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ABSTRACT 

A wide variety of endogenous carboxylic acids and xenobiotics are conjugated with 

amino acids, before excretion in urine or bile. The conjugation of carboxylic acids and 

bile acids with taurine and glycine has been widely characterized and de-novo 

synthesized bile acids are conjugated to either glycine or taurine in peroxisomes. 

Peroxisomes are also involved in the oxidation of several other lipid molecules, such 

as very long chain acyl-CoAs, branched chain acyl-CoAs and prostaglandins. In this 

study we have now identified a novel peroxisomal enzyme called acyl-CoA:amino 

acid N-acyltransferase (ACNAT1). Recombinantly expressed ACNAT1 acts as an 

acyltransferase that efficiently conjugates very long-chain and long-chain fatty acids 

to taurine. The enzyme shows no conjugating activity with glycine, showing that it is 

a specific taurine conjugator. Acnat1 is mainly expressed in liver and kidney and the 

gene is localized in a gene cluster, together with two further acyltransferases, one of 

which conjugates bile acids to glycine and taurine. In conclusion, these data describe 

ACNAT1 as a new acyltransferase, involved in taurine conjugation of fatty acids in 

peroxisomes, identifying a novel pathway for production of N-acyltaurines as 

signaling molecules or for excretion of fatty acids.  

 

Key words: acyl-CoA, fatty acid amide hydrolase, N-acyltaurine. 
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INTRODUCTION 

 

The conjugation of xenobiotics to amino acids is one of the first described drug 

metabolizing reactions known and dates back to 1842 (1). It is now well established 

that a wide variety of endogenous carboxylic acids and xenobiotics are conjugated 

with amino acids in reactions catalyzed by different acyltransferase enzymes (2). 

These include both endogenous compounds like bile acids, fatty acids, and various 

drugs containing carboxyl groups such as clofibric acid and lovastatin (3-7). Amino 

acid conjugation occurs in a two-step process. The first step involves activation of the 

carboxylic acid to the CoA ester which is catalyzed by acyl-CoA synthetases (8). The 

second step, the conjugation reaction, is catalyzed by an acyl-CoA:amino acid N-

acyltransferase (EC 2.3.1). While the conjugation of carboxylic acids and bile acids 

with taurine and glycine is the most common, L-asparagine and L-glutamine have 

also been shown to act as weak acceptors (9). The conjugation of carboxylic acids to 

amino acids is important as it increases the solubility of these compounds, allowing 

them to be excreted in urine or bile, and acts as a detoxification system for excretion 

of xenobiotics. The conjugation of xenobiotics is mainly linked to mitochondria and 

glycine conjugating enzymes have been identified in this organelle in several species 

(9-12). In some cases however, the metabolism of xenobiotic acyl compounds also 

occurs in peroxisomes (13).  

 

Peroxisomes are organelles that are present in virtually all eukaryotic cells and are 

involved in the metabolism of a variety of lipids such as very long chain fatty acids, 

dicarboxylic acids, prostaglandins, leukotrienes, branched-chain fatty acids, 

xenobiotics and bile acids (14). In peroxisomes, many of these lipids are mainly 
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oxidized by the peroxisomal β-oxidation system, where they are chain-shortened, 

with the concomitant release of acetyl-CoA. In the case of primary bile acid synthesis, 

trihydroxycholestanoic acid and dihydroxycholestanoic acid are activated to their 

corresponding CoA esters by very long chain acyl-CoA synthetase (VLCS) (15) and 

then undergo one cycle of β-oxidation in peroxisomes, to produce choloyl-CoA and 

chenodeoxycholoyl-CoA respectively (16). These bile acids are then amidated (or 

conjugated) to either glycine or taurine by an enzyme named bile acid-CoA:amino 

acid N-acyltransferase (BACAT). This conjugation with the amino acids glycine or 

taurine plays several important roles in the biology of bile acids, such as excretion of 

bile acids and cholesterol in bile, and increases the detergent properties of bile acids 

in the intestine. Recent data has shown that recombinant human BACAT can also 

conjugate fatty-acyl-CoAs to glycine (5) and taurine (O’Byrne et al, unpublished 

results).  

