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ABSTRACT 
The three-dimensional, compressible, viscous flow 
field around a general propeller geometry with the 
inflow at zero angles of incidence and yaw is 
computed using a Reynolds-Averaged Navier-Stokes 
equations solver. Results from validation test cases in 
which the laminar and turbulent incompressible flow 
over a flat plate are calculated demonstrate the flow 
solver is capable of accurately capturing boundary-
layer behaviour. Euler solutions from flow field 
calculations around two very different propeller 
geometries show a high level of accuracy and 
efficiency. Preliminary results from a viscous flow 
field calculation around a two-bladed propeller are 
very encouraging. 
 

INTRODUCTION 
The possible fuel savings that can be achieved by an 
advanced propeller over an equivalent technology 
turbofan engine operating at competitive speeds and 
altitudes have been well documented. To-date, 
however, potential cabin noise problems, the 
reduction of aviation fuel costs, and the perceived 
prejudice of the general public towards propeller 
driven aircraft, have hindered the introduction of 
advanced propellers on large commercial aircraft.  
 
Meanwhile, propellers with advanced-propeller 
characteristics have been introduced on regional and 
general aviation aircraft that were traditionally 
propeller driven. Currently, interest still remains in 
the advanced propeller concept both for commercial 
and military use, as fuel efficiency is of crucial 
importance in the development of propulsion systems 
 
In order to further improve the aerodynamic and 
acoustic performance of the advanced propeller, it is 
necessary to fully understand the complex flow 
patterns occurring on the blade and hub surfaces and 
in the general surrounding flow field. To this end, a 
flow solver has recently been developed to predict the 
three-dimensional, compressible, viscous flow field 
around general propeller configurations with the 
inflow along the main axis of the propeller. 
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The solver, named NAVPROP, solves the Reynolds-
Averaged Navier-Stokes equations formulated in a 
steadily-rotating, blade-attached, non-inertial 
reference frame. With this formulation the flow can 
then be treated as steady relative to the propeller. To 
solve the governing equations, a cell-centre finite-
volume scheme is employed. Explicit, multistage, 
Runge-Kutta time stepping marches the solution 
towards a steady-state, while local time-stepping, 
implicit residual averaging, and multigrid are 
employed to increase the rate of convergence. The 
computational domain is discretised into a contiguous 
set of hexahedral cells as part of a C-H grid system. 
 
The development of NAVPROP has been the focus of 
this work and is described in detail. Results are 
presented from five test cases completed. 
 

FLOW SOLVER 
Governing Equations 
The governing equations of viscous flow, i.e., the 
Navier-Stokes equations, are initially formulated 
using the flow model of a fixed finite control volume 
in a non-inertial reference frame that is attached to 
the rotating propeller1. A right-handed Cartesian 
coordinate system is employed and it is assumed that 
the propeller rotates with constant angular velocity ω 
around the x axis. The equations thus obtained are 
then re-written in partial differential equation form, 
non-dimensionalised using a standard non-
dimensionalisation procedure, and finally 
transformed to a body-fitted curvilinear coordinate 
system. Letting ρ, u, v, w, p, and E denote density, 
the x, y, and z components of the absolute velocity 
vector, static pressure and total energy per unit 
volume respectively, the final form of the governing 
equations in vector form is as follows 
 

1( ) v v vF G HJ Q F G H I
t ξ η ζ ξ η ζ

− ∂ ∂ ∂∂ ∂ ∂ ∂
+ + + = + + +
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U, V, and W are the contravariant velocity 
components in the ξ, η, and ζ directions respectively, 
and are defined as  
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and the shear stress terns are  
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In the equations given above ξx, ξy, ξz, ξt, ηx, ηy, ηz, 
ηt, ζx, ζy, ζz, and ζt are the metrics of the 
transformation, and J-1 is the Jacobian of the inverse 
transformation.  
 
Additionally, µ and k are the molecular or laminar 
coefficients of viscosity and thermal conductivity 
respectively, γ is the ratio of specific heats, Ma∞ is the 
freestream Mach number, and Re∞ is the freestream 
Reynolds number based on freestream conditions and 
the propeller blade tip radius. Stokes’ hypothesis was 
employed in the writing of the shear stress terms in 
order to relate the first (laminar) and the second 
coefficients of viscosity. 
 
