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Towards a Computational Analysis of Probabilistic
Argumentation Frameworks

PIERPAOLO DONDIG

! School of Computing,
Dublin Institute of Technology, Kevin Street 2, Dudreland

In this paper we analyze probabilistic argumentatiameworks (PAFs),
defined as an extension of Dung abstract argumemtdtameworks in which
each argument: is asserted with a probability,,. The debate around PAFs
has so far centered on their theoretical definitiand basic properties. This
work contributes to their computational analysisgypposing a first recursive
algorithm to compute the probability of acceptarmfeeach argument under
grounded and preferred semantics, and by studyiegoehavior of PAFs with
respect to reinstatement, cycles and changes iruraegt structure. The
computational tools proposed may provide strategiormation for agents
selecting the next step in an open argumentatiatgss and they represent a
contribution in the debate about gradualism in ahst argumentation.

KEYWORDS: Argumentation Theory, Probabilistic Reasyp Abstract
Argumentation, Grounded and Preferred Semantics

INTRODUCTION

An abstract argumentation framework is a direcpfgrahere nodes represent arguments and
arrows represent the attack relation. Abstract rmentation frameworks [13, 9] were
introduced by Dung [2] to analyze properties ofedsible arguments, i.e. arguments whose
validity can be disputed by other conflicting argents.

Various semantics have been defined to identiéysit of acceptable arguments. In this
work we deal with grounded and preferred semaraius we follow the labeling approach
proposed by Caminada [7], where a semantics assmyesch argument a labil, out or
unde¢ meaning that the argument is considered congligtanceptable, non-acceptable or
undecided (i.e. one abstains from an opinion).

In Dung'’s original work, arguments are treatechbstract entities that are either fully
asserted or not asserted at all, and there aregrees related to either arguments or relations
of attacks. Abstract argumentation is often to@tstnd coarse to support a decision making
process. The situation is described by Dunne ¢fi4], who notice how the solution provided
by abstract argumentations“often an empty set or several sets with nothingistinguish
between them” Abstract argumentation has proven to be efficienkeeping the logical
consistency of conflicting evidence, but there lmated extensions that can be practically
deployed to handle gradualism. Some approachesthadeto marry probability calculus and
argumentation semantics, defining probabilisticuangntation frameworks. In 4Fs an



argumentation semantics is used to identify undeickv conditions a set of arguments are
acceptable, while probability calculus quantifies\tlikely those conditions are.

The study ofPAFsis still at an embryonic stage. Debate has cediteretheir correct
theoretical definition and some basic propertiasvdd from abstract argumentation. There is
no computational algorithm proposed beside theebimice approach, and no study over their
behavior w.r.t. to reinstatement or sensitivitchk@nges in the argumentation structure.

Taking stock of previous research in the areafirge modify some formal definitions
of PAF concepts. However, these definitions are anchamegdrevious works and do not
represent the major contribution of the paper. Ky contribution is represented by a set of
new computational tools developed for analyziRgF: we describe the first recursive
algorithm to compute the probability of acceptammfeeach argument and we study the
behavior of PAF w.r.t. to reinstatement, cycles and changes inatigegments structure. Our
work represents a contribution to the introductégradualism in argumentation.

The paper is organized as follows: in the firsd tsections we recall the pre-requisites
of abstract argumentation aRAFs we describe the very first algorithm to compube t
acceptance probabilities of the arguments. We thescribe the behavior dfAF w.r.t. to
reinstatement and cycles, we analyze the beha¥id?A# in relation to changes and we
propose an application #AF, before discussing related works.

BACKGROUND DEFINITIONS

Definition 1. (Abstract Argumentation Framework) L8t be the universe of all possible
arguments. An argumentation framework is a ga@ir,R ) whereAr is a finite subset df
andR < Ar X Ar is the attack relation.

Let us consideAF = (Ar,R) andArgs C Ar.

Definition 2. (conflict-free).Args is conflict-free iffda,b € Args|aR b

Definition 3. (defense). Args defends an argument a € Ar iff
Vb € Ar suchthat bR a,3 c € Args such that c Rb. The set of arguments defended by
Args is denoted’ (Args).

Definition 4. (indirect attack/defense) Letb € Ar and the grapht defined by(Ar ,R).
Then (1)a indirectly attacks if there is an odd-length path fromto b in the attack grapl&
and (2)a indirectly defend# if there is an even-length path franto b in G.

Two argumentsa andb are rebuttalsff R(a, b) A R(b, a).

Labeling. A semantics identifies a set of arguments that sarvive the conflicts
encoded by the attack relati&n In this work we follow the labeling approach cdr@inada et
al. [7], where a semantics assigns to each arguankaielin, out or undec

Definition 5. (labeling/conflict free). LeAF = (Ar,R ) be an argumentation framework. A
labeling is a total functiorl : Ar — {in, out, undec}. We write in(L) fo{ae Ar|L(a) = in},
out(L) for {ae Ar|L(a) = out}, and undec(L) for{ae Ar|L(a) = undec}. A labeling is
conflict-free if no in-labeled argument attacks aflabeled argument.

Definition 6. (complete labeling, from Definition 5 in [7]). LefAr,R) be an
argumentation framework. A complete labeling islaeling that for every € Ar holds that:1.
if a is labeledin then all attackers od are labeledout; 2. if all attackers ot: are labeledbut



thena is labeledin; 3. if a is labeledout thena has an attacker labeleth; 4. if a has an
attacker labeledn thena is labeledout

Theorem 1. (from [7]) Let L be a labeling of argumentation fn@work(Ar,R). It
holds that L is a complete labelingfor each argument € Ar it holds that: 1. ifa is labeled
in then all its attackers are labeledit; 2. if a is labeledout then it has at least one attacker
that is labeledin; 3. if a is labeledundec then it has at least one attacker that is labeled
undec and it does not have an attacker that is labéted

Theorem 2. (from theorem 6 and 7 in [7]) LeAF = (Ar,R) be an argumentation
framework.L is the grounded labeling iff L is a complete labglwhere undec(L) is maximal
(w.r.t. set inclusion) among all complete labelimsAF. L is the preferred labeling iff L is a
complete labeling wherén(L), out(L) are maximal.

