen the characteristic high frequency sounds. Recommendations are made for 
further research to optimise the performance of the prototypes developed. 
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CHAPTER 1. BACKGROUND AND JUSTIFICATION FOR THE 
RESEARCH

Preamble

The thesis forms part of an Innovation Partnership research project entitled “Low

Noise Solutions for Night Deliveries” which was initiated by the Department of 

Transport Engineering, DIT, in October 2005 and completed in October 2007. The 

author was the lead researcher and the project manager was Ms. Roisin Byrne assisted 

by Mr. John Grimes (DIT, 2007). 

                                                                                                                               

This Innovation Partnership set out to develop low noise products and solutions to 

enable Irish logistics service providers to carry out night deliveries to city centre shops 

in a more sustainable manner acceptable to residents. The research was also designed 

to underpin the noise policies being considered by Dublin City Council in accord with 

EC and national regulations whereby action plans incorporating noise limits for traffic 

are being formulated. The Innovation Partnership was funded to the value of €263,000 

by a consortium of public and private bodies which comprised Dublin City Council, 

Enterprise Ireland and major city centre retailers, logistics service providers, the 

Dublin City Centre Business Association and Irish based equipment suppliers. 

“Low Noise Solutions for Night Deliveries” was seen as a practical follow-up to a 

research project entitled “Sustainable Freight Distribution in a Historic Urban 

Centre”. This project was completed in November 2004 and was initiated and 

conducted by the author and by Ms. Clare Finnegan under the direction of Professor 

Margaret O’Mahony at the Centre for Transport Research at Trinity College Dublin. 

The project, which was funded by the Department of Transport and by the Higher 

Education Authority, proposed more night deliveries for shops in Dublin city centre in 

order to help ease peak congestion and to free up customer access to retail stores 

during the day (O’Mahony, Finlay and Finnegan, 2004). 

The research at Trinity College gave new insights into the rhythms and patterns of 

urban deliveries, based on a street by street survey of 1,400 deliveries to 160 premises 
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in the city centre. This analysis was supported by an examination of the operations of 

selected major logistics service providers. 

One of the key recommendations put forward for easing congestion at peak times and 

for improving logistical efficiencies was to encourage more night-time deliveries. It 

was recognised however that night delivery operations cause annoyance to residents 

and that the development and deployment of low noise equipment and changed 

behavioural patterns should therefore be encouraged to mitigate the nuisance caused.  

The challenge to develop low noise solutions and products was therefore the objective 

of the follow-on Innovation Partnership programme. Participation in the programme 

consortium was seen by the retailers as a way of maintaining the goodwill of their 

local customers, by Enterprise Ireland and by Irish suppliers as affording a 

commercial opportunity to bring new acoustic products to market and by Dublin City 

Council as a way of enhancing the attractiveness of urban living, of promoting a more 

sustainable transport solution for city freight deliveries and of underpinning the 

requirement to develop noise action plans in accord with the European Directive on 

Noise (EC, 2002). 

A review of developments both internationally and nationally indicated that while 

there are powerful factors driving the trend to urban night deliveries, there is a 

requirement to conduct these operations in a sustainable way that will not unduly 

harm the quality of life or health of residents. 

1.0. Introduction 

1.1. Factors driving change to quieter night deliveries

The “drivers” accelerating the trend to night deliveries and the consequent need to 

mitigate the nuisance caused were found to be: (1) the growing public awareness of 

the health effects of noise, (2) the changing logistics patterns consequent on 24/7 

urban living, (3) the requirements of the European Noise Directive and national 

guidelines, (4) Dublin City Council’s Heavy Goods Vehicles (HGVs, see Glossary of 
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Terms) strategy following the opening of the port access tunnel in February ’07 and 

(5) the commercial benefits accruing to distributors by being able to avoid day time 

congestion.

The factors or “drivers” which have influenced the noise abatement policies and 

responses to mitigating traffic noise in Dublin are illustrated in Figure 1.1. 

Figure1.1. Factors influencing noise abatement policies and the trend to night 

deliveries. 

1.2. Health effects of traffic noise

The European Commission recognises environmental noise as a serious environmental 

problem (EC-CALM, 2004). According to the Commission, within the EU, 80 million 

people suffer from unacceptable levels of noise and a further 170 million live in ‘grey 

areas’ where they are exposed to serious annoyance. A body of research by Rust and 

Affenzeller (2004), sponsored by the EC under the CALM programme confirms the 

detrimental impact on health of sleep deprivation caused by traffic noise. Noise

pollution is estimated to cost the EU countries from 0.2 % to 2.0 % of GDP. The 

lower estimate of 0.2 % would represent an annual financial loss of € 12 billion and 

the higher estimate would entail an annual loss of € 120 billion (EC-CALM, 2005). 

EC Noise Directive  
2002/49/EC

Statutory 
Instrument 

No. 140 of 2006 

Low Noise Solutions 
for Night Deliveries  

DIT

Dublin  
Port Tunnel

Logistic Trends 
- 24/7 

Deliveries

HGV Strategy
Dublin City Council

NOISE ACTION PLANS
Dublin City Council

Public Health 
Concerns
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In German cities more than one third of the population is seriously affected by road 

traffic noise. Night time noise levels have increased by 3 dB(A) in the past decade as 

growing traffic intensity has concentrated on the night according to the German ‘Quiet 

Traffic’ initiative (Leiser Verkehr, 2005). A-weighted decibels (dB(A)) are defined in 

chapter 2. 

Other examples of national research programmes similar to the German ‘Quiet 

Traffic’ initiative mentioned above were the French ‘Predict’ programme (Predict, 

2005) and the Dutch ‘PEAK” programme (PEAK, Senter Novem, 2005). To these 

international programmes can now be added the DIT led Innovation Partnership which 

has been brought to the attention of the EC through presentations to sponsored 

workshops hosted by the BESTUFS, POLIS and SILENCE research networks 

(BESTUFS 2006; POLIS 2007; SILENCE 2006).

In 1997 the EC responded to the increasing severity of noise disturbance brought 

about by growing traffic volumes with a Green Paper on ‘Future Noise Policy’ that 

recognises noise as one of the main environmental problems (EC, 1997). This in turn 

prompted the development of a coherent Directive on noise (EC, 2002). This Directive 

is currently supported by two EC research initiatives, the ‘CALM’ and “SILENCE” 

programmes (EC, 2006). The “CALM” programme supports the development of a 

common methodology for noise mapping across the EU whilst “SILENCE” promotes 

best practice for noise abatement and the commercialisation of low noise products and 

solutions. 

The stated aim of the EC Green Paper (1997) is that ‘no person should be exposed to 

noise levels which endanger health and the quality of life’. Long term visionary noise 

reduction targets of 10 dB(A) from individual road traffic vehicles are foreseen as 

achievable by 2020 (EC, 1997). The EC therefore promotes the development of 

technologies that can meet this objective and related noise reduction targets. 

According to the EC Green Paper, traffic noise at levels above 30 dB(A) experienced 

by residents in an indoor environment can cause sleep disturbance and recommends 

that noise levels in the home should not generally exceed 40 to 45 dB(A). Indoor noise 

levels of 40 dB(A) are regarded by the EC as the critical load beyond which nocturnal 

indoor noise begins to become intolerable, while the World Health Organisation 
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regards less than 30dB(A) as a reasonable ‘noise level during the night for a sleep of 

good quality’ (WHO, 2008). 

The EC Noise Directive aims to define a common approach for combating the harmful 

effects of exposure to urban noise, to establish common monitoring indicators, to 

prepare strategic noise maps and to develop action plans for noise abatement (EC, 

2002).

In compliance with the EC directive, Dublin City Council is required to submit action 

plans to the Commission during 2008 and to suggest acoustic limits for night 

deliveries in order to minimise the risk to health of the affected vulnerable 

populations. An important objective of the DIT led Innovation Partnership project was 

to advise the city council on a possible range of acoustic limits that would be most 

likely to find wide acceptance by all the parties concerned and that would have regard 

to the trade-offs between the social benefits accruing to the residents and the likely 

additional costs to the retailers and distributors for adopting noise abatement 

measures. 

In 2005, the British Building Research Establishment reported on a comprehensive 

survey of environmental noise and of the population attitudes to exposure in England 

and Wales (BRE, 2002). This ‘UK Noise Incidence Study’ involving 1,160 

measurements, 24-hour noise measurements at a sample of dwellings and 5,500 

interviews, indicated that the majority of the population now lived in homes exposed 

to noise levels above those recommended by the World Health Organisation (WHO 

Guidelines, 1999). Recent years have seen an increase in UK noise levels at night, 

resulting in a shorter noise free night and a reduction in the noise level differences 

between day and night. The proportion of respondents in England and Wales currently 

affected by road traffic noise now stands at 54 %. 

Of relevance to night time traffic disturbances is a study reported by the European 

Heart Journal with contributions from Lars Jarup based at Imperial College London, 

which confirms that night time aircraft noise causes significant damage to health even 

while people are sleeping (European Heart Journal, Haralabidis et al. 2008, pp.658-

64). The researchers found that 140 sleeping volunteers in their homes near Heathrow 
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airport suffered noticeable increases in blood pressure after they experienced a “noise 

event”, i.e. a noise louder than 35 dB (linear weighted rather than A-weighted) such as 

an aircraft passing overhead, traffic passing outside or a partner snoring. The effect 

could be seen even when the volunteer was not consciously disturbed. The increases 

in blood pressure were related to the loudness of the noise – for every 5 dB increase in 

aircraft or by-pass traffic noise at its loudest point, there was 0.66 mmHg increase in 

systolic blood pressure. Aircraft and road traffic noise events caused instant increases 

in systolic blood pressures of 6.2 mmHg and average increases in diastolic pressure of 

7.4 mmHg. It was concluded that an increase in night-time aeroplane noise of 10 dB 

increases the risk of high blood pressure and hypertension in both men and women by 

14 %.

In an earlier study relating to traffic noise reported by the European Heart Journal 

(Willich et al. 2005, pp.276-82) it was concluded that:  

Chronic noise burden is associated with the risk of myocardial infarction. The 

risk increase appears more closely associated with sound levels than with 

subjective annoyance.

Due to the concerns that night deliveries can cause noise disturbances which may 

compromise the quality of life for urban residents, many European cities are facing up 

to the challenges of managing deliveries in a more sustainable manner by seeking to 

impose noise restrictions in designated noise sensitive zones and are sharing their 

experiences through participation in the “CALM” (2005) and “SILENCE” (2005) 

research networks mentioned earlier. Dublin City Council and DIT have contributed 

to these developments and interactions through membership of these European 

networks (Finlay and McManus, 2006).

1.3. Response by Dublin City Council to the EC directive

As stated in section 1.1, Dublin City Council responded to increasing complaints and 

litigation by residents and to the requirements of the EC Noise Directive and related 

national guidelines such as Statutory Instrument 140, by completing noise maps to 
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identify the most vulnerable populations, by considering appropriate action plans and 

by supporting the DIT led Innovation Partnership, all with a view to abating noise 

nuisance (EC 2002; Irish SI 140 2006).  

In April 1999 the city council began to prepare a strategic noise map of the inner city 

between the north and south circular roads. This exercise was designed to feed into the 

EC “CALM” thematic network that monitors and harmonises the progress of noise 

mapping in European cities which have populations of 200,000 or more. A proprietary 

noise model and software called ‘Predict’ was used to develop innovative maps 

linking noise level bands and contours to land use patterns, to the populations affected 

and to traffic data (EC, 2004). A noise map of the city centre area bounded by the 

canal cordon is illustrated in Figure 1.2. 

Figure 1.2. Noise map of Dublin city centre – courtesy of Dublin City Council 

Noise maps for the city centre and adjacent areas coupled with data on traffic flows 

and patterns forms the basis for action plans to be submitted to Brussels by the City 

Council by the end of 2008 in accord with the requirements of the EC Directive. 
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1.4. Heavy goods vehicle strategy for Dublin

The Heavy Goods Vehicle (HGV) strategy introduced by the city council in February 

2008 following the opening of the Dublin port access tunnel has encouraged the 

movement of deliveries by 5 axle trucks to the night and the noise mapping exercise 

described earlier can provide a benchmark for monitoring the increase in noise 

disturbance that is likely to arise as a result.

The location of the port tunnel is illustrated in Figures 1.3 and 1.4 and the city centre 

area affected by the HGV strategy and day-time curfew on large HGVs is shown in 

Figure 1.5. 

Figure 1.3. Map showing the route of the 
Dublin port tunnel and M50 ring road 

Figure 1.4. Photograph showing the 
Dublin port access tunnel 
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Figure 1.5. Map showing city centre cordon boundary for HGV day-time curfew 
(Dublin City Council, 2008) 

A recent survey by Dublin City Council found that the HGV strategy has successfully 

met its objective of removing between 70-90 % of five axle HGVs from transiting the 

main routes through the historic city centre between the curfew hours of 7.00 am to 

7.00 pm. This is a substantial reduction in heavy goods traffic considering that 65 % 

of HGVs accessing the port are 5 axle trucks or more (Finnegan and O’Brien, 2007). 

The extent to which deliveries by five axle HGVs has been moved to the night as a 

result of the curfew has yet to be quantified but it is thought by the logistics service 

providers to be significant. 

1.5. International overview

A review of how other European countries and cities have responded to the need to 

abate urban traffic noise was carried out through access to the EC thematic networks 

mentioned earlier, namely SILENCE, CALM and BESTUFS (EC, 2002-2007). It was 

discovered that the Netherlands has developed very relevant experience through the 

government sponsored “PEAK” programme. Other instructive examples were those 

reported from France, Spain and from British cities under the auspices of the Noise 

Abatement Society (Noise Abatement Society, 2005-2007). It was realised on 

completion of the review, that there is “no one size fits all” model and that while new 
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acoustic solutions have been successfully brought to the Dutch market, there is still 

scope for product innovation and  adaptation to suit Irish needs and to reduce the 

additional costs of “going quiet”. The conditions and topography in Irish cities are 

unique and different to those to be found on the European continent in terms of a 

relatively cold climate, low population densities and urban foot-prints, low rise 

buildings and the types of construction materials used on pavements and facades. 

 1.5.1. The Netherlands and “PEAK”

The sustainable physical distribution of goods and services in urban areas in the 

Netherlands where 89 % of the inhabitants live, features high on the Dutch political 

and economic agenda. In urban areas, it is estimated that commercial distribution 

accounts for 6 % to 10 % of all traffic movements. 

In order to promote a public private partnership in sustainable logistics, the Dutch 

Forum for Physical Distribution in Urban Areas (PSD) was established in 1995. The 

forum has evaluated the possible access regulations and permitting measures which 

help to promote sustainable solutions. The PSD serves as a networking organisation 

for all the parties involved in the supply chain and it has helped to place city freight 

distribution high on the public policy agenda. The forum facilitates the exchange of 

information on developments in 290 different municipalities. The forum encourages a 

uniform approach for establishing a vehicle entry regime in the Dutch municipalities 

for vans and trucks of 3.5 tonnes and upwards. The regulatory regimes are of 

sufficient duration (5 to 7 years) to encourage the development and implementation of 

innovative solutions. 

The Environmental Retail Trade & Traditional Crafts Decree, promulgated in 1998, 

brought the question of alleviating peak noise during loading and unloading into the 

spotlight. This order currently affects 65,000 Dutch companies and covers distribution 

activities in all the urban residential areas. To overcome the difficulty of complying 

with the stringent noise level standards proposed for governing loading and unloading, 

the authorities responded by setting up the PEAK programme; ‘Places, People & 

Products - Solutions for night distribution’. The programme has encouraged the 

market to adjust to the noise decree and to examine the quality of life and the 
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economic and technical feasibility issues involved. A range of technical modifications 

and new products that are necessary for delivery vehicles and related ancillary 

equipment to achieve an acceptable level of acoustic nuisance was developed. 

“PEAK” is led by the Dutch Ministry of Housing, Spatial Planning & Environment 

and is implemented by the technical development agency, Senter Novem.  

The targeted noise levels with respect to the retail trade was set at 65 dB(A) for the 

evening and at 60 dB(A) for the night and the early morning hours as can be seen in 

Table 1.1. 

Table 1.1. 1Dutch legislation for urban noise levels for the evening and night 

Period Peak noise level 
07.00 – 19.00 hrs No level applies 
19.00 – 23.00 hrs Peak level of 65 dB(A) 
23.00 – 07.00 hrs Peak level of 60 dB(A) 

The “PEAK” programme comprised ten projects which focused on (1) the transfer of 

knowledge (2) promoting quiet behaviour (3) modifications to loading and unloading 

locations and architectural design (4) developing low noise delivery trucks (5) quiet 

ancillaries including roll-cages, trolleys and fork-lifts (6) electric accessories such as 

reversing beep and torque limiters. The solutions and products demonstrated by the 

PEAK programme were evaluated in terms of their technical and economic feasibility. 

Methods for measuring peak noise during loading and unloading were designed by the 

Dutch technical consultancy company, TNO. The effectiveness of various noise 

reduction measures was quantified and comparisons made between different products.  

The low noise ancillaries and systems under development in the Netherlands were 

deemed to be suitable for further adaptation for the Irish market by home based 

suppliers. Because of their valuable experience in managing “PEAK”, Senter Novem 

were invited to participate in the Innovation Partnership consortium. The aim of the 

Innovation Partnership was not only to promote best practice for night deliveries but 

also to add novelty to the work already accomplished by “PEAK” and by other 

potential overseas suppliers. 

1 The Dutch Authorities set the limits in terms of true peaks or waveform peaks which are defined as 
the maximum positive dynamic excursion from a zero level of any waveform (BKSV, 2008)  
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1.5.2. France 

GART is a consortium of French municipal authorities concerned with promoting 

sustainable traffic management solutions and has reported on the situation regarding 

out of hours deliveries. GART felt that there was scope in many French cities for 

greater peak separation between the patterns for people movement and for goods 

movement. Surveys conducted by GART found that delivery and pick up rhythms 

varied according to the field of activity and to the types of businesses being served. 

Although the frequency of deliveries was increasing in French cities, this trend was 

constrained by the traditional late opening of stores, many of which do not open until 

after 10.00 am and by dwell time delivery restrictions on the streets 

Despite these constraints, many French municipalities see night time deliveries as a 

worthwhile and viable solution for easing congestion and this practice is strongly 

encouraged by the authorities in Dijon, Orleans, Marseilles and Paris. On the other 

hand, cities like Lille and Rennes reject night deliveries because of the noise nuisance 

and the anticipated complaints by residents. The GART view tends to favour the 

establishment of city centre “relay centres” or shared drop-points that can be quickly 

replenished at night and having local distribution organised during the day. The 

extension of the time limits for morning deliveries and the incremental development 

of low noise technologies and systems is seen by GART as offering realistic near term 

solutions.    

1.5.3. Spain (Barcelona) 

Barcelona has considerable experience of managing city freight in a sustainable 

manner.  Zone access restrictions have been implemented in the city centre to give 

privileged access to low emission and to low noise vehicles. Restrictive measures 

were first implemented 20 years ago in order to ease the traffic congestion in the 

historical centre and these have been successful.

Rising bollards and gates protect three restricted zones. Entry to the zones is possible 

at certain times only – vehicles may not access the zones between 11am and 3pm or 

between 5pm and 8pm. and deliveries and other commercial visits must be made 
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outside of these hours. Entry to the zone is controlled by the use of swipe cards or by 

telephoning a control centre. The authorities have sought to encourage the use of low 

noise equipment and of eco-friendly vehicles. 

1.5.4. England and Wales

In response to the EC Noise Directive, noise maps and action plans are being 

developed for the City of London and for other large cities. Noise abatement 

initiatives have been taken as a part of a wider policy to promote sustainable transport 

by the authorities in a number of cities and some such as Doncaster and Wandsworth, 

have been promoted by the Noise Abatement Society (NAS) with which DIT has 

collaborated. According to research results reported by the NAS in their newsletters, 

noise complaints by residents have increased five-fold in the last five years and an 

increasingly noisy environment has affected productivity in the work place and has 

contributed to ill health (NAS, 2008).   

In England and Wales, traffic related issues of topical concern, including noise 

nuisance, are often dealt with by Freight Quality Partnerships or FQPs which serve as 

an effective consultative forum for all the parties concerned. ‘FQPs’ were first 

established in the mid 1990’s and by 2003, thirty partnerships were in place. FQPs 

have helped to achieve agreements on routing, load sharing, town centre access and 

permitting controls. Agreed procedures to enhance sustainability have been put in 

place by councils in Hampshire, Southampton, Ripon, Northampton, Leicester and 

Nottingham. 

1.6. Delivery patterns and rhythms in Dublin city centre 

Research completed by the author at Trinity College Dublin (TCD), as referred to in 

1.1, gave new insights into freight movements in the city centre; this showed that the 

city now needs to cope with new rhythms and patterns affecting deliveries. These 

patterns were found to be driven by the “24/7” city living, the demand for just-in-time 

deliveries, the unwillingness of retailers to hold stock, by the e-society and internet 

shopping.
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The logistics data was based on a sample size of 1,400 deliveries to 160 stores and the 

data was evaluated under a number of headings including (a) the categories of goods 

delivered to the stores as shown in Figure 1.6 and (b) the dwell times at the different 

premises as shown in Figure 1.7.  

Figure 1.6. Types of goods delivered to 160 city centre stores (O’Mahony, 
Finlay and Finnegan, 2004) 

It can be seen from Figure 1.6 that deliveries of foodstuffs accounted for the highest 

proportion of city centre deliveries at 38 %.

Figure 1.7. Dwell times in minutes for night time deliveries by type of 
premises (O’Mahony, Finlay and Finnegan, 2004) 

The TCD data indicated that the mean dwell time for delivery trucks was 14 minutes 

as can be seen from Figure 1.7 and that 39 % of deliveries made by HGVs to the city 

centre were at the kerb-side. The dwell times varied across different business types; 

for example deliveries to drapery shops had an average dwell time of 26 minutes 
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while deliveries to offices and finance houses had a dwell time of only 7 minutes. 

These findings were seen to have implications for city centre accessibility both for 

pedestrians and for overall traffic during the day, and for causing noise disturbance 

during the night and early morning.  

As a part of the Innovation Partnership, the National Institute for Transport Logistics 

(NITL / DIT, 2006) which is a part of DIT, was asked by the author to manipulate 

their data basis to ascertain the delivery times for consignments from six major out of 

town distribution depots to premises within the M50 ring and within the canal 

cordon/central business district. Logistics data from ten different food companies 

totalling 2,509 actual deliveries was examined to determine the spread of delivery 

times during a one week period. 

Figure 1.8 shows the spread of delivery times across the 24 hour day for 2,509 drops 

within the M50 motorway ring and within the central business district (CBD). Of the 

total of 2,509 deliveries tracked within the M50 ring, 828 took place within the canals. 

Within the M50 ring 15 % deliveries take place before 7am congestion peak and the 

busiest period was between 8am and 9am when 15 % of deliveries occurred. In 

contrast, within the canal cordon a higher proportion or 24 % of deliveries took place 

before the 7am peak. It was found however that some 16 % of food deliveries still 

occurred within the canals between 8am and 9am which coincides with the morning 

congestion peak.

The pattern of deliveries is likely to have moved significantly to the early morning 

since the data was collated in 2004 and following the implementation of the HGV 

strategy in February 2007 restricting access to the city centre by large HGVs during 

the day between 7.00am and 7.00pm. 
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Figure 1.8. Comparison of delivery times between central business district 
and the area bounded by the M50 ring road (NITL / DIT, 2006)

The location of the drop points within the canals cordon is shown in Figure 1.9 and all 

of these deliveries originated from six depots as shown also in Figure 1.9. 

Deliveries within the Canal Cordon

Figure 1.9. Drop from 6 depots to points within the canal cordon (NITL / DIT, 
2006)

An example of a typical kerb-side delivery to an inner city convenience store by a five 

axle HGV is shown in Figure 1.9. 
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Figure 1.10. Photograph showing a typical kerb-side delivery to a city centre 
store

1.7. Case study demonstrating savings from moving to the night

At the request of the author, a hypothetical case study was formulated by NITL in 

order to estimate the likely savings to a logistics service provider by changing from 

day time to night deliveries (NITL / DIT, 2006). The case study was based on the 

operations of a distributor of temperature controlled foods who uses five 17 tonne 

rigid trucks to service the area within the M50 ring. NITL analysed a week’s activity 

and modelled it using the proprietary distribution planning software. The sample size 

comprised 636 deliveries involving an average of 21.2 drops per day for five trucks 

for six days during one week.

The NITL model indicated that four drivers on night duties could do the work 

currently done by five. Significant cost savings would accrue due to a significant 

decrease in the time taken to get to and from the outlying depot to the city centre. The 

time otherwise spent stuck in traffic and trying to find parking would be devoted 

instead to ‘productive’ work. It was estimated that the distributor would save € 80,000 



25

per annum by moving to the night and by being in a position to take one truck and a 

driver off the road and by saving on fuel costs. 

1.8. The Innovation Partnership - “Low Noise Solutions for Night Deliveries”

As mentioned earlier this thesis forms a part of the research that was conducted under 

the Innovation Partnership. A consortium of commercial partners and the municipal 

authority worked closely with DIT to develop low noise, low cost products and 

materials which could be sourced locally and be easily adapted for the Irish market. 

Products selected for development included; floor and side-wall linings and coatings 

for the HGV trailer units; tail lift coatings; silent refrigeration systems, quiet roll-

cages, portable kerb-side ramps and mats, forklift truck exhausts and delivery site 

acoustic docking bays. The author participated in all aspects of the Innovation 

Partnership but focused especially on the initial field trials which identified the events 

which caused the peak sounds and annoying frequencies and on developing acoustic 

damping solutions for the vibrating floors and panels of the HGV trailer and tail-lift 

platform and on attenuating the high frequency sounds caused by the manipulation of 

the steel roll-cages. The conduct of this research is described in the later chapters. 

On completion of the Innovation Partnership a number of new products had been 

successfully demonstrated and tested (1) a new water based acoustic coating (2) a 

“hush-kit” for retro-fitting to the steel roll-cages (3) a portable ramp for kerb-side 

deliveries (4) an acoustic docking bay for logistics sites (5) a “quiet” exhaust system 

for fork-lift trucks (6) remotely controlled “silent” refrigeration.

The Innovation Partnership was seen by Dublin City Council as providing a useful 

basis for formulating action plans for traffic and for setting realistic and broadly 

acceptable acoustic limits for night deliveries in accord with the EC Noise Directive 

(EC, 2202).
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1.9. The commercial case for developing HGV related acoustic products

It was assumed that the demand for acoustic products and modified HGV ancillaries is 

driven by the sales of trucks which conform to the pending EC related urban noise 

regulations. The trends in HGV sales were therefore evaluated and a close 

examination was made of the significant market for low noise products in the 

Netherlands, a new market which is expected to emerge in Ireland following the 

formulation of the EC related noise action plans by the four municipal authorities in 

the greater Dublin area in late 2008. 

As a part of the Innovation Partnership, an assessment was made of the likely markets 

for low noise HGVs and related ancillaries in Europe and in Ireland.  This exercise 

involved a review of the trends in the HGV markets in western Europe and in Ireland. 

Assistance was sought from a Scottish based marketing intelligence consultant,

Schmidt’s Truck Aid Ltd. (Schmidts Truck Aid, 2005). 

The market intelligence indicated that seven in ten of the heavy vehicles (greater than 

16 tonne gross vehicle weight) sold in Western Europe fall into the expanding 

category of articulated trucks which are increasingly used for ‘round the clock’ 

deliveries and for country and continental-wide trips. The demand for low noise heavy 

goods vehicles (HGVs) which have the flexibility to access urban areas at night and to 

transit low noise emission zones was found to be on the increase. This trend is 

expected to accelerate when cities bring into force action plans in accord with the EC 

Noise Directive. 

According to the Schmidt’s review of European markets, sales of trucks of 3.5 tonne 

gross vehicle weight (GVW) and over, in 2004 were 335,981 of which the heavier 

trucks of more than 16 tonne GVW accounted for 230,700 or 69 % of total sales, 

reflecting a significant trend towards the bigger vehicles. Between 2003 and 2004 

sales of trucks of 16 tonne GVW increased by 8 % while sales of smaller 6 tonne 

trucks declined by 3 %. The forecast for 2011 was for an increase of total sales to 

370,400 trucks of which 257,100 will be over 16 tonne GVW. 
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A trend towards the use of bigger HGVs for ‘round the clock’ deliveries coupled with 

the requirement to access urban areas and to respect noise restrictions is expected to 

accelerate the demand for the heavier low noise modified HGVs and ancillaries. These 

trends in the market will create new business opportunities for the suppliers. 

1.9.1. HGV sales in Ireland 

The market intelligence provided by Schmidts Truck Aid suggested that Irish sales of 

new HGVs of 16 tonne GVW and over, will range from 2,400 units to 3,200 units per 

year during the five years from 2004 to 2010 and that most of these vehicles will need 

to respect low noise restrictions if they are to have ready access to noise sensitive 

residential areas during the night (Schmidts Truck Aid, 2005). The value of these 

HGV sales was estimated to amount to € 300 million per annum and this volume of 

activity can be expected to benefit locally based HGV trailer body builders and the 

suppliers of ancillaries and acoustic materials.  

It was assumed that the floors and side-walls of new HGV trailer units (3,000 per 

year) would need to be fitted with acoustic materials to meet the EC requirements and 

that these could be applied locally. It was also assumed that low noise roll-cages could 

also be sourced or retro-fitted in Ireland and on the basis that each large HGV contains 

up to 48 cages and that the population of roll-cages in the country amounts to 200,000. 

This activity could also create significant commercial opportunities for local suppliers.

1.9.2. Sales of “Quiet Products” in the Netherlands 

As mentioned earlier the Dutch “PEAK” programme has stimulated the development 

and sales of “quiet products” by a combination of noise limit regulations for night 

deliveries and the provision of government subsidies. 

According to Senter Novem, sales of quiet products in the period 2004-2008 were 

valued at € 60 million and 17,000 units were sold. The sales were supported by a 

government subvention of € 6 million which has now ceased because the technology 

is deemed to be approaching maturity (BESTUFS, 2007). 
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The prices for low noise products in the Netherlands were found to be from 10 % to 

15 % higher than for standard products and these have merited “type” approval under 

the PEAK programme. The Dutch suppliers see low noise products as a promising 

growth area and realise that many of the bigger logistics providers are willing to pay a 

premium for low noise products if this permits them to access noise sensitive areas 

and to comply with international and national standards. Similar opportunities present 

themselves to Irish suppliers. 

1.10. International research on traffic noise abatement

The EC has supported significant research into the wider area of traffic noise and 

night deliveries can be considered in this context. The EC SILENCE programme 

supports the development of technologies which can attenuate traffic noise 

(SILENCE, 2005). The SILENCE initiative brings together more than 40 partners 

comprising vehicle manufacturers, equipment suppliers, municipal authorities and 

research institutes which include DIT. Irish participation ensures an awareness of best 

practice and access to ongoing R&D results throughout the EU. 

The SILENCE programme addresses how the different identifiable sources of traffic 

noise such as tyres, engines, transmission and exhausts might best be attenuated. 

Whilst the EC programme has focused on by-pass traffic noise rather than on night 

deliveries, the development of quieter diesel engines and exhaust systems for HGVs 

by the automotive industry would be beneficial. 

As a part of the EC “CALM” programme, the potential levels of noise reductions in 

dB(A) expected from the exploitation of the different identifiable sources have been 

assessed and targets have been set. A ‘road map’ for research into noise attenuation 

possibilities has been agreed and the potential noise reduction targets and research 

requirements for road traffic are listed in Figure 1.11 (CALM, 2005-2008). 
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Figure 1.11. Noise reduction potential from different R&D activities as 
foreseen by the EC-CALM programme (Rust and Affenzeller, 2005) 

The European Commission has taken a ‘systems approach’ to developing its R&D 

programmes for the attenuation of traffic noise and proposes a cost benefit approach 

to future investment. The EC attaches great importance to the interaction between 

research and the formulation of realistic national policies and regulations. The 

development of quieter night delivery operations has a contribution to make to this 

agenda.

1.11. Discussion

A number of powerful factors were found to drive the trend to night deliveries; 24/7 

shopping, the desire by distributors to avoid congestion peaks, just in time deliveries 

and e-logistics, the desire by retailers to free up customer access to their premises. 