The above set of unsteady equations can be solved for 
laminar flow problems but not for turbulent flows 
ones because of the very small spatial and temporal 
scales required and the computational resources this 
entails. In order to obtain meaningful results for 
turbulent flow problems, a time-averaged form of 
these equations is solved. The time-averaged 
equations, called the Reynolds-Averaged Navier-
Stokes equations, have the same form as the original 
ones presented, except that extra terms such as 
apparent stresses and heat flux terms appear. Closure 
for this system of equations is achieved by using an 
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eddy viscosity hypothesis, which assumes that these 
extra terms can be related to the gradients of mean 
flow variables. To this end, the laminar viscosity in 
the original equations is replaced by an effective 
viscosity defined as 
 
 e l tµ µ µ= +   (5) 

 
where µe is the effective viscosity, µl is the laminar 
viscosity, and µt is the turbulent eddy viscosity. Also, 
the thermal conductivity is replaced by the following 
using a constant Prandlt number assumption 
 

 
1e

l t
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Pr Pr

γ µ µ
γ

    = +   −     
  (6) 

 
where again l and t denote laminar and turbulent 
respectively, and Pr is the Prandtl number. The 
laminar and turbulent Prandtl numbers are taken to be 
0.72 and 0.9 respectively in this work. The eddy 
viscosity is computed using the algebraic, two-layer, 
eddy-viscosity model of Baldwin and Lomax2, and 
once known the effective thermal conductivity can be 
calculated. The eddy viscosity is computed separately 
in the blade-to-blade and the spanwise directions, and 
then the inverse of the square of the normal distance 
to the wall d is used to compute the overall eddy 
viscosity, i.e., 
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  (7) 

 
With this particular formulation of the governing 
equations the flow around a steadily rotating 
propeller with an inflow at zero angles of incidence 
and yaw can be treated as steady and results in an 
algorithm that is far more efficient than one that 
solves for the unsteady flow field in an inertial 
reference frame. 
 
Solution Procedure 
As mentioned earlier the computational domain is 
discretised into a contiguous set of structured 
hexahedral cells as part of a C-H grid system and 
Equation 1 is integrated over each cell in the domain. 
A cell-centre finite-volume scheme is employed in 
the solver, with the cell centre values of the 
conserved variables representing cell average 
quantities. At the cell faces central differencing is 
used for the evaluation of the convective fluxes, 
while the viscous fluxes are easily evaluated once the 
values of the velocity and temperature derivatives are 
known at these locations. These derivatives require 

careful evaluation and are calculated using the 
method described by Lacor et al3. 
 
A controlled amount of artificial dissipation is added 
to the resulting equations in order to prevent odd-
even point decoupling associated with a central-
difference scheme and the appearance of undesirable 
oscillations near shock waves and stagnation points. 
The artificial dissipation model used is basically the 
one originally introduced by Jameson, Schmidt, and 
Turkel4, and consists of blended first and third 
differences of the conserved variables for each 
equation. Anisotropic scaling of the dissipation terms 
is employed to prevent the addition of excessive 
dissipation in the high-aspect-ratio cells that are 
necessary when performing viscous flow calculations. 
Two different scaling models, by Martinelli5 and 
Radespiel6 respectively, are used and have proven 
satisfactory. 
 
Following the spatial discretisation, a system of 
ordinary differential equations is obtained. To 
integrate these equations in time to a steady- state an 
explicit, multistage, Runge-Kutta, time-stepping 
scheme is used. A five-stage scheme is chosen with 
the artificial dissipation terms being evaluated on the 
first, third, and fifth stages only, and frozen on the 
second and fourth. This scheme has good high 
frequency damping properties, which is important if it 
is to drive the multigrid scheme described below. 
 