In figure 1 two argumentation graphs are depictecbunded semantics assigns the
status ofundecto all the arguments fd), since it represents the complete labeling with th
maximal undec-set, while i(B), according to theorem 1, there is only one coregigbeling
(that is thus grounded and preferred), where argtimas in (no attackers)b is out andc
results inin. Note howa reinstates. Regarding (A), there are two complete labelingpene
in(L) is maximal w.r.t. to set inclusion: one wittn(L,) = {b}, out(L,) = {a,c},
undec(L,) = @ and the other witln(L,) = {a, c} andout(L,) = {b} andundec(L,) = @.

Figure 1. Two Argumentation Graphs (A) and (B)

PROBABILISTIC ARGUMENTATION FRAMEWORKS

In this section we present earlier work in prohabd argumentation frameworks that we
progress. We start from the conceptRefF and its meaning. In the first work by Li [4], a
probability measure is attached to each argumemt attack relation of an abstract
argumentation framework. Li et al. define thesebphulities as thélikelihood of existence of
an argument or attack relationdn the argumentation graph [4]. In [6], Hunter pesges the
conceptual notion oPAF. He admits thatwhat is meant by the probability of an argument
holding is an open questionHe proposes a justification prospective simitaf4], where the
probability indicates the degree to which the argaotbelongs (or is believed to belong) to the
graph. Yet he also proposes an alternative vieterned to as th@remises perspectiven
argument probability of being true. In this appioate probability of each argument is based
on the degree to which its premises are true, @balieved to be true. Our stance is closer to
Hunter's second view. Since an argument’s premasesaffected by probabilistic uncertainty,
we are left with an argument whose claim is affédig the same uncertainty, meaning that the
claim holds with likelihoode, and does not hold with likelihodd— x.

We report the definition proposed by Li [4] usedoaseline reference for this paper:

A probabilistic argumentation framework PrAF isupte (Ar, P4, D, P, ) where(Ar, D) is an
abstract argumentation frameworR, : Ar — (0: 1] andP, : D — (0:1].

Key elements of Li et al.’s definition are the use probability for both arguments and
attacks and the assumption of argument and attatsgpendence (hendg andP, are scalar



numbers). Central to this is the way argument pooitya of acceptance is computed. The
probabilistic nature of arguments, common to Lakt Hunter and our research, implies that
given an argumentation framework mofelements2™ different scenarios are possible, each of
them obtained by assuming each argument or atedakan to exist or not. Li et al. call these
scenariosnduced argumentation frameworlesach corresponding to a subgraph of the starting
argumentation framework. Each induced argumentaframework has a probabilityf
existing attached to it, computed by applying the prodwdé usingP, and P,, and each
induced framework behaves as an abstract Dung{sayteework.

Thus, given a semantics (although only groundedaséics is analysed in [4]), Li et al.
define the probability of acceptance of an extamsie the sum of the probabilities of all the
induced frameworks where the chosen semantics peothat extension. This computation,
that requires computing the chosen semantic ithalsubgraphs of the original argumentation
framework, is referred to by Hunter as ttanstellation approachHunter [6] extends some of
Li et al.’s definitions and investigates the sitaas where arguments might not be independent
and the probability is given as a joint probability distribution.

Our Definition and its Differences from Previous N&o

Definition 7. (PAF). A probabilistic argumentation framework PA& a couple(4, P)
whereA = (Ar, R) is an abstract argumentation framework with aténset of argumentdr
and an attack relatio® onAr x Ar; and P is a joint probability distribution ovedr.

Our contribution to the formal definition dtAF is minor, and our definition is an
extension of the previous work of Li et al. and HunHowever, in the next section we will
introduce new definitions of argument acceptabilised in our computational analysis and
based on the above definition, and it is thus irgrdrto make these modifications clear and
explicit. Referring to Li et al.’s definition as laaseline, ourPAF differs in the following
respects: probabilities are only attached to argusn@nd induced frameworks are only
identified by subsets of nodes, the probabilitysPaijoint probability rather than a scalar
function. Moreover, as described in the next sectwe define acceptability at argument level
rather than at extension level, we also introdineegrobability of an argument to be labeled
out or unde¢ we extend the definitions of the probability ofament acceptance by adding the
credulous and skeptical acceptance of preferrecusecs.

We end this section by clarifying some conceptowf PAF definition that are not
discussed by Li et al. and Hunter, but that aréulise better understanding our computational
analysis. In the definition of BAF, given a generic argumeat P(a) is the probability tha&
holdson its own,in isolation, before the dialectical process stdttss the likelihood that the
probabilistic premises of the argument are trud, thns the argument claim can be used in the
argumentation process. Our aim is to compute tbbalilities Py (a), Poyr(a), Py(a) that a
generic argument will be labeledin, outor undecunder the chosen semantics. Algorithm 1
proposes a brute force approach to compwiRdP,yr, Py are analogous).

The difference betweeR(a) and P;y(a) is crucial. If P(a) is the probability of
argumenia’s claim to hold in isolation, before the argumeioia process combines arguments,
P;y(a) is the probability ofa being labeledn by the chosen semanticd®,y (a) entails the
effect of the argumentation processan.e. the fact tha&’s conclusion might be invalidated
by other arguments. Argumeatcould have a high probability of holding in isatet, but be



completely invalidated in argumentation. It maytbata: Joe got full marks in his math test,
so he is good at mathout it might be also known that Joe copied the tesThusP(a) =
P(b) = 1, but sinceb attacksa, thenP,y(a) = 0 (the conclusion does not hold anymore) .

Algorithm1 - Brute force approach for conmputing Py

for each sub-graph G of (4r,R) Dialectical Layer
use P to conpute the probability P(G) of G | Avgumentation semantics |
for each argunent a in G

assign a label I(a) to a in G using the |
chosen senantics

i f l(a) = in add P(G) to PIN(a) Probabilistic Layer

Joint Probability |

Formalizing Scenarios and their Probabilities

Given an argumentation framewatl = (Ar, R) with |Ar| = n, and the graply identified by
Ar and R, we consider the sdatf of all the subgraphs ofi. We define specific sets of
subgraphs, i.e. elements2f. Givena € Ar, we define:

A={g€Hlaeg} ; A={g€H]|a¢ g} )

that are respectively the set of subgraphs wheyenzenta is present and the set of subgraphs
wherea is not present (note how we usdor the complementary sat).