Earlier research conducted by the author at Trinity College Dublin gave new insights 

into the patterns and rhythms of deliveries to shops in the city centre, particularly with 

regard to the parameters which have relevance for noise disturbance such as deliveries 

by time of day, the dwell times at the kerb-sides and the types of goods delivered. It 

was also found that unlike many other European cities, a large proportion of deliveries 
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to Dublin stores are made at the kerb-side rather than to dedicated or underground 

logistics sites (O’Mahony, Finlay and Finnegan, 2004). 

The trend to night deliveries in Dublin was also evident from a NITL / DIT survey 

which showed that in 2005 within the canal cordon, 24 % of all deliveries of 

temperature controlled foods were made to shops before the 7am congestion peak. 

This trend is likely to have accelerated following the introduction in February 2007 of 

the HGV strategy and restrictions on five axle trucks by Dublin City Council and this 

will strengthen the case for a more sustainable approach to night deliveries. 

A compelling social and “public good” justification can be made for supporting 

research into mitigating the potential damage to health caused by night-time 

disturbances. As mentioned in section 1.2, estimates by the EC of the social and 

economic costs of traffic noise were found to be very substantial. The damaging effect 

of sleep deprivation was found to be supported by a significant body of medical 

research into the health implications of traffic and aircraft noise by bodies such as the 

World Health Organisation. 

Public concern with noise pollution has moved up the European political agenda. In 

the interests of ensuring a satisfactory quality of life for residents many municipal 

authorities supported by EC through its noise directive, were found to have taken steps 

to mitigate the nuisance caused. DIT through the collaborative Innovation Partnership, 

“Low Noise Solutions for Night Deliveries”, has helped to place Dublin as a 

significant player in this debate. This research forms part of the Innovation 

Partnership and, as will be seen in later chapters, has focused on developing solutions 

for attenuating peak noises caused by the manipulation of steel roll-cages inside the 

HGV trailer units and along the pavements during night delivery operations. 

It was discovered that the future demand for low noise products in Ireland will be 

driven by (1) the growing trend to night deliveries in Dublin city centre (2) the 

implementation of action plans by Dublin City Council in accord with the EC Noise 

Directive and Statutory Instrument 140 (3) the numbers and sales of the larger HGVs 

that will require night time access to residential areas (4) increasing complaints to 

Dublin City Council and litigation by residents and (5) the acceptability to the 



31

distributors and retailers of bearing the additional costs of acquiring and of retro-

fitting “quiet” products and acoustic materials. 

Following an overview of international research on traffic noise, the Dutch “PEAK” 

programme was identified as having created a very relevant body of experience on 

which to build the DIT led Innovation Partnership.  The Dutch government have, 

since 1998, set stringent noise limits for night operations in their major towns and 

have successfully encouraged the development and commercialisation of a new range 

of low noise products. A combination of regulations for night deliveries together with 

government subsidies has stimulated sales of “quiet” products to the value of € 60 

million in Holland in the period 2004-2008.  

Collaboration was arranged with Senter Novem in order to avail of and to build on 

their experience in managing the “PEAK” programme. Participation in other relevant 

EC acoustic research networks, namely “BESTUFS”, “SILENCE” and “CALM”, was 

also actively promoted. Having reviewed these international developments, it became 

evident that “no one size fits all” solution could be found to meet the needs of all 

cities and that there was scope to develop new products and solutions for selected 

niche applications in Ireland.

On the basis of market research it was predicted that demand for low noise products in 

Ireland will become significant if this demand is related to the sales of the heavier 

HGVs which are expected to grow to 3,200 per annum. A proportion of the existing 

HGV fleet may also require modification to carry low noise trailers, “quiet” roll-cages 

and other ancillaries if they are to enjoy access to “noise sensitive urban areas” when 

the noise action plans come into force in late 2008 in accord with the EC noise 

directive. 

At the state of development in the Netherlands in 2007 there was found to be a cost 

penalty of from 10 % to 15 % for acquiring low noise products and to modify an HGV 

tractor and trailer. The challenge for Irish suppliers is to reduce the additional cost 

penalty for the particular products and acoustic materials which are within their 

capability to develop here. Because it can be shown that a convincing business case 

can be made for “moving to the night” in terms of the significantly better logistics 
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efficiencies accruing, these savings should be seen by the distributors and retailers as 

offsetting the additional costs of reducing the disturbances caused to residents. 

The objectives of this research were to (a) identify the peak sounds, frequencies and 

the related events that occur during night delivery operations at the kerb-side (b) focus 

on the components of the HGV trailer unit and ancillaries that could be economically 

retro-fitted with acoustic materials and (c) attenuate the noise and signature 

frequencies associated with these particular events and components by the application 

of suitably selected materials. 

To conclude, a clear justification can be made for undertaking the applied research 

described in the following chapters on both social and economic grounds. A review of 

developments internationally has indicated room for further innovation and adaptation 

to suit the conditions in Dublin city centre. 
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CHAPTER 2. RESEARCH METHODOLOGY AND LITERATURE 

REVIEW

2.0. Introduction

The aim of this chapter is to describe the approach and methodologies used for this 

research. A project plan and sequence of tasks was proposed and the appropriate 

standards and test procedures were selected and developed. 

As mentioned in Chapter 1, a review of the literature and interactions with the local 

authorities indicated a growing public awareness of noise control issues.  According to 

Bruel and Kjaer sound quality has emerged as an increasingly important aspect of 

product design and of industrial processes and has made acoustic material selection 

increasingly important for designers (Bruel and Kjaer, 2006). 

Rather than considering a fundamental re-design of the equipment used in night 

delivery operations, the focus was on selecting suitable acoustic materials that could 

be easily retro-fitted. Consideration was therefore given to acoustic material testing 

which is the process by which the acoustic characteristics of samples are determined 

in terms of their absorption, reflection, damping and transmission loss (Bell and Bell, 

1994, Chapter 6). The methods that are used to determine the acoustic properties of 

materials were examined and were found to involve exposing samples to known sound 

fields and measuring the effect of their presence on the sound fields.

The research methodology was devised to address the hypothesis that – 

Acoustic materials are available or can be developed and applied to Heavy Goods 

Vehicles and ancillaries, which effectively and economically abate the noise caused 

by night deliveries
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2.1. Outlining the tasks involved

A series of tasks were devised to identify the peak noise disturbances and frequencies 

caused by night deliveries and how these might be attenuated by the application of 

suitable acoustic materials. 

Field trials to selected shops located in different urban streetscapes were first of all 

organised to identify the peak noises. A choice was made as to what standards might 

best be applied for this particular task having regard to national and international 

practices.

Sound analysers and suitable software were procured, courtesy of Dublin City 

Council, to help record the acoustic and graphic data collated from the night-time 

deliveries. This made it possible to record both the sound pressure level peaks and the 

signature frequencies associated with the different events. 

The standards and protocols used by the Irish local authorities and the courts for 

dealing with noise complaints were considered and adapted as appropriate. It was 

found however that the UK standard, BS 4142 is the standard commonly used in 

Ireland by the Environmental Protection Agency and the local authorities (EPA, 

2003). While this is the standard developed for measuring industrial noise, it has been 

adapted by the municipal authorities in Dublin to assess the impact on residents of 

disturbances on the streets including traffic related events. The parameters and theory 

underpinning BS 4142 and ISO 1996 were examined and these are described later in 

the chapter (British Standards, 1997 and ISO, 1996). It was practical and feasible to 

conduct the experiments described later in this thesis according to these recognised 

procedures.

The question of which category of acoustic material to apply was considered. The 

categories were found to comprise (1) absorption (2) transmission loss and (3) 

damping materials (Bell and Bell, 1994). Because the peak sounds that arise during 

deliveries (the banging of doors; raising of tail lifts; transiting of roll-cages; collisions 

with walls and floors) were found to be caused by impacts with resonating metal 

surfaces involving high frequency screeching noises, it was felt that the focus should 
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be on the application of damping materials. The reasons for selection and developing 

damping solutions are elaborated in more detail in chapter 4. 

It was also appreciated that the criteria for selecting suitable acoustic materials should 

also involve an appraisal of their likely durability in fleet service and ease of 

application and thickness. 

The acoustic pre-screening of acoustic materials in the laboratory was arranged before 

application in the field. A series of tests was designed to simulate the events that occur 

during delivery operations at the kerb side. Special test rigs comprising a falling 

weight and pendulum apparatus were fabricated. 

The test rigs were used to evaluate the acoustic performance of an acoustic coating 

and the performance of this new material was compared in the laboratory with 

selected commercially available damping materials. The new coating was 

subsequently tested on board a “concept” HGV trailer unit located at a logistics depot. 

A carousel test rig was also erected to evaluate the acoustic effectiveness of 

modifications to a standard mild steel roll cage involving the application of a “hush-

kit”. The rotating carousel was designed to simulate the passage of a roll cage across 

the floor of an HGV trailer by rattling the roll-cage and recording the noise generated. 

The experiments were regarded as replicating under controlled conditions the events, 

peaks and associated frequency spectra occurring from the handling of rollcages 

during deliveries. In this way the effectiveness of the application of damping adhesive 

strips to different parts of the roll-cage (frames, castors, folding base etc.) could be 

assessed and a hush-kit package could be developed. The tests also involved colliding 

empty and partly loaded cages against a fixed obstacle and with other roll-cages and 

measuring the effectiveness of the hush-kit under these controlled conditions. These 

tests are described in Chapter 5. 

A time and motion study was also carried out for the preparation and application of 

the hush-kit and this made it possible to assess the likely trade-offs between the 

acoustic effectiveness of the hush-kit and its costs and durability. 
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2.2. Focus on innovation

The challenge was to take this field of research forward in terms of additional 

innovation building on the reported results of the Dutch “PEAK” programme. While 

the “PEAK” programme identified the peak sounds that occur during deliveries, the 

associated signature frequencies were not examined with a view to matching these 

with the application of suitable acoustic attenuating materials. This aspect of the 

investigation was seen as bringing forward the research completed in the Netherlands 

and to have particular regard for the logistics patterns, urban topography and climatic 

conditions prevalent in Ireland. The particular methodology, experiments and test rigs 

used were also regarded as innovative. 

2.3. The research strategy

A research strategy comprising eight different actions or tasks was proposed.  A brief 

description and justification for these actions is given below.    

Action 1: A review of national and international regulations and norms  

European and Irish legislation was reviewed and the roles of the relevant agencies in 

Ireland such as the Environmental Protection Agency and the local authorities were 

also examined. The national and EC regulations which are an important driving force 

towards quieter traffic in cities are described in Chapter 1. The standard used by the 

Irish courts in response to complaints by the public and the rating methodology 

preferred by the Environmental Protection Agency under its “Guidance Note for 

Noise in Relation to Scheduled Activities” is British Standard 4142 (British Standards, 

1997). According to this procedure a night time delivery may be assessed in relation 

to the ambient or background noise in the particular location (EPA, 2003). 

Action 2: The social and commercial justification for this research.   

It was desirable to justify this research in terms of the need to mitigate the social and 

health damage caused by sleep deprivation due to night time traffic disturbances. A 
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commercial justification should be made in light of the growing market potential for 

low noise products and materials in European cities that enforce low noise regulations. 

As reported in Chapter 1, similar public concerns and awareness was found to apply in 

Dublin.

Action 3: First set of field trials to assess the peak noise disturbances caused by 

kerb-side deliveries to shops. 

Field trials were organised to identify the particular events that cause the peak sounds 

during kerb-side deliveries. A sample size of eight representative stores was selected 

where kerb-side deliveries occur in the early morning. The stores were located on both 

narrow and on wide streets which, because of their characteristic volumes of traffic, 

width and height of buildings, suffer different levels of by-pass traffic noise and 

reverberation.

The procedure involved measuring background noise for a period of about 5 minutes 

before a delivery occurred and then during the actual delivery operation which 

typically lasted for a dwell time of from 14 to 22 minutes. The peak noises were 

recorded in accordance with BS 4142 and could be attributed to the different events 

occurring during the delivery operation. This was done by matching the acoustic data 

with graphic data taken by a night vision camera which recorded the events taking 

place at the kerb-side. The weather conditions during each trial period were also 

noted.

B&K “Evaluator” software was used to analyse the field trials data and to develop the 

frequency spectra associated with the different peak events (Bruel and Kjaer, 2007). 

Action 4: Materials selection & development 

The objective of this task was to select suitable acoustic materials that might be 

applied to attenuate the peak sounds and signature frequencies identified in action 3. 

The different categories of commercially available acoustic materials were reviewed 

in order to select the most appropriate category. As described later in Chapter 4, it was 
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found that acoustic materials are classified under three headings (a) absorbing (b) 

barrier and (c) damping (Bell and Bell, 1994, pp.193-236). The application of 

damping materials promised to be the most effective way for attenuating the high 

frequency noises caused by the impacts and collisions of roll cages within the HGV 

trailer and onto the tail lift platform. As explained later in Chapter 4, the load carrying 

requirements and restricted dimensions of the HGV trailer unit could not 

accommodate the fitting of thick sound absorbing panels or of dense multi-layered 

barrier materials to the walls or floors of the trailer. The application of damping 

materials to the metal floors, tail gate platforms and kick-walls was seen as the most 

effective way of attenuating the high signature impact frequencies which were found 

to be generated by the handling of the roll-cages, as described in Chapter 3. On this 

basis it was decided to develop an acoustic coating which could be easily applied to 

the substrates used on the floors of the HGV trailers and tail lift platforms.

In the case of the steel roll-cages, the application of damping strips to the identifiable 

resonating parts offered a promising solution. The challenge as described in Chapter 5, 

was to develop a practical solution for attenuating the excessive noises created by the 

handling and stacking of the metal cages. 

Action 5: Laboratory pre-screening of new acoustic coating 

The objective of the laboratory trials was to evaluate the performance of a new water- 

based acoustic coating and to compare it with commercially available products. The 

experiments and methodology are described in detail in Chapter 4.

The standards used internationally for evaluating acoustic materials were reviewed 

and the application of special test procedures based on an adaptation of BS 4142 was 

considered to be appropriate (British Standards, 1997). In the absence of a vibrating 

bar or Oberst Bar apparatus which is commonly used for measuring damping 

characteristics, the damping coating was tested on a falling weight apparatus and on a 

pendulum test rig designed by the author and illustrated in Chapter 4.  

The damping formulation was first of all coated onto small aluminium and mild steel 

panels and the sound generated by the repeated dropping of a machined weight was 
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measured using a procedure based on the ASTM standard for comparing the impact 

performance of different surface coatings (ASTM 2794, 1993). This test was repeated 

on larger 1 meter square coated panels, by impacting the panels with a suspended 

pendulum weight. 

The new formulation was also compared with a selected proprietary coating and also 

with adhesive stripes of viscoelastic composites attached to the uncoated backs of the 

panels. The physical and wear and tear properties of the different coatings were also 

compared. 

In order to investigate further the damping characteristics of the coating, its 

reverberation and decay characteristics were measured by attaching the pendulum 

apparatus to an oscilloscope, as described later in Chapter 4. 

Action 6: Repeat of the laboratory tests on board the concept HGV 

In order to predict how the acoustic coating might perform in the field, the laboratory 

tests were repeated on-board an HGV trailer unit located at a distribution depot. The 

tests involved transporting the portable pendulum and the falling weight devices to the 

distribution depot test site (as described in chapter 4), placing them on-board the HGV 

and measuring the sound emerging through the walls of the trailer when the coated 1 

meter square aluminium panels were repeatedly impacted by the falling weight and by 

the pendulum. A falling weight test was also carried out on the mild steel substrate by 

placing a coated panel on the tail-lift platform and by recording the impact sounds. 

The noise attenuation results were compared with the earlier laboratory results 

obtained under the more controlled conditions indoors. 

Action 7: Evaluation of modified rollcages 

The field trials of deliveries to shops as described in Chapter 3 indicated that the 

manipulation of the roll-cages was a major source of peak noise. It was therefore 

decided to develop a “hush-kit” which could dampen the high frequency noises and 

which could be easily retro-fitted. The hush-kit comprised damping strips and rubber 



40

stoppers which could be applied to the identifiable resonating parts of the steel roll-

cages.

A special carousel test rig was constructed to evaluate the effectiveness of applying 

the components of the “hush-kit” to the different parts of a steel roll-cage. The rig was 

designed to simulate the transiting of roll-cages across uneven pavement surfaces. 

Tests also involved colliding empty and partly loaded cages against fixed barriers and 

with other cages and evaluating the acoustic effectiveness of the hush-kit under these 

conditions. The development and evaluation of the hush-kit is described in Chapter 5. 

The durability of the acoustic formulation was assessed by transiting roll-cages 

repeatedly across a coated 1 meter square aluminium panel and measuring the 

resulting wear and abrasion. 

Action 8: Overview of the research results and conclusions  

Finally the research results were reviewed, conclusions drawn and recommendations 

made for continuing research including the possible investigation of certain 

unexplained phenomena. 

2.4. Phasing and timing of the actions

At the inception of the project an outline project plan was proposed for the period 

October 2006 to January 2008. This outline timetable was generally adhered to and 

the phasing of the actions occurred as planned. The development of a sufficiently 

robust acoustic coating formulation by DIT-CREST for evaluation under controlled 

conditions was however more protracted than at first envisaged.

The tasks involving the literature searches, making a social and commercial 

justification for the project and the preliminary field trials of deliveries to shops, were 

all completed by June of 2007.  The overall Innovation Partnership, of which this 

research is a part, was completed on time by October 2007. 
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2.5. Methodology used by the Irish authorities for measuring noise

It is not the intention to repeat in this dissertation the basic concepts of the study of 

vibration and noise as already described comprehensively in the literature and in the 

texts which were consulted during the course of this research. Basic theory was 

however studied initially in order to understand why particular procedures, standards 

and parameters are generally employed for assessing noise nuisance and in order to 

devise tests which could be applied to this particular project. The main texts, 

guidelines and regulations which were most frequently consulted are described in the 

bibliography. These included texts by Bell and Bell (Bell and Bell, 1994), by Smith 

and Peters (1996) and by Bies and Hansen (1988) and by Bruel and Kjaer (2006) as 

well as the relevant Irish environmental guidelines (Environmental Protection Agency, 

2006) and the British and international standards on noise (British Standards 4142, 

1997; ISO 1996, 1987). 

It was noteworthy as mentioned earlier, that the preferred rating methodology 

recommended by the Environmental Protection Agency and by the municipal 

authorities is broadly in line with BS 4142 and the related ISO 1996 procedures and 

for this reason the parameters used in this protocol are explained below in the 

following section (EPA, 2003 and British Standards, 1997). 

2.5.1. Parameters employed under British Standard 4142 and ISO 1996 

British Standard 4142 (1997) prescribes a method for rating industrial noise affecting 

mixed and residential areas and may be used by the Irish authorities to assess 

disturbances caused by traffic related events such as deliveries to premises, rubbish 

collections and reversing trucks which ‘was revised in 1990 to align with ISO 1996 

parts 1 to 3’ (BS, 1997, p.ii). 

In accord with the BS 4142 standard, sound pressures are measured by a number of 

parameters such as LAF90 or LAeq. For example LAFmax measures the maximum 

sound pressure level over short periods of time while LAeq calculates the equivalent 

average of fluctuating sound pressures over a specified period of time. An accepted 

norm for measuring the disturbance caused by particular events is to compare the LAeq
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measured for the duration of the particular event with the LAF90 for the preceding 

background period. Peak sounds may be measured for a minimum period of 0.125 

seconds.

The authorities generally perceive events which add 5 dB(A) or more to the 

background noise levels as causing serious annoyance to residents in the vicinity of 

the noise source. In other words, if the difference between LAF90 (i.e. the maximum 

sound pressure level occurring for 90 % of the measurement period) for the 

background level and LAeq of an event relating to specific noise level is 5 dB(A) or 

greater, then the exposure to the noise is deemed to be excessive. 

In order for a tone or impulsive element to warrant a penalty it should be clearly 

noticeable and audible. Situations in which a 5 dB penalty should apply include the 

following: the noise contains a distinguishable, discrete continuous note (whine, hiss 

or screech): the noise contains distinct impulses (bangs, clatters or thumps); the noise 

is irregular enough to attract attention; the level in the 1/3 octave band is 5 dB or more 

higher than the level in the two adjacent bands and the tonal components are clearly 

audible.

The EPA Guidance Note advises that at night time, no tonal or impulsive noise from a 

facility should be clearly audible in a noise sensitive location. Early morning kerb-side 

deliveries to shops are regarded as being covered by this advice note (EPA, 2007). 

The procedures for setting up the microphones to record deliveries and to conduct the 

experiments in the laboratory are described later in the relevant chapters 3, 4 and 5 

and are broadly in accord with BS 4142 (BS, 1997, p.2) and the Environmental 

Protection Agency Guidance Note on Noise in Relation to Scheduled Activities (EPA, 

2006, p.8). The parameters and conventions used are defined below. During all the 

laboratory and field tests described in the later chapters, the B&K microphone was 

placed at a distance of 3.5 meters from the source and 1.2 meters above ground level. 

The location of the microphone had regard to the recommendations of free-field 

conditions as set out by the Environmental Protection Agency (EPA, 2006, p.26) 
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Decibels (dB) 

The decibel is the scale in which sound pressure level is expressed. The decibel (dB) 

is a dimensionless unit of ratio which is used to express the relationship between a 

variable quantity and a known reference quantity.  

The range off sound pressures of relevance in noise control varies from 2x10-5 Pa

(Pascals) at the threshold of hearing to normal atmospheric pressure or 1x105 Pa  (Bell 

and Bell, 1994). 

This range of variation in values is of an inconveniently large order and because the 

response of the human ear is not directly proportional to pressure, a more manageable 

logarithmic scale is used.   In practice therefore a sound pressure level (SPL) is 

measured in decibels and defined as: 

0

1
10log20

p
pSPL         (2.1) 

This is not an absolute scale but a comparative scale relating to two different 

pressures. Pressure P0 is taken as the pressure at the average threshold of hearing at 

1000 Hz or 2x10-5 Pa (N/m2).

A-Weightings 

The sound level meters used were calibrated against an A-weighted filter to match the 

frequency response of the human ear. The A-weighted curve is commonly used to 

determine the equal loudness contour for the human ear.  It has been shown that the 

decibel readings on the A-scale closely approximate the changes in the sensitivity of 

the ear to different frequencies, particularly at the lower sound levels (Bell and Bell, 

1994, pp.5-6). 
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Equivalent continuous A-weighted sound pressure LAeq,T

This is the value of the A-weighted sound pressure level in decibels of continuous 

steady sound that within a specified time interval, T, has the same mean-squared 

sound pressure as a sound that varies with time. It is given by the following equation: 

2

1
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dtt
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L     (2.2) 

where:

LAeq,T is the equivalent continuous A-weighted sound pressure level determined over 

a time interval T = t2 – t1

P0 is the reference sound pressure a20

PA(t) is the instantaneous A-weighted sound pressure (Pa)

The equivalent continuous A-weighted sound pressure level is quoted to the nearest 

whole number of decibels.

Specific noise source 

This is defined as the noise source under investigation for assessing the likelihood of 

complaints. 

Other terms used are; 

Reference time interval, Tr

This is the specified interval over which an equivalent continuous A-weighted sound 

pressure level is determined.

Specific noise level, 
rTAeq

L
,

This is the equivalent continuous A-weighted sound pressure level at the assessment 

position produced by the specific noise source over a given reference interval. 
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Measurement time interval, Tm

This is the total time interval over which measurements are taken. 

Ambient noise 

This is the totally encompassing sound in a given situation, at a given time, usually 

composed of sound from many sources near and far. 

Residual Noise 

This is the ambient noise remaining at a given position in a given situation at a given 

time, when the specific noise source is suppressed to a degree that it does not 

contribute to the ambient noise. 

Residual noise level, LAeq,T

This is the equivalent continuous A-weighted sound pressure level of the residual 

noise during a period of time T in dB with an A weighting. 

Background noise level, LAF90,T

This is the A-weighted sound pressure level of the residual noise at the assessment  

position that is exceeded for 90 % of a given time interval, T, measured using time 

weighting, F, and quoted to the nearest whole number of decibels. 

Frequency spectra

The frequency spectra which were downloaded using the B&K software displayed the 

sound pressure levels in LAFmax in dB on the X axis across the frequency range 

displayed on the Y axis.

The upright “A” bar is the overall LAFmax value i.e. the sum of the 1/3 octave bands. 

The “L” is the LLFmax value and is a root mean square parameter integrated over a 
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period of time. The time period is described by the notation “F” which stands for fast, 

and equates to a time constant of 0.125 seconds. It is therefore the maximum 0.125 

seconds of noise as measured during the measurement period. It has no frequency or 

“A” weighting i.e. it was taken with linear weighting. These parameters are defined in 

the Glossary of Terms.

Octave Bands

Bruel and Kjaer (2008) defines Octane bands as: 

A range of frequencies whose upper frequency limit is twice that of its 

lower frequency limit. For example, the 1000 hertz octave band contains 

noise energy at all frequencies from 707 to 1414 hertz. In acoustical 

measurements, sound pressure level is often measured in octave bands, 

and the centre frequencies of these bands are defined by ISO and ANSI. 

The sound pressure level of sound that has been passed through an 

octave band pass filter is termed the octave band sound pressure level. 

Similarly, for one-third octave bands, there being three such bands in 

each octave band. 

A sound spectrum is split up into octave bands this is where the octave band is divided 

into three components called the third octave bands and this gives a more detailed 

description of the frequency content of the noise. The centre frequencies used are 16 

Hz, 31.5 Hz, 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz 

(Sharland and Lord, 2005, pp.15-6; Noisemeters.com, 2008). 

Adding and Averaging Logarithmic Units 

Decibels are logarithmic units which need to be computed and averaged according to 

the following equation (Environmental Pollution Control Center, 2007) – 

10/
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where:

ln is the nth sound pressure level reading as measured.

The recorded sound data from the laboratory tests which involved the repeated 

striking of coated and uncoated metal panels was averaged according to equation 2.3. 

The acoustic data arising from the field trials was also averaged. 

2.6. Measurement and calculation in environmental noise assessments

In preparation for the laboratory experiments and field trials, the methods behind the 

measurement of calculations associated with the widely used statistical noise 

parameters such as LAF90, LAeq and frequency spectra were examined. The 

limitations and statistical significance of different measurements commonly used were 

found to be concisely reported in the Institute of Acoustics (Williams, 2008). 

2.7. Transmission loss 

The transmission loss characteristics of different materials were reviewed to see 

whether their application would be suitable for application on an HGV trailer unit

(Bell and Bell, 1994). The basic property of a partition which determines its 

effectiveness as a sound insulator is the sound reduction index R. also called the 

Transmission Loss (TL) in dB.

110logTL         (2.4) 

where:

 is the transmission coefficient averaged over all angles of incidence. 

Transmission loss for single skin panels is more commonly expressed as 
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     (2.5) 

The commonly used transmission loss materials used for acoustical enclosures and 

isolation barriers are lead, lead vinyl, steel mass concrete and glass (Bell and Bell, 

1994). Whilst the attachment of these types of barrier materials are suitable for 

buildings and for fixed acoustic docking bays, it was felt that they would not be 

appropriate for a light-weight HGV trailer because of the additional weight and mass 

involved. The focus was therefore on the application of damping materials as 

discussed in section 2.7.

2.8. Damping impact noises

Impact noises were found to be a feature of the handling and nesting of steel rollcages 

during deliveries and for this reason there was a focus on developing damping 

solutions to attenuate the nuisance caused. 

Impact Noise 

According to Bell and Bell (1994, chapter 3), impulsive or impact noise is 

characterized by transient acoustical events of short duration, usually less than 0.5 

seconds. The impulsive character can further broken down into two types, types A and 

B. Type A is described as a rapid rise in sound pressure followed by a uniform decay 

to a negligible amplitude. Type B or ringing noise, also possesses a rapid rise in sound 

pressure but the decay is oscillatory in nature. The parameters common to both types 

A and B which are used to characterize impulsive noise are (1) peak: the maximum 

sound pressure amplitude reached in the event (2) rise time: the time from the start of 

the impulse to when the sound pressure reaches peak value (3) duration: the time from 

the start of the impulse to a specified decay level. In the case of type A, the duration is 

the time for the peak sound level to decay to the initial level or down to 40dB. For 
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type B, the duration is usually taken as the time for the envelope of the oscillation to 

decay to 20dB down.   

A distinction is drawn between the two effects of impact noise, the initial impact noise 

and the subsequent ringing noise. There is a body of literature relating to the theory of 

impact noises. A key feature of the theory is the distinction between (a) the initial 

impact noise and (b) the subsequent ringing noise. The initial impact noise produced 

by impacting bodies on a substrate is due to the high surface accelerations during the 

contact period while the ringing noise arises from the subsequent free vibration 

(Richards, Westcott and Jeyapalan, 1979).

Damping

Damping can be described (Bruel and Kjaer, 2008) as combinations of   

(1) the dissipation of energy with time or distance. The term is generally applied to the 

attenuation of sound in a structure owing to the internal sound-dissipative properties 

of the structure or to the addition of sound-dissipative materials. 

(2) the action of frictional or dissipative forces on a dynamic system causing the 

system to lose energy and reduce the amplitude of movement.  

(3) the removal of echoes and reverberation by the use of sound absorbing materials.  

Damping mechanisms remove vibrational energy from the transmission path, 

converting it to heat (Smith and Peters, 1996, Chapter 8.19). Some of the damping 

occurs within the resonating material and some may occur at joints within the 

structure of the equipment. Structures which contain riveted or bolted joints tend to be 

more highly damped than welded one-piece constructions.  

The application of damping materials is an effective way of reducing the amplitude of 

mechanical vibration (Bell and Bell, 1994, Chapter 6.3). Damping treatments are very 

effective when applied to large areas of thin sheet metal panels because the inherent 

damping of the steel itself is low. Such treatments are not effective however, when 

applied to stiff panels and it is recommended that they be stiffened or isolated (Smith 

and Peters, 1996, Chapter 8). 
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Interrelated parameters which are used to describe their qualities include (1) the loss 

factor and (2) the decay rate. The loss factor  is defined in terms of the energy 

dissipated or the damping to stiffness ratio (Bell and Bell, 1994, Chapter 6.3).

The decay rate  is an experimental value obtained by measuring the decay of a 

freely vibrating sample. The amplitude decay varies exponentially with time and thus 

is linear if plotted logarithmically. Further the loss factor is related to the decay rate 

as follows: 

27.3 f
         (2.6) 

where:

 = decay rate (dB/s) 

f   =   decay frequency (Hz) 

This equation which relates loss factor  to decay rate , is the one most often used to 

describe the effects of applying a damping material to a vibrating substrate. The loss 

factor can be measured from experimental data.  

The loss factors for commonly available materials are quoted in the literature (Bell 

and Bell, 1994, Table 6.3).

2.9. Adjusting the propagation of sound received against distance from a point 

source

The following procedures were employed to compare the sound measurements carried 

out in the Netherlands according to the Dutch standards authority TNO (2003) 

regulations with those conducted in accordance with the procedures recommended by 

Dublin City Council in accord with the EPA guidelines (2006) which are based on 

BS4142 (1997). Equations (2.7) to (2.10) apply when adjusting the sound received 

against distance from a point source. 
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Lr – LR = 10 Log10
R

r

I
I       (2.7) 

Lr – LR = 10 Log10 2

2

r
R       (2.8) 

Lr – LR = 20 Log10 r
R       (2.9) 

Lr – LR = 20 Log10 5.3
5.7  = 6.6 dB     (2.10) 

where:

Lr: sound pressure level (dB) at a distance r from the source 

LR: sound pressure level (dB) at a distance R from the source 

r: a distance from the source (m) 

R: a distance from the source (m) 

Ir: intensity at a distance r from the source 

IR: intensity at a distance R from the source 

Figure 2.1. Diagram showing how sound intensity decreases in proportion to the 

distance from a point source (Smith, Peters and Owen, 1996). 