To significantly increase the rate of convergence to a 
steady state, three well-proven convergence 
acceleration techniques associated with explicit type 
schemes are employed concurrently: local time-
stepping, implicit residual averaging, and multigrid. 
With local time-stepping each cell in the 
computational domain is advanced in time using its 
own time-step that is determined by stability 
considerations. Implicit residual averaging is used to 
both extend the stability range and robustness of the 
basic time-stepping scheme. The residual smoothing 
is applied in factored form. A Full approximation 
storage (FAS) multigrid scheme based on the work of 
Jameson7 is employed. For the multigrid process, 
coarser grids are obtained by deleting every other 
mesh line in each coordinate direction of the next 
finer grid. The solution and residuals are transferred 
to the coarser grid and a forcing function constructed 
so that the coarse grid solution is driven by the 
residuals collected from the next finer grid.  
Corrections are transferred between grid levels using 
trilinear interpolation. The work split between by the 
various grid levels is achieved using a fixed cycling 
strategy. Two alternatives are implemented in the 
solver: a V-cycle and a W-cycle. The robustness of 
the multigrid scheme is significantly enhanced by the 
smoothing of the coarse grid corrections before 
addition to the fine grid solution. This reduces high-
frequency oscillations introduced by the trilinear 
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interpolation. The factored scheme used for the 
residual averaging, but with constant coefficients is 
employed here.  
 
The flow around a propeller with the inflow at zero 
angles of incidence and yaw is periodic in the 
circumferential direction from one inter-blade region 
to the next. It is therefore necessary to solve for the 
flow in one inter-blade region only. A C-H type mesh 
is used to discretise the computational domain, with 
the C-part in the axial direction and the H-part in the 
circumferential direction. The boundary conditions 
are implemented using an extra layer of ghost cells 
exterior to the flow domain and are described in 
detail by Boyle8,9. 
 
A Full Multigrid Method (FMG) is used to provide a 
well-conditioned starting solution for the finest mesh. 
With the FMG strategy, the solution is initialised on 
the coarsest of a specified series of grids and iterated 
for a set number of multigrid cycles using the FAS 
multigrid scheme. The solution is then transferred to 
the next finer grid using trilinear interpolation. This 
process is repeated until the finest mesh level is 
reached. In the present scheme three FMG levels are 
typically used and the maximum possible number of 
multigrid levels used on all grid levels. 50 multigrid 
cycles are typically performed on each of the coarser 
grid levels. The freestream values of the variables are 
used as the starting solution on the coarsest grid. 
 

RESULTS 
Case 1: Inviscid Transonic Flow Around the NACA 
10-(3)(066)-033 Propeller 
The two-bladed NACA 10-(3)(066)-033 propeller10, 
shown in Figure 1, is composed of NACA 16 series 
airfoil sections and has a rectangular planform. A 
freestream Mach number and an advance ratio of 0.56 
and 0.23 were chosen respectively. The blade angle at 
75% radius was 45˚. A medium density grid, shown 
in Figure 2, with 129x49x73 points in the axial, 
radial, and circumferential directions respectively was 
used. The results of the test case are presented in 
Figures 3 to 7. The convergence history is shown in 
Figure 3. Convergence was rapid with engineering 
accuracy (i.e., four orders reduction in the residual of 
the continuity equation) achieved in 105 multigrid 
cycles and machine zero (i.e., twelve orders 
reduction) in 492 cycles on the finest grid level. A 
comparison of computed and measured surface 
pressure coefficient at two radial locations is shown 
in Figures 4 and 5. The comparison between the 
predictions and measurements is very good 
considering the complexity of the flow field. Note 
that computed pressures were obtained at the 
experimental locations using simple interpolation and  
that the undeformed blade shape, also called the “cold 
blade” shape, was used for all propeller calculations 
reported here. Contours of relative Mach number at 
the cell centres adjacent to the blade pressure and 

suction surfaces are shown in Figures 6 and 7 
respectively. The supersonic flow region and the 
shock wave on the suction surface can be clearly 
identified in the figures. 
 