We define ascenarioas the argumentation framework identified by thiegsaphg and
the restriction oR to g. A scenario models the situation in which someiargnts are assumed
to hold and are present in the argumentation psoaed some arguments are assumed not to
hold and are discarded from the dialectical pracess

In general, we can express a set of subgraphsc@nelsponding scenarios) combining
some of the setd,,..,4,,4,,..,4,. with the connective§u,n}. We write AB to denote
AN B andA + B for AU B. For instance, in figure 1 the single subgraph/agerwith onlyb
and ¢ present is denoted witdlBC, while the expressiomMB denotes a set of two
subgraphs/scenarios where argumerasidb are present andcan be either present or not.

We call clause¢ a finite intersection (or conjunction) of sets , 4,. We consider
expressions of sets of scenarios in tlksjunctive normal formi.e. as a finite disjunction of
clausesp; + @, +..+¢n,.

It is possible to compute the probability of eattbgraph/scenario starting from the
probability P. If Ar = {a,,..,a,}, a single scenario/subgraph is a clause of lengtiodeling
a generic situation in which; probabilistic arguments are assumed to hold wthiée other
n — j are not. The probability, () of this generic scenariois the joint probability:

P(s)=P(agNaz A ..Naj ANG11 N\ ...\ Q) (2)

The probability of a set of scenariBg() is the sum of the probabilities of each scenario i
the set. Thus, regarding the set of scenatjdsy marginalization on argumeant

Pis(A) = Ysea Pi(s) = P(a) andP(4) = 1 - P(a) 3)
Since every set of scenarios can be expressedebgotijunction of expressions containing

only the setsd; , 4,, using the above equation the probability of aetyaf subgraphs can be
expressed usinB. For instanc®ss(AB) = P(a A b), Pss(A+ B) = P(aV —b).



Labeling Scenarios and Acceptance

Given a scenarie € S (S being the set of all the scenarios), the labehihg follows the rules
of the chosen semantics. We define a scenarioitagp£élas a total function over the Cartesian
product of arguments idr and scenarios ii§, thus £:Ar X S —= {in, out,undec}. When
labeling a scenario, we follow this choice: an angata is labeledout in all the scenarios
wherea does not hold (i.e. it isut because it is assumed not to hofdits own or when it
holds but it is labeledut by the semantics, representing the effect @f other arguments.

Regarding grounded semantics there is only onelifal per scenaria, that we call
LI(s). In the case of preferred labeling there could tmenthan one valid labeling per
scenario. Each preferred labeling for scenariis referred to a£?" (s) and the set of the
preferred labelings of a scenario as €77 (s) = {£Y"(s),.., L5 (s)}. We call in(£*(s)),
out(L*(s)), undec(L*(s)) the sets of argument labeléd, out, undecin L*(s), with x
denoting the semantics used (eitgesr pr). In order to study how an argument behaves across
scenarios iy, we define the following set of scenarios. Forugrded semantics:

AJ ={s€S:a€in(L9,s)}; A),r = {s € S:a € out(LY,s)}
A7 = {s € S:a € undec(LY,s)}

which represent all the scenarios where argumeistlabeledin, out or undec Regarding
preferred semantics, since there could be moredharabeling for each scenasipwe define
two extreme sets corresponding to skeptical andutoes attitudes. The credulous set is
identified by requiring argument to be labeledn at least in one of the valid preferred
labelings fors. Hence we define:
AT ={s €S:(3LP(s) € £P"(s) : a € in(LPT,s))}

A ={s€S:(3LP(s) € £P7(s) : a € out(LPT,s))}
AT ={s €S:(3LP(s) € £P"(5) : a € undec(LPT,s))}
While the skeptical sets are:
Aly” = Ay \ (AgyrUAY ) 5 AGyr = Agyr \ (AINUAT) 3 Ay = Ay \ (AGyrUARY) (4)
representing scenarios where argumehts the same label in all the preferred labeling o

: faAPT— pr+ ,pr— pr+ ,pr— pr+ : : :
scenario. Itisd;y, S A}y ,Aour € Aoy 4y € Ay and the two sets of scenarios identify

an upper and lower probability level. We add a lestful notation. We writd,,,, for all the
scenarios where holds and it results labeledit Note thatdyyr = A + Agye-

Definition 8. We define the probabilities of acceptance (5), efction (6) and
undecided probability (7) of argumedmtfor grounded and preferred semantics as follows:

B = P(A}\), Pi = P(A"), Pi = P(Afy~ (5)
P! = P(AQyp), B = P(AQ1), By = P(ADy; (6)
Ui = P(AD), Uy = P(AY ), UF = P(47) (7)

Example 1Let us consider the graph of figure 1 (A), andugtstudy the properties of
argumenta. There are 3 arguments, the = 8 scenarios. Let us presun€4) = P(B) =
P(C) = 0.8 anda, b, c are statistically independent. Let us start coringuﬁ‘,gN. Argumenta is



labeledin in all the scenarios where it holds aindloes not hold (and becomes irrelevant).
Using our notatiord = AB (i.e. the set of subgraphgaf}, {a,c}}. It is undecwhen all the
arguments are present, i.e. the single scentdfie: ABC (i.e. {{a, b,c}}) and it is labeledut
when it is assumed not to hold or whenis in and c is out, i.e. A3, = A+ ABC (set
{0,{b},{c},{a, b},{b, c}}). By inserting numerical values we have:
PJ =0.16, U] = 0.512, P/ = 0.328.
Regarding preferred semantics, we can verify that:

AT = A(B+BC), P(&T)=Pf=0672

APT = AB, P(ATY") =Py =0.16
AIL)IH- — Az{o}r— =0
AP = A+ AB, P(AYY ) =P =0.84

AV = A+ ABC, P(AV ) =P, =0.328.
COMPUTINGA,y: A RECURSIVE ALGORITHM

This section presents an algorithm to compite A,yr under grounded semanticSiven a
starting argumentt and a label € {in, out}, we need to find the set of subgraphs where
argumenta is legally labeledn. The idea is to traverse the transpose graph gphgwith
reversed arrows) from down to its attackers, propagating the constrabmitthe grounded
labeling. While traversing the graph, the varioashg correspond to a set of subgraphs. The
constraints needed are listed in definition 5 amebtem 1. If argument — attacked byn
argumentsc,, — is required to be labeléd, we impose the set;, to be:

Ay = AN (X1pyr N Xapyp N oo N Xnpyr) condition (1)

i.e. argument: can be labeleth in the subgraphs where:

1. ais present in the subgraph (i.e. theAggpand

2. all the attacking arguments are labeledut (setsX;,,.).
If a is required to be labeled.t, the set of subgraphs is:

Apyr = AUAN (Xy,y UXyy U UXp,y ) condition (2)

i.e.a is labeledout in all the subgraphs where it is not present ¢eadt one of the attackers
is labeledin. Thus we recursively traverse the graph, findimggubgraphs that are compatible

with the starting label of. The sets, , .., X, are found when terminal nodes are reached.

