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ABSTRACT

While Independent Subspace Analysis provides a means of
blindly separating sound sources from a single channel signal, it
does have a number of problems. In particular the amount of
information required for separation of sources varies with the
signal. This is as a result of the variance-based nature of
Principal Component Analysis, which is used for dimensional
reduction in the Independent Subspace Analysis algorithm. In an
attempt to overcome this problem the use of a non-variance
based dimensional reduction method, Locally Linear
Embedding, is proposed. Locally Linear Embedding is a
geometry based dimensional reduction technique. The use of this
approach is demonstrated by its application to single channel
source separation, and its merits discussed.

1. INDEPENDENT SUBSPACE ANALYSIS

Independent Subspace Analysis (ISA) provides a means of blind
sound source separation from single channel mixtures [1]. ISA
represents sound sources as low dimensional subspaces in the
time-frequency plane. The single channel mixture is assumed to
result from the sum of a number of  unknown independent
sources. The single channel mixture is converted to a time-
frequency representation such as a spectrogram by means of
carrying out a Short Time Fourier Transform on the signal and
retaining only the magnitude values.

The resulting spectrogram is then assumed to result from
the superposition of l unknown independent spectrograms.
Further each independent spectrogram is assumed to be
represented as the outer product of an invariant frequency basis
function fj and a corresponding time basis function tj. This yields:
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One way to achieve the decomposition of a spectrogram into
a sum of outer products as in eqn. (1) is the use of Principal
Component Analysis (PCA). Also known as the Karhunen-Loeve
Transform, PCA transforms a set of correlated variables into a
number of uncorrelated or orthogonal variables that are termed
principal components. The first principal component contains the
largest amount of the total variance as possible, and each
successive principal component contains as much of the total
remaining variance as possible.

As a result of this property one of the uses of PCA is as a
method of dimensional reduction, by discarding components that
contribute minimal variance to the overall data. Therefore

carrying out PCA on a spectrogram and discarding components
of low variance will result in a set of low dimensional subspaces
that represent aspects of the original spectrogram. However the
components returned by PCA are only orthogonal, and are not
statistically independent.

In order to achieve statistically independent basis functions a
further technique, Independent Component Analysis (ICA) is
performed on the components retained from PCA. Independent
Component Analysis (ICA) attempts to separate a set of
observed signals that are composed of linear mixtures of a
number of independent non-gaussian sources into a set of signals
that contain the independent sources [2] [3]. The combination of
PCA for dimensional reduction followed by ICA to achieve
independent basis functions results in the technique known as
Independent Subspace Analysis (ISA).  The method can be
viewed as a two-step process, firstly dimensional reduction and
secondly obtaining independent components from the reduced
dimensional data. Once the independent basis functions have
been obtained they can then be combined to resynthesise the
independent sources as described in [1].

However there are a number of problems with ISA. Of
particular interest is that the number of basis functions required
to identify the sources was found to vary from signal to signal,
depending on the relative amplitudes of the sources. Using the
threshold method described in [1] was found to be unreliable in
determining the required number of basis functions. This
indeterminacy is as a result of the variance-based nature of the
PCA stage of the algorithm. This inherently biases the analysis
towards the loudest sounds in the overall spectrogram, which
will account for the largest amounts of variance. As a result
sources with low amplitude relative to other sources in the
spectrogram will require larger numbers of components to be
retained from the dimensional reduction stage before these low
amplitude sources can be recognised.

Techniques to overcome this limitation, such as the use of
sub-band preprocessing and the use of prior subspaces for
sources known to be present in the mixture signal, have been
proposed in [4] and [5]. However these techniques make use of
prior knowledge about the sources of interest in the signal and
this information may not always be available. In such cases
where prior knowledge is not available and where some of the
sources are known to have lower amplitudes relative to other
sources in the mixture signal it can be seen that using a
dimensional reduction technique that is not variance-based could
potentially improve the robustness of the ISA method. One such
dimensional reduction technique is Locally Linear Embedding.
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2. LOCALLY LINEAR EMBEDDING

Locally linear embedding (LLE) is a technique for dimensional
reduction based on simple geometric intuitions [6] [7]. LLE
attempts to obtain a low dimensional mapping for high
dimensional data with the property that nearby points in the high
dimensional space remain nearby and are similarly co-located
with respect to each other in the low dimensional space. In other
words the mapping attempts to preserve the local configurations
of nearest neighbours.

The data is assumed to consist of N real-valued vectors Xi of
dimensionality D. These vectors are taken as samples of the
underlying manifold. Provided that the underlying manifold is
well sampled then each vector and its nearest neighbours can be
assumed to lie on or close to a locally linear piece of the
underlying manifold. These pieces of the manifold are then
characterised by the use of linear coefficients that reconstruct
each vector from its nearest neighbours. In the simplest case K
nearest neighbours are identified per vector as measured using
Euclidean distance, though the use of other distance metrics is
possible. Reconstruction errors are then measured by:
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where the weights Wij contain the contribution of the jth vector to
the reconstruction of the ith vector. To obtain the Wij the above
cost function is minimised subject to two constraints, a
sparseness constraint and an invariance constraint. The
sparseness constraint is that each vector Xi can only be
reconstructed from its K nearest neighbours, in effect forcing Wij
= 0 if Xj is not one of the nearest neighbours. The invariance
constraint is that the rows of the weights matrix are constrained
to sum to one, ie Σj Wij = 1. The optimal weights can then be
found by solving a set of constrained least squares problems.