Case 2: Inviscid Transonic Flow Around the SR3 
Advanced Propeller  
The Hamilton Standard single-rotation propeller, 
better known as the SR3, is an eight-bladed advanced 
propeller and is shown in Figure 8. It was designed 
for a cruise Mach number of 0.8 and incorporated a 
45˚ blade sweep angle for both aerodynamic and 
acoustic purposes. For this test case a 129x33x33 grid 
was employed. The freestream Mach number was 0.8, 
the advance ratio was 3.06, and the blade angle at 
75% radius was 60˚. A close-up view of the grid on 
the hub and blade surfaces in shown in Figure 9. 
Results from this test case are shown in Figures 10 to 
14. Once again convergence, shown in Figure 10, is 
rapid with engineering accuracy and machine zero 
obtained in 140 cycles and 606 cycles respectively. 
Computed surface pressure profiles are shown in 
Figures 11 and 12 and show a smooth variation over 
the complete chord. Contours of relative Mach 
number for the pressure and suction surfaces are 
shown in Figures 13 and 14 respectively and 
demonstrate the complexity of the flow field 
 
Case 3: Laminar Flow Over a Smooth Flat Plate 
The first set of viscous results is for the case of 
incompressible laminar flow over a smooth flat plate 
with zero freestream pressure gradient.  In order to 
approximate incompressible flow the freestream 
Mach number was set at 0.3. The Reynolds number 
based on plate length was ReL=1,000,000. This high 
value was employed to ensure that the calculated 
boundary layer thickness was small in comparison to 
the length of the computational domain in the 
direction normal to the plate. The computational 
domain had non-dimensional lengths of 1.0, 0.1, and 
0.l in the axial, vertical, and transverse directions 
respectively. The grid dimensions were 97x97x9 in 
the axial, vertical, and transverse directions also. Note 
that only 9 cells were required in the transverse 
direction as there should be no tranverse variations of 
the flow variables. The variation of the skin friction 
coefficient with axial location is shown in Figure 15, 
while axial and vertical velocity profiles at various 
axial locations along the plate are presented in 
Figures 16 and 17 respectively. In the figures the 
predictions are compared with the exact solutions of 
Blasius11. The axial and vertical velocity profiles 
compare very well with the Blasius curve. Overall the 
comparisons are very good.   
 
Case 4: Turbulent Flow Over a Smooth Flat Plate 
The second viscous flow test case was for 
incompressible turbulent flow over a smooth flat 
plate, also with zero freestream pressure gradient. A 
computational domain with the same dimensions and 
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grid density as employed for the previous test case 
were used for this case also, but with higher grid 
spacing the vertical direction in order to accurately 
resolve the laminar wall-layer region. The chosen 
Reynolds number was ReL=10,000,000. The results 
are presented in Figure 18 to 20. Figure 18 shows the 
calculated and theoretical variation of skin friction 
coefficient with axial position The two curves differ 
slightly but show the same variation with axial 
position. Similar trends in skin friction were also 
observed by other researchers12. Axial velocity 
profiles at several axial locations are shown in Figure 
19. The laminar wall layer, the overlap layer, and the 
turbulent outer layer are all distinctly captured in each 
profile. The theoretical law of the wall and 
logarithmic-overlap layer law are also plotted and 
compare very well with the predictions. Velocity 
vectors in the boundary layer near the plate trailing 
edge are presented in Figure 20. 
 
Case 5: Viscous Transonic Flow Around the NACA 
10-(3)(066)-033 Propeller  
Preliminary results are presented for the viscous flow 
around the NACA 10-(3)(066)-033 propeller. Note, 
however, that the hub profile differs from the one 
employed for the inviscid flow calculation (see 
Figure 21). As for the corresponding inviscid flow 
test case, a freestream Mach number, advance ratio, 
and blade angle of 0.56, 0.23, and 45˚ were chosen 
respectively. A grid with a density of 129x49x65 
points was employed. Figure 22 shows a close-up 
view of the grid on the hub and blade surfaces. The 
grid is clustered near the hub and blade surfaces and 
near the blade leading and trailing edges. For this test 
case the boundary layer was assumed to be fully 
turbulent on the blade surfaces while a location for 
boundary-layer transition was specified for the hub 
surface. Contours of relative Mach number at four 
radial locations are shown in Figures 23 to 26. The 
radial location increases in each figure and 
corresponds to a location near the blade root in the 
first. In each figure a trailing edge wake is clearly 
visible, but for the most part the boundary layer is 
attached to the blade surface. A region of boundary 
layer separation does however occur on the suction 
surface near the blade trailing edge. Overall the 
quality of the results is very encouraging. 
 