In order to convert the Dutch TNO measurements, which were carried out at 7.5m 

from the noise source to equivalent readings recorded during the Dublin city centre 

field trials which were measured at a distance of 3.5m from the source in accord with 

the EPA guidelines for noise, the sum of 6.6 dB should be added to the corresponding 

r

Lr

LR

R

Noise
Source
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TNO measurements, as shown by equation (2.10) (EPA, 2006). Figure 2.1 shows how 

sound intensity decreases in proportion to the distance from a point source.  

2.10. Materials selection

In order to decide which category of acoustic materials might be the most suitable for 

application to the HGV and the related ancillaries, a literature review was completed 

in order to compare the characteristics of the different types of material available and 

to match these to the high frequency sounds generated during deliveries. 

As described in chapter 4, acoustic materials may be divided into three categories 

namely absorbing materials, barrier materials and damping materials Absorbing 

materials are resistive in nature and may be fibrous, porous or reactive resonators. 

Classic examples of resistive materials are fibrous glass, mineral wools, felt and 

polyurethane type foams.  Barrier materials are characterised by dense mass and have 

a high degree of internal damping or limpness of which sheet lead is the best example. 

The sound barrier properties of materials are governed by mass, stiffness and 

damping. Damping materials are usually thin adhesive sheets or coatings of plastic 

polymers, metal epoxy, or glue which can be adhered to sheet metal panels and 

machine parts. When these coatings are applied, the response of an impact blow to a 

metal panel is a dull thud rather than a ring. 

Because of the type of events and sudden impacts that generate noise during deliveries 

and due to the relative ease with which damping materials can be retro-fitted to 

vehicle parts, it was decided to focus on the application of damping materials and 

coatings. Following an examination of how an HGV trailer is constructed and having 

observed the location of the resonating surfaces that suffer repeated impacts, it was 

decided to apply damping materials in the form of coatings to these surfaces. These 

surfaces were seen to comprise the aluminium floor and kick-walls of the HGV trailer 

and the surface of the tail-lift. The restricted dimensions and spaces available in a 

standard HGV trailer would not permit the installation of bulky absorption or barrier 

materials and therefore the thinner damping materials would be much easier to fit.  
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Viscoelastic damping strips and rubber bands were selected for application to the steel 

roll-cages. It was found that the performance of different types of commercially 

available acoustic materials was published by independent laboratories according to 

ASTM standards and that this information was included in the sales and technical 

literature provided by the different suppliers (ASTM 2794, 2007). Because high 

frequency noise was found to be characteristic of the manipulation of roll-cages it was 

decided to select those materials that would attenuate the higher frequencies. 

2.11. The application of damping materials

In order to understand the fundamentals of mechanical vibrations in relation to noise 

controls and to help select the most appropriate damping solutions, several texts and 

guidebooks were consulted (Hussey 1983, pp.248-64 and Mulholland and 

Attenborough 1981). These were found to complement the textbooks noted in section 

2.5 (Bell and Bell 1994 and Smith, Peters and Owen 1996). The practical applications 

of acoustic theory were found to be comprehensively described by Sharland (2005) in 

the Flakt Woods Practical Guide to Noise Control and in the Singapore Ministry of 

Manpower Guidebook on Noise Control (Singapore Government, 2008) which aims 

to improve working conditions for individuals in noisy work environments.  

According to Bell, damping is best described as the dissipation of mechanical energy 

associated with vibration. The noise reduction capability of applying damping 

materials is that noise is not so readily re-radiated in the form of airborne sound or 

conducted along structurally, because the amplitude of the mechanical vibration is 

effectively reduced. With respect to the best thickness to apply, a thin coating on sheet 

metal, one half of the metal thickness or 10% by weight, will eliminate the “ring” 

from shock excitation according to Bell (Bell and Bell, 1994, pp.221-225).

The damping treatment involves applying a highly damped layer, often of viscoelastic 

material, next to the vibrating sheet metal. The layer is made to vibrate following the 

motion of the base layer and much of its vibrational energy is abstracted by the 

damping process. Mastic treatments can be sprayed or painted directly on to a sheet 
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metal base layer or can also be applied as an acoustic sheet which is attached with 

adhesives.

There are two commonly used damping treatments;(1) homogenous or free-layer 

damping, also referred to as surface damping and (2) constrained layer damping which 

involves sandwiching a layer of viscoelastic material between the structure being 

damped and an outer constraining layer (Singapore Government, 2008, pp.70-3). 

Homogeneous damping is a single treatment in which rubbery, tarry or plastic based 

material or coating is sprayed on, brushed on or adhesively bonded (in sheet form) to 

the panel surface. The new acoustic coating described in chapter 4 falls into this 

category. 

Constrained layer damping involves sandwiching a thin layer of viscoelastic material 

between the structure being damped and an outer constraining layer. Commercial 

“constrained” sandwich materials having a constraining outer layer are available in 

sheet form. The constraining layer creates shear strain in the damping layer, helping to 

make the sandwich material more efficient. To be effective, damping treatments need 

be applied only to a part, usually one-third, of a panel surface (Smith, Peters and 

Owen, 1996, Chapter 8). The purpose is to resist extension and compression of the 

viscoelastic material, so that significant shear stresses are induced. These stresses in 

turn cause dissipation of the vibratory energy (Singapore Government, 2008, pp.71-2).  

In order to compare the effectiveness of a commercially available “constrained” 

damping material with the new “brushed-on” homogeneous acoustic coating under 

development, an adhesive viscoelastic tape was selected and sourced from a supplier 

in the UK (Ygro, 2006). The constraining layer comprised a thin metal foil with a 

pressure sensitive bonding adhesive on one side. This adhesive then became the visco-

elastic damping layer. These “constrained layer” damping products are, according to 

Bell, popular for application to flat and to curved surfaces as used in aircraft and in the 

heating and air conditioning industries (Bell and Bell, 1994, p.232). 

In addition to the pendulum impact tests mentioned earlier, the damping effectiveness 

of the new acoustic coating on aluminium and mild steel panels was measured by 
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recording the decay rates and reverberation times of the sound impacts caused by the 

striking of the panels and by using a microphone attached to an oscilloscope by means 

of a pre-amplifier. The experiment was designed to confirm the damping effectiveness 

of the damping materials which were indicated by the earlier pendulum tests. 

As discussed in section 2.3, the damping of the HGV trailer floor and the tail-gate 

platform (as described in chapter 4) was achieved by the application of a new acoustic 

coating while the steel roll-cages were damped by means of retro-fitting and bonding 

rubber pieces and viscoelastic strips to the vibrating parts in the form of a “hush-kit” 

(as described in chapter 5).  

In the case of damping the noise generated by the roll-cages however, research 

reported in the Journal of Applied Acoustics (Jaouen, Renault and Deverge, 2007) 

suggests that injecting the tubular hollow frames with melamine porous foam might be 

worth investigating. This is a recommendation for future research which is made in 

chapter 6.

In the case of the aluminium and metal flooring panels of an HGV trailer and tail-gate, 

a further recommendation is made in chapter 6, that consideration is given to 

perforating the panels in order to change their natural frequencies and to reduce their 

effectiveness for radiating sound (Singapore Government, 2008, p.75).   

2.12. Analytical software

Software was sourced to analyse the acoustic data generated by the field trials and by 

the experiments conducted in the laboratory. Access to a Bruel and Kjaer “Evaluator” 

software package was arranged courtesy of Dublin City Council. “Evaluator” is a 

programme for storing, retrieving and for converting measurement data from Bruel 

and Kjaer sound level meters (Bruel and Kjaer, February 2007).  

There are many ways of processing the data, each designed to allow the results to be 

presented in the desired format. The data is initially recorded on a hard disk and 

inserted into “project” folders. A “project” is a collection of measurement data, 
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calculations and results files. Results files are collections of measurements and 

calculation files that are operated upon algorithms according to national or 

international standards. Measured parameters such as LAeq, LAFMax are represented 

by curves, the x-axis represents time, the y-axis the acoustic levels. 

In the case of the field trials and laboratory experiments, the data was manipulated to 

give a graphic recording of LAeq and LAFmax levels and to identify the frequencies 

associated with the specific peak events. The software made it possible to zoom in and 

to magnify the acoustic data recorded during time intervals of one second when the 

particular events occurred. These peak events were identified by examining the 

graphic and time records made during the field trials and during laboratory testing and 

frequency “spectra” were developed for these peak events. 

2.13. Setting Boundary Conditions for the Experiments

Boundary conditions were established for the different tests carried out in the 

laboratory in order to ensure repeatability. The field trials of deliveries to shops were 

as mentioned earlier, carried out in accordance with the relevant British and ISO 

standards (BS 4142, ISO 1996).   

The falling weight tube tests on small coated substrates were carried out on similarly 

sized aluminium and steel panels using a standard piece of laboratory equipment as 

described in chapter 4. The falling weight and pendulum tests that were conducted on 

larger 1 m2 aluminium and steel panels were carried out on specially designed 

equipment as described in chapter 4. The thickness and patterns of the panels tested 

were noted.

The sound damping effects of securing the panels on the pendulum apparatus with 

different torques was also evaluated in order to ensure consistency throughout the 

testing.

The rotating carousel apparatus facilitated carefully controlled experimental 

conditions whereby the parameters such as the speed of the carousel, the path transited 
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by the wheels of the roll-cages under test and the types of panels affixed to the 

carousel platform were all carefully monitored.   

2.14. Perceptions of noise and psychoacoustic considerations

How different noises are perceived by different populations has merited investigation 

by the Acoustics Research centre at the University of Salford. Psychoacoustic 

experiments have indicated a general public intolerance for noise created by events 

such as squeaky trolleys and scraping sounds. These are peak sounds which are very 

similar to those experienced during deliveries to stores (Cox TJ, 2007).   The criticism 

is also made that the conventional noise mapping procedures neglects to effectively 

measure peak impact sounds to adequately reflect the acoustic environment and to 

record the peak disturbances caused by traffic related events which would include 

deliveries (Ng CH, Tang SK, 2007).

In order to explore the public perceptions of night delivery disturbances and as a 

complementary project to this particular research, DIT has initiated a psychoacoustic 

survey of 600 affected residents in selected locations in Dublin city centre. The results 

will be reported in late 2008 as a follow on to the Innovation Partnership project 

entitled “Low Noise Solutions for Night Deliveries” (Byrne R, Finlay H and Grimes J, 

2007).

2.15. To conclude

A methodology was developed to produce research results that could confirm the 

hypothesis. This was based on a literature review of the theory of sound and vibration 

control and a survey of best practice for developing and for conducting the different 

actions and test procedures proposed. While the initial field trials involved measuring 

absolute values for the peak sounds caused by deliveries on the streets, much of the 

other trials involved comparative tests of the application of different acoustic 

materials to a variety of substrates for which generating data for relative values were 

deemed to be appropriate.  Much use was made of adapting the BS 4142 procedures 
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for measuring noise. The development of special test rigs, namely the portable 

pendulum and falling weight rigs and the hydraulically driven carousel assembly were 

considered to be unique to the project.
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CHAPTER 3. ANALYSIS OF DISTURBANCE CAUSED BY 

DELIVERIES

3.0. Introduction

As part of the Innovation Partnership project a series of field trials were carried out of 

kerb-side deliveries to city centre stores in order to assess the disturbance caused and 

to identify the particular events that caused the peak noises (Byrne, Finlay and Grimes 

2007). Early morning deliveries before the 7 a.m. curfew by large five axle HGVs to 

eight selected stores were monitored and these deliveries included both ambient and 

chilled foodstuffs. For the purposes of this research the focus was on the delivery of 

ambient goods to four particular stores because the configuration of a multi-

temperature HGV, which includes a refrigeration unit, is noisier than that of an 

ambient HGV. 

This chapter analyses the acoustic data which was collected at the different stores and 

describes the methodology used. The stores selected were located within the city 

centre area, bounded by the canal cordon and represented different street-scapes and 

topographies. A supermarket and convenience store grocery (Musgrave SuperValu 

Centra Group) chain kindly provided details of their delivery schedules to their chain 

of supermarkets and convenience stores and facilitated the conduct of the field trials.

As described in chapter 2, British Standard 4142 procedures were applied to evaluate 

the disturbances caused and courtesy of Dublin City Council, two Bruel and Kjaer 

Modular Precision Sound Analyser Type 2260 meters were made available for field 

trials (British Standards, 1997). The field trials were carried out during March 2006 

by a team of four researchers and the results relating to each particular store were 

reported in confidence to the Musgrave management in July 2006. The location of the 

four shops reported on is not disclosed for reasons of commercial sensitivity. 
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3.1. Methodology

In accord with the procedures employed by Dublin City Council which, as mentioned 

in Chapter 2.5.1, are an adaptation of British Standard 4142 (1997), both the 

‘background noise level’ (in the absence of a delivery) and the ‘specific noise level’ 

(noise in the presence of a delivery operation and in the absence of background noise) 

was recorded at each selected premises.  

This was done by positioning a Bruel and Kjaer meter at a height of 1.2 meters from 

the ground and at a distance of 3.5 meters from the expected noise source (e.g. the 

back door of the HGV trailer unit). The background sound was recorded before the 

arrival of the HGV delivery and the specific noise levels were recorded during the 

actual delivery operation from the same position. 

In comparing the readings recorded in Dublin with those recorded by the Dutch 

“PEAK” programme described in chapter 2, it was noted that the distances at which 

the noise meters were positioned from the noise sources were substantially greater in 

the Netherlands, 3.5 meters in Ireland (EPA, 2006, p.8) and 7.5 meters in the 

Netherlands in accordance with TNO procedures (TNO, 2003). The readings recorded 

in Dublin should therefore be adjusted to give 6.62 dB(A) higher readings than the 

comparable Dutch readings for similar activities. The calculation is described in 

Chapter 2 using equations (2.7) to (2.10) (Smith, Peters and Owen, 1996, chapter 5). 

The stores and their locations were selected in consultation with the Musgrave 

management and with Dublin City Council so as to give a representative sample of 

different street-scapes (i.e. wide streets and canyon streets). It was observed that 

different HGV articulated trucks were rostered to deliver to the different stores and 

that the newly registered ’06 DAF five axle vehicles tended to be quieter than the 

older vehicles. 

As described in chapter 2, sound pressures can be measured by different parameters, 

namely by LAFmax or LAeq. LAFmax measures the maximum sound pressure level over 

short periods of time. LAeq calculates the equivalent average of fluctuating sound 

pressures over a given period of time. Definitions of the various parameters used can 
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be found in the glossary of terms. The accepted norm according to BS 4142, for 

measuring the disturbance caused by a particular event is to compare the LAeq

measured during that particular event with the LAFmax for the preceding background 

period. The authorities generally perceive events adding 6 dB(A) or more to the 

background noise levels as causing serious annoyance to residents in the vicinity of 

the noise source. In other words, if the difference between 2LAF90 for the background 

level, and the LAeq of an event relating to specific noise level is 6 dB(A) or greater, 

then the exposure to the noise is deemed to be excessive (British Standards, 1997).  

3.1.1. Background noise level, LAF90,T

The A-weighted sound pressure level of the residual noise at the assessment position 

that is exceeded for 90 % of a given time interval, T, measured using time weighting, 

F, and quoted to the nearest whole number of decibels. 

Because high and sudden impact and “pure tone” frequencies (refer to the glossary of 

terms) are known to cause most discomfort, the frequencies relating to particular 

events were identified and evaluated by developing spectras for those peak events 

(Bell and Bell, 1994). The B&K “Evaluator” software used for this analysis is 

mentioned in chapter 2.  

3.2. Research results and analysis

3.2.1. Specific noise verses background noise 

A sample size of eight stores was selected at which early morning deliveries occur and 

these deliveries included both ambient and chilled goods, but because the focus of this 

investigation is on deliveries by ambient rather than multi-temperature HGV units, the 

                                                
2 the background noise level, LAF90 is the A-weighted sound pressure level of the 
residual noise at the assessment position that is exceeded for 90% of a given time 
interval, measured using fast time weighting, F, and quoted to the nearest whole 
number of decibels (Bruel and Kjaer, 2008)
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data relating to the four particular stores at which such goods were delivered is 

examined in this chapter. 

The procedure involved measuring the background noise level for a period of from 5 

to 10 minutes in order to record the noise sensitivity of each neighbourhood. For 

example some streets were found to have a higher level of by-pass traffic flows than 

others. The less trafficked wider streets were characterised as being in a low-noise 

area while more reverberation occurred in narrow “canyon” type streets when traffic 

passed by. 

Specific noise levels were then measured for the duration or “dwell time” of each 

delivery operation, i.e. from the arrival of the HGV to its departure from the kerb-side.  

The results of the average background noise levels and for the overall specific noise 

levels recorded at the four different stores, A B C and D, are given below in Table 3.1. 

LAeq values are given for time duration of each delivery operation while LAF90 values 

are given for the time duration which the background noise is measured. The use of 

the parameter LAF90 enabled untypical noises to be discounted. 

Table 3.1. Average specific noise compared with the background noise levels 

Store
Overall

Specific Noise (LAeq)
(dB(A))

Overall
Background Noise (LAF90)

(dB(A))

Overall Difference 
(dB(A))

A 72.8 52.2 20.6 
B 65.5 50.8 14.7 
C 68.4 3n/a n/a 
D 71.2 55.1 16.1 

It can be seen from Table 3.1 that the deliveries added significantly in all cases to the 

background noise ranging from 14.7 dB(A) to 20.6dB(A) for the different stores.

There were also differences between the levels of disturbances at the different 

locations. This can be explained by the fact that store B was situated in a wide street 

                                                
3 In the case of store C Bruel and Kjaer software was not programmed to upload LAF90 for the 
background noise.
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with low buildings while store A could be described as being sited in a “canyon” 

street with tall apartment buildings and with busy by-pass traffic. 

As an example, the situation at store D recorded on the morning of 22nd June 2006 is 

analysed in the following figures; the data for the other three premises is described in 

Appendix I.0. A night vision camera was used to record the graphic data to relate the 

peak sounds to the relevant events and activities taking place on the streets. 

In the case of store D the background noise was monitored for a period of 6 minutes 

48 seconds as shown in Figure 3.1. The peaks related to by-pass traffic (i.e. cars, 

buses, vans and trucks) as recorded in the accompanying data log. The weather 

conditions were noted as was the topography of the area. The temperature was 10°C, 

the conditions were dry, relatively windy (although wind speeds were not as high as to 

affect the results) and in a relatively wide street located in a mixed residential and 

retail part of the city centre. By-pass traffic noise was caused by vans and taxis. The 

background noise was measured beginning at 6.08am and it was noted that peaks at 

the beginning of the monitoring period were due to the noise of the HGV tractor unit 

engine which was turned off some minutes before the shop opened and the actual 

delivery began. The delivery began at 6.48 a.m., the dwell time was 12 minutes 46 

seconds and started at 06:58 and involved the unloading of batches of loaded rollcages 

and the return of empty rollcages and their folding and storage within the HGV trailer 

unit.
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Figure 3.1. Background noise and data log at store D, LAeq measured at 1second 

intervals 

The actual delivery operation which followed is recorded in Figure 3.2 and the 

specific events that generated the peak sounds can be identified from the 

accompanying data log.  

66.6 dB(A) 
Limit 

1. 2. 
3.

4. 5.
6.

7.   8.
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Figure 3.2. Specific noise at store D and data log, LAeq measured at 1second 

intervals. The peaks numbered 1 to 8 relate to the remarks in the accompanying 

datalog.

It can be seen from Figure 3.2 that there was a significant increase in the intensity of 

the peak events that occurred during the actual delivery operation compared with the 

background peaks shown earlier in Figure 3.1.and that the events highlighted in Figure 

3.2 related to the handling and passage of the roll-cages. The peaks numbered 1 to 8 

relate to the data-log accompanying Figure 3.2 and are appropriately tagged. 

When comparing the measurements taken in Dublin with measurements recorded in 

the Netherlands, the measurements recorded by DIT should be adjusted by adding 6.6 

dB(A) to the peak readings recorded by TNO for similar events in order to correct for 

the closer positioning of the sound meter in accord with BS 4142 compared with the 

TNO procedure. If the night time noise limits which apply to Dutch cities were to be 

applied to Dublin, the peak limit for delivery operations would be LAeq 66.6 dB(A). 

The 66.6 dB(A) limit is illustrated in Figure 3.2. The challenge for deliveries in 

1. 

2. 

3. 
4. 

5. 
6. 
7. 
8. 
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Dublin is therefore to attenuate the peak sounds created by the roll-cages to within 

peak limits approaching LAeq 66.6 dB(A) measured every 1 second. 

3.2.2. Identification of specific noise events 

The measurements of both the sound pressure levels of the peak events relating to the 

four ambient deliveries to stores A, B, C and D were analysed and these are described 

in detail in Appendix I.0. Corresponding frequency spectras for selected events are 

illustrated in Appendix I.1.    

The spectra are taken by focusing on a particular event and visually represent how the 

sound behaves at specific frequencies across the sound range. This is explained in 

further detail in the methodology chapter (chapter 2).  

In order to examine the peak sounds caused by the manipulation of the rollcages the 

delivery to store C was selected as a typical example. The events which comprise the 

delivery to store C on 10th March 2006 are illustrated in Figure 3.3 with the 

accompanying log-data. 

66.6 dB(A) 
Limit 

  Moving cages across street 

  Returning empty cages to truck 

  Rollcages banging against kerb 

  Organising cages within trailer 
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Figure 3.3. Specific noise at store C and data log, LAeq measured at 1second 

intervals 

The peak sounds caused by the manipulation of the roll-cages inside the trailer body at 

store D as described in Figure 3.3 are highlighted in Table 3.2. 

Table 3.2. Noise generated by roll-cages inside the HGV 

Event Duration  LAeq (dB(A)) LAFmax (dB(A)) 
Manipulation of roll-
cages inside the HGV 12 seconds 72.7 79.1 

The noise emanating from the trailer body was measured by positioning the noise 

meter at a distance of 3.5 meters from the rear of the trailer. A LAFmax value of 79.1 

dB(A) with frequencies at the mid range of 1,000 Hz was recorded at store C caused 

by the movement of full roll cages within the body as shown in the data log described 

in Table 3.2 and on the spectra for this event illustrated in Figure 3.3. 
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Figure 3.4. Frequency spectra for the movement of full roll cages within the 
trailer body at store C 

The peak noise generated at store C by the manipulation of a loaded cage from the 

rear of the HGV trailer onto the tail-lift and from the tail-lift across the kerb and 

pavement into the store is described in Table 3.3. 

Table 3.3. Noise of a loaded roll cage exciting from the HGV across the pavement 
to store C 

Event Duration 
(seconds) LAeq (dB(A)) LAFmax (dB(A)) 

Moving from trailer body onto tail lift 0:00:57 68.6 80.7 
Moving from tail lift onto pavement 0:00:11 74.6 85.3 
Mounting the kerb 0:00:10 73.4 79.8 
Moving along pavement to store 0:01:48 70.6 85.2 

This can be compared with the noise caused by the handling of an empty roll-cage at 
store C which is shown in Table 3.4. 

Table 3.4. Noise of an empty roll cage being returned from store C to HGV 

Event Duration 
(seconds) LAeq (dB(A)) LAFmax (dB(A)) 

Moving along pavement from store 
to HGV 

0:00:09 82.7 90.9 

Moving from pavement onto tail lift 0:00:17 71.7 83.2 
Moving from tail lift into trailer 
body 0:00:11 73.4 82.8 
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The passage of the roll cages, whether full or empty, caused high peak sounds ranging 

from 80.7 to 90.9 LAFmax dB(A) as shown in Tables 3 and 4 above. 

The movement of a full cage from the tail lift onto the pavement produced an LAeq of 

74.6 dB(A) and LAFmax of 85.3 dB(A). The transiting of the pavement produced a 

sound evenly spread across all the frequency ranges as can be seen in Figure 3.4. 

Figure 3.5. Frequency spectra for movement of a full roll cage from the tail lift 
onto pavement 

In contrast, the return movement of empty roll cages from the pavement to the tail lift 

produced an LAeq of 76.3 dB(A) and LAFmax of 90.3 dB(A) in the relatively higher 

range of 1,000 Hz as shown in Figure 3.5. 

An analysis of the frequency spectras for the peak events showed that these specific 

events were characterised by unique “signature frequencies”. The characteristic 

frequencies are presented in Table 3.5. 
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Figure 3.6. Frequency spectra for movement of an empty roll cage from 
pavement onto tail lift 

Table 3.5. Characteristic signature frequencies for particular peak events 

Product      Event Characteristic
Frequencies

Trailer body 
Manipulation by driver of ancillaries 
inside

- 1,000 to 2,000 Hz 

Roll cage (full) 

Moving from trailer body onto tail lift 
Moving from tail lift onto pavement 
Mounting the kerb 
Moving along pavement (to store) 

 - none 
 - none 
 - 315 Hz, 500 Hz 
 - 63 Hz 

Roll cage (empty) 
Moving along pavement (towards HGV) 
Moving from pavement onto tail lift 
Moving from tail lift into trailer body 

 - none 
 - 1,000 to 1,600 Hz 
 - 1,000 Hz 

This analysis indicated that the challenge was to attenuate the high frequency peak 

noises caused by the manipulation of the roll-cages inside the HGV trailer unit, across 

the tail lift and onto the pavement and over the kerb-sides to the stores. The empty 

cages created more noise at higher frequencies compared with the loaded cages. The 

higher frequency noises are found to be the most disturbing to the human ear and 

hence the requirement to endeavour to attenuate these particular frequencies (Cox, 

2008).
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3.3. Discussion

Kerb-side deliveries were found to make a significant difference to the background 

early morning noise on the city streets. This was true whether deliveries took place in 

a ‘low noise sensitive area’ or on a busy street. The delivery operations generated 

peak sound levels which added from 14.7 dB(A) to 20.6 dB(A) to the background 

levels.

The events and equipment that caused the peak sounds were identified as (1) the 

running of the HGV tractor unit (2) the passage of the roll-cages along the floor of the 

HGV trailer and while transiting the tail-lift platform and the pavement in front of the 

shops (3) the manipulation and stacking of the returned empty cages. The focus of the 

research was on evaluating the noise caused by the manipulation of the roll-cages. As 

mentioned in the introductory chapter 1, the nuisance caused the HGV tractor unit 

engine and the refrigeration drive was effectively dealt with by asking the driver to 

switch off on arrival at the stores. 

For an ambient HGV trailer delivering to store C, the manipulation of the roll-cages 

within the body produced an LAeq of 72.7 dB(A) and an LAFmax of 79.1 dB(A) as 

described in Figure 3.3 and Table 3.2. The return of the empties to the truck and onto 

the tail-lift generated an LAeq of 71.7 dB(A) and an LAFmax of 83.2 dB(A) as per 

Table 3.4. The additional examples for stores, A and B described in Appendix I.0 

confirm these readings. 

The spectras for the empty roll-cages were characterised by a concentration of 

“signature” frequencies around 1,000 Hz to 2,000 Hz while the full roll cages showed 

a spread across a broader range of frequencies. 

The pure tones or tonal quality (as defined in the glossary of terms) that causes most 

annoyance were identified by an increase of 3 dB or more at the peak events. This 

occurrence can for example be seen from an examination of the spectra shown in 

Figure 3.6 which for the movement of empty roll-cages, where a pure tone at 1,000 Hz 

can be seen. 
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When comparing the measurements taken in Dublin with measurements recorded in 

the Netherlands, the measurements recorded by DIT should be adjusted by adding 6.6 

dB(A) to the readings recorded by TNO for similar events in order to correct for the 

closer positioning of the sound meter in accord with BS 4142 compared with the TNO 

procedure. If the night time noise limits which apply to Dutch cities were to be applied 

to Dublin, the peak limit for delivery operations would be LAeq 66.6 dB(A). The 

challenge for deliveries in Dublin is therefore to attenuate the peak sounds created by 

the roll-cages to within peak limits approaching LAeq 66.6 dB(A). 

In measuring statistical significance or error margins for noise measurements the 

convention is to allow for a margin of ±1.5dB(A) (Enfonics, 2008). 
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CHAPTER 4. DEVELOPMENT OF AN ACOUSTIC COATING

4.0. Introduction

As described in Chapter 3 field trials were carried out to measure the noise excesses or 

“exceedences” caused by night time deliveries and to identify the particular events 

that cause most disturbances. It was found that the passage of roll-cages across the 

floor of the HGV and the tail-lift platform emitted high sound pressure greater than 70 

dB(A) at frequencies of 1,000 Hz and above and that this was one of the most 

disturbing activities occurring during night deliveries. 

It was proposed that the most practical solution meriting development was to apply an 

acoustic coating which could dampen the sound and vibrations emanating from the 

floor of the HGV trailer and tail-gate during the manipulation of the roll cages.

Because the space inside the HGV trailer is at a premium and because the floor and 

kick-walls are subject to considerable wear, the development of a relatively thin and 

robust acoustic coating formulation was required. This was because the restricted 

dimensions of the HGV trailer could not accommodate the fitting of thick sound 

absorbing panels or of dense and heavy multi-layered noise transmission reducing 

panels or curtains to the walls or floor. The application of a damping coating to the 

affected surfaces was deemed to be an effective way of damping the high signature 

frequencies generated by the passage of roll cages and to offer a relatively cheap 

retro–fit solution. 

A methodology was proposed and agreed to evaluate the new acoustic paint 

formulation under development by CREST in collaboration with General Paints Ltd. 

The requirements for the new acoustic coating were discussed with the fleet operator 

and with the vehicle body builder involved in the Innovation Partnership project, and 

these are outlined in Table 4.1: 
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Table 4.1. Requirements for an acoustic coating. 

Parameters Requirements  

Identify the type of substrate materials to 
be coated 

To coat a chequered “barley seed” 
aluminium HGV trailer floor and mild 
steel tail-lift platform ( see figures 4.20 
and 4.21)

Determine the dimensions of HGV trailer 
floor

13.2 meters long x 2.4 meters wide 

Determine the areas of the HGV to be 
coated and which are subject to impacts. 

HGV trailer floor, kick-walls and tail-lift 
platform 

Determine the thickness of the coating 
acceptable to General Paints Ltd. 

 ~ 0.5mm to 2mm 

Assess ability to withstand temperature 
ranges for a multi-temperature HGV 
trailer unit 

Range from – 22 ºC for frozen goods, to 
+ 25 ºC for dry goods 

Assess ability to withstand cleaning 
agents used by the fleet operator 

Sodium hydroxide solution, pH 13 

Assess service life of HGV trailer  6 years 

Establish the frequency of servicing of 
HGV trailer 

2 times per year 

The focus of this chapter is on the development of the acoustic requirements of the 

coating; the durability and other requirements specified by the fleet operator were 

addressed by the relevant Innovation Partnership partners. 

4.1. Methodology and experimental results 

As described earlier in Chapter 2, the approach and methodology involved the 

following steps - 

1. A literature review of the availability, characteristics and performance of 

commercially available acoustic coatings which could dampen the high 

signature frequencies created by the manipulation of roll-cages inside a HGV 

trailer. 



75

2. The development of relatively simple test procedures for the acoustic pre-

screening in the laboratory of formulations developed by CREST. 

3. Acoustic trials of large coated panels on board an HGV trailer unit and tail-lift 

platform. 

4. Durability tests in the laboratory and by using the carousel test rig located in 

the DIT HGV workshop. 

4.2. Literature review

A review of the commercially available acoustic coatings was conducted as part of the 

Innovation Partnership project. Information searches on acoustic materials and 

damping compositions were conducted on the World Surface Coatings Abstracts and 

on the European Patent Office websites. Information was also obtained from coatings 

journals and from various suppliers’ data sheets. The keywords that were used for 

these searches were “acoustic”, “compositions”, “noise reduction”, “damping”, 

“vibration”, “flooring”, “viscoelastic”, “paint” and “panels” (CREST / DIT, 2007). 

The patent search focused on compositions containing viscoelastomeric polymers that 

were formulated with or without polyurethanes and on epoxides or acrylics. These 

compositions are known to impart a damping function across wide temperature 

ranges. Conventional acoustic floor compositions were found to be elastomeric type 

coatings that use various additives and that are applied as solvent based spray-

coatings. 

Helpful advice was obtained through the Dutch science and technology agency, Senter 

Novem on trials completed on a wide selection of acoustic coatings. These trials were 

conducted on behalf of the Association of Dutch Vehicle Body Builders (FOCWA, 

2006).