 

BACAT has been characterized from several species and shows large species 

differences in the use of glycine or taurine as an acceptor molecule (3-5, 17).  

BACAT is related to a family of proteins called the Type-I acyl-CoA thioesterases 

(ACOTs) (for review see (18)). These ACOT enzymes show approximately 40-45% 

sequence identity at amino acid level to the BACAT enzyme (3, 4). Acyl-CoA 

thioesterase enzymes catalyze the hydrolysis of CoA esters of fatty acids to the free 

fatty acid and coenzyme A (CoA), whereas BACAT conjugates bile acids and fatty 

acids to glycine and taurine, using the bile acid-CoA or acyl-CoA moiety as a 

substrate. Using Blast Searches, we have now identified a novel peroxisomal enzyme 

in mouse that we name acyl-CoA:amino acid N-acyltransferase 1 (ACNAT1), which 

is related to both BACAT and the Type-I ACOTs. In this study, we have 
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characterized this novel peroxisomal acyltransferase and show that it efficiently 

conjugates long-chain fatty acids to taurine.  

 

MATERIALS AND METHODS 

 

Chemicals- All commercially available acyl-CoAs used in this study were from 

Sigma-Aldrich Inc. (St. Louis, MO, USA).  

 

Animals and treatments- Tissues used in this study were excised from adult male 

Sv/129 mice. Animals were sacrificed by CO2 asphyxiation followed by cervical 

dislocation. Tissues were excised and stored at –70oC for preparation of total RNA.  

 

Cloning and expression of Acnat1 - The open reading frame (ORF) for Acnat1 was 

derived from genomic databases and expressed sequence tags (ESTs) from the mouse 

EST database (www.ncbi.nlm.nih.gov). The Acnat1 ORF was amplified from mouse 

kidney total RNA using the following primers: 5’-

CTCCTCTAGAATGATGATCCAGTTGATAGC -3’ & 5’-

CTCCTCTAGATTAGAGTTTGCTTCCGGATTG-3’ (Cybergene AB, Novum, Sweden) 

with the addition of Xba I sites (indicated in bold). The PCR product was cloned into 

the Xba I site of the pMAL-c2X vector (New England Biolabs Inc., Beverly, MA, 

USA) and the plasmid fully sequenced. BL21(DES3)pLysS cells (Novagen Inc., 

Madison, WI, USA) were transformed with the pMal-c2X and overnight cultures 

were transferred to 500 ml Luria-Bertani medium containing 1 g of glucose and were 

grown at 37oC until an OD600nm of about 0.5 was reached. Protein expression was 

induced by addition of 0.1 mM isopropyl-1-thio-β-D-galactopyranoside for 17 h at 
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20oC after which the bacteria were harvested by centrifugation, resuspended in 20 ml 

cold column buffer (20 mM Tris-HCl pH 7.4, 200 mM NaCl, 1 mM EDTA) and 

stored at -20˚C.  

 

Purification of recombinant ACNAT1 - Bacteria were sonicated in pulses of 12 x 5 sec 

at 5 sec intervals and centrifuged at 9,000 x g at 4˚C for 30 min. The supernatant was 

filtered through a 0.22 µm filter and recombinant protein purified using amylose resin 

(New England Biolabs Inc. Beverly, MA, USA). The recombinant protein was eluted 

with column buffer containing 10 mM maltose.  

 

Electrospray mass spectrometry (ES-MS) analysis- Incubation mixtures were set up 

containing various acyl-CoAs (20 µM), 5 µg recombinant ACNAT1 and taurine (50 

mM) in 50 mM potassium phosphate buffer, pH 8. Bovine serum albumin (BSA) was 

added in a molar ratio ranging from 1:1.2 – 1:5.7 BSA:acyl-CoA. Km and Vmax were 

determined using 5-50 µM palmitoyl-CoA. Incubations were carried out for 5 min at 

37˚C after which the samples were purified using Sepac C18 columns (International 

Sorbent Technologies, UK) essentially as described in (5), but the column was 

washed with 3 ml water and samples eluted with 3 ml methanol A standard of 

nonadecanoic acid was added to the incubation mixtures prior to column purification. 