When a terminal node; is reached the following conditions are applied:
1. if x7 is required to bén thenXr,, = Xr
2. if nodexy is required to beut thenXr .. = Xr

The way the algorithm treats cycles guaranteesahly grounded complete labelings
are identified. If a cycle is detected, the reamgpath terminates, returning an empty set that
also has the effect of discarding all the sets uifgsaphs linked with a logicadND (by
condition 1) to the cyclic path. We present theupsecode of the algorithm, while Table 1
describes the steps for computifig, in the graph of figure 2 right.




Algorithm 2 - The Recursive FindSet(A L, P) Al gorithm
Ais anode, L alabel (INor QUT), Pis the list of parent nodes, Cset holds
the partial result of the conputation of conditions (1) and (2).
Fi ndSet (A L, P):
if Ain P
return enpty_set // Cycle found
if L=1IN
if Atermnal:
return a // Term nal condition for IN Label
el se:
add Ato P
for each child C of A
Cset = Cset AND Fi ndSet (C, QUT, P)
return (a AND Cset) /1 condition 1
if L = QUT:
if Atermnal:
return NOT(a) // Terminal condition for OUT Label
el se
add Ato P
for each child C of A
Cset = Cset OR FindSet(C, IN, P)
return (NOT(a) OR (a AND Cset)) /lcondition 2

Table 1.Recursively applying Algorithm 2 on the graph igiuire 3 left.

Node, | Constraint Parent List Comment
label
1 Ay Ay = AN Boyr [] a must exist and b=0OUT
2] Bour | Bour = BU (B(C;y U D)) [a] b is out when b does not exist of b
existsand c =inord=in
3= Cny | Cn=CnNnAgyr [a, b] c=IN when c exists and a=OUT.
Cycle withal;y =90
= DIN DIN =D [a, b] d |S |n|t|a|
=) Bour Boyr =BU (BND)
61 Ay An=ANn(Bu(BnD))=A4AB+ ABD
Q_ © /
N em—0—0 1w
Figure 3.

Extension to Preferred Labeling

The constraints used in Algorithm 2 — argumeig in when all the attackers apetanda is
out if one attacker i$n — are properties of any complete labeling. The algprithm 2 treats
cycles — it always assigns thadeclabel to their arguments — guarantees that wecodnly
grounded complete labeling. Since a preferred iafpes complete, the extension of algorithm
2 to the case of preferred semantics requires ahgranly the way cycles are treated. The
following lemma is useful in always assigning aguanent labeledh in a complete labeling to
the computation af?y™.



Lemma 1 If a is labeled in (or out) in a complete labeling ofseenario, then the
scenario can be assignedAd; " (or AD7").

Proof. If a is labeledn in a complete labeling of a scenaria, eitherC is the preferred one
maximizing in(C,s) w.r.t. to set inclusion, or there is anoti@rwith in(C,s) c in(C’,s).
Since a € in(C, s), thena € in(C’, s) and scenarie contributes ta1?r ™.

We return to the treatment of cycles. When a cigcldetected, the labeling of an even-
length cycle is consistent since the argument ihaisited twice and identifies the cycle is
required to have the same label. However, an odlgktecycle creates an inconsistemidec
labeling not contributing te?x " or AZ"*. Thus we assign a clause (i.e. set of scenarios) t
APYT when a consistent cycle is found, while we rejaet scenario otherwise. Note how the
skeptical setsAly~ and AY},. can be derived once the credulous sets are cothpusiag
equations 4. In traversing the graph, we thus rteecemember the label required for an
argument to check if the cycle can be consistdatigled. It is important to bear in mind that
A, (small letter for the label) identifies the setsasEnarios where argumanexists and it is
labeledout (note thatd,yr = A + A,,). Let us consider the graph depicted in figuref. |
This contains both odd and even length cycles.elaldhows the steps in computifi;.

Table 2.ComputingA?y " of figure 3 left

1 Ay = ABoyrEour

2a Bouyr = B + BoutDiv 2b Eour = E + EoucFin

3a BoutDin = Bout DCouyr 3b EoutFin = EoueFEoyr

48| BoytDCoyr = BoytDC + By DCByy  |4b EoutFEour = EF

=BDC+ @ (consistent cycle: e and f exists,e = in, f
(inconsistent cycle) = out)
5a Boyr =B+ BDC 5b Eour = E + EF
6 Aty = A(B + BDC)(E + EF) = A(BE + BEF + BDCE + BDCEF)

Note how the 3-length cycle creates an inconsisgunationB,,;DCB,;y (argumentb has to
exist and be labeleid andout at the same time) whilg,,;FE,;r can be labeled consistently
(the cycle is consistent when argumens required to exist and labeledt). We can verify
that A; differs from Afy since it discards the even-length cyElg, thus the patdEF (and
any path in amand condition with it) are not iad; .

Notable Examples: Accrual of Attacks

Let us consider theAF in figure 4 left. Argument is labeledn iff a holds and botth and
c are labeled out (satisfied only wherandc do not hold, sincé andc are inital). Thus:

AIN:AR ,AOUT:A+AB+AEC
which represents the accrual of a probabilisticwoet. Note how this differs from
mainstream numerical argumentation approaches witeeecrual occurs [9, 1] and the effect

of n arguments can be equated with the effect of tgamaent with the maximum degree. In
the probabilistic accrual every argument countshéoextent given by their joint probability.
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Figure 4. Accrual (left), Reinstatement (center) and a ci@l@rguments (right).