An important property of these constrained weights is that
for any given vector they are invariant to rotations, rescalings
and translations of that vector and its K nearest neighbours. The
invariance to rotations and scalings comes from the form of eqn
(2) and the invariance to translation is enforced by the constraint
that the rows of the weights matrix sum to one. As a result of this
the weights characterise intrinsic geometric properties of each
neighbourhood as opposed to properties that depend on a
particular frame of reference.

The data is then assumed to be on or near a smoothly
varying non-linear manifold, with the dimensionality of the
manifold being d<<D. It is then assumed that there exists a linear
mapping, consisting of a translation, rotation and rescaling,
which maps the high dimensional neighbourhoods to global
coordinates on the underlying manifold. As the reconstruction
weights Wij are invariant to translation, rotation and rescaling
their characterisation of local geometry in the original data can
be expected to be equally valid for local pieces of the underlying
manifold. In other words the weights Wij that reconstruct the
original vectors Xi of dimensionality D can also be used to
reconstruct the underlying manifold in d dimensions.

The next and final step in LLE is then to map the high
dimensional inputs Xi to a low dimensional output Ri which
represent the underlying manifold. This is done by finding the d
dimensional coordinates of each Ri to minimise the embedding
cost function:
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As can be seen the cost function is very similar to that of eqn.
(1), and is again based on locally linear reconstruction errors.
However in this case the weights Wij are fixed and the outputs Ri
are optimised. As can be seen the embedding is calculated
directly from the Wij without reference to the original inputs Xi
and as a result the embedding is performed only with reference
to the geometric information encoded in the Wij. In effect the
algorithm finds low dimensional outputs Ri that can be
reconstructed from the same weights Wij as the original high
dimensional data Xi .

The embedding cost function is optimised by solving a
sparse N x N eigenvalue problem which is a global operation
over all the data points. This contrasts with the fact that the
reconstruction weights are calculated from the local
neighbourhood of each input. This is how the algorithm attempts
to discover global structure, it attempts to integrate information
from overlapping local neighbourhoods. Like PCA the resultant
outputs Ri are orthogonal to each other. This is achieved in
solving the eigenvalue problem. As a result of this LLE shares
the property with PCA that only as many outputs Ri  as  required
need be calculated.

The only parameters for the algorithm are chosing the
number of dimensions d to represent the data, and the number of
neighbours K for each data point. It has been observed in [7] that
the results of LLE do not depend sensitively on the number of
nearest neighbours, with the provisions that K must be greater
than d and that too high a value for K invalidates the assumption
that a vector and its neighbours can be modelled linearly.

LLE has proved sucessful in determining the underlying
structure of high dimensional data in cases where PCA fails to
obtain the underlying structure. LLE appeals to the underlying
local geometry of the data presented to it to carry out
dimensional reduction, whereas PCA carries out dimensional
reduction with reference to the variance of the data. In some
cases the geometric methods of LLE provide a more salient
description of the data than a variance based approach such as
PCA. It should also be noted that, like PCA, LLE also has other
uses besides that of dimensional reduction. LLE can also be used
as a clustering algorithm and for pattern matching.

3. ISA USING LLE FOR DIMENSIONAL REDUCTION

As noted previously PCA performs redundancy reduction based
on variance. As a result, when attempting to separate sources
from a spectrogram PCA is biased towards the loudest sources
in the spectrogram and can recover a number of principal
components from these sources before recovering a component
that contains data from one of the lower amplitude sources
present. This means that the number of components that needs to
be retained to identify all the sources present varies with the
relative amplitude of the sources. This can cause difficulties
when attempting to separate sound sources which have much
lower amplitudes than some of the other sources present in the
mixture signal, for example hi-hats tend to be much lower in a
mixture signal than either a snare drum or a kick drum.

LLE on the other hand determines components based on
regions of similarity (or local neighbourhoods). Therefore LLE
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should be less prone to variations in relative amplitude between
sources in the mixture spectrogram, and the variation in the
number of components required to identify sources should be
less severe than that observed when using PCA.

Consider a spectrogram Y of size n x m, where n is the
number of frequency channels and m is the number of time
slices or frames. Then with regards to the LLE algorithm the
dimensionality D of the data is given by n and the number of
input vectors N is given by m. The outputs Ri are in this case
taken to represent the evolution of similar neighbourhoods
through the spectrogram. These similar neighbourhoods are
made up of time slices that have similar frequency content, and
so the outputs should capture events in the spectrogram that
have similar frequency content. Alternatively, by transposing Y
the neighbourhoods will then consist of frequency regions that
have similar evolution through time, resulting in outputs that
contain groups of frequencies that occur together, in other words
frequency characteristics of a given source.