The Dutch association of vehicle body builders specified the following requirements 

in their evaluation of 22 different formulations; sound damping at acceptable 

thicknesses: rapid and easy application: excellent bonding to the substrates used on 

HGV trailers, namely aluminium and mild steel: good abrasion and impact resistance: 
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good chemical resistance: heat and cold resistance. These requirements were thought 

likely to be similar to the requirements of the Irish fleet operators. 

The test results reported by the Senter Novem, who were external partners in the Irish 

Innovation Partnership project, set the benchmark by which a new and competing 

formulation was developed. The Irish paint supplier, General Paints Ltd., felt that the 

focus should be on developing an innovative water based acoustic coating with a final 

hard polyester top layer, unlike the Dutch who focussed on polyurethane solvent-

based paints which require high temperature pre–heating before application. Water 

based paints have the advantages that they can be applied without special expensive 

binary heated portable spray-heads and are more environmentally friendly. 

Following the literature survey and on the recommendation of Senter Novem, a 

number of commercially available coatings were sourced with which to make 

comparisons. The best performing of these was “TechCoat” supplied by the Polymer 

Chemical Company B.V., Postbus 287, NL-5280 AG Boxtel NL: (Elastogran, 2006). 

Senter Novem advised that the Dutch experience suggested that any coating that could 

achieve a reduction approaching 5dB would be very acceptable to the vehicle body 

builders (Senter Novem, 2006). 

The literature search revealed the commercial availability and technical characteristics 

of a wide range of damping adhesives used in the automotive industry to which any 

new acoustic coating could be compared (Rousch Industries 2006; Acoustics 2006; 

Sound Service 2006; Acousti Products 2006; ABD Technology 2006; Super 

Soundproofing 2006). Of particular relevance was a review of damping materials by 

Lewis H. Bell and Douglas H. Bell in the textbook entitled “Industrial Noise Control” 

(Bell and Bell 1994, Chapter 6.3) and by P. Weddell of the University of Bradford 

School of Engineering Design and Technology, (2005). 

From this information a materials matrix was structured and a series of first generation 

paint formulations were developed for screening. Five water-based proprietary 

formulations were developed and applied initially in the laboratory to small 

aluminium and mild steel panels.   
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4.3. Laboratory tests

Durability and abrasion tests were first of all performed on the newly formulated 

paints according to the relevant ASTM and BS standards. Tests included an estimation 

of the % solids used, drying time (ASTM D 5895-96), pencil hardness (ASTM D 

3363), scratch hardness impact resistance (ASTM D-2794), dry film thickness, 

adhesion (BS EN ISO 2409:1995) and Taber abrasion (ASTM D-4060-95) 

measurements. The results were tabulated and ranked (CREST–DIT, 2007). In parallel 

with these durability tests, complementary acoustic impact trials were designed and 

these particular experiments are described. 

4.3.1. Falling weight vertical tube test 

Acoustic pre-screening was performed by using a modified version of the standard 

measurement procedure for the impact resistance of paints using the deformation 

technique. This test was an adaptation of standard ASTM 2794, Designation D 2794-

93 procedure which is used to measure deformation (ASTM 2794). The noise was 

measured in accordance with the industrial noise measurement standard BS 4142 

(British Standard, 1997). 

The test involved measuring the maximum sound pressures emitted upon the impact 

of a 0.907 kg (2 lb) machined weight dropped from a height of 635 mm (25 inches) 

onto small aluminium coated panels measuring 150 x 100 mm and 100 x 100 mm. 

respectively. Each candidate coated sample was placed at the base of the apparatus. 

The apparatus comprised a vertical tube designed to guide a cylindrical weight which 

was dropped repeatedly on to a punch resting on the small plate under test.  

The noise levels were read upon the impact of each drop using a Bruel and Kjaer Type 

2260 sound meter. The B&K sound meter was placed at a distance of 3.5 meters from 

the source and at a height of 1.2 meters by placing it on a tripod. Having recorded the 

background noise in the laboratory for a period of 4 minutes, the falling weight cycle 

was repeated 10 times for both the coated and uncoated sides of the test panels and the 

sound pressure levels were recorded. LAFmax (maximum sound pressure recorded for 

a period of 0.125 seconds) was the parameter used to measure the peak sound level 
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recorded on the impacting of the falling weight. An interval of several seconds was 

observed between collisions before a peak reading was taken in order to allow the 

vibrations to subside. The logarithmic averages of the 10 impact sounds were 

calculated for each coated sample under test. The LAFmax parameter was considered to 

be a convenient way of comparing the peak sound attenuation characteristics of the 

different coatings (Enfonic, 2007).

Two batches of samples were acoustically tested. The first batch “A” comprised five 

different coatings on the smaller aluminium plates. The second batch “B” comprised 

different coatings on the larger panels. The peak noise reductions achieved for batches 

A and B were calculated by comparison with those recorded for the aluminium 

uncoated plates of similar dimensions. 

Four different formulations prepared by CREST and labelled 1 to 4, were applied to 

both the smaller A batch panels and to the larger B batch panels. Formulations 1 to 4 

were confidential to CREST / DIT and to General Paints Ltd. A fifth Dutch sourced 

proprietary coating labelled V was also tested in order to make comparisons 

(Elastogran, 2007). The coatings were brushed on and allowed to air dry for 24 hours 

prior to successive coatings and the thicknesses recorded varied between 321 m and 

1500 m and averaged 700μm, because of the imprecise brush applications.  

The falling weight vertical tube apparatus is illustrated in Figure 4.1. 

                                                    
Figure 4.1. Photograph of smaller falling weight tube test 

1kg. Weight  

Test sample



79

The results of the falling weight tube test are summarised in Tables 4.2 and 4.3 below 

and are described in more detail in Appendix II.0. This shows that formulation 1 as 

applied to batch A (the smaller 100 x 100 mm panels) and also to batch B (the larger 

150 x 100 mm panels) gave the best results. In the case of the batch A panels, 

formulation number 1 showed a reduction of 5.5 dB(A) while the Dutch proprietary 

coating (number 5) showed a smaller reduction of 2.3 dB(A). In the case of the batch 

B panels a reduction of 4.7 dB(A) was recorded for formulation 1 which again 

compared favourably with the Dutch proprietary coating (formulation 5) which 

showed a much smaller reduction of 1.8 dB(A).   

Table 4.2. Results of falling weight tube tests – Comparisons of noise reductions 
achieved from the batch A tests of different coated aluminium panels. 

Batch A panels (10x10cm) coated with 
formulations 1 to 4 and compared with 

proprietary coating 5 

Logarithmic average dB(A) reductions 
compared with an uncoated panel. 

1A 5.5 
2A 3.1 
3A 4.5 
4A 2.2 
5A 2.3 

Table 4.3. Results of falling weight tube tests – Comparisons of noise reductions 
achieved from the batch B tests of different coated aluminium panels 

Batch B panels (15x10cm) coated with 
formulations 1 to 4 and compared with 

proprietary coating 5 

Logarithmic average dB(A) reductions 
compared with uncoated panel. 

1B 4.7 
2B 1.8 
3B 1.9 
4B 3.2 
5B 1.8 

On the basis of these preliminary trials, “Formulation 1” was selected for further 

development and evaluation because it gave the best acoustic performance. 

4.3.2. The larger scale falling weight and pendulum test rigs

Following completion of the first series of tests the most promising Formulation 1 was 

acoustically assessed on two specially constructed rigs. The coating was applied to 1 



80

m2 panels comprising aluminium and mild steel substrates and these panels were 

subject to (a) a larger scale falling weight test and to (b) a pendulum impact test.  

                                          
Figure 4.2. Photograph showing the set up of the larger falling weight test rig 

The purpose built test rigs were fabricated in the engineering workshops and were 

designed to be portable so that they might be used both in the laboratory and 

subsequently on board an HGV trailer unit. The Falling Weight and Pendulum Test 

rigs are illustrated below in Figures 4.2 and 4.3. 

4.3.2.1. The falling weight test (larger scale) 

As mentioned earlier the falling weight apparatus was designed to simulate the noise 

caused by objects impacting upon the floor of a trailer unit or with the tail-lift 

platform and to further evaluate the effectiveness of the new coating. Panels of 1 m2 of 

uncoated and coated substrates were tested. These substrates comprised (1) chequered 

aluminium (2) mild steel (3) GRP. 

The test rigs were also used to compare the performance of the new acoustic 

formulation with proprietary adhesive damping strips, namely “Ygro -Dead

Eliminator” (item number EDE01) and “ -Dead Original” (item number EDT01). 

These products were supplied by Ygro UK Ltd. in the UK (2006). The “Ygro” 

adhesive damping strips were selected and sourced following a review of the 

Test panel (1 m2)
with acoustic 
coating applied 

Noise meter on tripod 
(3.5 m from test 
panel)

1 kg weight at a 
height of 150 mm 
released on to the 
centre of the panel  
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commercially available damping materials carried out as a part of the Innovation 

Partnership project by CNMR (2006). 

The following test procedures were followed. The candidate panels were clamped to a 

1 m2 steel frame so that they could vibrate freely when struck by the falling weight. 

The 0.907 kg (2 lb) weight was then repeatedly dropped from a measured distance of 

150 mm onto the centre of the panel. The procedure was repeated 10 times on both the 

coated and uncoated sides of the panels, allowing for a pause of 3 or more seconds 

between measurements. The microphone was placed at a distance of 3.5 meters from 

the centre of the panel under test and LAFmax noise measurements were recorded on 

the B&K sound meter. The LAFmax measurements were recorded, logarithmically 

averaged and compared for the three different substrates under test; aluminium, mild 

steel and GRP (Glass Reinforced Plastic).

Frequency spectra were developed in order to see how the noise attenuation varied 

across the frequency ranges for the different uncoated and coated substrates. 

The performance of the new acoustic coating was also compared with panels partially 

covered with the two proprietary damping “Ygro” adhesive strips. These strips were 

cut to cover 1/3 of the surface areas on the rear smooth sides of the chequered 

aluminium and steel panels. According to Bell et al and to the supplier “Ygro”, it was 

deemed sufficient to cover 1/3 of the panel surface area with the damping strips in 

order to achieve optimum damping effects (Bell and Bell 1994; Ygro 2006). 

The tests were carried out on the coated chequered sides of the mild steel and 

aluminium panels and on the smooth GRP panel and the noise reductions were 

calculated with respect to the peak impact sounds on similar uncoated panels.  The 

results are summarised in Table 4.4. 
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Table 4.4. Summary of noise reductions achieved by the application of an 
acoustic  coating and damping strips to GRP, mild steel and aluminium panels 

using the falling weight test 

Substrate
Uncoated Log. 
Average dBA 

(LAFmax)

 Coated Log. 
Average dBA 

(LAFmax)

Reductions in dB, 
coated panels 

compared with 
uncoated

Aluminium, 
chequered side 102.9 88.1 14.8 

Aluminium, plain 
side, plus “Ygro” 104.3 88.8 15.5 

Mild Steel, 
chequered side 
only

100.3 85.6 14.7 

Mild steel, plain 
side, plus “Ygro” 99.6 90.3 9.3 

GRP  98.3 91.2 7.1 

It can be seen from Table 4.4 above that the coating attenuated the peak sound on the 

aluminium panel by 14.8 dB(A) and the peak sound on the mild steel by 14.7 dB(A). 

In contrast the proprietary “Ygro” damping strips showed lower corresponding 

reductions of 14.1 dB(A) and 10.0 dB(A) respectively. This indicated that the 

proprietary damping adhesive strips were less effective than the new acoustic coating. 

4.3.2.2. Pendulum tests 

This test was devised to simulate the sound radiated by the walls and floor of the 

trailer body when struck by roll cages and by clamping bars. The test rig comprised a 

pendulum mounted on a portable steel structure. The rig was designed to secure 1 m2

panels in an upright position. The test panels were sandwiched between the vertical 

upright frame and the demountable frame by four clamps and spacers by means of a 

torque of 10 Nm. The correlation between the clamping loads and the natural 

frequency and excitation of the panels was also further investigated as described in 

4.5.2. The test rig is illustrated in Figure 4. 3. 
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Figure 4.3. Photograph showing the set up and steel framework for the 

pendulum test rig 

The tests involved clamping the candidate panel to the uprights of the structure by 

means of the de-mountable frame. The steel weight was suspended from a wire 

secured to two points on either side of the top of the frame and the suspended weight 

was designed to strike the panel at a distance of 150 mm above the base of the frame. 

Before starting the pendulum tests the background noise level in the laboratory was 

recorded for 2 to 3 minutes. The weight was then released at a distance of 150 mm 

from the front of the panel and caught after each collision and the noise level of each 

impact was recorded at a distance of 3.5 m. by the B&K sound meter mounted 1.2 

meters above the floor on a tripod.  

The procedure was repeated 10 times, allowing for a pause of several seconds between 

impacts. LAFmax levels were recorded for each impact. Samples of uncoated and 

coated GRP substrates were tested and the results compared and similar comparisons 

were made in the case of the coated and uncoated aluminium and mild steel panels. 

As was the case with the falling weight test, the following samples were evaluated, (1) 

smooth GRP panels, uncoated and coated (2) aluminium chequer plated panels, 

uncoated and coated (3) mild steel chequer plated panels, uncoated and coated. The 

results of the tests are summarised in Table 4.5 below. 

Test panel (1 m2)
with acoustic 
coating

Noise meter on tripod  
(3.5 m from test panel)  

1 kg weight at a 
height of 150 mm 
swung against the 
test panel  
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Table 4.5. Summary of noise reductions achieved by the application of an 
acoustic coating to GRP, aluminium and mild steel panels using the pendulum 

test.

Substrate
Uncoated Log. 

Average dB 
LAFmax

Coated Log. 
Average dB 

LAFmax

Reductions in dB 
- coated panels 
compared with 

uncoated
Aluminium 
chequered side 92.0 70.2 21.8 

Mild steel, 
chequered side 87.4 72.9 14.5 

GRP  86.8 74.7 12.2 

From Table 4.4 it can be seen that the application of the acoustic coating to the 

smooth GRP showed a reduction of 12.2 dB(A). The application of the coating to the 

chequered face of the aluminium panel gave a reduction of 21.8 dB(A) while the 

application of the coating to the chequered mild steel gave a reduction of 14.5 dB(A).  

By contrast the stated values for the corresponding results for the falling weight tests 

reported in Table 4.4, showed reduction of 14.8 dB for the coated aluminium and 14.7 

dB for the coated mild steel. These reductions are similar for both the pendulum and 

falling weight tests.  

It was decided to see if similar promising results could be repeated in the field on 

board a full scale HGV trailer unit. Before going out into the field for further 

assessment however, it was deemed appropriate to look more closely at the damping 

characteristics of the coated panels by measuring the 4decay times of the vibrations on 

an oscilloscope. 

                                                
4A measure of the decay of acoustical signals, expressed as a slope in dB/second. The 
rate at which a signal drops off. (BKSV, 2008)
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4.4. Effect of the acoustic coating on the reverberations and decay time 

measurements

5Reverberation experiments were carried out on the 1 m2 aluminium and mild steel 

panels tested earlier. The experiments were carried out as a part of a final year BSc. 

Project (Ryan, 2007). 

An uncoated aluminium panel was impacted by the pendulum weight and the sound of 

the collision was then displayed on an oscilloscope. The oscilloscope was set to 

trigger when the pendulum collided with the panel. The intensity was displayed on an 

oscilloscope which also showed how it varied with time. This exercise was repeated 

using a coated panel and the results compared. The displays appearing on the 

oscilloscope are shown in Figures 4.4 and 4.5.  It can be clearly seen that the coating 

had a significant damping effect in terms of reducing the intensity of the sound and its 

decay time.  

4.4.1. Reverberation effect on coated and uncoated aluminium and mild steel 

panels compared 

The decline in the decay rate on striking the aluminium panel can be seen by 

comparing the two graphs shown in Figure 4.4. 

                      

Uncoated aluminium panel Coated aluminium panel
Figure 4.4. Graphs comparing the decay times for the impacts of the pendulum 

on coated and uncoated aluminium panels (Ryan, 2007).

                                                
5 The persistence of sound in an enclosure after a sound source has been stopped. It is 
a measure of the persistence of an impulsive sound in a space as well as of the amount 
of acoustical absorption present inside a space. The tailing off of sound in an 
enclosure because of multiple reflections from the boundaries. (BKSV, 2008) 
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The impact tests were also repeated on coated and uncoated mild steel panels at 

1,000Hz. The reductions in the intensity and decay times can be seen by comparing 

the two graphs in Figure 4.5. 

Uncoated mild steel panel    Coated mild steel panel
Figure 4.5. Graphs comparing the decay times for the impacts of the pendulum 

on coated and uncoated mild steel panels (Ryan, 2007). 

It can be seen that the coating made a significant difference to the decay time. The 

decay time was reduced from an average of 200 milliseconds to 50 milliseconds for 

the coated aluminium panels, while a reduction of 100 milliseconds to 25 milliseconds 

was recorded for the coated mild steel coated panel. These damping effects and 

measurements are discussed with reference to the theories described in Chapter 2 

(Methodology & Theory) and with reference to the final year project report (Ryan, 

2007). The likely effects on damping of the substrate thicknesses and densities were 

considered.

4.5. Analysis and interpretation of the acoustic experiments in the laboratory 

across the frequency range

Having measured the noise reduction achieved by the application of the acoustic 

coating and other damping materials to the substrate panels it was decided to 

investigate how the different frequencies were affected. This was done by 

downloading spectra for selected impacts caused by the falling weight and by the 

pendulum. The spectra were developed for selected typical noise events generated by 

the impacts.  
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The first series of experiments involved comparing the acoustic properties across the 

frequency range for aluminium, mild steel and GRP. The second series assesses how 

the substrates behave when the acoustic coating and proprietary damping materials are 

applied. The following results are presented in the sequence of aluminium, mild steel 

and GRP and the graphs are colour coded accordingly. 

4.5.1. Comparing the properties of the different substrates across the frequency 

range.

The colour legend used to distinguish between the different substrates is shown in the 

legend.

A series of spectra were developed and compared in order to see at what particular 
frequencies the coating had most effect and to distinguish between the performances 
of the coating on the three different substrates. 

4.5.1.1. Impact spectra for aluminium and mild steel using the falling weight test.

Spectra are illustrated below which compare the performance of the aluminium, mild 

steel and GRP substrates when subjected respectively to the falling weight and 

pendulum tests. In the first instance the spectra for the uncoated aluminium and mild 

steel substrates were developed when subjected to the falling weight test as shown in 

Figure 4.6. These spectra can be represented either as bar charts or as line graphs. 

According to Bruel and Kjaer, the former is favoured for plotting impact sounds 

against frequencies and the latter for plotting the frequencies against time, but both 

presentations are illustrated respectively in Figures 4.6a and 4.6b. Bruel and Kjaer 

advise that the bar graph presentation ‘is more typical for Octave or 1/3 Octave 

frequency analysis’ (Duffy G, Enfonic Ltd, 2008). For this reason all spectra 

subsequent to Figures 4.6 are represented as bar charts only, they are linear and are 

not A-weighted to simulate the human ear.  

Aluminium Mild Steel GRP Unspecified 

Colour Legend for Backgrounds to Graphs 

The background colour of the graphs indicates which material is being tested 
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Figure 4.6(a). Spectra of a falling weight test comparing an uncoated aluminium 
substrate with an uncoated mild steel substrate shown as a bar chart. 
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Figure 4.6(b). Spectra of a falling weight test comparing an uncoated aluminium 
substrate with an uncoated mild steel substrate shown as a line graph. 

Secondly a spectra comparing the impacts on coated aluminium with mild steel panels 

was prepared, as illustrated in Figure 4.7 below. 
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Figure 4.7. Spectra of a falling weight test comparing a coated aluminium 
substrate with a coated mild steel substrate. 

It can be seen from Figures 4.6 and 4.7 that both the aluminium and mild steel 

substrates follow a broadly similar pattern across the frequency range for both the 

coated and uncoated panels.  The aluminium panel however, gave higher sound 

readings across the frequency spectrum with a peak sound being discerned at 250 Hz 

in the case of both the uncoated and coated substrates. 

This higher peak sound for aluminium may be due to the fact the aluminium panel 

was of smaller cross section and was less dense than the mild steel panel. The lighter 

aluminium panel had a 5 fingered pattern (also known as tread / chequer plate 

aluminium with a raised pattern of repetitive 5 diamond shaped ridges) whereas the 

mild steel had a single diamond pattern (similar to a 5 finger pattern where there is a 

repetitive pattern of a single ridge at right angles to one another) and this more 

complex pattern together with its thinner cross section, will also have affected the 

rigidity of the aluminium allowing it to vibrate more easily. The diamond plated mild 

steel panel had a thickness of 2.9 mm while the barley seed aluminium panel had 

thickness of 2.6 mm (measured from the base to the top of the teeth).

The relative densities of the two substrates were compared. They were quoted as 7.8 

kg/m3 (Hypertextbook.com, 2007) for mild steel and 2.7 kg/m3 (Zyra.org, 2007) for 
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aluminium. It is therefore assumed that the denser steel substrate was able to absorb 

and dampen the impacts more effectively than the lighter aluminium. 

The frequency spectra for the uncoated and coated aluminium and mild steel 

substrates when subjected to the pendulum test are compared in Figures 4.8 and 4.9. 

As was the case with the falling weight test shown in Figures 4.6 and 4.7, the 

uncoated aluminium and mild steel followed a similar pattern across the frequency 

spectrum, except that the 250 Hz peak was not in evidence with the pendulum test. 

Another contrast was that the coated aluminium showed more attenuation compared 

with the coated mild steel at frequencies above 1,000 Hz, the reverse of what was 

recorded with the falling weight test. For both substrates, the coating was effective in 

damping the peak sounds at frequencies above 1,000 Hz. 

By comparing Figure 4.8 with 4.9 it can be seen that the uncoated and coated GRP 

panels showed roughly similar results having peaks at 63 Hz, and did not follow the 

patterns recorded for the aluminium and mild steel. This was expected to be having 

regard to the greater densities of the metal substrates. 
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Figure 4.8. Spectra comparing uncoated aluminium, mild steel and GRP 
substrates using the pendulum test. 
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Figure 4.9. Spectra comparing the coated aluminium, mild steel and GRP 
substrates using the pendulum test. 

From Figure 4.8 it can be seen that the behaviour of the uncoated aluminium and mild 

steel was roughly similar across the frequency range when subjected to the pendulum 

tests as was also the case with the falling weight tests shown earlier in Figure 4.6. The 

behaviour of the GRP was very different to the two metal substrates as might be 

expected due to its different mechanical properties. 

From Figure 4.9 it can be seen that the coated aluminium showed greater attenuation 

than the mild steel when subjected to the pendulum test, in contrast to what was 

reported for the falling weight test (Figure 4.7). Again as was expected the behaviour 

of the coated GRP was different to the other substrates. 

4.5.1.2. Comparing the effects of the coating as applied to the different 

substrates.

The performance of the coating was examined further by superimposing spectra for 

coated and uncoated substrates developed from the falling weight and pendulum tests, 

as shown in Figures 4.10 and 4.11 for the aluminium, and in Figures 4.12 and 4.13 for 

the mild steel.  
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Figure 4.10. Spectra of falling weight tests comparing an uncoated aluminium 
substrate with a coated aluminium substrate.
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Figure 4.11. Spectra of pendulum tests comparing an uncoated aluminium 
substrate with a coated aluminium substrate. 

The falling weight test spectra for the aluminium illustrated in 4.10 showed that the 

greatest attenuation was achieved at frequencies of 2,500 Hz and above; this was even 

more pronounced for the pendulum test illustrated in Figure 4.11, with significant 

attenuation beginning at the lower frequencies of 160 Hz. 
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In the case of the mild steel, spectra for the falling weight tests were superimposed 

and comparisons made between the coated and uncoated panels as shown in Figure 

4.12. This exercise was repeated for the pendulum test as shown in Figure 4.13. 
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Figure 4.12. Spectra of falling weight tests comparing an uncoated mild steel 
substrate with a coated mild steel substrate. 
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Figure 4.13. Spectra of pendulum tests comparing an uncoated mild steel 
substrate with a coated mild steel substrate. 

For both sets of tests the greatest attenuations were achieved at 1,600 Hz and above. 

The pendulum tests showed better attenuation than did the falling weight tests at the 

higher frequencies. 
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The performance of the acoustic coating when applied to GRP was also examined by 

superimposing the pendulum test spectra for an uncoated and coated panel, as shown 

in Figure 4.14. 
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Figure 4.14. Spectra comparing an uncoated and coated GRP using the 
pendulum test. 

It can be seen from Figure 4.14 that the coating gave greatest attenuation between 

1000 Hz and 6000 Hz but that this pattern was not observed at the very high 

frequencies.

4.5.1.3. Comparison between falling weight and pendulum test results. 

It was decided to superimpose the spectra from the falling weight tests on to the 

pendulum tests in order to see how the two different test results compared. This was 

done firstly in the case of the uncoated aluminium panel and secondly in the case of 

the coated aluminium. These comparisons are shown respectively in Figures 4.15 and 

4.16.
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Figure 4.15. Comparison between the spectra for the pendulum test and the 
falling weight test for the uncoated aluminium. 

It can be seen in Figure 4.15 that whilst up to 160 Hz the results were similar; above 

160 Hz the falling weight test generated more noise. This may be explained because 

the two tests suffered different impact forces, a vertical force in the case of the falling 

weight test and a weaker horizontal force in the case of the pendulum. The falling 

weight test created more noise at the higher frequencies, because it was deemed to 

embody more kinetic energy and because the panel was not as securely clamped as it 

was for the pendulum test, allowing more unrestricted vibration. The characteristic 

aluminium peak of 250 Hz was again visible as was seen earlier in Figures 4.6 and 

4.7.

Figures 4.15 and 4.16 show that the falling weight test was significantly louder by 10 

dB compared with the pendulum test, particularly at frequencies of 250 Hz and above 

and that this was the case for both the uncoated and coated aluminium panels. 
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Figure 4.16. Comparison between the spectra for the pendulum test and the 
falling weight test for the coated aluminium substrate. 

4.5.1.4. Comparison of the coating with commercially available damping 

materials applied to aluminium and mild steel 

Proprietary damping adhesive strips, “ -dead Eliminator” and -dead Original” 

manufactured in the UK, were attached to the reverse sides of the aluminium and mild 

steel panels to cover 1/3 of the surface area, in order to compare their performance 

with the new acoustic coating under development. The falling weight test was applied 

and the spectra generated were superimposed as shown below in Figures 4.17 and 

4.18.

From Figures 4.17 and 4.18 it is apparent the acoustic coating gave a better 

performance than either the -dead Eliminator or -dead Original.  In the case of the 

mild steel, the coating was seen to be most effective at the higher frequencies above 

1,600 Hz compared with the proprietary damping adhesive strips. 
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Figure 4.17. Spectra for the falling weight test comparing uncoated aluminium to 
a coated aluminium panel; aluminium with -Dead Eliminator applied and with 

-Dead Original applied. 
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Figure 4.18. Spectra for the falling weight test comparing uncoated mild steel to 
coated mild steel panel; mild steel with -Dead Eliminator applied and with -

Dead Original applied. 
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4.5.2 Investigation of the possible influence of different clamping loads on the 

excitation of the panels 

The influence of the application of different clamping loads on the sound generated by 

the pendulum weight impacting on the test panels was investigated. This was done by 

applying increasingly higher torques to the four clamps that sandwiched the test 

panels between the fixed vertical frame, and the demountable frame of the pendulum 

apparatus. The apparatus and the relevant attachments are illustrated in Figures 4.19 to 

4.22 and are also described in Appendix II.3.2. 

Figure 4.19. Photograph showing a test panel sandwiched between the steel 
vertical support frame and the demountable frame. The bolted clamps and the 

spacers are also illustrated. 

Spacer

1 m2 test panel 
(reverse side shown 
here)

Demountable frame 

Vertical frame 

Holding clamp 

Locating lug 
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Figure 4.20. Photograph showing the suspended pendulum weight with the 
barley seed patterned aluminium panel facing the plumb weight. 

Noise impact tests were carried out on three different panels; (a) an uncoated 

aluminium panel (b) an uncoated mild steel panel and (c) a coated mild steel panel. 

Three different torques settings of increasing magnitude were applied to the four 

clamps holding the panels to the frames of the apparatus. The panels were each 

repeatedly impacted (ten times) by the pendulum and the average logarithmic LAFmax

for each of the three tests were calculated. The clamping forces were then plotted and 

correlated against the impact sounds, as reported in Table 4.6 and Figure 4.23. 

Figure 4.21. Photograph showing 
application of the torque wrench to the 

fixing clamps which are fabricated from 
threaded bars. 

Figure 4.22. Photograph showing the 
clamp which comprises a threaded 

shaped rod to clasp the holding 
frames and the panel together.

0.907 kg 
Pendulum weight 

Vertical 
mounting frame 

1 m2 test panel (front 
side shown here with 
the barley seed pattern) 

Wires suspending 
the pendulum 
weight

Holding clamp 
(reverse side) 
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Table 4.6. Description of panels tested and the sounds generated by application of 
different torque loads to the holding clamps. 

Average LAFmax resulting from the different 
torques applied to the clamps Panel

12 Nm 16 Nm 20 Nm 
Aluminium uncoated 80.9 dB(A) 80.1 dB(A) 80.3 dB(A) 
Mild Steel uncoated 84.1 dB(A) 84.2 dB(A) 83.5 dB(A) 
Mild Steel coated 72.5 dB(A) 74.1 dB(A) 73.5 dB(A) 
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Figure 4.23. Graph showing the average LAFmax levels generated during testing 
at the three different torque settings applied to the 1 m2 metal plates. 

The application of increasing torque loads to the holding clamps had no significant 

impact on the sound generated by the impacts of the pendulum on the panels. The 

characteristics of the frequency spectra were also unaffected, as shown in Figure 4.24. 
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Figure 4.24. Spectra for an uncoated aluminium plate showing the application of 
different torque loads (12 Nm, 16 Nm and 20 Nm) to the clamping frames. 

The results may be explained by the fact that the panels were made of dense metal 

materials and were also relatively thick in cross-section, 2 mm in the case of the 

aluminium plate and 3 mm in the case of the mild steel plate and could not be easily 

vibrated. The clamping forces did not put the panels in tension and should not for 

example, be compared with the situation arising in the case of a clamped vibrating 

thin-skinned diaphragm of a musical instrument such as a drum. It was therefore 

concluded that the impact noises arising from metal flooring panels which were firmly 

secured to the floor of a HGV trailer units, are not unduly affected by the clamping 

forces applied. It should be noted that the pendulum test results reported in the 

previous sections involved the application of a hand-tight torque of approximately 

10Nm to the fixing clamps which approximates the torque applied by a HGV vehicle 

body builder when fixing flooring panels, as referred to in section 4.3.2.2. 
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4.6. Field trials at test site: Evaluation of the acoustic coating on board an HGV 

trailer.

4.6.1. Introduction 

The aim of the trial was to evaluate on board an HGV trailer unit, the effectiveness of 

the new coating formulation which was pre-screened in the laboratory. The new 

acoustic coating was applied to 1 m2 panels of aluminium and mild steel substrates. 

The candidate panels were placed inside a stationary HGV trailer and the impacts that 

typically occur during deliveries were simulated by means of the portable falling 

weight and the pendulum test rigs as used in the laboratory. 

The tests were devised to simulate the sound radiated by objects dropping or 

impacting with the floor and wall of a HGV trailer unit. As stated in Chapter 3, the 

major impacts during deliveries were observed to be caused by the wheels of the roll-

cages transiting the trailer floor and by collisions with the kick-walls. The tests were 

carried out on board an HGV trailer unit on the 22nd January 2007 at the test site 

which is the distribution centre for a large chain of supermarkets and convenience 

stores.

The following substrates were tested; (1) GRP uncoated panel, (2) GRP coated panel 

(3) aluminium uncoated trailer floor (4) aluminium coated panel (5) mild steel 

uncoated tail-lift platform (6) mild steel coated panel. 

The falling weight test was applied to the aluminium and steel panels because these 

suffer vertical impacts during deliveries and are transited by the wheels of the roll-

cages.

The pendulum test was applied only to the GRP panel because this material, as used 

on the trailer walls above the aluminium kick-walls, may suffer side impacts during 

deliveries. 