The eluate was dried under nitrogen and samples reconstituted in ~100 µl methanol. 

The samples were injected into a Quattro Micro triple quadrupole mass spectrometer 

(Micromass, Manchester, UK) at a flow rate of 10 µl/min. Mass spectra were acquired 

in the negative ion mode over a mass scan range of m/z 100-1000 for 2 min at a scan 

rate of 4 sec per scan.   
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Localization of ACNAT1 in peroxisomes using green fluorescent fusion protein and 

cell transfections- Oligonucleotides were designed based on the sequence of the ORF 

for Acnat1 for cloning as a fusion protein in-frame with green fluorescent protein 

(GFP). The ORF of Acnat1 was amplified by RT-PCR from mouse kidney total RNA 

using the following primers: 5’-CATATGATGATCCAGTTGATAGCC-3’ and 5’-

CATATGTACTCTGGCATGGACACTCT-3’. PCR was performed in a Perkin-

Elmer 2600 using the One Step RNA PCR kit (AMV) (Takara Biomedical, Shiga, 

Japan) and the PCR product was cloned into the pcDNA3.1/NT-GFP vector 

(Invitrogen), in-frame with GFP. Sequence analysis was performed using Big Dye 

Terminator Ready Reaction kit (Applied Biosystems Inc, CA, USA). Human skin 

fibroblasts from a control subject and a Zellweger patient were grown as described 

previously (19). The cells were grown overnight in 60-mm dishes on glass coverslips 

and were transfected with 10 µg of ACNAT1/NT-GFP plasmid using the calcium 

phosphate method. The cells were fixed and processed for immunofluorescence 

microscopy as described in (19).  

 

Tissue expression of Acnat1 and fatty acid amide hydrolase (Faah) using 

Quantitative-PCR or Reverse Transcriptase-PCR- Total RNA was isolated from 

various mouse tissues using Trizol reagent (Invitrogen Corporation, CA, USA). Total 

RNA was treated with DNase 1 (Promega Corporation, Madison, WI, USA) prior to 

cDNA synthesis. RNA from 3 individual animals was pooled for cDNA synthesis and 

the synthesis was performed using 1 µg of total RNA using Taqman Reverse 

Transcription reagents (Applied Biosystems Inc). Quantitative-PCR was performed in 

an ABI Prism 7000 sequence detection system, using TaqMan universal PCR master 

mix (Applied Biosystems Inc.). An Acnat1 amplicon in the 5’- UTR was amplified 



 

 

8

using the following primers 5’-GAGGCAGCAACTGTGGTGACT-3’ and                                               

5’-TGAGACTGTATGTTTTCCTTGCTCTAC-3’ and a probe with a 5’FAM and 

3’dabcyl of 5’-CGGTCATGGAGGCGGAGTGA3’. As endogenous controls an 

amplicon of 18S and mouse β-actin was used, using the pre-developed TaqMan Assay 

Reagent for 18S rRNA or β-actin (Applied Biosystems Inc.). The Q-PCR was run in 

single-plex in triplicate for each sample. Data was analyzed using the ABI Prism 7000 

SDS software and the average CT value per triplicate was used to calculate the relative 

amounts of Acnat1 mRNA using the 2-∆∆CT  method. An amplicon of mouse FAAH 

was amplified using the following primers 5’-

GAAAGGCCTGGGAAGTGAACAAAG-3’ and 5’-

CCATGGGGCCAACAGAAAG-3’. RT-PCR was carried out on total RNA from 

mouse tissues (pooled from three animals) using One-Step RT-PCR kit (Takara 

Biomedicals) using an annealing temperature of 55˚C and 27 cycles.  