Notable Examples: Reinstatement

When an argument attacksa, argumenta is in iff a exists andb does not hold, thus
Ay = AB, Apyr = A+ AB. The case of 3 isolated arguments (figure 4 cgigeuseful in
analyzing the reinstatement property. It is easyetdfy this:

A1N=AE+ABC, 140[]’1"=/T‘|‘14BCT
In the generic case afarguments4,;y we have:

Ay = AB{ + AB{B,B; + -+ ;  Aoyr = A+ AB,B, + AB,B,B3B, + -

The statistical independence of arguments maketepivsome reinstatement properties. By

using the fact thak(X) = 1 — P(X) the expression df;, (4) can be written as follows:
Piy(A) = P(a) — P(@)P(by) + P(a)P(by)P(by) — -

Note howP,y (A) is the sum of the probabilities of all the patbsrtinating ina. The paths
terminating with a defender (odd length) are pusifiactors contributing t®,, (4) and vice
versa for the path ending with an attackeraofThe reinstatement effect of attackers and
defenders decreases with the length of the pathalbimfluenceP;y (A).

We now compare the reinstatement &4 to other argumentation approaches.

PAF. An argument is always reinstated but with a lopr@bability (note how it is fully
reinstated only wheR(c) = 1). All the arguments on the chain contribute tordiestatement
with decreasing effect.

Dung’s Abstract AFIn an abstract argumentation framework, argumiengschain are
reinstated at full potential, since the chain isdmap of bothn arguments (defended by the
initial argument) andut arguments (attacked by the initial argument).

Pollock [9]. The arguments presented in [9] have a degreestifigation inRR¢. This
degree is a subtractable cardinal quantity. Refgro figure 4 center, when an argumenf
degreg] attacksb of degred then the new degree éfafter the attack isjg = max(Jg —
Jc,0) and ], = max(Jg —Ja,0). Thus argument is fully reinstated wher. > Jg, and not
reinstated (at all) ifg > J, while in all other cases it is reinstated proporélly to]g —Jc.
Note how, unlike @AF, it is relative comparisormf degrees that decides the reinstatement.

Cayrol and Lagasquie-Schiex's vs-defenlse [1], a strength is attached to attack
relations. Argument is fully reinstated iffSgc = Sga, Otherwise it remains totally defeated.
Thus it is the relative comparison of the strengjtithe attacks that defines reinstatement. We
notice that, although attack from C to B is logigadntecedent to that from B to A, it is
neglected ifScg < Sga. Generally, apart frorRAF, the distance of an argument from the first
nodea in the chain is not linked to its impact arand the strength of reinstatement is usually
a relative comparison of strength, with the consege that some attacks might be neglected.

In the case of arguments forming a cycle, letassier the case of two arguments
andb rebutting each other. INRAF with grounded semantics we have:



A% =AB ,AS,. =A,A} = AB
A;y i1s unchanged compared to the case wheattacksa but not vice versa, while the not
null A, decreased,;r. The counter attack from to b does not imprové;y (a). This is the
expected behavior of grounded semantics: an arguosmot reinstate itself but it needs a
third external argument. In the case of groundedasgics, the skeptical sdf, neglects the
attackerb (Afy = A) sincea fully reinstates itself; the skeptical set is dqguwathe grounded
case Ay = AB). Itis alsoA; = Af; = @ andA},r = A + AB, Agyr = A

SENSITIVITY TO CHANGES INP OR Ar

The expression afl;y (Aypyr Or Ay) allows us to study a set of properties of argumein
relation to the arguments Ar. An interesting set of properties is the studyhef sensitivity of
P;y(a) to a change in the probabiliB/of an argument (for instance when new evidenciéson
validity are found); or to the addition/removalai argument to/fromr (here we limit to the
situation of adding an argument attacking or rebgtan argument idr).

The interest is mainly due to its applications:aent might want to understand the
effect of extra evidence affecting an argumentwbich are the arguments that have the
maximum impact oy (a). In a legal dispute, a lawyer deciding on hisitestrategy might
focus on which arguments he should challenge inrtcoe first define two useful
measurements of change.

Definition 9. The partial differential gain of argumeatw.r.t. to argumenb is 222

dP(b)
The sign of the differential gain tells whetheraagument should be attacked or defended in
order to increas€(4;y), while its value quantifies the impact of the argunt ona.

Definition 10. We call argumenb a dialectical defender af iff 9@ 0, andb is

apP(b)
a dialectical attacker of whena;’)—"(’;;” <0
Let us now define a particular expressiorg§, that contains information about how the
behaves in relation to changes.
Definition 11. Given an argument and an argumenb for which there is at least a

path froma to b, we call the normal form of,y w.r.t. tob the following expression df; y:
Ay =AXB+YB)+ C,withxnY = @.

The termAXB represents the set of scenarios contributing;{owhere argument is assumed
to hold.AY B represents the set of scenarios contributing tobut requiringb not to hold C is
the set of scenarios contributing4g, where the status ab is irrelevant.

It can be proved that arguments always labeleth in the setAXB. If, ad absurdumb
is labeledout in a scenaria in AXB, then the same scenario whéreoes not hold has the
same labeling and it would also contributedig and thus the status &fwould have been
irrelevant and the scenario would have been pathefsetC and notAXB, contradicting the
hypothesis. Hence we can rewrite the normal forroksws:

Ay =AXB,y +YB) + C ,withX nY = 0.
Why is this form useful? The expression makediexpghe contribution of argb to
A;n.When=Y =@ ,A;y = C andb does not contribute t4;y and thusP;y(a). A change in
P(b) does not affect. Thusb is neither an attacker nor a defendenpénd differential gain



w.rt. b is null. If X =@ then A;y = AYB + C. We can compute the dialectical gain w.r.t.
argumenb. In the rest of this section, we uBalso forPgs to simplify the notation (bearing in
mind how the probability distributioRss defined over a set of scenarios is derived froe th
distributionP defined over arguments, as shown in equation 3).