The sound level readings from impacting the coated and uncoated substrates with the 

0.907 kg weight were measured by placing the B&K microphone on a tripod at a 
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distance of 3.5 meters at right angles from the side of the trailer. The sounds 

transmitted through the walls at different positions within the trailer unit were 

recorded as shown in Figure 4.19 below. The panels were moved to three positions, 1, 

2 and 3 within the 13.2 meter length of the trailer body (towards the front, the middle 

and near the rear) and the impact sounds were recorded in LAFmax.

Noise measurements were also taken of impacts to the mild steel tail gate platform by 

sitting the microphone 3.5 meters away from the rear doors of the trailer at a height of 

1.2 meters in accordance with BS 4142. The locations of the noise meter are shown in 

Figure 4.25. The background noise was typically 61 LAeq but a max of 70 LAFmax was 

experienced when there was passing traffic or an HGV engine was running in the 

background.

Figure 4.25. Schematic showing the positions of the panels and the sound meter 
at the distribution depot test site on board the HGV trailer (plan-view). 
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4.6.2. GRP evaluation using the pendulum test

The pendulum test was applied only to the GRP uncoated and coated panels because 

the GRP trailer walls suffer some side-ways impacts during deliveries. In practice it 

was observed that most sideways impacts are absorbed by the aluminium kick-walls 

which protect the lower 30 mm of the trailer walls as illustrated in Figure 4.26. 

The coated and uncoated GRP panels were pushed up hard against the inside wall of 

the trailer at three different positions within the trailer body as shown in Figure 4.25. 

Readings were then taken of the sound transmitted through the trailer wall on the 

striking of the panel at a point 150 mm. above the floor by the 0.907 kg pendulum 

weight. This procedure was repeated 10 times and the logarithmic averages were 

calculated. 

The noise from the first position at the rear of the trailer was measured by placing the 

microphone 3.5 metres away from the rear doors. The noise from the second and third 

positions was measured by placing the microphone at right angles to the trailer body 

opposite these positions and mounted at a distance of 3.5 meters away from the side of 

the truck. 

Figure 4.27. Photograph of tail-lift 
showing the coating applied to the mild 

steel platform 

Figure 4.26. Photograph of the inside 
of a HGV trailer showing uncoated 

chequered aluminium flooring. 
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The pendulum test noise readings for the uncoated and coated GRP panels located at 

the three different positions within the trailer are summarised in Table 4.7 and more 

detailed readings are given in Appendix II.2 and II.3. 

Table 4.7 Logarithmic averages of the pendulum tests in dB(A) on uncoated and 
coated GRP on board the HGV trailer 

Substrate Position 1 Position 2 Position 3 
Impacts LAFmax LAFmax LAFmax

GRP uncoated 75.1 75.0 76.6 
GRP coated 75.0 74.1 74.1 
Reductions 0.1 0.9 2.5 
No significant noise reductions were recorded at the test site in the case of the coated 

GRP panel in contrast with the very significant reduction of 12.2 dB reported earlier 

for the laboratory tests. The difference between the laboratory and this field trial 

results may have been due to the fact that the coated GRP panel could not be secured 

tightly to the side wall of the trailer and was therefore free to resonate. It was not 

possible to dampen the GRP panel by clamping it more securely due to irregularities 

in the trailer wall. Echoes within the trailer body were also a factor. In contrast the 

panels were held with similar clamping forces during the laboratory trials.  

In order to compare how noise was attenuated across the frequency spectrum a 

number of spectra were generated. Figure 4.28 gives a comparison for coated and 

uncoated panels using the pendulum test sited at position 1 on the HGV trailer.
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Figure 4.28. Comparison of spectra for uncoated and coated GRP panels tested 
with the pendulum at position 1 within the HGV trailer. 
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It was found that the application of the acoustic coating to a GRP 1 m2 test panel  did 

not significantly reduce the noise across the frequency range in any of the three 

positions where testing was carried out. Greater attenuation might have been recorded 

had the whole inside area of the GRP trailer side-walls been acoustically coated and 

the coating tested as an integral part of the HGV trailer walls. This was seen however 

as an impractical option in terms of expense and effectiveness because in fleet use it 

was observed that the aluminium 30mm high kick-walls absorb most of the side 

impacts caused by the roll-cages and it would therefore suffice to apply the coating 

only to the kick-walls. 

4.6.3. Sound evaluation for aluminium using the falling weight test on the HGV 

trailer floor

The falling weight tests were applied to the aluminium and mild steel panels because 

this simulated the typical impacts caused by rollcages and locking bars being 

manipulated across the trailer floor and tail-lift platform. The test was applied to 

uncoated aluminium by directly impacting the floor of the HGV trailer and to coated 

aluminium, by laying a coated panel down on top of the trailer floor. Coated and 

uncoated mild steel panels were also similarly tested by laying a coated panel down on 

top of the tail-gate platform. 

To simulate vertical impacts on uncoated aluminium, the weight was dropped directly 

onto the uncoated aluminium trailer floor (from a height of 150 mm at a distance of 

0.50 meters away from the external wall) at three different positions inside the trailer, 

rear, middle and front as illustrated in Figure 4.25. Readings were taken in the 

outdoors at the rear of the trailer and at right angles to the trailer wall from a distance 

of 3.5 meters at the middle and front positions. 

To simulate impacts on coated aluminium, the falling weight was dropped repeatedly 

onto the middle of a coated 1 m2 panel placed inside the trailer. The coated panel was 

positioned firmly on the floor at the rear of the trailer and subsequently at the middle 

and front positions inside the trailer. The edge of the panel was abutted and secured 

against the inside trailer wall. 
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Table 4.8 compares the average sound levels recorded for a series of 10 impacts of the 

falling weight directly onto the uncoated aluminium HGV trailer floor with the 

impacts onto the coated aluminium panel at similar positions inside the trailer body. 

The test results are summarised in Table 4.8 and recorded in more detailed in 

Appendix II.5. 

Table 4.8. Impacts on coated and uncoated Al substrates compared. 
Al Substrates Position 1 Position 2 Position 3 

Impact Noise  LAFmax LAFmax LAFmax

Al floor, uncoated 90.9 87.4 92.2 
Coated Al panel 84.0 85.3 84.9 
Reductions 6.9 2.1 7.3 
Average Reduction 
(Arithmetic) 5.4 dB(A) 

The logarithmic average reduction achieved by the application of the coating was 5.4 

dB(A) Ideally the total 13.2 x 3.5 meter square HGV trailer floor area might have 

been fully coated and the falling weight test results compared with the results from an 

uncoated floor, but this was not possible due to the time and cost constraints imposed 

by the fleet operator.

In order to compare the test results in the field trial at the test site with those obtained 

in the laboratory, a comparison is made in Figure 4.29 between the spectra recorded 

on board the HGV trailer with those recorded in the laboratory for the falling weight 

test as applied to the same coated aluminium panel. 
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Figure 4.29. Comparison of falling weight spectra for a coated aluminium panel 
tested in the laboratory and with a spectra for position 2 at the test site. 

Again as seen in Figures 4.6, 4.7, 4.15 and 4.16 the characteristic aluminium 

resonance at 250 Hz can be also be seen in Figure 2.29. 

It can be seen that very significant attenuation was recorded at the test site at 

frequencies above 1,600 Hz, which was not the case in the laboratory. This difference 

may be explained because the higher frequencies emanating from position 2 inside the 

trailer were absorbed by the thick GRP walls, whereas in the laboratory these 

frequencies would have been reflected by the dense concrete walls within a confined 

space. The GRP walls therefore may have given some additional transmission loss 

effects at the higher frequencies. For example, if one compares the expected 

transmission losses through a 6.35 mm thick plywood wall as being roughly similar to 

the transmissions through a GRP trailer wall, an  attenuation of 15 dB at 250 Hz and 

25 dB at 8,000 Hz. might be expected (Bell and Bell, 1994, p.219). The higher 

radiation area of the trailer may have also made a difference. 

4.6.3.1. Mild steel evaluation using the falling weight test on the tail lift platform

The falling weight test was repeated on the mild steel tail lift platform, as illustrated in 

Figure 4.27. The coated mild steel panel was placed in the centre of the tail-lift 

platform and the weight was dropped repeatedly onto its centre from a height of 150 
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mm. The test was repeated on a coated panel placed in the same position. The results 

are summarised in Table 4.9: 

Table 4.9. Impact noise on coated and uncoated mild steel panels

Uncoated Panel Coated Panel Reduction dB 
95.1 86.1 9.0 

The logarithmic average noise reduction recorded was 9.0 dB. 

A comparison was made between the spectra obtained in the laboratory with those 

recorded in the test site for the coated mild steel panel; these are illustrated in Figure 

4.30.

It can be seen from Figure 4.30 that the attenuation recorded in the test site was 

greatest between 100 Hz and 250 Hz and at the higher frequencies above 4000 Hz 

unlike the laboratory test where the higher frequencies were less affected. The greater 

attenuation at the higher frequencies recorded in the test site may be explained by 

reverberation occurring in the confined space of the laboratory building when none 

was evident in the open logistics yard at the test site. The higher frequencies could 

dissipate readily in the open space at the test site.  
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Figure 4.30. Comparison of the spectra for a mild steel coated panel tested with 
the falling weight in the laboratory with placement on the HGV tail lift platform. 
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A comparison can also be made between the spectra for the coated aluminium panel 

taken at the test site as shown in Figure 4.29, where attenuation occurred earlier at 

1,600 Hz and the mild steel panel where attenuation occurred at the higher frequencies 

of 4,000 Hz and above, as indicated in Figure 4.30. This may be explained by 

transmission losses taking place through the GRP trailer walls in the case of the tests 

on the aluminium panel as illustrated in Figure 4.25, unlike the steel panel which was 

tested in the open on the tail-lift platform attached to the rear of the HGV trailer. 

4.7. Acoustic coating durability tests

The carousel test rig developed to evaluate the application of “hush kits” to the roll 

cages as described in chapter 5 was adapted to measure the durability of the acoustic 

coating. These durability tests are summarised in the Appendix II.6.2 to II.6.6. 

However these experiments are not described in detail as the question of durability in 

fleet operation is secondary to the focus of this particular research which is on noise 

suppression.

The simulation of wear and tear in fleet service on the carousel test rig indicated a 

probable life of from 9 - 10 months for the acoustic coating when applied to the floor 

of the HGV trailer unit. This was calculated to be the equivalent to 20,000 cycles of a 

partly loaded roll-cage transiting across a coated aluminium or mild steel panel. The 

wear tests assumed that a loaded roll-cage passed over the same point twice a day, five 

days a week at ambient temperature. This wear test did not however take into account 

the possible effects of the cleaning of the trailer floor with food-grade alkaline 

detergent or of a refrigerated environment inside the trailer as happens in the field. 

A dial gauge fitted with a flat probe was used to measure the thicknesses of the 

coating on the highest points on the ridges of the chequered plated teeth because this 

is where most abrasion is caused by the passage of the roll-cage wheels. The readings 

were repeated using a micrometer and only a small variation of from 0.16 % to 0.79 % 

between the dial gauge readings and micrometer readings was recorded. 

The viscoelastic damping layer of the acoustic formulation was protected by a robust 

polyester top coat layer which was abraded to begin to reveal the black viscoelastic 
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damping layer following up to 20,000 cycles on the carousel. This indicated that a 

thicker or harder polyester top coat would be necessary to ensure a longer in-service 

life of up to two years as expected by the fleet operator and this possibility will be 

investigated by General Paints Ltd. However the application of a more robust top coat 

(> 150 m) above the viscoelastic water-based middle layer and primer, may 

compromise the acoustic effectiveness of the overall three layer formulation (500 m

in total cross section). This consideration merits further investigation. 

4.8. Conclusion

The hypothesis that the application of a damping material in the form of an acoustic 

coating to the substrates used on the floors and tail-lift platforms of a HGV trailer was 

justified in terms of the noise reductions achieved. 

A methodology was developed which comprised a series of pre-screening experiments 

in the laboratory, leading to larger scale trials on coated panels on board an HGV 

trailer unit and tail-lift platform. These experiments generated a substantial body of 

data which was analysed to assess the performance of the acoustic coating when 

applied to the different substrates, namely aluminium, mild steel and GRP. There was 

a focus on how the coating attenuated the impact noises across the higher signature 

frequencies which were characteristic of the manipulation of roll-cages and 

ancillaries, as reported in Chapter 3. 

The acoustic performance of the new coating compared very favourably with the 

selected commercially available damping materials which were also tested and 

indicated that a targeted noise reduction of at least 5 dB(A) could be achieved, 

particularly across the higher signature frequencies which are typical of the 

manipulation of roll-cages and ancillaries. While the noise attenuation recorded under 

the controlled laboratory conditions for the new coating was significantly greater than 

that recorded out in the open at the retail depot test site on board the HGV trailer unit, 

the latter results were still impressive and showed a logarithmic average reduction of 
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5.4 dB(A) in the case of the aluminium panels and 9.0 dB(A) in the case of the mild 

steel.

Any recommendation to apply the coating to cover the whole floor area of an HGV 

should however, await the development of a more robust formulation which could 

withstand up to two years in fleet service. This may necessitate the application of a 

thicker or harder polyester top coat and it remains to be seen whether this would 

diminish the damping properties of the overall three layer formulation which 

comprises of a primer, a viscoelastic middle layer and a top layer. 

While the coating was effective in damping the aluminium and mild steel panels, it 

was not suitable or effective for application to GRP.  

Comparisons between the frequency spectra for the different substrates and for the 

different tests (the falling weight and pendulum tests) gave worthwhile results and 

showed several anomalies which are described in the text. The results were explained 

with reference to the conditions and background noise applying at the times of the 

different tests in the laboratory and in the field on board the HGV trailer unit. 

The anomalies identified included a characteristic resonance appearing at 250 Hz 

when aluminium was impacted, the coating showing greater attenuation at a lower 

frequency of 1,600 Hz for mild steel and at a higher frequency of 2,500 Hz and greater 

for aluminium. The decay times for the impacted aluminium and mild steel panels 

were found to be substantially reduced by a factor of four when measured on an 

oscilloscope and these experiments confirmed the damping effectiveness of the 

coating when measured on the B&K sound meter. It was found that the application of 

increasingly strong clamping forces to the test panels under laboratory conditions had 

no significant influence on the sound or frequencies emitted.  It was evident that the 

relatively dense and thick metal panels do not behave like a thin diaphragm such as 

the skin of a drum under tension. 

Because of the high noise levels of up to 80 dB recorded during deliveries to shops 

when aluminium and steel HGV trailer floors and tail-lift platforms are impacted by 

roll-cages as described in Chapter 3, it is evident that the application of an acoustic 
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coating alone would not be sufficient to reduce the noise levels on the streets to limits 

approaching 66 dB; this limit being equivalent to that recommended in the 

Netherlands (PEAK, 2007). A holistic approach involving the attenuation of the 

noises at source will be needed to meet any limits likely to be imposed by Dublin City 

Council in compliance with the EC Noise Directive, and will necessitate the 

application of damping hush-kits to the roll-cages as described in Chapter 5 and 

modifications to other ancillaries such as the refrigeration units (European 

Commission, 2002). 
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CHAPTER 5. ATTENUATING ROLLCAGE NOISE

5.0. Introduction

During field trials described in Chapter 3, it was discovered that one of the key 

contributing factors to nuisance noise was generated by the manipulation and rattling 

of the roll cages. The purpose of the research was to develop an acoustic kit that could 

be retro-fitted to a standard steel roll cage. Due to the large number (200,000) of roll 

cages currently in service around the country it would not be commercially viable to 

replace the existing stock in the short-term with a dedicated “silent” new design. 

The challenge was to develop an inexpensive solution in the form of a hush-kit which 

could be readily retro-fitted during the normal servicing of the roll-cages. A typical 

HGV trailer can hold up to 48 loaded roll cages. The distributors indicated that they 

might entertain an additional cost penalty of 10 – 15% of the original cost of a 

standard rollcage to retro-fit a hush-kit in order to ensure continuing access to the city 

at night and to comply with pending noise regulations. 

The fleet operator indicated that their requirements for a hush-kit solution would 

include -

(a) the effective attenuation of the peak noises caused by the handling of roll-

cages

(b) the need for an inexpensive hush-kit package that could be easily fitted during 

the regular servicing of the cages 

(c) durability and the ability to withstand wear and tear and low temperatures 

during the carriage of chilled foods.

The alternative option of developing a completely new non-standard all-polymer roll-

cage was pursued by Sturdy Products Ltd., a partner in the Innovation partnership 

programme (Byrne, Finlay and Grimes, 2007). Due to the high production costs 

involved, an all-polymer replacement for the conventional steel cages was unlikely to 
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find early acceptance by the fleet operators, hence the focus was on an inexpensive 

retro-fit solution. 

5.1. Focus on damping the vibrating and resonating surfaces

As in Chapter IV which describes the application of an acoustic coating to the metal 

floors of the HGV trailer unit, the priority again was to dampen the noise caused by 

the vibrating parts and components of the steel roll cage. As stated in Chapter 2 in 

respect of the research methodology, the literature suggests that the application of 

rubber and other viscoelastic materials is very effective for damping resonating 

surfaces in industrial machinery (Bell and Bell 1994, chapter 6; Smith, Peters and 

Owen, 1996, chapter 8). 

Rubber strips, pieces of hose and viscoelastic adhesive strips were therefore selected 

for application to the steel frame and resonating components of the conventional roll-

cage.

5.2. Methodology

The objective was to develop and to evaluate a low cost hush-kit and to design a 

special carousel test rig and a series of experiments to achieve this. 

The carousel test rig was designed to mimic the typical movements of a roll cage 

during a delivery when the cage is pushed at a walking speed of 3km/h. In service a 

cage will be pushed over a variety of different surfaces such as the floor of the HGV 

trailer, the tail lift platform, road pavements and paths and kerb-sides. The carousel rig 

enabled the transits of empty and loaded cages over uneven surfaces to be simulated. 

The carousel was also designed to measure the durability of the new acoustic paint 

when applied to specimen samples of aluminium and mild steel panels. 

The rotating test rig was similar to a small fairground carousel. The candidate roll 

cages remained stationary while the rotating surface was allowed to pass under the 
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wheels of the cage. The hydraulic motor driving the carousel was controlled at a 

constant speed so that the acoustic performance of different modifications to the roll-

cages could be compared.  

Because the roll cage was anchored in a stationary position, the B&K sound analyser 

could also be fixed in a position at a distance of 3.5 meters from the vibrating roll-

cage and at a height of 1.2 meters above ground in accordance with BS 4142 (British 

Standards, 1997). This arrangement facilitated the observation and easy identification 

of the rattling components and vibrating surfaces of the roll-cage under test as the 

carousel surfaces passed underneath the wheels. This was seen as an easier 

arrangement than the alternative of pushing a roll-cage up and down along a fixed 

path at a constant speed. The carousel could be easily set up and timed to run 

automatically and the sound measurements recorded. Additional advantages of the 

carousel were the relatively low and un-intrusive background noise created by the 

hydraulic drive and the ease with which the rotating speed could be controlled. 

5.2.1. Identification of the resonating parts 

The resonating parts were identified and marked on the fixed roll cage by observing 

the carousel in motion. By adding different components to the hush kit it was possible 

to eliminate various rattles one at a time and to determine where best to apply the 

damping materials. The parts where damping applications were identified as being 

necessary are illustrated in Figure 5.1: 

5
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1
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6

Figure 5.1. Photograph of vibrating roll-cage parts. 
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It was observed that noise was created by the empty and part loaded roll-cages when 

(a) cages are moved across the HGV trailer floor and tail-gate platform  

(b) cages are folded and nested and  

(c) when they collide with stationary cages, obstacles and walls.

The first scenario (a) was simulated by means of the carousel and the second and third 

scenarios, (b) and (c) were simulated by devising special nesting and collision tests. 

5.2.2. Vibrating components while in motion 

The components of the roll-cage which vibrate while in motion were observed and 

marked as the cage was shaken on the carousel. These components are shown in 

Figure 5.1 and comprised: 

(1) name plate affixed to lattice frame 

(2) the “A” frame 

(3) castors and wheels 

(4) folding floor 

(5) hinges of lattice uprights 

(6) securing straps and clasps 

5.2.3. The nesting and folding of the cages 

Roll cages were nested repeatedly to determine where the noise was generated. This 

was found to be caused by: 

(1) The sides of the roll cages colliding together. 

(2) The floor striking the side lattice-work when it was secured in the upright 

position before nesting. 

(3) The “A-frame” striking the side bars of the cage. 

(4) The folding of the sides of the cage across the castor knuckles (not shown in 

Figure 5.2). 
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Figure 5.2. Photograph of components affected by nesting 

The procedure for nesting of the cages involved folding the front hinged lattice 

uprights together across the front castor knuckles and then pushing the folded cage 

bodies tightly together. The floors and side lattice frames were hinged to the “A” 

frame to facilitate nesting and easy storage.  

The parts which were impacted during nesting are illustrated in Figure 5.2. These 

were (1) the uprights for the lattice-work (2) the straps and clasps and (3) the front 

section of the “A” frame. Damping materials were applied to the parts identified and 

illustrated in Figure 5.2 and as described below in Table 5.1.   

Table 5.1. Application of damping to parts affected by nesting 

Affected 
Area Material applied Comments 

1, 2 & 3 Hose Hose was split along its length and attached to the lattice 
frame uprights to act as a barrier between colliding 
components. 

1, 2 & 3 Band-aids Stickers with a rubber or elastic damping material with an 
adhesive backing were applied to the contact areas. 

1, 2 & 3 Stoppers Rubber bungs were clipped on to the frame sections to reduce 
the impacts from the cages colliding. Strips of rubber with 
adhesive backing were also applied. 

Corner top 
protection 

Tailored pieces Tailored rubber pieces were glued to the vulnerable corners of 
the frames 

* denotes point(s) of collision 

1

3

2

*

*

*

* * 
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A selection of rubber and other materials was made using the Radionics catalogue 

(Radionics, 2007) as described in Appendix III.6 and III.7. 

5.2.4. The carousel test rig and demountable arm. 

As mentioned in chapter 2.3, a carousel test rig was specially designed to: 

(a) help identify the vibrating parts of the roll-cage. 

(b) assess the effectiveness of the hush-kit applications. 

(c) test the durability of the new acoustic coating described in Chapter 4. 

Other options for simulating the behaviour of the roll-cages during delivery operations 

were also considered. One was to manually push the roll-cages along a measured path 

at walking pace; the second was to release the roll-cages down an inclined ramp; the 

third was to mount the roll-cages on a vibrating platform. None of these options were 

seen to be as easy to control as the rotating carousel apparatus.   

A disadvantage of the carousel was that the inner roll-cage wheels transited a much 

smaller arc than the outer wheels when the carousel was in rotation. Space constraints 

at the DIT Bolton St. HGV workshop did not allow for a larger diameter carousel 

platform greater than 2.5 meters to be installed. 

Figure 5.3. Photograph of carousel with roll-cage under test 
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A photograph of the carousel is shown in Figure 5.3 and plan view of the rig is 

described in Figure 5.4.

Figure 5.4. Plan view of the carousel test rig 

The hydraulic motor was powered by an external motor and pump assembly which 

was acoustically screened at a site some 5 meters away from the carousel requiring 

long lengths of hydraulic hose to be run between the pump assembly-site to the 

hydraulic motor located underneath the carousel. The speed of the hydraulic motor 

was controlled at the pump assembly-site. 

In order to examine more closely the noise generated by modifications to the castor 

wheel assemblies, a hinged arm fitted with a weighted tray and attached to an 

overhanging bar was fabricated. In this way different proprietary castors and wheels 

could be compared and modifications to conventional castors could be evaluated.  The 

arm attachment arrangement is illustrated in Figure 5.5. 
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Figure 5.5. Photograph of the arm and tray assembly attached to the support 
beam on the carousel test rig 

Figure 5.6. Sketch of the arm assembly attached to the carousel in order to test 
and compare the noise from different wheels and castors and to assess the 

addition of modifications. 
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5.2.5. Modifications to castors and wheels 

Having identified the resonating parts of the roll-cage, a series of tests were conducted 

to assess the effectiveness of the application of damping materials to the different 

parts. In the case of the wheels and castors, the different types of damping adjustments 

which were examined are listed below in Table 5.2. A load of 16 kg was placed into 

the tray on the castor plate and since the loading arm weighed 6 kg the total weight on 

the wheel was 22 kg.  

Different modifications of the castor and wheel units were made and these were 

attached to the suspended arm. A weight of 16 kg was then loaded onto the tray and 

the carousel was rotated at walking speed of 3 km/h and noise recordings were made 

for a period of 2 minutes. The noise reductions achieved were calculated by 

comparison with the noise from a standard unmodified castor unit which gave an 

average LAeq reading of 65.1 dB(A).

Table 5.2. Noise reductions achieved by the application of damping modifications 
to the castor unit and wheel 

Assessment of different modifications 
Noise   dB(A) 

recorded 
Reduction

dB(A) 

Benchmarked against unmodified front castor unit 65.1 0 

2 grooves machined on standard swivel castor wheel 62.3 2.8 

3mm rubber membrane between the castor & frame 63.2 1.9 

3mm rubber membrane on top of the mounting plate 61.3 3.8 

10mm rubber membrane between the castor & frame 61.8 3.3 

10mm rubber membrane on top of the castor & 3mm 
rubber membrane above the mounting plate of the test rig 

60.9 4.2 

"e-dead eliminator” ring fitted to one side of the wheel 65.2 -0.1 

o-rings fitted into the 2 machined grooves of the wheel 58.9 6.2 

From Table 5.2 it can be seen that the most significant noise attenuation of 6.2 dB(A) 

was achieved by attaching two rubber o-rings to the standard wheel. Two special 

grooves were machined into the rolling surface of the front hard plastic wheel to 

secure the o-rings in place. The value of -0.1 dB(A) reported for the fitting of the e-

dead eliminator  to a wheel was not regarded as acoustically significant. 
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The next best reduction of 4.2 dB(A) was achieved by isolating the bolt that joins the 

castor to the frame of the roll cage by means of a 3mm. rubber membrane. This 

prevented vibrations from passing from the castor to the frame of the roll-cage. 

A selection of commercially available “soft” wheels was tested as described in 

Appendix III.1. While these softer wheels created less noise than the standard wheels, 

it was evident from an examination of the technical brochures that these softer wheels 

would not be capable of sustaining the heavy weights of up to 200 kg that are often 

loaded onto roll-cages in fleet service. Soft rubber wheels develop flats-spots if left 

standing under a heavy load for any length of time (Musgraves, 2007). For this reason 

it was decided not to try to replace the standard hard plastic wheels and to see whether 

they could be modified by the addition of rubber o-rings, which as described earlier in 

Table 5.2, gave satisfactory noise reductions of 6.2 dB(A).

5.2.6. Folding and dropping of the floor 

When a roll cage is opened for loading, the floor is held in a vertical position, the 

sides are pushed out and the floor is dropped onto the A-frame creating a loud banging 

noise. To mitigate this, rubber bungs were placed on the uprights of the frame to 

absorb the sound when the floor was folded up and strips of rubber were also placed 

along the tops of the A-frame to dampen the noise of the floor crashing down upon it. 

5.2.7. Closing and opening of sides 

The opening and closing of the sides of the roll cages during nesting was observed to 

create loud impact noises. The parts and components making contact were marked 

out. The areas which were marked and modified with rubber stoppers and damping 

materials are illustrated below in Figure 5.7. Rubber stoppers were added to the inside 

edges of the roll cage body to dampen the impact of the A-frame collisions. 
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Figure 5.7. Photograph of rubber stoppers fitted to the inside surfaces of the base 
frame to reduce the noise of the impacting A-frame during folding.  

It was also observed that the head of the bolts attaching the castors to the base frame 

catches on the side frames with a loud impact when the cage for is folded.

By experimentation it was found that the best method of remedying this was to fit a 

chamfered polycarbonate rubbing strip to the base plate which would allow the side 

frame to move smoothly and quietly over the bolt head. This solution, as shown in 

Figure 5.8 below, obviated the need to drill or to cut the steel cage or to countersink 

the castor bolt head. 

Figure 5.8. Photograph showing the castor head bolted on to the base-plate. The 
fitted polycarbonate chamfered plate and rubber stoppers are also illustrated. 

Castor bolt 
head

Castor top 
plate

Rubber
stopper

Chamfered 
plastic plate 

Rubber
stopper
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The effectiveness of the acoustic add-on strips and stoppers and of the chamfered 

rubbing pieces were tested by dropping the cage floor 10 times onto the A frame and 

by repeatedly folding the cage and taking noise readings. 

The noise reductions achieved are described in Table 5.3 and in Appendix III.  

Table 5.3. Averages of the noise reductions achieved by modifications to the roll-
cage

Noise Levels dB(A) 
Modifications

Unmodified Modified Difference 

Dropping of hinged floor onto "A-frame" 91.5 82.1 9.4 

Closing / folding one side of roll cage 81.4 73.7 7.7 

It can be seen that the damping modifications described in Table 5.3 and as illustrated 

in photographs 5.7 and 5.8, achieved significant noise reductions. The sound from the 

dropping of the hinged floor was reduced by 9.4 dB(A) and the impact noise arising 

folding of the sides of the cage over the castor knuckles was reduced by 7.7 dB(A). 

Spectras of these events were prepared using the B&K acoustic software. The noise 

reductions across the frequency ranges achieved by the application of damping 

materials to the parts impacted by the opening and closing of the roll-cage can be 

clearly seen in Figure 5.9. 
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the sides were folded together.  
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A significant noise reduction of 7.9 dB (from 80.6 dB to 72.7 dB) was achieved when 

the cage was repeatedly folded (x 10) as reported in Appendix III. As can be seen 

from Figure 5.9, the attenuation occurred across the whole frequency spectrum of the 

test, but was more pronounced at the higher frequencies above 4,000 Hz.

5.2.8. Collisions with walls 

Roll-cages frequently collide with walls during deliveries to warehouses and to stores. 

To replicate this scenario a roll cage was pushed into a wall under controlled 

conditions, at consistent walking pace (3 km/h) before and after the application of 

damping modifications. This procedure was carried out for both loaded and empty roll 

cages. The loaded roll-cage carried an extra weight of 78 kg which was typical of a 

delivery consignment. 

While consideration was given to controlling the impact speeds of the roll cages by 

erecting a ramp elevated at an appropriate angle to ensure a measured and replicable 

acceleration on collision with a barrier affixed to the bottom of the ramp. It was 

decided that the arrangement of employing a single operator to push the different 

cages at a consistent pace and of realising the cages at a measured distance of 1m from 

a concrete wall, would suffice as a pre-screening test which could be easily replicated. 

The logarithmic average noise level arising from ten repeated impacts was calculated. 

It was appreciated that using a ramp would generate an acceleration of the speed from 

the release of the cage (at 0 km/h) to the impact with the wall / barrier at 3km/h, rather 

than having a constant speed over the 1m measuring distance. It was also appreciated 

that the ramp apparatus could be designed to give a finely controlled impact speed 

with a barrier. Space and time constraints in the workshop however, would have made 

the erection of a large ramp apparatus problematical.  

Rubber strips were glued along the prominent edges and corners of the cage frame 

most likely to make contact with walls and with other cages and obstacles. A modified 

empty cage was struck (10 times) against a concrete wall and the noise was measured 

at a distance of 3.5 m as described in Appendix III.4 and III.5. The measurements 

were compared with those taken by colliding an unmodified empty cage against the 
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wall. The experiment was repeated with a partly loaded modified and unmodified 

cage.

The application of the damping modifications achieved a very significant average 

noise reduction of 8.4 dB for the empty roll cage and 9.1 dB for the loaded roll cage. 

The average reductions are shown in Table 5.4 and are a summary of the noise 

measurements described in detail in Appendix III.

The load carried was 78 kg and with the weight of the rollcage included, it brought the 

total weight up to 108 kg. This would be the equivalent of loading the rollcage with 15 

trays of baked beans, which is a typical weight for a loaded roll-cage in any 

supermarket (Musgraves, 2007). 

Table 5.4. Noise reductions achieved by adding damping modifications when 
colliding empty and loaded rollcages against a wall. 