 

RESULTS 

 

Identification of Acnat1 - We previously identified and cloned a novel gene family of 

ACOTs in mouse, with members identified in cytosol (Acot1), mitochondria (Acot2) 

and peroxisomes (Acot3, Acot4, Acot5, Acot6) (20-23). When these genes were 

identified, they showed homology only to Bacat, an enzyme involved in the 

conjugation of bile acids. Following the advent of genome sequencing and using EST 

database searches, we have now identified two further genes which were mapped to 

mouse chromosome 4 B3, and found to be located in a small gene cluster within 100 

kb with the mouse Bacat (Fig. 1A). These newly identified genes were named Acnat1 

and Acnat2 and are both encoded by 3 exons, which is similar to the exon pattern in 
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Bacat and the Type-I Acot genes (20). In this study, we have characterized the 

ACNAT1 in detail. Alignment of the amino acid sequence of ACNAT1 to mouse 

BACAT shows that this protein is approximately 52% identical to BACAT (Fig. 1B). 

The ACNAT1 also shows approximately 45% sequence identity to ACOT enzymes, 

which act as thioesterases, but is more closely related to BACAT, a conjugating 

enzyme. Characterization of the active site amino acids of the Type-I ACOTs and 

BACAT revealed a catalytic triad consisting of a nucleophilic serine residue in the 

ACOT enzymes (24), or a nucleophilic cysteine residue in BACAT (5, 25), a histidine 

and an aspartic acid. The amino acid residues of the catalytic triad are all conserved in 

ACNAT1, with the ACNAT1 active site containing a serine in a SerXaaSerXaaGly 

motif (Fig. 1B). 

 

ACNAT1 is localized in Peroxisomes- ACNAT1 contains the tripeptide serine-lysine-

leucine (-SKL) at its carboxyterminal, which is the consensus sequence of the 

peroxisomal type 1 targeting signal that targets proteins to peroxisomes (26). To test 

if ACNAT1 is indeed peroxisomal, we expressed the protein in-frame with GFP, 

leaving the carboxyterminal –SKL accessible. ACNAT1 was expressed in control 

fibroblasts and fibroblasts from a Zellweger patient, which are unable to import 

peroxisomal matrix proteins. Immunofluorescence microscopy revealed a punctate 

pattern of expression in control fibroblasts, indicative of a peroxisomal localization 

(Fig. 2A). When the same construct was transfected into Zellweger fibroblasts, this 

resulted in a diffuse GFP pattern, showing that the protein was not imported into 

peroxisomes but remained in cytosol (Fig. 2B).  
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ACNAT1 is an acyltransferase that can conjugate fatty acids to taurine – The 

production of soluble protein for ACNAT1 proved difficult and following the use of 

several bacterial expression systems, the protein was expressed as a fusion protein 

with maltose binding protein (using the pMal-c2x vector), which resulted in the 

production of soluble protein. ACNAT1 shows homology to both BACAT and the 

Type-I ACOTs, and since acyl-CoAs are substrates for the Type-I ACOTs (21, 22, 24, 

27, 28) and both acyl-CoAs and bile acid-CoAs are substrates for BACAT (3-5) we 

hypothesized that ACNAT1 may be active on either acyl-CoAs and/or bile acid-

CoAs. While the Type-I ACOTs hydrolyze acyl-CoAs, BACAT conjugates fatty 

acids and bile acids to taurine and glycine, using the CoA moiety. Initially, incubation 

of recombinant ACNAT1 for 4 h with myristoyl-CoA (C14:0-CoA) in the presence of 

taurine resulted in efficient conjugation of myristic acid to form N-myristoyltaurine 

(Fig. 3A). The specificity of the reaction was verified by incubation of myristoyl-CoA 

and recombinant ACNAT1 in the absence of taurine, which showed no conjugation 

activity, but only hydrolysis of the CoA ester (Fig. 3B). Further characterization of 