Figure 1 below shows the first three output vectors Ri
obtained from carrying out LLE on a drum loop containing two
occurrences each of a snare drum and kick drum, and eight
occurrences of a hi-hat. The high hats occur at a lower
amplitude relative to that of the snare and kick drums and so
would be harder to detect using a variance based method such as
PCA. In this case the spectrogram was orientated so that the
outputs would capture time events in the spectrogram that have
similar frequency content. The number of nearest neighbours K
was set at 30 and d was chosen as 3.

As can be seen LLE has successfully captured the general
characteristics of the drum loop, having prominent peaks in
amplitude at the correct locations for each of the three drums.
This compares favourably with the results obtained using PCA
which are shown in Figure 2. While both snare and bass drum
are clearly identified in the first two principal components, the
hi-hats only show up as very small peaks in the third principal
component and are not clearly defined. It can be seen that in this
case LLE has more successfully captured information relating to
the hi-hats, which were low in amplitude relative to the snare
and bass drum.

Figure 1:First 3 components obtained using LLE (K=30)

Figure 2: First 3 components obtained using PCA

As noted previously the results of LLE do not depend
sensitively on the choice of the number of nearest neighbours.
Choosing different values for K results in outputs that essentially
capture the same information on the sources. Figure 3 shows the
results obtained by carrying out LLE with K = 50 on the same
drum loop as in Figure 1. The sources have been captured in the
same order, and the same main peaks occur in each source but
the overlap between the sources is different. In this case the
snare vector shows little evidence of the hi-hats, which instead
show up in the bass drum vector, and the hi-hat peaks are more
consistent in their amplitudes in the hi-hat vector.

Figure 3:First 3 components obtained using LLE (K=50)

Despite capturing the overall structure of the sources, smaller
peaks are still visible in the output LLE vectors where other
drums occur. These peaks are possibly due to the fact that some
of the neighbourhoods integrated in the final step of LLE may
consist of neighbours that belong to more than one source,
especially in cases where sources occur simultaneously. The
vectors recovered are also not statistically independent.

Having achieved dimensional reduction using LLE the
outputs from LLE can be passed to an ICA algorithm in a similar
manner to the way the outputs from PCA are passed to an ICA
algorithm in ISA, effectively performing ISA in the same manner
as before but substituting LLE for PCA in the dimensional
reduction step of the algorithm. This results in a set of
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independent basis functions which can be resynthesised as
described in [1]. Figure 4 shows the independent sources
obtained if the Ri shown in Figure 1 are transformed using ICA.
As can be seen improved separation of the sources has occurred,
with noticeably clearer peaks for both the bass drum and hi-hats.

Figure 4: Independent Components obtained from ICA of
LLE outputs (K=30)

When the Ri for K = 50 are transformed using ICA the sources
are again recovered correctly.  The independent components
obtained are shown in Figure 5. However as can be seen in this
case performing ICA has lead to a reduction in peak height for
the hi-hats, with the dominant peaks in the hi-hat component
being those of the snare drum. This occurs as a result of the two
prominent local minima present in the LLE hi-hat vector. As
ICA is invariant to scaling these two minima are regarded by the
ICA algorithm to be as important as the peaks.

This highlights the fact that while LLE itself is not
particularly sensitive to the choice of K, using LLE as a
substitute for PCA in the dimensional reduction step of
Independent Subspace Analysis results in an increased sensitivity
to the choice of K . Careful choice of K results in LLE vectors
which give better separation when passed to the ICA step of ISA,
though the required separation is still always achieved to some
degree. Unfortunately at present there is no suitable method for
choosing K for optimal performance with the ICA step and so
this remains an issue for future research.

Figure 5: Independent Components obtained from ICA of
LLE outputs (K=50)

In some cases the LLE algorithm can fail to characterise the
sources sufficiently to allow extraction using ISA. One potential
reason for this is that as mentioned previously some of the
neighbourhoods embedded in the final step of LLE may contain
neighbours from different sources. In some cases, if the nearest
neighbours do not consistently come from the same source,
whether as a result of similar frequency characteristics, or due to
overlapping sources causing the occurrence of similar vectors,
then the LLE algorithm will fail to characterise the sources
adequately. This is as a result of the algorithm mapping faraway
inputs to nearby outputs. This type of failure can also occur if the
original data is too spare, noisy, or if there is not enough data to
ensure that the underlying manifold is well-sampled [7].
However despite the fact that the algorithm will fail under
certain conditions, LLE has shown itself to be capable of better
characterising the sources present in a mixture signal in many
circumstances where PCA fails to do so, and can often do so
using fewer dimensions than PCA.

4. CONCLUSIONS

This paper has proposed the use of LLE as a potential means of
overcoming some of the problems associated with the variance
based PCA step of ISA. LLE is shown to be capable of
characterising sources with fewer numbers of components than
that required using PCA. This is due to the fact that LLE makes
use of local geometry to embed high dimensional data in a low
dimensional space. However in some cases LLE does fail to
characterise the sources correctly due to too much overlap
between integrated neighbourhoods. Despite this LLE has in
many cases proved to be an improvement over PCA for
dimensional reduction in the ISA algorithm and has proved to be
a useful tool for attempting sound source separation.
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