We compute the dialectical gain by first evalugtine difference i (4;y) whenP(b)
is increased byb. SinceP(b) = 1 — P(b), a change i (b) of Ab is a decrement df(b) by
Ab, and sinceP(AYB) = P(AY A B) = P(AY|B)P(B) = P(AY|B)P(b) we write:

P(A;n)+ap — P(Ay) = P(AY|B)(P(b) — Ab) — P(AY|B)P(b) = —P(AY|B)Ab < 0

The differential gain is:

0P ;y(a) . P(Ain)4ap — P(Ay) -
aP(b) A, Ab = —P(4Y[p) <0

meaning that incrementink will decrease the value d(4;y), thus makingb a dialectical
i OPy(@)
attacker ofa. In case of statistical independence we h%)— = —P(A)P(Y).

Similarly, if Y = @ then b results a dialectical defender and the differérgein is
P(AX|b). We bear in mind thaR(4) is constant in the computation whilB, (a) varies. In
the general case, when botll andY are not emptyp is a defender whe®(AX|b) >
P(AY|b) and an attacker whe?(AX|b) < P(AY|b). Thus:

Proposition 1 Given the normal form ofi;y w.rt. b 4,y = A(XB;y +YB) + C, the
differential dialectical gain oft w.r.t. tob is:

0Py(a) _
) P(AX|b) — P(AY|D)
In case of statistical independence of argumenss Qe _ P(A)(P(X) —P(Y))

aP(b)

Example 3. Let us consider figure 3 (left) again and let usspme thatP(a) =
1,P(b) = 0.8,P(c) = P(d) = 0.7 all independent. We saw th4ty = A(BD + B) and thus
Py(A) = 0.2 + 0.56 = 0.76. Table 3 reports the normal formsefv.r.t. to argumenb, d and
C.

Table 3.Dialectical gains for Example 4

Normal form of a w.r.t. X Y C W’Tw(()a) = P(A)(P(X) — P(Y))
d Ay = ABD + AB B 1) AB P(A)P(B) =0.8

b Ay = ADB + AD 0) AD AD —P(A)P(D) =-0.3

c Ay = A(BD + B) 1) ® | A(BD +B) 0

Argumentd is a defender¥{ = @), b an attackerX = @) andc is neither an attacker nor a
defender. The dialectical gain afw.r.t. b is —0.3 while for d is 0.8. Thus, if we want to
increaseP (A;y) it is better to increase(d) rather than reduce(b). How much do we need to
increaseP(d) to getP(4,y) > 0.9? SinceP(A4,y) needs to be increased By 4 (from 0.76 to

0.9), and sincea;—’z’g)l)zo.&P(d) should be increased Hy14/0.8 = 0.175. Note that the

same effect could have been obtained by decre&singof a greater quantity equal @ct7.



Adding a new argument attacking or rebutting anuangnt inAr

In a dialectical process an argument is usuallyifremtdnot only internally but by adding a
new (maybe indirect) attack on it as depicted gurfe 5. Let us study the situation in which a
new argumentv attacksb, but not vice-versa.

OTC=: - ZD| @1EG=: - =D

Figure 5. AttackingB via argumen/

Proposition 2 Given the normal form o,y w.r.t. b4,y = A(XB,y + YB) + C, if a
new initial argumentv is added to the argumentation framework anl i the only argument
attacked by, then the dialectical gain of a w.r.t. ois:

aaiﬁ;) = —(P(AXB|w) — P(AYB|w)) and
aaljfzf:;) = —P(b) a;g\é(;) (if arguments b and w are independent)

Proof. A convenient way to show how;, changes is to consider arguménattacked
by w and to substitute argumeritsandw with an argumenb’ that encompasses the effect of
w on b. Argumentb’ will be labeledout in the scenarios where is assumed not to hold or
where it holds but argument defeats itd’ is labeledn when argument holds and argument
w does not hold. Thug’ has the following properties;y = B,yW and B,y = B + BW.
Hence by substituting in the normal form we have:

W =AXByW +Y(B+BW))+C

The difference inP(4,y) is:

P(A%) — P(A;y) = P(AXBW) + P(AYB) + P(AYBW) + P(C) — P(AXB) — P(AYB) — P(C)
= —P(AXBW) + P(AYBW) = —P(w)(P(AXB|w) — P(AYB|w))

And the differential gain of w.r.t.w jg L@ _ —(P(AXB|w) — P(AYB|w)). If b andw are

0P (w)
independent we ha\,’?é%f;) = —P(A)(p(x) — p(y))P(B) — —P(b) a;,;\(,g)

Let us now presume that rebutsbh andb is the only argument attacked wy(figure 5 right).

Proposition 3 Given the normal form of;y w.r.t. tob A,y = A(XB;y + YB) + C, if
a new argumeni is added to the argumentation framework anet iind b are rebuttals and
if b is the only argument attacked by then the dialectical gain of a w.r.t. tois:

Py (a)
dP(w)
Proof. Whenw is added, the set of scenariosCirare clearly still contributing td,y
since the status of argumehtis irrelevant. The sets of scenarié¥B;y and AYB are not
affected by argument whenw is assumed not to hold (thd& BW andAY BW contributes to

A;y) While whenw is assumed to hold, the set of scenaAd&®,, require argumenb to be
labeledin, which is no longer the case singerebutsbh and thusbh cannot be labeleth.

= —P(AXB|w)



Regarding the scenarios 4Y B, they still contribute ta;, sinceb is required not to hold and
sow is disconnected from and therefore irrelevant. Thus:

AY, =W(AXB + AYB+ C)+ W(AYB + C) = AXBW+AYB + C
P(A%) — P(A,y) = P(AXBW) + P(AYB) + P(C) — P(AXB) — P(AYB) — P(C)
= —P(XBW) = —P(w)P(AXB|w)

And the differential gain of a w.r.w is (@) _

oP(w)
independence of arguments, |t?§% —P(A)P(X)P(b)

—P(AXB|w). In the case of the statistical

We note how the dialectical gains w.htandw have opposite sign, as expected. In the
case of a rebuttal, proposition 3 states that thlectical gain is always negative or null (when
X = @), consequence of the fact that a rebuttal undemrgted semantics does not defeat the
attacked argument.