ACNAT1 as an acyltransferase was carried out by incubating recombinant ACNAT1 

for 5 min with various long-chain acyl-CoAs. ACNAT1 efficiently conjugated acyl-

CoAs of C12:0-CoA to C24:0-CoA to taurine, suggesting that it acts as a long-chain 

fatty acid conjugating enzyme (Fig. 4A). Kinetic characterization of ACNAT1 was 

carried out using C16:0-CoA (palmitoyl-CoA) as substrate and the Km and Vmax were 

determined to be 11 µM and 159.5 nmol/min/mg, respectively (Fig. 4B). Incubation 

of recombinant ACNAT1 with CoA esters of the primary bile acids choloyl-CoA and 

chenodeoxycholoyl-CoA resulted in some conjugation of these substrates with 

taurine, however, this was very low compared with fatty acid conjugation (data not 

shown). Therefore ACNAT1 acts as an acyltransferase, conjugating very long-chain 
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and long-chain fatty acids to taurine. ACNAT1 showed no conjugation activity in the 

presence of glycine, confirming that it is a taurine conjugating enzyme.  

 

Tissue expression of Acnat1 and mouse Faah - Quantative PCR was carried out to 

examine the tissue expression of Acnat1 in mouse. Acnat1 was mainly expressed in 

liver and kidney, with low expression in adrenal and little or no expression in other 

tissues examined (Fig. 5A). FAAH has previously been identified as an N-acyltaurine 

hydrolyzing enzyme (29, 30) and we therefore examined the expression of Faah in 

various mouse tissues. Reverse transcriptase PCR (RT-PCR) showed that Faah was 

mainly expressed in liver, brain, testis and kidney (Fig. 5B), showing co-expression 

with Acnat1 in liver and kidney. We also examined the regulation of Acnat1 by 

fasting and treatment with Wy-14,643, a peroxisome proliferator, but Acnat1 was not 

regulated at mRNA level by either of these treatments (data not shown). 

 

DISCUSSION 

 

The identification of ACNAT1 is the first description of a specific fatty acid taurine 

conjugating enzyme and long chain acyl-CoA:amino acid N-acyltransferase. Its 

identification is timely in view of the very recent detection of taurine conjugated fatty 

acids (N-acyltaurines) as a novel class of endogenous lipids. These N-acyltaurines 

(NATs) were detected in brain, spinal cord, testes and liver of mice, using an LC-MS 

based analytical method termed Discovery Metabolite Profiling (DMP) (29, 30). 

Saghatelian et al used the DMP method to identify the physiological substrate for the 

fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid 

family of signaling lipids. The study identified metabolites that differed between 
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FAAH wild-type and knockout animals and it was shown that NATs were elevated 

15-40 fold in CNS tissues from FAAH knockout mice (29). The taurine conjugated 

fatty acids detected were mainly of 16 to 26 carbon atoms in length, with the most 

prevalent being C16:0, C18:0, C22:0 and C24:0 in wild type mice (29), similar to the chain-

length specificity of ACNAT1 now identified. The tissue expression of the Faah in 

this study shows that both Acnat1 and Faah are co-expressed in liver and kidney. 

FAAH has been shown to hydrolyze NATs back to the free fatty acid and taurine, 

with the activity varying depending on the chain length of the NAT, with C18:1 NAT 

being a better substrate for FAAH than C24 NAT (29, 30). This hydrolysis by FAAH 

could account for the low levels of NATs in-vivo, which are in the pmol/g range in 

brain, CNS, testes and liver, however these rise to nmol/g tissue in the CNS and 

spinal cord in the FAAH knockout mouse model (29). Acnat1 is mainly expressed in 

liver and kidney and there was only very weak mRNA expression in mouse whole 

brain, indicating that it is unlikely that ACNAT1 produces NATs in-situ in the CNS. 