Noise Level (dB) 
Collision Tests 

Unmodified Modified Reductions 

Empty roll cage colliding with a wall 88.2 79.8 8.4 

Loaded roll cage colliding with a wall 85.9 76.8 9.1 

5.3. Evaluation of the full hush-kit applications

The development of the final hush-kit package followed from the results of the tests 

described and comprised the application of damping materials to all the resonating 

components and affected parts of the steel roll-cage. 

The final hush-kit packages included the option of fitting rubber o-rings to the 

standard hard plastic wheels. Because of the additional cost involved in fitting o-rings, 

tests were carried out to see whether the fitting of o-rings was justified in terms of the 

incremental noise reductions achieved.

The modified empty and loaded cages were tested on the carousel and the results 

compared with the corresponding unmodified cages. The results are summarised in 

Table 5.5 and show the average noise recorded for each of the three tests carried out 



128

as described on a modified loaded and empty cage fitted with o-ringed wheels and on 

a modified cage without o-ringed wheels. The carousel was set up, the speed was 

controlled at 3 km/h, the background noise was recorded and each trial was conducted 

for a period of 7 minutes.   

Table 5.5. Noise reductions achieved by the application of the hush-kit to an 
empty and to a loaded cage. 

Noise Levels in LAeqCarousel Tests on Final Hush-Kit 
Standard Modified Reduction 

Loaded modified cage with “o-ringed” wheels 
compared with a standard loaded cage 

72.4 dB(A) 60.0 dB(A) 12.4 dB(A) 

Empty modified cage with “o-ringed” wheels 
compared with a standard empty cage 

73.7 dB(A) 59.2 dB(A) 14.5 dB(A) 

Empty modified rollcage with “standard” 
wheels on the carousel compared with a 
standard empty rollcage 

73.7 dB(A) 63.7 dB(A) 10.0 dB(A) 

The application of the hush-kits gave very significant noise reductions as can be seen 

from Table 5.5. This was 12.4 dB in the case of the loaded cage and 14.5 dB in the 

case of the empty cage. The addition of the o-rings to the hush-kit accounted for a 

further reduction of 4.5 dB in the case of the empty cage. 

The frequency spectra of the unmodified and modified roll-cages were also examined. 

This spectra is illustrated below in Figure 5.10. It can be seen that the noise 

attenuation was most pronounced at the higher frequencies above 7,000 Hz.
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The experiment was repeated on an empty cage, one fitted with a full hush-kit 

containing the o-rings, and the other fitted with a kit omitting the o-rings. Figure 5.11 

compares two versions of the hush-kit, one with o-rings and the other without, both 

applied to an empty roll-cage.  
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Figure 5.11. Spectras of an empty roll-cage, a modified roll-cage without 
o-rings fitted to the wheels, and a modified roll-cage without o-rings. 

From Figure 5.11 it is clear that the hush-kit which includes the o-ringed wheels 

(maroon bars) is more effective than that without the o-rings (yellow bars) applied to 

the wheels. As noted already in relation to Figure 5.9, the attenuation was significantly 

greater at the higher frequencies. 

The fitting of the hush kit achieved absolute values of below 66 dB for the handling of 

the roll-cages which is within the possible future noise limits that may be imposed by 

Dublin City Council (Dublin City Council 2007; European Commission 2002). 

5.4. Preparation and application of the hush kit

In order to estimate the costs involved in the manufacture of the hush kit, a time and 

motion study was carried out. The components were fabricated from available raw 

materials such as hose pipes, sheets of rubber and rubber strips, and the kit was fitted 

using readily available workshop tools.
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It was estimated that a full hush-kit, including the o-rings, could be supplied and fitted 

to a standard roll-cages at about 10 - 20 % of the original price of the cage (€ 180) and 

that the fitting could be done during regular servicing. 

The tasks for retro-fitting the hush-kit include dismantling the cage; inserting the 

rubber washers on the castors: fastening and sticking tailored rubber strips and hose 

pieces onto the relevant metal surfaces: attaching the o-rings to the grooved wheels; 

fixing the chamfered polycarbonate sliding plates to the base plates: replacing metal 

clasps on the lattice work sides with plastic or rubber bands; applying damping strips 

to the identity panels and finally re-assembling the modified cage. These tasks are 

described in detail in Appendix III.6. 

The rubber materials used for the experimental hush-kit comprised cast-off materials 

which were readily available in the DIT workshops. The aim was to develop a 

prototype which, if sufficiently promising could be developed further to ensure that 

the most appropriate materials and adhesives were used in order to ensure an optimum 

trade-off between acoustic performance, durability and costs. One aspect of the future 

research would be to determine whether it is feasible to use recyclable materials or 

whether it would be necessary to source specially formulated materials and adhesives. 

5.5. Conclusion

Market research and interaction with the distributors as described in Chapter 2, 

strongly suggested that the application of a cheap retro-fit hush-kit for the 

conventional steel roll-cages would be an effective way for minimising the noise 

caused during night deliveries, particularly in the short to medium term. It would be 

unrealistic to expect businesses to replace their existing stocks of roll-cages with more 

expensive purpose-built “silent” cages while 200,000 conventional steel cages 

remained in circulation. 

The methodology for developing the hush-kit involved the fabrication of a unique 

carousel test rig which could simulate the handling and passage of the roll-cages 

during deliveries, identify the resonating components and help to assess hush-kit 
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packages which could be easily retro-fitted. A suspended arm and tray was fitted to 

the carousel assembly to separately measure the effectiveness of applying rubber 

washers and o-rings to the roll-cage castors and wheels.  

In addition to the carousel tests, the noise created when nesting the roll-cages and 

when colliding with an obstacle such as the wall of a warehouse was also recorded. 

Damping strips and rubber stoppers were applied to the effected parts to see how these 

peak sounds could best be attenuated. 

The parameters for the assessment of a suitable hush-kit were deemed to be the noise 

attenuation achieved; ease of application; the use of readily available materials such as 

rubber stoppers and viscoelastic adhesive strips; durability and low cost.  

The experiments led to the development of two versions of a roll-cage hush-kit, both 

of which included the fitting of tailored damping strips, of rubber stoppers and of 

chamfered polyamide lubricated rubbing plates to the impacted parts and to the 

resonating latticed sides of the roll-cage. The first hush-kit version did not have rubber 

o-rings fitted to the wheels while the second version had two o-rings fitted to each 

wheel in specially cut groves.  

The application of the hush-kits showed significant noise reductions. The hush-kit 

(with the o-rings attached) when applied to an empty roll-cage showed significant 

average reductions of 12 dB(A) while the noise emanating from a loaded roll-cage 

was reduced by 14 dB(A). Because the o-rings accounted for 6 dB(A) of the overall  

reductions achieved, it was recommended to include these o-rings in the hush-kit. 

The absolute noise value for the modified roll-cages was 60 dB(A), when rotated for 

seven minutes on the carousel. This is significantly lower than the possible 66 dB(A) 

limit which may be imposed by Dublin City Council in accord with the EC Directive. 

Significant noise reductions were also achieved when folding the retro-fitted cages for 

nesting inside the HGV trailer. The noise on dropping of the hinged floor onto the “A” 

frame was reduced by 9.4 dB(A) while the folding of the cage across the castor 

knuckles was reduced by 7.7 dB(A).  However the absolute noise values for these 

events were in the region of 73 dB(A) and above which is above the limits likely to be 
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acceptable to Dublin City Council. From observations of a number of different 

deliveries it is reasonable to expect that a trained and adept operator could carry out 

the nesting of the roll-cages much more quietly within a peak limit of 66.6dB(A). 

Incentives could be awarded by the logistics service providers to ensure that a 

satisfactory level of acoustic performance was maintained during night deliveries. DIT 

has offered to develop a training manual for logistics operatives based on this 

research. 

The hush-kit reduced the noise caused by collisions with a wall, by 8.9 dB(A) for an 

empty cage and by 9.1 dB(A) for a loaded cage. While the absolute values were again 

high at 75 dB(A), in practice, these impacts could be completely avoided or greatly 

mitigated by a trained operator. 

It was found that the noise attenuations achieved by the fitting of the hush-kits 

occurred right across the frequency ranges from 500 Hz to 10,000 Hz and were very 

pronounced above 7,000 Hz. As reported in chapter 3 and shown in Figure 5.9, 

signature frequencies and pure tones at 1,000 Hz and above were characteristic of the 

handling of empty roll-cages and the application of the hush-kit was most effective at 

these high frequencies. 

A hush-kit can be manufactured cheaply from rubber off-cuts and from commercially 

available viscoelastic strips and adhesives and can be easily retro-fitted. A time and 

motion study indicated that the total cost of preparing and applying a hush-kit 

including o-rings would amount to € 26 and it was reasonable to assume that costs 

could be significantly reduced by series production. The additional cost to a 

distributor or retailer of “quietening” his roll-cages would add from 10 % to 20 % to 

his original price and this operation could be included as a part of the regular 

servicing.   

Further development work is recommended to ensure that the most appropriate rubber 

materials and adhesives are selected so as to optimise the trade-offs between acoustic 

performance, durability and costs of a commercially attractive product. 
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CHAPTER 6: OVERVIEW, CONCLUSIONS AND 

RECOMMENDATIONS

6.0. Introduction

The project set out to prove the hypothesis that – 

Acoustic materials are available or can be developed and applied to Heavy Goods 

Vehicles and ancillaries, which effectively and economically abate the noise caused 

by night deliveries

The background and justification for the research are described in chapter 1. The 

methodology by which this hypothesis was proven and the research results obtained 

are described in chapters 2 to 5.  

Public concern with noise pollution has moved up the European political agenda. In 

the interests of ensuring a satisfactory quality of life for residents many municipal 

authorities have taken steps to mitigate the nuisance caused. As reported in chapter 1, 

the damaging effects of sleep deprivation caused by traffic and by aircraft noise, are 

supported by a significant body of medical research (EC-CALM 2005, WHO 2001). 

In Dublin the City Council through its noise mapping activities and action plans in 

response to the EC noise directive (EC-ENDS, 2002) and DIT through the Innovation 

Partnership project “Low Noise Solutions for Night Deliveries”, has helped to make 

the city a significant voice in this topical European debate (Byrne, Finlay and Grimes, 

2007).

The Innovation Partnership built on earlier research conducted by the author that has 

created new insights into the patterns and rhythms of deliveries to shops in the city 

centre.  The parameters that had relevance for noise disturbance were the time of day 

at which deliveries occur; the dwell times of trucks while delivering at the kerb-sides; 

the categories of goods delivered and the types of vehicles used. The trend to urban 

night deliveries were found to be driven by powerful factors; 24/7 shopping; the desire 

by distributors to avoid congestion peaks; by the advent of just in time deliveries and 
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e-logistics and by the need for retailers to free up customer access to their premises 

during the day (O’Mahony, Finlay and Finnegan, 2004). A survey of 2,500 deliveries 

to city centre shops during a typical week in 2005 showed that 24 % of trips were 

made before the 7am congestion peak (NITL, 2007). This trend is likely to have 

accelerated following the introduction in February 2007 by Dublin City Council of the 

HGV Strategy which restricts access by five axle trucks to the centre during the day.

The need to conduct night deliveries in a sustainable way acceptable to residents is 

expected to create a demand for low noise products and solutions. The market 

research as reported in chapter 1 makes a convincing business case for the project. 

This suggests that the demand for low noise HGV trailer units and ancillaries will be 

significant when related to the numbers of newly registered heavier HGVs (over 16 

tonnes gross vehicle weight) which are increasingly employed for the deliveries of 

foodstuffs. When it is considered that 3,200 of the bigger HGVs enter the Irish market 

every year and that each trailer unit may contain up to 48 roll-cages, a potentially 

large market may develop if new HGVs and a proportion of the existing fleet require 

acoustic modifications in order to enjoy access to noise sensitive areas.  

The Dutch “PEAK” programme has created a very relevant body of best practice 

experience on which this research has built. The Dutch government have since 1998, 

set stringent noise limits for night operations in their major towns and have 

successfully encouraged the development of a new range of acoustic products. A 

combination of regulations for night deliveries together with government subsidies has 

stimulated sales of “quiet” products to the value of € 60 million in the period 2004-

2008 (Senter Novem-PEAK, 2002).  

Interaction with the PEAK programme was arranged through the Dutch agency Senter 

Novem and also with other relevant EC research networks, namely “BESTUFS”, 

“CALM” and “SILENCE” (BESTUFS 2005; CALM 2006; SILENCE 2005). It 

became evident from a review of these programmes however that no “one size fits all” 

solution could be found and in the case of Dublin, that there was scope to develop new 

solutions for selected niche applications which would have regard for the unique 

topography and relatively cold climate of the coastal city and which would match the 

capabilities of Irish based suppliers.
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An examination of the events that gave rise to the peak noises during deliveries 

suggested that the focus of the research could usefully be directed at (a) selecting

acoustic materials for application to HGV trailer units and tail-lifts and (b) developing 

“hush-kits” that could be retro-fitted to roll-cages.  

6.1. Literature review and research methodology

The research methodology, as described in chapter 2, comprised eight discreet tasks – 

1) a review of national and international regulations and norms governing noise 

disturbance

2) a social and commercial justification for the research  

3) field trials to identify the peak disturbances caused during kerb-side deliveries

4) the selection and development of suitable materials for noise abatement 

5) the acoustic pre-screening of coatings in the laboratory  

6) a repeat of the laboratory tests on board a “concept” HGV 

7) the evaluation of modified roll-cages fitted with “hush-kits”  

8) conclusions and recommendations for further investigation 

The research methodology and the sequence in which the tasks were carried out were 

found to be practical and gave results that confirmed the proposed hypothesis. The 

methodology was based on a review of the literature relating to vibration and noise 

control and to the procedures used by the authorities in Ireland and internationally for 

measuring noise disturbance.  

The analysis of the results of the field trials of night deliveries in the city centre (Task 

3) was the basis for deciding which components and products would need attenuation 

having regard to the levels and characteristics of the peak noises caused and to the 

feasibility of finding realistic solutions.  

The project sought to build on the research reported by the Dutch PEAK programme 

by seeking to attenuate the peak sounds at the characteristic frequencies at which they 
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occurred. The development and analysis of frequency spectra for the peak events and 

the matching of these particular peak frequencies with suitable acoustic materials, was 

seen as an advance on the work carried out to date. 

The initial field trials involved measuring absolute values for the peak sounds caused 

by deliveries on the streets (as reported in chapter 3). The subsequent trials in the 

laboratory and on board the HGV “concept vehicle” assessed the effectiveness of 

applying different acoustic materials to a variety of substrates. Relative values rather 

than absolute values were deemed to be sufficient for making comparisons. All the 

sound measurements were made by adapting BS 4142 procedures. The development 

of special test rigs comprising a portable pendulum, a falling weight rig and a 

hydraulically driven carousel assembly were unique to the project. The laboratory 

tests were devised to ensure that the test conditions could be easily repeatable, 

changing only the material or noise abatement method. 

The procedures commonly used by the local authorities and the courts for dealing with 

noise complaints were examined and were found to be based on BS 4142 (EPA 

Guidelines, 2003). When complaints are made, the additional noise or “exceedences” 

(greater than 6 dB(A)) caused by disturbances are compared with the background 

noise and these values are taken into account by the courts.  Rather than seeking 

compliance with absolute noise limits, which is the practice in the Netherlands and in 

Germany, the Irish courts are more concerned with adjudicating on the added 

disturbances caused by particular events. 

The Bruel and Kjaer sound meters were programmed to record the key parameters 

specified in BS 4142 and “Evaluator” software was used to analyse the data and to 

develop spectra for the peak events. Graphic data was recorded by using night vision 

cameras and this enabled the sources of the peak events to be easily identified. It was 

found that the peak events could be characterised by “signature frequencies” as shown 

on the spectra and that for example, the manipulation of roll-cages could be easily 

distinguished from the movements of the hydraulic tail-lift or the running of the HGV 

refrigeration system. 

When comparing the peak measurements taken in Dublin with measurements recorded 

in the Netherlands by TNO, the former should be adjusted by adding 6.6 dB(A) to the 
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TNO readings for similar events so as to correct for the closer positioning of the sound 

meter during the Dublin field trials. If the noise limits which apply to the Dutch cities 

were to be adopted by Dublin City Council, the limits for night delivery events would 

be set at LAeq 66.6 dB(A) measured continually at 1second intervals over the duration 

of the delivery operation. The challenge for businesses making deliveries in Dublin is 

therefore to attenuate the peak sounds such as those arising from the handling of the 

roll-cages, to within limits approaching LAeq 66.6 dB(A). 

6.2. The monitoring and analysis of kerb-side deliveries

Kerb-side deliveries to shops, as reported in chapter 3, were found to make a 

significant difference to the background early morning noise on the city streets. This 

was the case whether deliveries took place in a ‘low noise sensitive area’ or on a busy 

street with lots of by-pass traffic. The shops were selected with a view to giving a 

representative sample of different street-scapes, from narrow “canyon” streets where 

noise is reverberated, to wide tree-lined streets. The delivery operations were found to 

generate peak sound levels which added significant noise values ranging from 14.7 

dB(A) to 20.6 dB(A) to the background sound levels.

The events that caused most of the peak sounds related to the handling of the roll-

cages were their passage along the floor of the HGV trailer, when transiting the tail-

lift platform, when crossing the pavements to the shops and when stacking the 

returned empty cages inside the trailer unit.   

The manipulation of the roll-cages within the trailer body at store C produced typical 

values of LAeq of 72.7 dB(A) and an LAFmax of 79.1 dB(A). The return of the empties 

to the truck and onto the tail-lift generated an LAeq of 71.7 dB(A) and an LAFmax of 

83.2 dB(A). The spectra for the empty roll-cages were characterised by a 

concentration of “signature” frequencies in the region of 1,000 Hz to 2,000 Hz while 

the partly loaded cages showed a spread across a broader range of frequencies. The 

pure tones or tonal quality that causes most annoyance were identified on the spectra 

by the increases of 3 dB or more at the peak events. For example a pure tone at 1,000 

Hz characterised the peak sounds caused by the handling of the empty cages. 
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The peak events caused by the handling of the roll-cages at store D are shown in 

Figure 6.1 (with reference to chapter 3) and the peaks are also shown in relation to a 

possible city centre noise limit of 66.6 dB(A) for night deliveries. It can be seen that 

the handling of the roll-cages gives rise to peaks in excess of 76 dB(A) LAeq which is 

significantly greater than the targeted limit of an LAeq of 66.6 dB(A) measured for 

intervals of 1 second.

66.6 dB(A) 
Limit 

1. 2. 
3.

4. 5.
6.

7.   8.
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Figure 6.1. Specific noise at store D and data log, LAeq measured at 1second 

intervals. The peaks numbered 1 to 8 relate to the remarks in the accompanying 

datalog.

6.3. The selection of a damping material for the HGV trailer and tail-lift 

platform

The question of which category of acoustic material to select and apply was 

considered. The categories comprised (1) absorption (2) transmission loss and (3) 

damping materials as described in chapter 4. It was decided to focus on damping 

solutions because the peak sounds were caused by impacts with resonating metal 

surfaces which emitted relatively high frequency sounds.  

Following an examination of the construction of an HGV and having observed the 

location of the resonating surfaces which suffer frequent impacts, it was decided to 

apply damping in the form of a coating to the aluminium floor and kick-walls of the 

trailer and to the mild steel tail-lift platform. The restricted dimensions and spaces 

1. 

2. 

3. 
4. 

5. 
6. 
7. 
8. 
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available for sound attenuation in a standard HGV trailer would not permit the 

installation of bulky absorption or barrier materials and the much thinner damping 

materials and coatings would be easier to retro-fit and were likely to give a more 

durable solution. 

The acoustic pre-screening in the laboratory of a special coating developed by 

CREST-DIT was completed before application on a bigger scale to an HGV trailer 

unit and tail-lift. Tests were designed to simulate the events that occur during 

deliveries and special rigs comprising a falling weight rig and a pendulum apparatus 

were fabricated, as described in chapter 4. The boundary conditions for the laboratory 

tests were set to ensure repeatability. For example the torques applied to securing the 

panels under test on the pendulum apparatus by means of clamps were measured.  

Following completion of the impact testing in the laboratory, the coating was tested on 

board a “concept” HGV trailer unit using the portable falling weight and pendulum 

test rigs.

The methodology used for evaluating the acoustic performance of the coating on 

different HGV trailer body substrates (aluminium, mild-steel and GRP) and for 

measuring the coating against selected proprietary materials, enabled realistic 

comparisons to be made.  

Consideration was given to employing a vibrating bar or “Oberst” bar to measure the 

damping performance of the coating on small sample panels of the substrates but this 

was discounted because the aluminium and mild steel panels were relatively thick and 

of dense cross-section (3mm) and would not be comparable with the vibrating 

behaviour of thin diaphragms under tension. The portable test rigs developed for the 

project were deemed to give acceptable comparative data. 

The coating showed very promising noise reductions possibilities in the laboratory 

and the test results reported in chapter 4 are summarised below in Table 6.1.  
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Table 6.1. Summary of noise reductions achieved in the laboratory by the 
application of an acoustic coating and damping strips to GRP, mild steel and 

aluminium panels using the falling weight test 

Substrate
Uncoated Log. 
Average dBA 

(LAFmax)

 Coated Log. 
Average dBA 

(LAFmax)

Reductions in dB, 
coated panels 

compared with 
uncoated

Aluminium, 
chequered side 102.9 88.1 14.8 

Aluminium, plain 
side, plus “Ygro” 104.3 88.8 15.5 

Mild Steel, 
chequered side 
only

100.3 85.6 14.7 

Mild steel, plain 
side, plus “Ygro” 99.6 90.3 9.3 

GRP  98.3 91.2 7.1 

It can be seen that the falling weight tests conducted in the laboratory showed very 

significant reductions of 14.8 dB(A) for the coated aluminium and 14.7 dB(A) for the 

coated mild steel panel and compared favourably with the application of  the 

proprietary adhesive damping strips. 

It is interesting to compare the results reported in the laboratory for the falling weight 

test with the corresponding results obtained on board an HGV trailer at the 

distribution depot test site. The high attenuations achieved in the laboratory were not 

experienced on board the HGV trailer but they were nevertheless still significant. 

Reductions of 6.0 dB(A) were  recorded for the coated aluminium panel and 9.0 

dB(A) for the coated mild steel.   

In the case of the falling weight tests the attenuation patterns across the frequency 

ranges recorded in the laboratory can be compared with the patterns recorded on board 

the HGV trailer unit at the test site. The superimposed spectra for the laboratory tests 

and for the repeat of these tests on board the HGV trailer unit are illustrated below in 

Figure 6.2. 
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Figure 6.2. Comparison of falling weight spectra for a coated aluminium panel 
tested in the laboratory and with a spectra for position 2 as tested at test site. 

It can be seen from Figure 6.2 and also in chapter 4 Figure 4.29, that very significant 

attenuation was recorded at the test site at frequencies above 1,600 Hz, which was not 

the case in the laboratory. This may be explained by the different boundary conditions 

obtaining in the laboratory compared with the inside of the HGV trailer unit in the 

open field. The relatively thick GRP walls of the trailer evidently had transmission 

loss effects on the higher frequency sounds. It should be noted that the panels under 

test were not mechanically secured to either the floor of the laboratory or to the floor 

of the HGV trailer. 

It is possible that the higher frequencies emanating from position 2 inside the trailer 

(as illustrated in chapter 4, Figure 4.25) may have been absorbed by the thick GRP 

side walls whereas in the laboratory these frequencies would have been reflected by 

the dense concrete walls within a confined space. The GRP walls may therefore have 

given some additional transmission loss effects at the higher frequencies. For example 

if one compares the expected transmission losses through a 6.35mm (1/4
" ) thick 

plywood wall as being roughly similar to the transmissions through a GRP trailer wall, 

an  attenuation of 15 dB at 250 Hz and 25 dB at 8,000 Hz might be expected (Bell and 

Bell, 1994, p.219).
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The clear peak at 250 Hz which was evident in the laboratory was not evident at the 

test site. As reported in chapter 4, this particular peak was characteristic of all the 

aluminium tests conducted in the laboratory. 

Similar comparisons can be made between the spectra for the falling weight tests for 

the coated mild steel panel conducted in the laboratory and for the similar tests 

conducted at the test site. The superimposed spectra are illustrated in Figure 6.3 (this 

is also shown in chapter 4, Figure 4.30). 
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Figure 6.3. Comparison of the spectra for a mild steel coated panel tested with 
the falling weight in the laboratory with placement on the HGV tail lift platform 

at the test site. 

It can be seen from Figure 6.3 that the attenuation recorded in the test site was 

significant between 100 Hz and 250 Hz and greatest at the higher frequencies above 

4000 Hz, unlike the laboratory tests where the higher frequencies were little affected. 

The greater attenuation at the higher frequencies recorded in the test site may be 

explained by reverberation occurring in the confined spaces of the laboratory building 

when none was likely in the open logistics yard at the test site, because the higher 

frequency sounds could easily dissipate in the open spaces. It is more likely however 

that the different boundary conditions gave rise to natural frequencies occurring at 

different places in the spectrum.  
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A comparison can also be made between the spectra for the coated aluminium panel 

taken at the test site as shown in Figure 6.2, where attenuation occurred at 1,600 Hz, 

and the mild steel panel where attenuation occurred at the higher frequencies of 4,000 

Hz and above, as illustrated in Figure 6.3. This may be explained by the different 

constraints and environment obtaining in the laboratory compared with onboard the 

HGV trailer unit. It should be noted however that the clamping forces applied to the 

portable pendulum apparatus for securing the panels were similar on board the HGV 

to those in the laboratory. 

The tests on both the aluminium and mild steel panels at the test site showed 

noticeable reductions in the higher frequencies above 2500 Hz and because the test 

site is closer to the intended environment of deliveries to shops where high frequency 

sounds caused by the roll-cages are very much in evidence, the attenuation pattern 

achieved by the application of the acoustic coating is encouraging. 

6.3.1. Reverberation effects on coated and uncoated aluminium and mild steel 

panels compared 

The damping effects of the coating were confirmed by comparing the decay 

characteristics of impacted uncoated and coated aluminium and mild steel panels. 

Graphs comparing the decay times for uncoated and coated panels on being struck by 

the pendulum weight are represented in Figures 6.4 and 6.5. 

       

Uncoated aluminium panel Coated aluminium panel
Figures 6.4. Graphs comparing the decay times for the impacts of the pendulum 

on coated and uncoated aluminium panels.
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Uncoated mild steel panel   Coated mild steel panel 
Figures 6.5. Graphs comparing the decay times for the impacts of the pendulum 

on coated and uncoated mild steel panels. 

The decay times for the impacted aluminium and mild steel panels were reduced by a 

factor of four when measured on an oscilloscope. The reverberation time was reduced 

from an average of 200 milliseconds to 50 milliseconds for the coated aluminium 

panels, while a reduction of 100 milliseconds to 25 milliseconds was recorded for the 

coated mild steel panel. These decay time results confirmed the damping effectiveness 

of the coating as shown by the sound meter tests reported in chapter 4. 

The application of a damping material in the form of an acoustic coating to the 

substrates used on the floors and tail-lift platforms of an HGV trailer were promising. 

While the noise attenuation recorded under the controlled laboratory conditions was 

much greater than that recorded out in the open on board an HGV trailer unit, the 

latter results were still impressive and repeatable and showed a reduction of 5.4 dB(A) 

in the case of the coated aluminium panel and 9.0 dB(A) in the case of the coated mild 

steel.

While the coating was effective in damping the vibrating aluminium and mild steel 

panels, it was not found suitable or effective for application to GRP. It should be 

noted that the preliminary laboratory tests reported in chapter 4.4.1 indicated that the 

new coating also performed better acoustically than did a Dutch proprietary liner 

coating which claimed to have both protective and acoustic properties. All of these 

results confirm the potential of the new coating as an effective acoustic application.  
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Any recommendation to apply the coating to cover the whole floor area of an HGV 

should however, await the development of a more robust formulation which could 

withstand up to two years in fleet service because the tests on the carousel indicated a 

life of not more  than one year. A longer lasting coating would require the application 

of a thicker or harder polyester top coat and it remains to be seen whether a harder and 

stronger top coat would diminish the damping properties of the overall three layer 

formulation which comprises a primer, a viscoelastic middle layer and a top layer.  

In fleet operation the application of the acoustic coating to the HGV trailer floor and 

tail-lift could be expected to reduce peak noise levels by 5 dB(A) or more. For 

example a typical peak of LAeq 71 dB(A) caused by the handling of the roll-cages 

would be sufficiently reduced to conform with the proposed limit of 66 dB(A) for 

night deliveries to be considered by the City Council. This degree of attenuation 

would not however be sufficient to achieve the proposed limit of 66 dB(A) for the 

higher peak noises recorded during the initial field trials. The development therefore 

of a special “hush-kit” for the roll-cages to mitigate the high frequency rattling noises 

at source, was seen as a necessary additional requirement to complement the 

application of the coating and to help achieve the proposed target peak limit of 66 

dB(A).

6.4. Damping to the roll-cages by the application of a “hush-kit” 

The field trials indicated that the handling and rattling of the roll-cages contributed 

greatly to the peak noise events and hence the challenge was to develop an 

inexpensive way to attenuate these noises by means of a hush-kit that could be easily 

retro-fitted.  

In order to attenuate the frequency sounds which were found to be characteristic of the 

manipulation of roll-cages, as reported in chapter 3, it was decided to apply damping 

materials in the form of viscoelastic strips and rubber bands and stoppers to the 

affected parts of the roll-cage. It was realised that the application of an acoustic 

coating to the HGV trailer floor would not be sufficient to mitigate the peak sounds 
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caused by the handling of the roll-cages and that the attenuation of the peak sounds at 

source by the application of a hush-kit would be necessary. 

Market research (chapter 2) suggested that the development and application of a cheap 

retro-fit hush-kit for the conventional steel roll-cages could be an acceptable solution 

in the short to medium term. It would be unrealistic to expect businesses to replace 

their existing stocks of roll-cages with new and more expensive purpose-built “silent” 

cages while 200,000 conventional steel cages remained in circulation. 

The development of the hush-kit involved the fabrication of a special carousel test rig 

designed to simulate the handling of the roll-cages during deliveries, to identify the 

resonating components and to assess different hush-kit package options. A suspended 

arm and tray was added to the carousel assembly to measure the effectiveness of 

applying rubber washers and o-rings to the roll-cage castors and wheels (as detailed in 

chapter 5). 

The components of the roll-cage which vibrate while the cage is in motion were 

identified and marked, as illustrated in Figure 6.6 (these are also shown in chapter 5, 

Figure 5.1).

                     Figure 6.6. Photograph of vibrating roll-cage parts.

The noise created when nesting the roll-cages and when they hit walls and other 

obstacles was also simulated by repeatedly colliding empty and loaded cages against a 

concrete wall. Damping strips and rubber stoppers were applied to the effected parts to 
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see how these peak sounds might best be attenuated. The parts of the roll-cage 

affected during nesting and when colliding together are shown in Figure 6.7 (these are 

also shown in chapter 5, Figure 5.2). These particular tests are described in more 

detail in chapter 5. 

Figure 6.7. Photograph of components affected by nesting 

The requirements for a suitable hush-kit were specified as comprising: significant 

noise attenuation; ease of application; the use of readily available materials such as 

rubber pieces and viscoelastic adhesive strips; durability and low cost.  

The carousel experiments as reported in chapter 5 and the related experiments which 

simulated nesting and collisions, led to the development of a hush-kit which 

comprised; (a) the fitting of tailored damping strips to the resonating surfaces of the 

cages, (b) of rubber stoppers to the impacted parts, (c) of rubber bands to the metal 

side lattices, (d) of chamfered polyamide lubricated rubbing plates to the folding parts. 

The components of the hush-kit are illustrated in chapter 5 and related appendices. 

Two versions of the hush-kit were developed and tested; the first version did not have 

rubber o-rings fitted to the wheels while the second version had two rubber o-rings 

inserted into specially cut groves.  

The results of the noise recorded for three different tests are described in Table 6.2. 

These tests were devised to give easily repeatable and comparable results. The 

effectiveness of the hush-kit when fitted to both an empty and to a loaded cage was 

* denotes point(s) of collision 
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assessed by running the cages on the carousel for seven minutes, measuring the sound 

and comparing these with the noise from an unmodified cage.  