Example 4.We continue example 3, where we found t ap“"(a) =0.8 andsé—"(’b(‘;

—0.3. Let us presume that we could attack argumémind we Want agaln to bring(A;y)
above 0.9. If we attac we have no way to increa$§A4;y), since the dialectical gain af
w.r.t. d is positive. Let us consider argument The normal form isADB + AD and the
dialectical gain w.r.t. téd is —0.3. If we attackb with a new argument, according to prop. 2,
the dialectical gain is-0.3 * —P(b) = 0.24. In order to increasB(4,y) by 0.14, argumenv
should at least have a strength0odf4/0.24, about 0.583. If we rebut argumeéntvith w, since
X = @ in the normal form w.r.th, proposition 3 tells us that argumentvould have no effect.

AN EXAMPLE OF APPLICATION: A LEGAL CASE

In order to make ouPAF applicable, we must provide a structure for arguisi@nd attacks.
We describe aingle rule argumenmodel adapted from [10], that keeps the discussimple,
but is adequate for illustration. Let us consideetof atomic propositions = {a,, .., a,} and
the propositional languagé closed under negation with atomsAnand connective$a, —}.
We define an argument as a defeasible inferenee olithe kind:¢p — ¢ wheregp, ¢ € L.
Defeasible means that a rule admits exceptionsitareh be invalidated by other arguments.
Note how our definition is limits argument to a g rule (adequate for our illustrative
example), instead of including derivation trees posed by chain of rules as in [10].

If we call R is the set of rules, we define a functiorcohflict : £ — 2£ u 2%, that allows us

to define asymmetric conflicts among propositiond aules. Ifa = b then whem is asserted

b cannot be asserted, but not viceversa.dtis—a and—-a = a. If a = r andr is a rule, this
means that: is an exception to rule, whena is asserted is invalid. Note how this function
models conflicts, but also preferences= b could model the fact thatis preferred td.

Each argument has an associated probability equidlet probabilityP (¢) of its premisesp
(this means we know the joint probabil®() of all the propositions used in the premises of
the arguments, representing our available evidesed to build arguments). We define three
forms of attack: rebuttals, undermining and undiirogt Given two argumentd: ¢, = ¢4
and B: ¢z — ¢, We say thatd rebutsB iff ¢, = ¢p5 and ¢z = ¢4, A underminesB iff

¢4, = pg, i.e. an argument conclusion excludes a premisearmther argument, and



undercutsB iff ¢, = B, i.e. the conclusior, invalidates the rulé&. An undercutting attack
model the fact that defeasible rules (suclBamight have exceptions (such @g). Note how

a rebuttal is always a symmetric attack, an und&ngicould be (it is iff¢p, = @5 and
g = ¢4), while an undercut is always defined as asymméthie exception defeats the rule
but not viceversa). Given a set of argumettof the kindg; — ¢;, we can represent them on
a PAF = ((Ar,R), P) using asP the probability of each argumeR{¢;), and using rebuttals
and undercutting attack to define the attack rexteki.

We present an application BAF to legal reasoning. Paul and John are on triatHer
assassination of Sam. The following evidence islava. First it is known with certainty that
John entered the room where the murder took place @m and left at 3 pm, while Paul
entered at 3 pm and he was found by the police pin5A forensic test suggests that the
probability that Sam died between 1 pm and 3 p®w.6sand between 3 pm and 5 pm is 0.4.
The test used has an accuracy of 0.9. Thus we tievdollowing arguments (in square
brackets the probability of each premise):

R;) a;: (John was in the room between 1 tfilf A a,: (the medical test says that Sam died
between 1 and 0.6] ) — as: (John shot Sam)

Rp) a,: (Paul was in the room between 3 and1$) A as: (the test says that Sam died
between 3 and ©.4]) — a4: (Paul shot Sam)

M,) a;: (The test is voif0.1]) » R; AR, (Sam’s time of death cannot be estimated)

The probability of each argument By:= 0.6, R, = 0.4 andM, = 0.1. We also have
P(R] A RP) = 0, since Sam either died between 1 and 3 pm or leet\8eand 5 pm. Argument
M, undercuts (invalidates) bofy andRp. SinceR; = 0.6 > 0.5 > Rp, John’s lawyer asks for
a fingerprint analysis of the murder weapon. Thsulteis that with a probability of 0.7 the
fingerprints are Paul’s. The lawyer thus proposesw argument:

Fp) ag: ( The test says that the fingerprints are Pauls7])— ag4: (Paul shot Sam)

This argument rebutB; (conclusions are conflicting, since it is cleady = a5 and
ae = az). In any case, further analysis by the police Isiases that the weapon was tampered
with, and the test is only 50% reliable. The neguanent (with a probability of 0.5):

Tf) aq: (the test is voii0.5]) — F» (fingerprints are not valid evidence)
undercuts the validity af,. Paul’'s lawyer counter-attacks using the testimoing credible
witness who heard a shot at 2 pm, when only Josiwghe room. The witness is reputable
with a probability of 0.8. Thus the following argent is built by the judge:
W) a,,: (A shot was heard at 2pf@.8]) A a;: (John was in the room between 1 tdB —
as: (John shot Sam) a; (Sam died at 2 pm, not between 3 pm and 5 pm)

Argument Probability
R 0.6 P(RyARp) =0
Rp 0.4
M, 0.1 All arguments
w 0.8 independent
Tr 0.5
Fp 0.7

Figure 6. Argumentation Graphs for the legal case



Note how the way we wrote argumet means that the judge considers the witness’
testimony a more definitive evidence than the madest (¥ impliesag), and thus argument
W undercutsP; and rebuts,. The final graph is depicted in figure 6. A giléye indicates
rebuttals between arguments with mutually exclupreeisesR; andRp). We marked witlP
the arguments whose conclusion is against Paulngthd/ the arguments against John. Other
arguments are markesl indicating they do not add to the conclusionihtéract withP andj.