Alternatively these NATs may be synthesized peripherally in the liver and kidney and 

could then be transported to the CNS. It has been hypothesized that a similar situation 

could exist in relation to glycine conjugates of fatty acids (N-acylglycines) and that 

hepatically derived NATs may be amidated by the bifunctional peptidylglycine α-

amidating enzyme (α-AE) and then cross the blood-brain barrier (31). Recently 

however, glycine conjugates of arachidonic acid have been detected in bovine and rat 

brain and are synthesized in-situ in rat brain as bioactive molecules that inhibit pain 

(32). This indicates that brain contains a distinct enzyme that can synthesize N-

acylglycines. It is not yet known if brain contains a distinct taurine conjugating 

enzyme responsible for synthesis of NATs in-situ in the CNS, or if these are 

synthesized by ACNAT1 in liver/kidney and transported to the CNS. 
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The fact that ACNAT1 is a peroxisomal enzyme raises the question of the role of 

ACNAT1 in this organelle. Peroxisomes are associated with the metabolism of 

several xenobiotic acyl compounds (13), together with the β-oxidation of very long-

chain fatty acids, bile acid intermediates, and α-oxidation and β-oxidation of 

branched chain fatty acids (33). Prostaglandins are also chain shortened in 

peroxisomes, followed by excretion in urine (34). Interestingly, novel taurine 

conjugated metabolites of prostaglandin E2 were identified in rat hepatocytes 

following β-oxidation (35), suggesting that partial β-oxidation of prostaglandins in 

peroxisomes followed by taurine conjugation of the metabolites is a means of 

excreting these lipids. Our finding here of a peroxisomal fatty acid taurine 

conjugating enzyme suggests that the entire process of partial β-oxidation followed by 

taurine conjugation occurs in peroxisomes. Similarly, bile acid intermediates are 

(side) chain shortened by β-oxidation followed by taurine (and glycine) conjugation 

in peroxisomes, which is the final step in de-novo bile acid synthesis and following 

conjugation, these bile acids are excreted into bile. Again, this conjugation results in 

more polar compounds for excretion and increases the detergent properties of bile 

acids in the intestine. Thus peroxisomal taurine conjugation of prostaglandins and bile 

acids results in products that are more easily excreted. In a similar way, the formation 

of long chain NATs by ACNAT1 in peroxisomes would also result in the production 

of more polar lipids for excretion. Although levels of NATs are low under normal 

conditions, it may be that ACNAT1 is more active under pathophysiological 

conditions where high levels of potentially toxic fatty acids prevail and the 

conjugation of these fatty acids to taurine would provide an excretory pathway in bile 

or urine (Fig. 6). In peroxisomes, carnitine is involved in the transfer of β-oxidation 
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products to the mitochondria for further oxidation and several peroxisomal carnitine 

acyltransferase enzymes have been identified (36, 37), These carnitine 

acyltransferases have a similar catalytic mechanism to ACNAT1, by catalyzing the 

transfer of the acyl moiety of acyl-CoAs to carnitine, the acceptor. However, these 

acyltransferases are only active on medium- and short-chain fatty acids, while 

ACNAT1 is active on long-chain and very long-chain fatty acids. Thus the formation 

of NATs may also allow fatty acids to be transferred within the cell, in a similar 

manner to acylcarnitines. Under pathophysiological conditions when long chain acyl-

CoAs accumulate in mitochondria, they are converted to acylcarnitines that leave the 

mitochondria and can readily be assayed in blood (38). Interestingly, acylcarnitines 

are also secreted in bile and it was shown that these bile acylcarnitines were elevated 

in mice deficient in mitochondrial long-chain and very long-chain acyl-CoA 

dehydrogenases (39). Thus, a fatty acid taurine conjugating system in peroxisomes 

may function in analogy to the mitochondrial carnitine acyltransferase system in 

mitochondria to eliminate fatty acids under conditions of fatty acid overload. 