Table 6.2. Noise reductions achieved by the application of the hush-kit to an 
empty and to a loaded cage. 

Noise Levels in LAeqCarousel tests on final hush-Kit 
Standard Modified Reduction 

Loaded modified cage with “o-ringed” wheels 
compared with a standard loaded cage 

72.4 dB(A) 60.0 dB(A) 12.4 dB(A) 

Empty modified cage with “o-ringed” wheels 
compared with a standard empty cage 

73.7 dB(A) 59.2 dB(A) 14.5 dB(A) 

Empty modified roll-cage with “standard” 
wheels on the carousel compared with a 
standard empty roll-cage 

73.7 dB(A) 63.7 dB(A) 10.0 dB(A) 

As can be seen from Table 6.2, the application of the hush-kits gave very significant 

noise reductions. This was 12.4 dB in the case of the loaded cage and 14.5 dB in the 

case of the empty cage. The addition of the o-rings to the hush-kit accounted for a 

reduction of 4.5 dB in the case of the empty roll-cage and for this reason the inclusion 

of the o-rings is warranted.

The average sound value for the modified roll-cages was 60 dB(A), when rotated for 

seven minutes on the carousel. This is significantly lower than the possible 66.6 

dB(A) limit which may be considered by Dublin City Council. 

Significant noise reductions were also achieved by the application of pieces of the 

hush-kit when the retro-fitted cages were folded for nesting inside the HGV trailer. 

The noise on dropping of the hinged floor onto the “A” frame was reduced by 9.4 

dB(A) and the folding of the cage across the castor knuckles fitted with chamfered 

polymer plates,  was reduced by 7.7 dB(A).  However the absolute noise values for 

these events averaged 73 dB(A) which are above the proposed peak limit of 66.6 

dB(A). From observations of a number of different deliveries however, it is expected 

that a trained operator could nest the cages more quietly and within the proposed peak 

limit of 66.6 dB(A). As recommended in chapter 5, suitable incentives and training 

modules could be devised to promote best practice by the logistics operatives.

The hush-kit applications reduced the noise caused by collisions with a wall, by 8.9 

dB(A) for an empty cage and by 9.1 dB(A) for a loaded cage. While the absolute 
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values were again high at 75 dB(A), in practice, these impacts could be greatly 

mitigated or avoided by a trained operator.  

The operatives employed by the Musgrave SuperValu Centra Group receive on the job 

training to ensure that they meet high standards of health and safety and that logistics 

and fuel efficiency targets are achieved. Drivers are instructed to switch off their HGV 

tractor unit engines when making kerb-side deliveries and to cause the minimum of 

noise disturbance. DIT has advised the company to add a new noise module to their 

driver training programme and to regularly monitor performance to ensure that 

standards are maintained. 

The frequency spectra of the unmodified and modified roll-cages were also examined. 

The effectiveness of the hush-kit fitted to an empty roll-cage is illustrated in Figure 

6.8. The roll-cage was fitted in the first instance with the full hush-kit package 

containing the o-rings, and then fitted with a kit which omitted the o-rings. The hush-

kit package which included the o-ringed wheels (maroon lines) was more effective 

than that without the o-rings (yellow lines) applied to the wheels.
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Figure 6.8. Three spectra of an empty roll-cage, (1) a standard cage (2) a 
modified roll-cage without o-rings fitted to the wheels and (3) a modified 

roll-cage with o-rings attached. 



151

The effectiveness of applying the hush-kit to a loaded roll-cage across the frequency 

spectrum is illustrated in Figure 6.9. A significant attenuation was achieved evenly 

across the whole frequency range when a loaded hush-kit fitted roll-cage was rotated 

for seven minutes on the carousel, the greatest attenuation occurred at 6,300 Hz and 

above.

It is evident from an examination of Figures 6.8 and 6.9 that fitting the hush kit to 

both empty and the loaded cages was effective across all frequencies but had greatest 

impact at the higher end of the spectra above 6,300 Hz.
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Figure 6.9. Noise reductions across the frequencies for a fully modified and “o-
ringed” loaded cage compared with a standard loaded cage. 

6.5. Cost of fitting a hush-kit

The hush-kits were manufactured cheaply from rubber off-cuts and from 

commercially available viscoelastic strips and adhesives and were easily retro-fitted. 

A time and motion study indicated that the total cost of preparing and applying a 

hush-kit including the o-rings, would amount to € 26. It is reasonable to assume that 

costs could be significantly reduced by series production. It is estimated that the 

additional cost to a distributor of “quietening” roll cages would add from 10 % to 15 
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% to the original price and that this operation could be included as a part of regular 

servicing.  

6.6. Recommendation for further research

6.6.1. Further development of the acoustic coating 

It was recognised that because of the high peak sound levels of up to 80 dB(A) 

experienced when the floor of the HGV trailer was impacted by the roll-cages, that a 

holistic approach was necessary to ensure conformance with the proposed noise limits. 

This involved a combination of the application of the acoustic coating, the attenuation 

of the roll-cage noises by the application of the hush-kit and changing operative 

behaviour. More developmental work is recommended to ensure that an optimal and 

cost effective solution is reached that is acceptable to all the parties affected by night 

deliveries. 

The durability of the coating needs to be improved without diminishing its acoustic 

properties. The viscoelastic damping layer of the acoustic formulation was protected 

by a robust polyester top coat layer which was abraded by testing on the carousel to 

begin to reveal the softer black viscoelastic damping layer. The wear through of the 

hard top layer emerged after 20,000 cycles on the carousel which simulated the 

equivalent of 10 months in fleet service. This indicated that a thicker or harder 

polyester top coat will be necessary to ensure a longer and more acceptable in-service 

life of up to two years. It is a probability that the application of a more robust top coat 

(> 150 m) above the viscoelastic water-based middle layer and aluminium primer, 

may compromise the acoustic effectiveness of the overall three layer formulation (500 

m in total cross section). Further research to determine the optimum trade-offs 

between acoustic performance, durability and cost is recommended.
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6.6.2. Further development of the hush kit 

There is scope to bring the development of the hush-kit forward by (a) more analysis 

of the vibrating parts of the roll-cage and (b) by a deeper investigation of the best 

types of damping materials and adhesives available. There is also an opportunity to 

develop a similar hush kit for other ancillaries used during night delivery operations 

such as shopping and warehouse trolleys. 

For example, acoustic arrays comprising a grid assembly of many microphones could 

be used to identify the vibrating characteristics of the different roll-cage components 

when the cage is mounted on the rotating carousel. Additional data could be generated 

by the use of an accelerometer and an Oberst vibrating bar. An analysis of this data 

would help to determine the optimum surface areas of the different roll-cage 

components that need to be treated with damping materials. It would also bring an 

acoustic consciousness to the design of a newer and quieter range of roll-cages. The 

trade-offs between quietness and cost could be more easily considered, for example in 

the design of the castors and wheel assemblies.  

There is a need to ensure the best possible selection of the most appropriate damping 

rubbers and adhesives and to ensure optimum trade-offs between the acoustic 

properties, in service durability and costs. The effects of the retail environment, such 

as the carriage of chilled foodstuffs and of regular cleaning on the acoustic 

performance and durability of the damping materials selected, merits further 

investigation. 

The proposed research would help to identify the particular components of roll-cages 

and trolleys which could be substituted with polymeric materials to reduce noise. This 

would apply for example, to the hinged floors and side frames which are folded during 

nesting, to the castor wheel assemblies and to the low noise tyres. 

The hush kit merits further development to ensure that the most appropriate materials 

and adhesives are used in order to optimise the trade-off between acoustic 

performance, durability and costs. Whether suitable recyclable materials can be found 
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or whether it is necessary to source specially formulated materials and adhesives also 

merits further consideration. 

Consideration should be given to injecting the hollow sections of the roll-cage frames 

with a porous melamine damping foam as suggested in chapter 2 (Jaouen, Renault and 

Deverge, 2007), and to comparing the acoustic results achieved. 

6.6.3. Developing Virtual Acoustic Prototypes for rollcages and for related 

ancillaries. 

In the field of acoustic design there has been considerable interest in developing 

“virtual acoustic prototypes” as a fast and cost effective means of trying out new 

designs. A machine that does not physically exist may be assembled by combing in 

the computer, sets of data that represent the appropriate vibro-acoustic properties of 

the separate components. The result may then be auralised to give a more or less 

realistic impression of the sound of the machine without the need to physically 

assemble it (Moorhouse and Seiffert, 2006).  

This “virtual” technology has been used to predict the likely acoustic effects of 

changes to the designs of equipment such as tumble driers, lawn-mowers and 

automotive steering systems and it is suggested that this methodology might also be 

applied for the development of design modifications and hush-kits, leading to the 

more effective manufacture and availability of quieter rollcages and related 

ancillaries. This virtual technology might also be adapted to include shopping trolleys, 

hotel and hospital linen trolleys and refuse carts. 

6.6.4. Improving the Damping Properties of the Panels 

In the case of the aluminium and metal flooring panels of an HGV trailer and tail-gate 

platform, consideration should be given to perforating the panels with different 

patterns in order to change their natural frequencies and to reduce their effectiveness 

for radiating sound (Singapore Government, p. 75). While it may be acceptable to 

install a perforated HGV trailer floor for the carriage of ambient goods, this would not 

be suitable for chilled goods because of the need for frequent cleaning with detergents. 
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Consideration might also be given to securing the aluminium floors to the trailer 

under-frames by placing different thicknesses of plywood panels on the underside, and 

to comparing the resulting acoustic performances.   

6.7. Optimising the interfaces between modifications to the roll-cages and coating 

the HGV floors and platforms to maximise acoustic performance

The promising research results as reported in Chapter 5, indicate that it may be 

possible to meet acceptable noise limits approaching 66.6 dB(A) by the application of 

hush-kits to the rollcages without recourse to acoustically coating the HGV trailer 

floors and tail-gate platforms. Further investigation is recommended of the interfaces 

between the mechanical and passive components with a view to optimising the noise 

reduction and cost trade-offs between modifications to the mechanical equipment on 

the one hand, and the treatment of the affected surfaces with an acoustic coating on 

the other. It may emerge that a sufficiently acoustically effective and robust hush-kits 

may be develop which could obviate the need to apply relatively expensive acoustic 

coatings to the trailer unit and tail lift platform of a HGV. 

6.8. Anomalies

During the laboratory tests a characteristic resonance at 250 Hz appeared on all the 

spectra when the aluminium panels were impacted by the pendulum and by the falling 

weight. This anomaly was not experienced at the distribution depot test site. This will 

have been due to different natural frequencies induced in the two situations. The 

coating showing greater attenuation at a lower frequency of 1,600 Hz for mild steel 

and at a higher frequency of 2,500 Hz for aluminium and this is regarded as being 

related to the disparities in density, rigidity and cross section and patterns of the 

panels. These factors, which are the key to understanding vibration theory, will need 

to be considered fully and be carefully controlled in the planning and conduct of any 

further tests. 
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6.9. Training of operatives

All of the technical solutions proposed will need to be supported by suitable 

incentives and training courses for the logistics operatives to ensure that best practice 

guidelines are followed. As mentioned in 6.4, DIT has proposed providing suitable 

acoustic training modules for logistics service providers which could be readily 

incorporated into their ongoing training courses on health and safety and on achieving 

fuel and logistics efficiencies. Regular refresher courses and on the job performance 

monitoring will be necessary to ensure that satisfactory standards of low noise 

deliveries are maintained. 

6.10. To conclude

The hypothesis has been established that Acoustic materials are available or can be 

developed and applied to Heavy Goods Vehicles and ancillaries, which effectively and 

economically abate the noise caused by night deliveries. Further research is desirable 

to further improve the availability of commercially viable and acoustically effective 

solutions acceptable to all the parties concerned. 
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GLOSSARY OF TERMS

ASTM American Society for Testing and Materials (Testing standards body in 
the USA).

B&K Bruel and Kjaer (supplier of sound and vibration monitoring 
equipment). 

BS British Standards  

CEC Commission of the European Communities (European Commission)

CNMR Centre for Nanotechnolgy and Materials Research (part of Athlone 
Institute of Technology). 

CREST-DIT Centre for Research in Engineering Surface Technology (part of the 
Dublin Institute of Technology). 

CRTN  Calculation of Road Traffic Noise, Department of Transport and the 
Welsh Office, 1988 version. 

DCC Dublin City Council 

EC European Commission (Commission of the European Communities) 

END ‘European Noise Directive’, short for the Assessment and Management 
of Environmental Noise’ Directive 2002/49/EC. 

EPA  Environmental Protection Agency. 

GIS Geographical Information Systems: a system of computer software, 
hardware and data, and personnel to manipulate, analyse and present 
information that is geo-referenced (i.e. tied to a spatial location). 

Hartwall Manufacturer of rollcages used by the Musgraves chain of shops and 
supermarkets. 

HGV Heavy Goods Vehicle (i.e. Lorries) with a gross weight greater than 3.5 
tonnes

HV  Heavy Vehicle (i.e. Lorries, buses, etc.) with a gross weight greater 
than 3.5 tonnes. 

ISO International Organisation for Standardisation

IPC  Integrated Pollution Control system. 

Korva Distributor of K.Hartwall rollcages within the UK. 
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L10 The sound pressure level that is exceeded for 10% of the time for 
which the given sound is measured. The L10 is recognised as giving a 
better representation of people’s reaction to traffic noise, than the LAeq 
parameter. 

L10 1Hr The l10 sound pressure level measured over a 1 hour period. 

L10 18Hr The arithmetic average of the L10(1hr) levels for the 18 hour period 
between 6:00 am and 12:00 pm on a normal working day. 

LAeq The equivalent steady sound pressure level in decibels (dB) containing 
the same acoustic energy as the actual fluctuating sound level over a 
given period. 

LAmax Maximum sound level (using A-weighting) 

LAr The equivalent continuous A-weighted sound pressure level during a 
specific time interval, plus specified adjustments for tonal 
characteristics and impulsiveness of the sound. 

LA90 This is a statistical value defined as the sound pressure level exceeded 
for 90% of a defined measurement period. In acoustical terms it 
represents the background sound level. It is measured in decibels. 

LAFmax It is the maximum A-weighted sound pressure value measured over a 
period of time. The data logging speed is “F” which stands for fast, and 
equates to a time constant of 0.125 seconds. 

LAF90 Also known as the background noise level, is the A-weighted sound 
pressure level of the residual noise at the assessment position that is 
exceeded for 90% of a given time interval, measured using fast time 
weighting, F, and quoted to the nearest whole number of decibels 
(BKSV, 2008). 

LDEN Is the Day – Evening – Night noise indicator for overall annoyance. It 
is comprised of the average long term sound level of the all day period 
over a year, plus the average long term night time sound level, with a 
10 decibel weighting as defined in END. 

LEvening Is the noise index for annoyance during the evening period as defined 
in END. 

LLFmax Maximum sound level (using linear scale) 

LNight Is the noise index for sleep disturbance as defined in END. 

LV Light Vehicles (i.e. cars, vans, etc) with the gross weight less than 3.5 
tonnes.
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Musgraves Grocery wholesaler within Ireland and operate a chain of supermarkets 
and convenience shops, also referred to as MSVC (Musgraves 
Supervalu Centra). 

Noise This is defined simply as ’unwanted’ sound. 

NAS Noise Abatement Society (it is a UK registered charity organisation 
that aims to eliminate excessive noise by raising awareness, lobbying 
parliament and through education).  

NITL-DIT National Institute of Transport and Logistics (part of the Dublin 
Institute of Technology). 

PIEK / PEAKIs a programme funded by the Ministry of Transport, Public Works and 
Water Management to reduce noise levels in the evening and night by 
the technical development and market introduction of ‘silent’logistic 
equipment. 

Pure Tones A sound having a single frequency whose sound pressure varies 
sinusoidally with time. A tone with no harmonics. All energy is 
concentrated at a single frequency. The sound pressure is a simple 
sinusoidal function of the time, and characterised by its singleness of 
pitch. (Bruel and Kjaer, 2008)

Rollcage Wheeled metal framed container generally with cage like sides used for 
the carriage of goods from trucks to shops.

SCATS Sydney Coordinated Adaptive Traffic System is an intelligent 
transportation system, which uses traffic cameras or induction loops 
installed within the road pavement to count vehicles at each 
intersection, and adapts the timing through a central computer. 

Shape-file A Shape-file stores non-topological geometry and attribute information 
for the spatial features in a data set. The geometry for a feature is 
stored as a shape comprising a set of vector coordinates. 

SPC Special Policy Committee on Transportation and Traffic from Dublin 
City Council. 

TNO Netherlands Organisation for Applied Scientific Research 

Tail-lift Mechanically operated metal platform attached to the rear of trailers 
that is used for the loading and unloading of goods. 

Traffic Flow The average number of vehicles passing along a link or road in one 
hour periods over 24 hours. 

TRL Transport Research Laboratory (in the UK). 
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APPENDIX

Appendix I – Analysis of field trials (Chapter 3)

I.0. Background noise verses specific noise

Four stores were selected and the peak noise events taking place during the deliveries 

were recorded. The acoustic data was monitored in accord with BS 4142 and graphic 

data was also recorded using a night vision camera in order to identify the events and 

equipment that caused most disturbances. The specific noise recorded during the 

deliveries to stores A B C and D is described graphically in the charts below and are 

compared with the background noise at these respective locations. 

STORE A

Background Noise:

Figure I.1. Datalog showing the background noise for store A, LAeq measured at 
1sec intervals 
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Table I.1. Details of the events shown above in Figure I.1 for the background 
noise for store A, LAeq measured at 1sec intervals 

Specific Noise:

Figure I.2. Datalog showing the specific noise for store A, LAeq measured at 1sec 
intervals 

Table I.2. Details of the events shown above in Figure I.2 for the specific event 
noise for store A, LAeq measured at 1sec intervals 
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STORE B

Background Noise: 

Figure I.3. Datalog showing the background noise for store B, LAeq measured at 
1sec intervals 

Table I.3. Details of the events shown above in Figure I.3 for the background 
noise for store B, LAeq measured at 1sec intervals 
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Specific Noise:

Figure I.4. Datalog showing the specific noise for store B, LAeq measured at 1sec 
intervals 

Table I.4. Details of the events shown above in Figure I.4 for the specific noise 
events for store B, LAeq measured at 1sec intervals 
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STORE C 

Background Noise: 

Figure I.5. Datalog showing the background noise for store C, LAeq measured at 
1sec intervals 

Table I.5. Details of the events shown above in Figure I.5 for the background 
noise for store C, LAeq measured at 1sec intervals 
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Specific Noise: 

Figure I.6. Datalog showing the specific noise for store C, LAeq measured at 1sec 
intervals 
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Table I.6. Details of the events shown above in Figure I.6 for the specific event 
noise for store C, LAeq measured at 1sec intervals 

STORE D 

Background Noise: 

Figure I.7. Datalog showing the background noise for store D, LAeq measured at 
1sec intervals 
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Table I.7. Details of the events shown above in Figure I.7 for the background 
noise for store D, LAeq measured at 1sec intervals 

Specific Noise:

Figure I.8. Datalog showing the specific noise for store D, LAeq measured at 1sec 
intervals 
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Table I.8. Details of the events shown above in Figure I.8 for the specific event 
noise for store D, LAeq measured at 1sec intervals 

I.1. Selected spectra for specific events

The spectra follow the sequence of events for the off loading of the roll-cages from 

the HGV trailer and replacing the empty cages onto the trailer as follows.  The loaded 

roll-cages were manipulated inside the trailer, the rollcages were then moved from the 

trailer (aluminium floor) on to the tail lift (mild steel floor), the roll-cages were then 

moved from the tail-lift onto the roadway, the roll-cages were then mounted on to the 

kerb and were pushed along the pavement into the store. Empty roll-cages were then 

pushed along the pavement towards and onto the tail lift and then from the tail lift into 

the trailer body where they were stacked and secured. 

Examples of spectra are given below for stores A, B and D. Events relating to store C 

are given as examples in the main chapter. 
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Figure I.9. Moving filled roll-cages from the trailer onto the tail-lift at store D 

The frequencies were concentrated across the lower ranges. 

Figure I.10. Moving full roll-cages onto the pavement at store A

The full roll cages moving from the tail lift onto the pavement showed a fairly even 

spread across the frequencies.  
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Figure I.11. Mounting the kerb with a full roll-cage at store C

Frequencies were in the mid to higher ranges, particularly at 315 Hz and 500 Hz. The 

low frequencies showed low sound pressure levels.

Figure I.12. Moving full roll-cages along the pavement to store A.

The sound pressure levels for the full roll cages moving along the pavement to the 

store were characterised by peak frequencies in the lower range. 
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Figure I.13. Movement of empty cages from store C to the HGV

The handling of the empty roll cages along the pavement towards the HGV was 

characterised by a concentration of frequencies at the higher levels.

Figure I.14. Loading of empty roll-cage from roadway onto tail-lift at store C. 

Peaks were concentrated at 1,000 Hz and 1,600 Hz when the empty roll cages were 

being loaded onto the tail lift. The pure tone at 1,000 Hz can be clearly seen. 



183

Figure I.15. Manipulation of empty cages from tail-lift into HGV trailer at store 
B.

 A concentration of sound levels between 1,000 Hz and 2,000 Hz was evident.
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Appendix II – Acoustic coating (Chapter 4)

II.0. Falling weight tube tests 

Tests were carried out on five different coated panels in Batch A (10 X 10cm) and on 

five different coated panels in Batch B (10 X 15cm). The tests involved dropping the 

weight repeatedly (X10) from 62cm down the tube into the fixed coated panels and 

taking measurements in LAFmax. The log average sound recorded for10 drops on the 

each of the coated samples was compared with the sound from an uncoated blank 

panel and the reductions achieved were calculated. One of the five samples tested was 

a proprietary coating obtained from KCN in the Netherlands. 

A worked example is shown below Tables II.1. The results of the other tests are 

recorded in the laboratory log book. 

Table II.1. Results for a worked sample calculation for Sample 3, Batch A. 
Batch A
Coated Sample 3 A Front side 
Date 02 August 2006 
Sound LAFmax (dBA) 
Uncoated panel            93.3

Drop 1 89.3
Drop 2 89.8
Drop 3 88.9
Drop 4 89.4
Drop 5 85.8
Drop 6 86.8
Drop 7 91.2
Drop 8 87.4
Drop 9 87.7
Drop 10 89.1

Log Average 88.8
Reduction 4.5



185

The test results showed that – 

1. Significant reductions were achieved by the application of surface coatings, 

ranging from 2.2 dB(A) to 5.5 dB(A) when compared with an uncoated panel.  

2. In Batch A sample 1A (coated side) had the best results with a reduction of 

peak sound of 5.5 dB(A). The second best was Sample 3A (coated side) with a 

reduction of peak sound of 4.5 dB(A). 

3. In Batch B sample 1B (coated side) showed the best results with an average 

reduction of peak sound of 4.7 dB(A).

4. The level of reduction achieved by the best samples regarded as making a 

noticeable difference to the perceived sound (Bruel and Kjaer, 2006, pdf).

Abrasion wear tests were carried out by CREST on the five formulations including the 

KCN coating. The results are shown below in Table II.2. 

Table II.2. Wear tests on the 5 coatings including KCN. 
Sample 1 2 3 4 5(KCN) 

Thickness (μm)
Batch A. Panels (4X4)  
Batch B. Panels (6X6) 

1500
896

624
321

634
319

700
524

1251
629

Abrasion Wear 
(cycles per mil, W) 274.7 417.7 171.5 245.1 152.4 

From the Table II.2 above it can be seen that the commercially available KCN 

(sample 5) had the best resistance to abrasion. However the KCN sample provided the 

least noise attenuation when compared to the other samples. It is clear that the harder 

the coating the less acoustic attenuation the material can provide. The noise reductions 

achieved are compared in Tables II.3 and II.4 below. 
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Table II.3. Falling weight tube acoustic results compared 
Batch A (4”x 4”), Front impact 

Sample Date Average
(dB)

Reduction
(dB)

Uncoated 03-Aug-06 93.3 - 
1A 02-Aug-06 87.8 5.5 
2A 02-Aug-06 90.2 3.1 
3A 02-Aug-06 88.8 4.5 
4A 02-Aug-06 91.1 2.2 
5A 03-Aug-06 91.0 2.3 
6A 04-Aug-06 89.7 3.6 

Table II.4. Falling weight tube results for Batch B 
Batch B (6”x 4”), Front impact 

Sample Date Average
(dB)

Reduction
(dB)

Uncoated 04-Aug-06 93.1 - 
1B 03-Aug-06 88.4 4.7 
2B 03-Aug-06 91.3 1.8 
3B 03-Aug-06 91.2 1.9 
4B 03-Aug-06 89.9 3.2 
5B 03-Aug-06 91.3 1.8 

II.1. Falling weight tests (large scale) 

The materials tested were those typically used on the floors of the trailer and tail gate 

platform, namely aluminium plate and mild steel plate. 
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Table II.5. Falling weight test carried out on aluminium (Al) and mild steel (MS) 
panels in the laboratory 

 Noise from Impact [LAFmax (dBA)]
Substrate Material MS MS Al Al 
Test Date 23 Nov ‘06 06 Dec ‘06 23 Nov ‘06 06 Dec ‘06
Front (F) / Rear (R) F F F F 
Coated (C) 
Uncoated (U) U C U C 

Background 55.1 54.8 55.2 54.3 
Logarithmic
Average
[LAFmax (dBA)] 

100.2 85.6 103.0 88.1 

Difference  
[LAFmax (dBA)] 14.6 14.9 

In Table II.5 above; the logarithmic averages of LAFmax in dB(A) were obtained by 

recording the measurements from 10 drops of the falling weight on to the various 

panels being tested in the laboratory; a complete set of these values can be inspected 

in the laboratory log book. 

II.2. Pendulum tests 

The panels tested comprised the following substrates of 1 meter square panels.

Uncoated substrates: 

Sample A1: smooth GRP, both sides 

Sample A3: Aluminium, (5 fingered) chequer plate, both sides 

Sample A4: Mild steel (1.5mm thick), chequer plate, both sides 

Coated substrates: 

Sample A1: smooth GRP, coated side 

Sample A3: aluminium, chequer plate, coated side 

Sample A4: mild steel, chequer plate, coated side 
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Application of damping composites: 

Sample B1: “Ygro” -dead Eliminator (damping substrate) applied to smooth sides of 

aluminium and mild steel panels. 

Sample B2: “Ygro” -dead Original (damping substrate) applied to smooth sides of 

aluminium and mild steel and panels. 

The tests were carried out in the Physics Laboratory and the results are recorded in the 

laboratory log book. A number of sample tests are reported below. 

Table II.6. Pendulum test carried out on aluminium (Al), mild steel (MS) and 
glass reinforced plastic (GRP) panels in the laboratory 

 Noise from Impact [LAFmax (dBA)]
Substrate Material GRP Al MS GRP Al MS 
Test Date 22 /11/06 22/11/06 23/11/06 6/11/06 6/11/06 6/11/06 

Material A1 A3 A4    
Front (F) / Rear (R) R F F R F F 
Coated (C) 
Uncoated (U) U U U C C C 

Background 55.8 56.0 56.1 54.5 54.3 55.5 
Logarithmic
Average
[LAFmax (dBA)] 

86.8 92.0 87.4 74.7 70.2 72.9 

In Table II.6 above; the logarithmic averages of LAFmax in dB(A) were obtained by 

recording the measurements from 10 swings of pendulum into the various panels for 

testing; the full set of these values can be seen in the laboratory log book. 

The following substrates were coated by CREST with an acoustic damping 

formulation: 

1. Mild steel chequered plate 

2. Aluminium chequered plate 

3. GRP smooth panel 
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II.3. Acoustic adhesive “Ygro” strips

Two damping materials are tested: 

 -Dead Eliminator and  -Dead Original 

Both of these materials were applied to: 

a) mild steel plate (smooth reverse side) 

b) aluminium plate(smooth reverse side) 

Table II.7. Pendulum test carried out on aluminium (Al) and mild steel (MS) 
panels in the laboratory using -Dead eliminator and -Dead original 

 Noise from Impact [LAFmax (dBA)]
Substrate Material MS MS Al Al 
Test Date 8 Dec ‘06 11 Dec ‘06 8 Dec ‘06 11 Dec ‘06 
Front (F) / Rear (R) R R R R 
eDead Eliminator (E) 
eDead Original (O) E O E O 

Background 54.7 55.4 54.7 55.7 
Logarithmic Average 
[LAFmax (dBA)] 90.4 90.4 88.7 89.7 

In Table II.7 above; the logarithmic averages of LAFmax in dB(A) were obtained by 

recording the measurements from 10 swings of the pendulum into the aluminium and 

mild steel panels with “YGRO” -Dead original and -Dead eliminator commercially 

available damping materials applied to the substrates in the laboratory; the full set of 

these values can be inspected in the laboratory log book. 

Table II.8. Summary of the laboratory tests carried out for aluminium (Al) 

Test Uncoated (dB) Al + Attenuative 
material (dB) 

Difference 
(dB)

Pendulum  
(Al+coating) 92.0 70.2 21.8 

Falling Weight (Al+coating) 103.0 88.1 14.9 
Falling Weight 
(Al+E-Dead Eliminator) 103.0 88.7 14.3 

Falling Weight 
(Al+E-Dead Original) 103.0 89.7 13.3 

Table II.9. Summary of the laboratory tests carried out for mild steel (MS) 



190

Test Uncoated (dB) MS + Attenuative 
material (dB) 

Difference  
(dB)

Pendulum (MS+coating) 87.4 72.9 14.5 
Falling Weight 
(MS+coating) 100.2 85.6 14.6 

Falling Weight 
(MS+E-Dead Eliminator) 100.2 90.4 9.8 

Falling Weight 
(MS+E-Dead Original) 100.2 90.4 9.8 

Table II.10. Summary of the laboratory tests carried out for glass reinforced 
plastic (GRP) 

Test Uncoated (dB) 
GRP + 

Attenuative 
material (dB) 

Difference 
(dB)

Pendulum (GRP+coating) 86.8 74.7 12.1 
Falling Weight 
(GRP+coating) 98.5 91.1 7.4 

Falling Weight 
(GRP+E-Dead Eliminator) 98.5 N/a N/a 

Falling Weight 
(GRP+E-Dead Original) 98.5 N/a N/a 

II.3.1. Conclusions

Aluminium

1. The application of a coating reduced the dB by; 

a) Pendulum: 21.8 dB Logarithmic Average

b) Falling weight: 14.9 dB Logarithmic Average 

and attenuated the higher frequencies 

2. The application of a E-dead Eliminator reduced the dB by; 

a) Falling weight: 14.1 dB Logarithmic Average 

and attenuated the higher frequencies 

3. The application of a -dead Original reduced the dB by; 

a) Falling weight: 13.3 dB Logarithmic Average 

and attenuated the higher frequencies 
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Mild Steel

1. The application of a coating reduced the dB by; 

a) Pendulum: 14.5 dB Logarithmic Average

b) Falling weight: 14.6 dB Logarithmic Average 

and attenuated the higher frequencies 

2. The application of a E-dead Eliminator reduced the dB by; 

a) Falling weight: 9.8 dB Logarithmic Average 

and attenuated the higher frequencies 

3. The application of a E-dead Original reduced the dB by; 

a) Falling weight: 9.8 dB Logarithmic Average 

and attenuated the higher frequencies 

GRP

1. The application of a coating reduced the dB by; 

a) Pendulum: 12.1 dB Logarithmic Average

b) Falling weight: 7.4 dB Logarithmic Average 

and attenuated the higher frequencies 

2. It is not appropriate to apply -dead Eliminator as this composite is not 

suitable for application to the floor of the trailer due to its lack of robustness.

The next step was to test the coating on-board a HGV trailer unit by means of the 

portable pendulum apparatus and the portable falling weight apparatus. 

II.3.2. Influence of clamping forces on the excitation and frequencies of the 

panels.

It was decided to investigate the effects of different clamping loads on the impact 

noise using the pendulum apparatus. The tests were carried out on 17th June 2008. 
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The panels under test were sandwiched between a fixed vertical metal frame mounted 

on the laboratory floor and a demountable frame. This was done by means of four 

clamps which were bolted through the vertical frame. Spacers were also used between 

the panel and the demountable frame to ensure an evenly distributed clamping load. 