Analysis
There are 6 arguments and potentially 64 diffeseenarios. Let us cafl, andG, the set of
scenarios where Paul (or John) are guilty (i.deast one argument supporting the conclusion
is labeledn), andP, = P(Gp) andP;, = P(G,). There are two arguments against Jatynand
W . If we apply algorithm 2 to find thR]“V andWW;y sets, it is easy to verify that we obtain:
Ry, = RMr (Fp + E,Te) ; Wiy = W(Fp + E,Tr)
Gi =Ry, VW =RM; (Fp + E,Tz) + W(Fp + F,Tr) = 0.6278
Note that, in computing?; ~we do not care about attackBp since P(Rj AR,) = 0.
Regarding Paul, there are two argumétisandF, against him and he is guilty wh&ga Vv Fp:
RPIN = RPM_TW andeIN = FPT_F (R__] + R]MT)
GP == RPIN Vv FPIN == RPM_T W + FPT_F[?] == RPM_T W + FPT_F(R_pMT + RPM_T + RPMTW) == 0.284’
John’s lawyer has to find a way of decreasingptabability of the evidence against
John. If we compute the dialectical gain, we fihdttthe dialectical gain @; w.r.t. w is equal
to 0.416, w.r.t. M; is —0.052 and w.r.t. toT is 0.6104. Therefore the the best chance of
minimizing John's guilt is to decreaBg, i.e. to show that the test is valid in more tb&Ao of
cases. In order to put the probabilRy below 0.5 we need a change iR of (0.5—P;)/
0.6104 = 0.21, thereforeTr should go down to about 29% from 50%. An altekreais to
decreaséV — make the witness against Paul less crediblthadincasel/ should be decreased

by about0.307 (from the curren0.8 down to below0.5) in order to bring; below0.5. M,
has too minimal a dialectical gain to be used.

Regarding Paul, his lawyer wants to know if theeptial moves of John’s lawyer could
affect Paul, i.e. could they increa6ég above0.5. The dialectical gains fof, are shown in
table 4 left. Sincé, = 0.284, Gp goes abov®.5 if eitherW is decreased b§.416 or if T is
decreased by.4917 down to 10%, meaning that a fingerprint test stiobbbve a 90%
accuracy. These values could be safe enough fdatner and they are greater than what is
needed by John’s lawyer to brifg below 0.5, so in this example there could be a collusion
where both of the suspects are bel®. Nevertheless, Paul's lawyer should focus on &irrth
invalidating the fingerprint test.

Table 4.Dialectical Gain of Argument&,andG,w.r.t. toW, Tr, M,

Dialectical gain ofzp w.r.t. toW, Tz, M, ‘ Dialectical gain ofz;w.r.t. toW, Tr, M,

w -0.519| w 0.416
M, -0.022| M, -0.052
Tr -0.4396| T 0.6104




RELATED WORKS

The idea of merging probabilities and abstract argntation was first presented by Dung et
al. [3], and a more detailed formalization was juled by Li et al. [4], along with the works by
Hunter [6] and Thimm [14]. In Li et al.’s definitoP is not a joint probability but a scalar
function Ar — [0,1] and a similar scenario-like approach (extensicsedarather than
argument-based) is used. Li et al.’s work is limhitey fully independent arguments with
grounded semantics, and no exact computation behmdbrute force algorithm is analyzed
,while our paper also considers preferred semarpics/iding an algorithm to compuf4F
and studying the behavior 8F w.r.t. to reinstatement, accrual, and responshanges.

Thimm in [14],and Hunter [6] in his epistemic apach, start from a complementary
angle. Both authors assume that there is alreadynaertainty measure — potentially not
probabilistic — defined on the admissibility seteaich argument (i.€; is given as a function
P,y: Ar = [0,1]). Starting fromP; rather thanP poses the question: whidhy assignments
are acceptable? The authors both argue that ordybaet of these measurements can be
sensibly associated with an argumentation framewimnky define a series of rules to identify
a rationally acceptable probability distribution®f;, such as the rationality ampdjustifiability
properties. In our paper we follow a complementgggroach, since our aim is to start frém
(assumed to be a probability measure) and then gtaRp,.

Regarding other works investigating gradualismamgumentation, we first mention
Pollock’s work on degrees of justification [9]. Rak rejects the use of probabilities to
propagate numerical values on an argumentationefinark, but he considers probabilities the
only valid proxy for argument strength, and he usesstatistical syllogism as the standard
comparison to measure strengths. Pollock consithersstrengths of arguments as cardinal
quantities that can be subtracted. The accruaigainaents is denied (except for a rebutting and
an undercutting argument) and it is the argumett Wie maximum strength that defines the
attack. In an argument chain, it is the argumerth vsninimum strength that defines the
strength of the conclusions. The model propose@dyrol and Dupin de Saint-Cyr [5] infers
a measure of argument strengths from their positiothe argumentation framework. This
extrinsic strength cannot be mapped to probabdityeliefs, and leads to an ordering on the
arguments that does not fit our problem. Tkedefencenodel, by Cayrol and and Lagasquie-
Schiex [1], is an extension of AF where attacksehav strength associated with them.
Argument admissibility status is the result of gemparisons of attack strengths. We have
seen two main problems: there is no descriptiorubow to compute such a strength, how to
practically set a priority level and a preferratier, as Pollock wrote in [9]f we were to be
serious about arguments' strength, there must wayato measure.it

In [1], the authors propose an argumentation fraomke with various degrees of
attacks. They extend a work by Martinez & Garcid][Xhat first extended Dung’s
argumentation framework, introducing different lisvef attacks. The work contributes to the
development of argumentation with attacks of défearstrength. [8] was the first research to
suggest the use of weights both on arguments andttanks and Dunne et al. [11] have
proposed weighted argument systems in which atthake a numeric weight, indicating how
reluctant one would be to disregard the attack.yTaecept that attacks can have different
weights, and such weights might have differentrprigtations: an agent-based priority voting,
or a measure of how many premises of the attacigedreent are compromised.



CONCLUSIONS AND FUTURE WORKS

We have analyzed probabilistic argumentation fraorks and provided a first recursive
algorithm to compute the probability of argumentegtance. We also studied various
properties such as sensitivity to changes and hehiavthe presence of reinstatement, accruals
and cycles. We showed hd®AF can be used as a tool to argue with probabilistarmation.
Our results could be used by agents involved irseudsion, in order to select the best move in
a dialectical process or to analyze the sensitwitthe conclusions found. We believe that this
is a contribution to the debate about gradualisrargumentation to justify further research in
the theoretical and applicative studiesPdfF'. Future developments may lie in the extension to
other forms of uncertainty such as possibility uzZy/multi-value logic. Much work has to be
done on the computational aspects and optimizatiche recursive algorithm proposed, and
an evaluation of its efficacy against a baselingdsforce approach.
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