 

From an evolutionary point of view, ACNAT1 is related to both the BACAT enzyme 

and to a family of enzymes called Type-I acyl-CoA thioesterases (ACOTs) (for 

review see (18)) and is found in a novel gene cluster of acyltransferases on 

chromosome 4 B3 in mouse, together with BACAT. Several Type-I ACOT enzymes 

have been identified in peroxisomes and hydrolyze the acyl-CoA moiety of long-

chain fatty acids, medium-chain fatty acids, and succinyl-CoA, to the free acid and 

coenzyme A, and therefore function in terminating chain shortening of various 

carboxylic acids to promote transport out of the peroxisome (21-23). As stated 

previously, BACAT functions in the conjugation of bile acids and fatty acids to 
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taurine and glycine. Therefore ACNAT1 has evolved into an enzyme that shares 

characteristics of both the ACOT and BACAT enzymes – it utilizes ACOT substrates 

(acyl-CoA) and the BACAT conjugation acceptor molecule (taurine). A further gene 

was identified on mouse chromosome 4 B3 that encodes a protein that is 92% 

identical to ACNAT1, which we named Acnat2. Although we have not as yet been 

able to identify the substrate for ACNAT2, we propose that also Acnat2 encodes an 

acyltransferase, given the very high percentage sequence identity to Acnat1. Thus 

Bacat, Acnat1 and Acnat2 comprise a novel gene cluster involved in conjugation 

processes for elimination of metabolites. As ACNAT1 and the ACOTs utilize the 

same substrate (acyl-CoAs) it is easy to envisage competitive or complementary 

functions for the two enzyme systems (Fig. 6). However, in general peroxisomal 

ACOTs show somewhat lower Km-values for long-chain acyl-CoAs than ACNAT1 (4 

µM for ACOT3 vs 11 µM for ACNAT1 with palmitoyl-CoA), suggesting that 

ACNAT1 will ‘kick-in’ when intra-peroxisomal acyl-CoA concentrations rise. Bile 

acid conjugates act as ligands for the farnesoid X receptor (FXR) (40-42), a nuclear 

receptor involved in regulation of bile acid and carbohydrate metabolism. Fatty acids 

and acyl-CoAs also act as agonists/antagonists for the peroxisome proliferator-

activated receptor alpha (PPARα) (43-46), which regulates numerous pathways of 

lipid metabolism. It will be interesting to elucidate if NATs can act as 

agonists/antagonists for nuclear receptors and if ACNAT1 can function in controlling 

levels of intracellular signaling molecules.  

   

In conclusion, we have identified ACNAT1 in mouse as a novel enzyme involved in a 

new pathway of taurine conjugation of fatty acids in peroxisomes. The identification 

of these taurine conjugates in the CNS and liver as novel metabolites (29) opens up a 



 

 

16

new field of research in elucidating pathways for excretion of NATs, or alternatively 

the discovery of new metabolic pathways for production of signaling molecules. It 

will be interesting to examine if these NATs can act as signaling molecules in various 

pathways in liver or CNS, or whether they, like glycine and taurine conjugates of bile 

acids, may act as agonists/antagonists for nuclear receptors. 
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FIGURE LEGENDS 

 

Fig. 1. Sequence alignment and chromosomal localization of acyl-CoA:amino 

acid N-acyltransferase (Acnat1) and bile acid-CoA:amino acid N-acyltransferase 

(Bacat). (A) Database searches identified three related genes in a cluster on mouse 

chromosome 4 B3 within 100 kb of DNA. Acnat1 and Acnat2 (acyl-CoA:amino acid 

N-acyltransferase) and Bacat (bile acid-CoA:amino acid N-acyltransferase). Each 

gene is coded by three exons. (B) Alignment of ACNAT1 and BACAT amino acid 

sequences. ACNAT1 contains a peroxisomal type 1 targeting signal of serine-lysine-

leucine (-SKL) at the carboxyterminal end. An active site serine is found at position 

235, an aspartate residue at position 325 and a histidine at position 359 of ACNAT1, 

which are marked with closed triangles, and constitute the putative catalytic triad.  

 

Fig. 2. ACNAT1 is localized in peroxisomes. 

The open reading frame of Acnat1 was cloned in-frame with green fluorescent protein 

(GFP) and expressed in either control human skin fibroblasts, or fibroblasts from a 

Zellweger patient. Immunofluorescence microscopy was carried out using a Tritc-

labeled anti-GFP antibody. (A) Punctate expression of ACNAT1 in control 

fibroblasts. (B) Diffuse expression of ACNAT1 in Zellweger fibroblasts.  