The pendulum weight (0.907 kg) was suspended from both sides at the top of the fixed 

frame by means of a wire. The suspended weight was designed to strike the panels 

under test at a distance of 150 mm from the base of the plate. 

Before starting the pendulum tests the background noise level was measured for 3 

minutes. The weight was then realised at a distance of 150 mm from the front of the 

panel and caught after each impact for a pause of 5 seconds before being again 

released.

The procedure was repeated 10 times for each test and the noise levels were recorded 

in accord with BS 4142.  

Three different clamping forces were applied to the three panels under test. The forces 

were (1) 12 Nm (2) 16 Nm and (3) 20 Nm. The panels comprised (a) an uncoated 

aluminium panel with a barley seed pattern (b) an uncoated diamond patterned mild 

steel panel and (b) a coated patterned mild steel panel. 

The results were recorded in LAFmax and the logarithmic averages for the ten impacts 

conducted during each test were correlated against the different clamping forces 

applied to the panels. 

It will be seen that the application of increasing torque applied to the clamps had no 

significant effect on the sound values generated by impacting the panels.  

It was also considered useful to investigate whether the application of different torque 

values affected the frequency characteristics of the panel.  
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Discussion:

The results of this experiment may be explained by the fact that the panels were of 

relatively dense metals, of 2 mm for the barley seed aluminium and 3 mm for the mild 

steel diamond plate. The clamping forces did not put the panels in tension unlike, for 

example, in the case of a vibrating diaphragm of a musical instrument like a drum. 

It can therefore be concluded that relatively thick aluminium or mild steel panels 

which are firmly secured to the floor of a HGV would not be unduly influenced by the 

clamping forces applied. 

II.4. The test site pendulum tests

Date:   22 January 2007

Present: Hugh Finlay, Roisin Byrne

Table II.11. Pendulum test carried out on glass reinforced plastic (GRP) panels 
in the test site (22 January 2007) 

 Noise from Impact [LAFmax (dBA)]
Position 1 1 2 2 3 3 
Coated (C) 
Uncoated (U) U C U C U C 

Logarithmic
Average
[LAFmax (dBA)] 

75.1 75.0 75.0 74.1 76.6 74.1 

In Table II.11; the logarithmic averages of LAFmax in dB(A) were obtained by 

recording the measurements from 10 swings of the pendulum into the GRP panels at 

the test site field trials; the full set of these values can be seen in the laboratory log 

book.

Little or no noise reduction was evident as between striking the coated and uncoated 

panel with the pendulum weight. 
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II.5. The test site falling weight tests 

Date:   22 January 2007

Present: Hugh Finlay, Roisin Byrne

Table II.12. Falling weight test carried out on aluminium (Al) and mild steel 
(MS) panels in the test site (22 January 2007) 

 Noise from Impact [LAFmax (dBA)] 
Substrate Material Al Al Al Al Al Al MS MS 
Position 1 1 2 2 3 3 N/a N/a 
Coated (C) 
Uncoated (U) 

U C U C U C U C 

Logarithmic
Average
[LAFmax (dBA)] 

90.9 84.0 87.4 85.3 92.2 84.9 95.1 86.1 

In Table II.12; the logarithmic averages of LAFmax in dB(A) were obtained by 

recording the measurements from 10 drops of the falling weight on to the various 

aluminium and mild steel panels at the test site field trials; the full set of these values 

can be seen in the laboratory log book, but have been summarised in Tables 4.7 and 

4.8.

II.6. Summary of laboratory test results

II.6.1. Measuring the durability of the coating applied to the panels on the 

carousel test rig 

It was found that the coating was not sufficiently durable in service and showed severe 

wear after two months in service, for this reason General Paints Ltd. and CREST 

continued to develop the coating by applying a top protective top coat to the 

formulation in order to enhance durability.  

The revised system comprised of a one pack acrylic primer (25-30 m), water based 

acoustic coating (500 m) and a two pack epoxy topcoat (100-130 m) as a final 

protective hard cover for the floor of the HGV trailer and tail-lift platform. 
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In order to create a non-slip surface, aluminium oxide grit was incorporated into the 

topcoat. The durability of the revised formulation was tested on the carousel 

apparatus.

II.6.2. Tests on board the carousel test rig 

A special carousel test rig was designed and built in DIT engineering workshop in 

Bolton St. to help develop a “hush-kit” for application and for retro-fitting to standard 

steel roll-cages. The carousel could also be adapted to assess the durability of the new 

acoustic coating. 

As described later in Chapter 5 and appendices, the carousel was 2.5m in diameter, 

comprising a plywood platform mounted on a steel frame and was motorised and 

controlled hydraulically to simulate the pushing of a roll-cage at walking speed. 

The test involved the coating by General Paints Ltd., under controlled conditions, of 

two 1 meter square aluminium panels. One panel was pre-treated with a primer, the 

other without because it was believed that the application of a primer would improve 

durability.  The panels were fixed to the rotating carousel platform.  

Partly loaded roll-cages were placed on the carousel and held in stationary positions 

while the platform was allowed to rotate. The surfaces of the panels under test passed 

underneath the wheels of the roll-cage for a given number of cycles at a controlled 

speed.

The carousel was set to run for 20,000 cycles. This number of cycles was calculated to 

equate to the assumption that a typical trailer is loaded and unloaded once a day, with 

48 partly-filled roll cages, for five days every week and that the wheels pass back and 

forth across the same path at the rear of the trailer and tail lift platform. In service the 

roll-cages that are put back into the trailer after delivery are empty and are therefore 

much lighter (30 kg) than the partly filled roll-cages exiting the trailer. A partly loaded 

rollcage, carrying 78 kg., was therefore anchored to the carousel test rig placing a total 

load of 108 kg on the coated panels under test when the carousel was put in motion. 
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A schematic diagram of the carousel showing the position of the roll-cage, the wheel 

tracks and the panels under test is shown in Figure II.1. 

Figure II.1. Schematic showing the different paths of the four wheels of the roll-
cage during the durability tests of the coated panels. 

The first set of tests required that the partly filled roll-cage be transited across two 

aluminium coated panels, the first with primer (A), and the second without a primer 

(B).

The durability was assessed by recording the loss of thickness occurring after the 

measured passage of the wheels of a loaded roll-cage over carefully prepared coated 

panels. Thickness measurements were taken of the most abraded areas of the 

specimen panels after set numbers of passages. The procedures were as follows - 

The two candidate panels “A” and “B” were fixed at opposite ends of the carousel. A 

standard steel loaded roll-cage was anchored to the test rig support frame and the 

carousel was allowed to rotate underneath the wheels. The speed of the carousel was 

set to 3 km/hr. Dirt particles that were embedded in the paint during the 

manufacturing / application processes were clearly marked. The wear tracks caused by 

the four wheels of the loaded cage were carefully marked out. Visual records of the 

wear occurring were taken at intervals of approximately 2,000, 8,000, 13,000, 16,000 

KEY

Path of the wheel 

Figures in brackets indicate the 
order in which the wheels hit 
the test panel 

TEST
PANEL

TEST
PANEL

Front left wheel of Rollcage (3) 

Front right wheel of Rollcage (1) 

Back left wheel of Rollcage (4) 

Back right wheel of Rollcage (2) 
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and 20,000 rotations. These cycle intervals approximate to different time periods in 

fleet use as described in Table II.13.

Photographic record was taken of the wear of panels A and B for increasing number 

of cycles. 

Table II.13. Photographs of wear for panels A and B at different numbers of 
cycles

The reduced thicknesses of the abraded areas were measured by means of a dial gauge 

as shown in Figures II.3 and II.4. This was done by removing the panels from the 

carousel and placing them onto a steel table. The dial gauge was set to zero on the 

steel table before the thickness measurements were taken. The areas where the most 

visible abrasion occurred were identified by visual inspection (and highlighted with 

green marker) as were the unaffected areas. The reduced thicknesses of the most 

severely abraded areas were measured and compared with the thicknesses of the least 

abraded areas. The thickness of the abraded marked areas of the panel was measured 

with a dial gauge at five different points along the top ridges or “teeth” of the barley 
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seed patterns. The most abraded areas could be easily seen when the black acoustic 

layer began to show through the worn yellow top coat. The most heavily abraded 

areas were the tracks traversed by the rear wheels of the loaded roll-cage, Figure II.1. 

The loss of coating was measured by comparing the thicknesses of the coating on the 

marked abraded areas with the thickness of the areas unaffected by the wheels of the 

roll cage. Five measurements were taken with the dial gauge to calculate the average 

value. The thickness of the coatings on Panels A and B was also calculated with 

reference to an uncoated aluminium panel. The dial gauge measurements were 

checked using an anvil micrometer. 
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Figure II.2. Graph showing the rate of change of noise generated by a roll cage 
on a carousel with panels A and B on the rotating platform, as per the values 

listed in Table II.13. 

In relation to Table II.13 and Figure II.2 the values of LAeq for the noise testing on 

the carousel refers to the average over a 7 minutes time period and also takes into 

account the noise of the wooden platform of the carousel. It should be noted that for a 

new panel the noise increased and then after about 2,500 iterations or cycles on the 

carousel the noise generated reduced; this occurrence was due to the fact that the hard 

top layer of the coating was being smoothed over by the wheels. After about 13,000 

iterations the noise generated reduces more rapidly, this is because the hard top coat 

has been significantly penetrated one of the panels and the wheels are now running on 
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the soft acoustic layer located below the hard top coat. This confirms the earlier tests 

with the tube falling weight test in the laboratory where the commercially available 

KCN coating had a lower acoustic performance that the coating developed by General 

Paints.

II.6.3. Test results and analysis 

Four abraded areas of the panel were marked along the paths of the wheels as 

described in Table II.14 and illustrated in Figure II.1. The abraded areas on Panel A 

for which thickness measurements were taken are shown in Table II.15.

Table II.14. Abraded areas of panels A selected for the measurements of wear 

Location Description Notes and Comments 
Area 1 Heavily abraded area Black acoustic layer was clearly visible  
Area 2 Mildly abraded area No wear through the top coat 
Area 3 Mildly abraded area No wear through the top coat 
Area 4 Partially abraded area Black acoustic layer was partially visible

The thicknesses on these abraded areas are recorded in Table II.15. These 

measurements are the averages of five readings taken from each marked area as 

described in Figure II.1.

Figure II.3. Photograph showing 
a measuring point on an abraded 

part of panel A. 

Figure II.4. Photograph of abraded 
areas marked in green from which 

thickness measurements were 
recorded.
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Table II.15. Average depth of wear in four marked areas on panel A following 
20,235 cycles 

 Thickness (μm) 
Location Area 1 Area 2 Area 3 Area 4 Average 
Depth of wear (µm)
after 20,235 cycles 189 67 147 145 137 

The uncoated aluminium substrate was measured at 5 points to the tops of the teeth of 

the barley seed pattern to give an average value of 2476 μm.

The thickness of the unabraded coated Panel A was then measured to the tops of the 

teeth. This consisted of the aluminium substrate, a primer layer, an acoustic layer and 

a top coat layer. The average over 5 measured points was 2971 μm. This means that 

the thickness of the coating applied to Panel A was 495 μm.  

Measurements were then taken of four abraded areas after 20,235 cycles to give an 

average depth of wear compared with the un-abraded areas, of 137 μm as shown in 

Table II.15. The average thickness of the remaining coating was 358 μm, as described 

in the student log book. 

This exercise was repeated for unabraded areas on Panel B which consisted of only 

two layers, an acoustic layer and a top coat layer. When measured over 5 points to the 

top of the peaks an average thickness of 2822 μm which equates to an average 

thickness of 346 μm of coating applied to Panel B. The thickness of the un-abraded 

coating on Panel B was 2822 μm and the thickness of the abraded coating was 2608 

μm, giving a depth of wear of 214 μm after 20,235 cycles as shown in Table II.16 

below.

It must be noted that the coating on Panel A was thicker than that on Panel B due to 

the inclusion of a layer of primer layer. 

Table II.16. Average wear loss after 20,235 cycles on panels A and B 

Unabraded (μm) Abraded (μm) Wear Loss (μm) 
Panel A 2971 2834 137 
Panel B 2822 2608 214 
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Table II.17. Thickness measurements to the top of the teeth carried out on an 
uncoated aluminium substrate and panel A in an unabraded state and in an 

abraded state after 20,235 cycles. 
Thickness (mm) 

Unabraded Panel  Abraded Panel  Uncoated
Aluminium

Panel
Area

1
Area

2
Area

3
Area

1
Area

2
Area

3
Area

4
Average
Thickness (mm) 2.48 2.90 2.97 3.04 2.78 2.90 2.82 2.83 

Panel & Coating 
Thickness (mm) - 2.97 2.83 

Coating
Thickness (mm) - 0.49 0.35 

In Table II.17; the average thickness of the aluminium panels were obtained by 

recording the measurements from 5 locations on the panel, these values can be seen in 

the laboratory log book. 

II.6.4. Cross checking of the dial probe with a micrometer 

The thickness measurements taken by the dial gauge were compared with a series of 

measurements at the same locations taken with a micrometer. It was found that the 

variation was 0.16% for the uncoated panel and 0.79% for panel B. These two 

procedures gave a satisfactory correlation. For detailed measurements see student log 

book.

II.6.5. Measuring the thickness of a coated unabraded panel B (without primer) 

Table II.18. Thickness levels of abraded and unabraded coating on panel B 

In Table II.18; the average thickness of the aluminium panels were obtained by 

recording the measurements from 5 locations on the panel for abraded and unabraded 

areas, these values can be seen in the laboratory log book. 

Panel thickness (mm) 
Unabraded Abraded 

Average Thickness (mm) 2.82 2.61 
Average Thickness (µm) 2822 2608 

Wear (µm) 214



202

II.6.6. Comparison of dial gauge measurements and micrometer measurements 

using an uncoated aluminium panel using the same test points. 

Table II.19. Correlation of dial gauge and micrometer readings to measure 
thickness

In Table II.19; the average thickness of the aluminium panels were obtained by 

recording the measurements from the 5 locations on the panel using the dial gauge and 

the same 6 locations with the micrometer, these values can be seen in the laboratory 

log book. 

Table II.20. Results for panel B (back right wheel) comparing measurements 
from a dial gauge to a micrometer 

In Table II.20; the average thickness of the aluminium panels were obtained by 

recording the measurements from 5 locations on the panel using a dial gauge and from 

the 4 locations using the micrometer, these values can be seen in the laboratory log 

book.

Panel thickness (mm) 
Dial Gauge Micrometer 

Average Thickness (mm) 2.48 2.48 
Average Thickness (µm) 2476 2480 

Percentage error 0.16 % 

Panel thickness (mm) 
Dial gauge Micrometer 

Average Thickness (mm) 2.61 2.59 
Average Thickness (µm) 2608 2587.5 

Percentage error 0.79 % 
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Appendix III – Hush kit (Chapter 5)

III.0. Specifications of the carousel test rig

Due to space constraints in the workshop, the diameter of the platform was restricted 

to 2.5 m. A larger diameter would have allowed for less tighter tracks for the inner 

castor wheels. 

The rotational speed settings were measured and stabilised before sound recordings 

were taken. 

Figure III.1. Elevation view of carousel test rig 

Drawn:
May 2007 

Prepared by: 
John Grimes (D.I.T.) 
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Figure III.2. End view of carousel test rig 

Figure III.3. Plan view of carousel test rig 

III.1. Modifications to castors and wheels

Different modifications were and to the castors and wheels and the noise recorded for 

a period of 5 minutes.  The reductions achieved were compared with a non modified 

castor unit as shown in Table III.1. 

Drawn:
May 2007

Prepared by: 
John Grimes (D.I.T.)

Drawn:
May 2007

Prepared by: 
John Grimes (D.I.T.)
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Table III.1. Noise from selected commercially available castor units and 
modifications to standard castor compared. 

Noise Level (dB(A)) Modifications to Castor Unit and Wheels 
Modified Reduction 

Standard Hartwall rear (Ø125mm) wheel (61.7 dB(A)) on a fixed castor angled for 
the rotating platform 

10mm thick rubber annulus Ø90mm as used above 64.4 -2.7 
2 grooves cut into the rolling surface 60.8 0.9 
o-rings fitted into the 2 grooves 57.0 4.7 

Commercially available wheel & castor units (Ø125mm), compared with a 
standard rear wheel (61.7 dB(A)) 

Orange rubber tyre wheel with brass coloured swivel castor 63.3 -1.6 
Grey rubber wheel with brass coloured swivel castor 61.8 -0.1 
Blue rubber wheel & "silent" plastic castor 59.0 2.7 
Grey rubber wheel with brass coloured swivel castor c/w 
3mm rubber membrane on top of the castor 62.4 -0.7 

Orange rubber tyre wheel with brass coloured swivel castor 
c/w 3mm rubber membrane on top of the castor 63.1 -1.4 

III.2. Dropping of the floor onto the A-frame of the cage

The sound recordings made from the repeated dropping of the floor of the cage on the 

A frame are shown in Table III.2 and III.3. The test was carried by comparing an 

unmodified cage with a modified cage.  

Date:  11 August ‘07 

Start time: 11:34:59 

Duration: 00:02:16 

Table III.2. Dropping of the floor on to the A-frame of an unmodified cage 
Impact No. Leq Time of peak event 

1 91.8 dB 11:35:38 

2 91.2 dB 11:35:49

3 90.7 dB 11:35:59

4 89.2 dB 11:36:07

5 91.6 dB 11:36:16

6 92.1 dB 11:36:24

7 91.0 dB 11:36:32

8 91.9 dB 11:36:40
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9 92.2 dB 11:36:48

10 91.8 dB 11:36:55

11 91.3 dB 11:37:02

12 92.3 dB 11:37:09

Logarithmic Average 91.5 dB

Date:  11 August ‘07 

Start time: 11:24:57 

Duration: 00:03:33 

Table III.3. Dropping of the floor on to the A-frame of a modified cage 
Impact No. Leq Time of peak event 

1 82.2 dB 11:26:54 

2 83.2 dB 11:27:00

3 83.6 dB 11:27:07

4 83.5 dB 11:27:14

5 81.4 dB 11:27:20

6 82.7 dB 11:27:27

7 82.3 dB 11:27:35

8 83.1 dB 11:27:41

9 83.0 dB 11:27:55

10 81.1 dB 11:28:01

11 82.6 dB 11:28:08

Logarithmic Average 82.7 dB

III.3. Folding of the side of the cage across the castor knuckle

The side of the cage was repeatedly folded across the castor knuckle and sound 

measurements taken as shown below in Tables III.4, III.5 and III.6. 

Unmodified rollcage 

Date:  12 August ‘07 

Start time: 16:13:40 

Duration: 00:02:09 
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Table III.4. Folding of the side of an unmodified rollcage

Impact No. Leq Time of peak event 

1 84.4 dB 16:14:07

2 82.4 dB 16:14:19

3 83.7 dB 16:14:26

4 83.1 dB 16:14:33

5 83.4 dB 16:14:40

6 83.4 dB 16:14:47

7 82.9 dB 16:14:54

8 84.2 dB 16:15:01

9 82.6 dB 16:15:09

10 84.0 dB 16:15:16

11 84.2 dB 16:15:23

12 84.2 dB 16:15:31

13 82.2 dB 16:15:39

Logarithmic Average 83.5 dB

Unmodified rollcage  

Date:  12 August ‘07 

Start time: 11:43:06 

Duration: 00:02:30 

Table III.5. Folding of the side on an unmodified rollcage

Impact No. Leq Time of peak event 

1 77.7 dB 11:44:00 

2 79.3 dB 11:44:08

3 80.1 dB 11:44:16

4 83.5 dB 11:44:23

5 80.6 dB 11:44:30

6 78.0 dB 11:44:36

7 82.7 dB 11:44:44

8 83.8 dB 11:44:51

9 79.3 dB  11:44:58

10 78.9 dB 11:45:06

11 81.0 dB 11:45:13

12 83.8 dB 11:45:20

13 82.6 dB 11:45:28

Logarithmic Average 81.4 dB 



208

Modified rollcage  

Date:  12 August ‘07 

Start time: 15:12:00 

Duration: 00:02:47 

Table III.6. Folding of the side of a modified rollcage

Impact No. Leq Time of peak event 

1 75.7 dB 15:12:59 

2 70.7 dB 15:13:08

3 74.3 dB 15:13:16

4 74.3 dB 15:13:23

5 75.7 dB 15:13:30

6 72.7 dB 15:13:37

7 68.8 dB 15:13:45

8 71.7 dB 15:13:53

9 73.8 dB  15:14:01

10 74.1 dB 15:14:08

11 75.6 dB 15:14:16

Logarithmic Average 73.8 dB 

A reduction of 7.7 dB was achieved by the application of the hush kit. 

III.4. Measuring the effect of modifications to an empty roll-cage when struck 

repeatedly against a wall

The impact noise form repeatedly colliding an unmodified empty roll-cage with a 

modified cage was compared as recorded in Tables III.7 and III.8. 

Unmodified roll-cage  

Date:  17 August ‘07 

Start time: 15:25:08 

Duration: 00:01:33 
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Table III.7. Impacting of an empty unmodified rollcage against a wall at walking 
speed

Impact No. Leq Time of peak event 

1 87.5 dB 15:25:15 

2 86.2 dB 15:25:27

3 84.7 dB 15:25:39

4 89.8 dB 15:25:49

5 90.1 dB 15:25:59

6 88.3 dB 15:26:09

Logarithmic Average 88.2 dB 

Modified rollcage  

Date:  17 August ‘07 

Start time: 15:28:31 

Duration: 00:01:51 

Table III.8. Impacting of an empty modified rollcage against a wall at walking 
speed

Impact No. Leq Time of peak event 

1 75.8 dB 15:29:00 

2 80.4 dB 15:29:11

3 78.2 dB 15:29:20

4 81.2 dB 15:29:31

5 78.8 dB 15:29:41

6 79.9 dB 15:29:49

7 79.0 dB 15:29:59

8 82.2 dB 15:30:10

Logarithmic Average 79.8 dB 

A reduction of 8.4 dB was recorded by the application of the hush kit. 

The frequency spectra from the wall tests are shown in Figure III.4. 
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Figure III.4 Frequency spectra showing the effect of hush-kit modifications to an 
empty cage when struck against a wall (without o-rings).

III.5. Impacting a loaded roll-cage against a wall

Unmodified rollcage  

Date:  17 August ‘07 

Start time: 15:38:14 

Duration: 00:02:43 

Table III.9. Impacting of a loaded unmodified rollcage against a wall

Impact No. Leq Time of peak event 

1 85.5 dB 15:38:43

2 84.2 dB 15:38:52

3 85.0 dB 15:39:10

4 84.5 dB 15:39:19

5 88.7 dB 15:39:29

6 83.0 dB 15:39:40

7 87.7 dB 15:39:53

8 85.5 dB 15:40:09

Logarithmic Average 85.9 dB
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Modified rollcage  

Date:  17 August ‘07 

Start time: 15:50:08 

Duration: 00:01:41 

Table III.10. Effect of modifying a loaded roll-cage when collided against a wall

Impact No. Leq Time of peak event 

1 71.3 dB 15:50:15 

2 75.0 dB 15:50:26

3 76.2 dB 15:50:36

4 77.5 dB 15:50:46

5 75.2 dB 15:50:56

6 78.0 dB 15:51:12

7 76.1 dB 15:51:22

8 79.1 dB 15:51:32

9 78.3 dB 15:51:40

Logarithmic Average 76.8 dB

A reduction of 9.1 dB was achieved by application of the hush kit. 

The frequency spectra for these events are compared in Figure III.5. 
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Figure III.5. Frequency spectra showing the effect of hush-kit modifications to a 
loaded cage when repeatedly struck against a wall.
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III.6. Description of hush kit 

III.6.1. Components of the hush kit 

The components and materials of the hush-kit and the method of application are 

described and illustrated in Figure III.6 

Affected 
component / 
procedure

Material Description 
&

Dimension 
[LxWxH] 

(mm) 

Quantity 
per roll 

cage

Method of 
fitting 

Manufacture
(M) & fitting 

(F) time 

Illustration

Front and rear 
edge of floor 
panel

Adhesive
backed
rubber 
strips

560mm x 
20mm x 
3mm 

2 pieces Measure 
and cut to 
length. 
Remove 
adhesive
backing & 
stick to 
surface 

Top surface of 
A-Frame 

Adhesive
backed
rubber 
strips

560mm x 
10mm x 
3mm 

2 pieces Measure 
and cut to 
length. 
Remove 
adhesive
backing & 
stick to 
surface 

Folding floor 
lattice (non-
hinge side) 

Rubber 
hose

Internal 
Ø4mm 
(external 
Ø10mm) x 
80mm 

4 pieces Measure 
and cut to 
length. Split 
along one 
side with a 
sharp blade 

M: 1 min 02 
sec
F: 1 min 03 
sec

Uprights of 
lattice frame 
(4 bottom 
corners & 6 
uprights) 

Rubber 
hose

Internal 
Ø19mm 
(external 
Ø30mm)  

4 x 
20mm 
6 x 
50mm 

Measure
and cut to 
length. Split 
along one 
side with a 
sharp blade 

M: 6 min 27 
sec

Bolt holding 
front castors 
to roll cage 

Plastic
sheet fitted 
with double 
sided tape 
or adhesive 

80mm x 
50mm x 
3mm. Can 
be
manufactur
ed as one 
piece, then 
cut in half. 
A 30mm 
hole is cut 
in the 
centre,
opposite
sides are 
then
chamfered 
up to the 
hole

2 pieces Apply using 
adhesive or 
using
double
sided sticky 
tape.

F: 0 min 44 
sec (including 
point 6 below) 
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Vertical 
surfaces 
facing A 
frame 

Adhesive
backed
rubber 
strips

50mm x 40 
mm x 3mm 

4 pieces Measure 
and cut to 
length. 
Remove 
adhesive
backing & 
stick to 
surface 

See above 

Replace straps Plastic 
clasps

Replace the 
metal clasps 
with plastic 
alternatives

2 pieces   

Plastic catch 
for securing 
hinged floor  
in upright 
position

Rubber 
hose

Internal 
Ø5mm 
(external 
Ø7mm) x 
80mm 

2 pieces Measure 
and cut to 
length. Split 
along one 
side with a 
sharp blade 

Inside surface 
of lattice 
frame for 
when the floor 
is moved into 
upright 
position

Adhesive
backed
rubber 
strips

30mm x 
10mm x 
3mm 

2 pieces Measure 
and cut to 
length. 
Remove 
adhesive
backing & 
stick to 
surface 

Front Swivel 
Castors

Rubber 
sheet

Ø80 with a 
hole Ø 
15mm x 
3mm.  

2 pieces The rubber 
ring is fitted 
between the 
top of the 
castor & the 
base of the 
roll cage. 

M: 1 min 40 
sec
F: 3 min 06 
sec

Wheels Urethane o-
rings 

Ø3mm. 
Two 2.5mm 
grooves are 
cut into 
each wheel 
using a 
lathe

4
Ø125mm 
4
Ø100mm 

The O-rings 
are pushed 
into the 
grooves & 
held in 
place with 
adhesive. 

Back hinges 
of lattice 

Nylon 
washers or 
nylon sheet 

M12 (1 – 
3mm thick) 

2 pieces A-frame is 
dislodged 
from the 
side, the 
rear hinge is 
pulled
upwards, 
and the 
washer is 
put into 
place on the 
rod pointing 
upwards. 
The process 
is then 
repeated in 
reverse to 
reassemble 

M: 0 min 30 
sec (est) 
F: 2 min 40 
sec
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Figure III.6. Datasheet of the components required for the application a hush kit 

Total Time for manufacture of hush kit:  9 min 45 sec.  

Total Time for fitting of hush kit:   7 min 47 sec. 

III.6.2 Explanatory notes 

Above dimensions are approximate and are intended to be used as a guide. 

The estimated noise reductions are based on tests carried out in laboratory 

conditions on standard modified and unmodified roll cages. These values are 

based on average results. Testing was carried out in accordance with BS 

4142:1997.

Recommended adhesives are Araldite Rapid or Henkel Loctite Superglue, 

based on comparative evaluation 

The tools used in the above were simple templates, craft knives and pliers. To 

reduce time, a hose cutter and band saw should be used. 

The above times do not include time for mixing, application and curing of the 

adhesives.

Application of the hush kit is a one person operation. 

Any modifications made to the roll cage are removable and do not involve any 

operations such as drilling, cutting or welding; warranties to the cage should 

not be affected. 

Costs were calculated for both the manufacture and application of the hush kit. 

Significant reductions may be possible by bulk purchasing of pre-measured 

materials and components. 

Labour costs were calculated (Citizensinformation.ie, 2007). 

the roll 
cage.

Name plate on 
lattice

Adhesive
backed
rubber sheet 

Visco-
elastic sheet 
80mm x 
40mm x 
2mm  

1 piece Adhesive 
strip is 
exposed & 
fitted to the 
back of the 
plate in the 
centre.

M: 0min 15 
sec (est) 
F: 0min 15 sec 
(est)
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III.6.3. Application of hush kit to the roll cage  

1. Cleaning of all affected surfaces. 

2. Layout pre-fabricated hush kit ready for fitting. 

3. Removal of wheels & castors. 

4. Replace wheels with “o-ring fitted wheels”. 

5. Insert rubber washer between castor & frame. 

6. Attach the wheels & castors back onto roll cage. 

7. Fix machined & chamfered plastic slider plate around the knuckle bolt head 

for the front castors. 

8. Glue rubber strips to the inside of the “A-frame” adjacent to the castor bolt 

heads.

9. Fasten rubber strips along the top surface of the A-frame. 

10. Affix rubber strips to the front & rear edges of the hinged floor. 

11. Push 4 pieces of rubber hose onto the non-hinged side of the lower rung of the 

lattice frame. 

12. Fix 4 pieces of rubber hose (20mm long pieces) to the bottom of each corner 

of the lattice frame, then fix 6 pieces of rubber hose (50mm long) to the 

appropriate locations on the lattice frame. 

13. Stick 2 rubber pads to insides of hinged lattice frame. These should line up 

with the floor when folded into an upright position. 

14. On the plastic strap used to hold the floor upright; plastic hose should be fitted 

along the lattice rods. 

15. Remove metal clasps from the straps; these to be replaced with plastic clasps. 

16. Apply vibration damping strip (E-dead eliminator) to the back of the name / ID 

plate attached to the side lattice. 

III.7. Selection of rubbers and damping materials

Commercially available rubbers and materials were selected using an online catalogue 

from Radionics (2007). The rubber materials selected are described in Figure III.6. 
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III.8. Adhesives 

A simple test carried out on six different adhesives and on double sided tape to 

investigate the best method of attaching hush kits components to the metal roll-cage. 

Each of the adhesives was tested by placing a small amount on one side of the rubber 

fittings. Following cleaning and application each of the adhesive samples was left to 

cure for 24hrs. The results are shown in Table III.11. 

Table III.11. Selection of adhesives 

Adhesive used 

“Adhesive
Power” with 

preparation to 
rollcage 

“Adhesive Power” 
without preparation 

to rollcage 
Notes and Comments 

Loctite Henkel: 
Superglue
Liquid

Excellent Excellent Easy to use and readily 
available

Loctite Henkel: 
Superglue Gel 

Excellent / 
Good Good Easy to use 

Bond Lock: 
B406 Good Good Easy to use 

Evo Stik: 
Serious Glue Poor Poor 

Readily available, the 
rubber needed support 
to help it set, the other 
adhesives didn’t 
require this 

Araldite: Rapid  Excellent Excellent 

Labour intensive as it is 
a two part resin and 
requires mixing prior to 
use

Araldite: 2014 Good Poor 

Labour intensive as it is 
a two part resin and 
requires mixing prior to 
use

The most suitable adhesive was “superglue”. Double sided adhesive tape was also 

found to be effective.
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III.9. Weights used during testing

The loads applied to the roll-cages and swinging arm apparatus are described below. 

Table III.12. Weights applied to cages and arm apparatus. 
Item Weight 
Yellow Motor (x2) 16 kg each 
Silver Motor 7 kg 
Green Motor 18 kg 
Oil Drum 21 kg 
Empty Rollcage 30 kg 
Castor and Wheel Test Arm Apparatus 6 kg 
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