 

Fig. 3. ACNAT1 is an acyltransferase. Recombinant ACNAT1 (20 µg) was 

incubated for 4 h with 50 µM myristoyl-CoA in the presence (A) or absence (B) of 50 

mM taurine and the incubations were analyzed by ES-MS. The peak at 334.11 

corresponds to N-myristoyltaurine, the peak at 297.1 corresponds to nonadecanoic 
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acid added as an internal standard and the peak at 227.11 corresponds to myristic 

acid.  

 

Fig. 4. ACNAT1 is an acyltransferase that conjugates fatty acids to taurine. 

(A) Recombinant ACNAT1 (5 µg) was incubated for 5 min with 20 µM of various 

acyl-CoAs with the addition of bovine serum albumin (BSA) in a molar ratio of 

between 1:1.2 and 1:5.7 BSA:acyl-CoA, in the presence 50 mM taurine. 

Nonadecanoic acid (20 µM) was added as an internal standard and the samples were 

analyzed by ES-MS and quantified with respect to the internal standard and taurine 

conjugates formed. The amount of taurine conjugated fatty acid formed was 

calculated in nmol/min/mg. (B) Recombinant ACNAT1 (5 µg) was incubated for 2 

min at various concentrations of C16:0-CoA (5-50 µM) with the addition of bovine 

serum albumin (BSA) in a molar ratio of 1:2.3 BSA:acyl-CoA, and 50 mM taurine. 

Nonadecanoic acid (5 µM) was added as an internal standard and the samples were 

analyzed by ES-MS and quantified with respect to the internal standard. Km and Vmax 

were determined using Sigma Plot Enzyme Kinetics Program.  

 

Fig. 5: Acnat1 and Faah tissue expression in mouse. 

(A) The tissue expression of Acnat1 was investigated in mouse tissues using single-

plex Q-PCR. Total RNA was prepared from 3 animals, which was pooled for each 

tissue and cDNA was prepared from the pooled RNA samples. Q-PCR was run in 

triplicate for each tissue, using 18S and β-actin mRNA as a control and the relative 

amounts of mRNA were calculated using the 2-∆∆CT method. BAT; brown adipose 

tissue; WAT; white adipose tissue; proximal intestine (first 10 cm of small intestine); 

distal intestine (last 10 cm of the small intestine). (B) Total RNA was prepared from 3 
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animals and pooled. Reverse-transcriptase PCR with fatty acid amide hydrolase 

(Faah) primers was carried out on 1 µg pooled total RNA. PCR products were 

analyzed on a 2% agarose gel stained with ethidium bromide. β-actin was included as 

a positive control. 

 

Fig. 6: Role of ACNAT1 and acyl-CoA thioesterases (ACOTs) in peroxisomal 

fatty acid β-oxidation. The peroxisomal β-oxidation acts as a chain shortening 

system. Due to the presence of multiple acyl-CoA thioesterases (ACOTs) , β-

oxidation intermediates may be removed from the pathway. Under conditions when 

intra-peroxisomal acyl-CoA concentrations increase (either from uptake or increased 

levels of β-oxidation intermediates), acyl-CoA thioesterases (mainly ACOT3, 

ACOT5 and ACOT8) hydrolyze medium- and long-chain acyl-CoAs to the free acid 

and CoASH. The non-esterified fatty acids may exit the peroxisome and re-enter the 

β-oxidation pathway after activation to the CoA-ester by the long-chain acyl-CoA 

synthetase (LACS) located at the matrix side of the peroxisomal membrane. 

Alternatively, acyl-CoAs are substrate for ACNAT1, which in the presence of taurine, 

conjugates the fatty acid moiety to taurine to produce the N-acyltaurines. These N-

acyltaurines (e.g. N-palmitoyltaurine) exit the peroxisome and may act as signaling 

molecules in the liver or kidney or may be sent out in the blood for distribution to 

other organs or alternatively excreted in bile or urine. 

 

 

 

This sequence was deposited under Genbank Accession Number DQ469311. 
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