CONCLUDING REMARKS 
A solver has been developed to predict the viscous 
flow around general propeller geometries under zero 
angle of incidence and zero angle of yaw inflow 
conditions. Results from test cases completed have 
demonstrated the ability of the solver to accurately 
and efficiently predict inviscid transonic propeller 
flow fields, and the ability to accurately capture 
laminar and turbulent boundary layer behaviour. 
Preliminary results from a viscous transonic propeller 
flow field calculation are very encouraging.  
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Figure 1. The two-bladed, 10-ft diameter, NACA 10-
(3)(066)-033 propeller. 
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Figure 2. The computational domain and grid for the 
NACA 10-(3)(066)-033 propeller inviscid flow field 
calculation. 
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Figure 3. Convergence history of the NACA 10-
(3)(066)-033 propeller inviscid flow field calculation. 
Ma∞=0.56, J=2.3, and β3/4=45˚. 
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Figure 4. Comparison of chordwise variation of 
computed and measured surface pressure for the 
NACA 10-(3)(066)-033 propeller at a radial location 
of 0.45.  Ma∞=0.56, J=2.3, and β3/4=45˚. 
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Figure 5. Comparison of chordwise variation of 
computed and measured surface pressure for the 
NACA 10-(3)(066)-033 propeller at a radial location 
of 0.78.  Ma∞=0.56, J=2.3, and β3/4=45˚. 
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Figure 6. Contours of relative Mach number at the 
cell centres adjacent to the pressure surface of the 
NACA 10-(3)(066)-033 propeller blade. Ma∞=0.56, 
J=2.3, β3/4=45˚, and ∆Marel=0.05. 
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Figure 7. Contours of relative Mach number at the 
cell centres adjacent to the suction surface of the 
NACA 10-(3)(066)-033 propeller blade. Ma∞=0.56, 
J=2.3, β3/4=45˚, and ∆Marel=0.05. 
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Figure 8. The eight-bladed, advanced SR3 propeller. 

 

 

 

 

 

 

 
American Institute of Aeronautics and Astronautics 

 

7



 

 

 

 

 

X

Y

Z

 
 

Figure 9. A close-up view of the grid on the hub and 
blade surfaces of the SR3 propeller. 
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Figure 10. Convergence history of the SR3 propeller 
inviscid flow field calculation. Ma∞=0.80, J=3.06, 
and β3/4=60˚. 

 

 

 

 

 

 

 

 

 
 

X/C

C
p

0.0 0.2 0.4 0.6 0.8 1.0

-1.5

-1.2

-0.9

-0.6

-0.3

0.0

0.3

0.6

0.9

1.2

1.5

η = 0.40

 
Figure 11. Comparison of chordwise variation of 
computed and measured surface pressure for the SR3 
propeller at a radial location of 0.40.  Ma∞=0.80, 
J=3.06, and β3/4=60˚. 
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Figure 12. Comparison of chordwise variation of 
computed and measured surface pressure for the SR3 
propeller at a radial location of 0.80.  Ma∞=0.80, 
J=3.06, and β3/4=60˚. 
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Figure 13. Contours of relative Mach number at the 
cell centres adjacent to the pressure surface of the 
SR3 propeller blade. Ma∞=0.80, J=3.06, β3/4=60˚, and 
∆Marel=0.05. 
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Figure 14. Contours of relative Mach number at the 
cell centres adjacent to the suction surface of the SR3 
propeller blade. Ma∞=0.80, J=3.06, β3/4=60˚, and 
∆Marel=0.05. 
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Figure 15. Comparison of predicted skin friction 
coefficient with Blasius theoretical solution for 
laminar flow over a flat plate. 
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Figure 16. Comparison of predicted axial velocity 
profiles with Blasius theoretical profile for laminar 
flow over a flat plate. 
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Figure 17. Comparison of predicted vertical velocity 
profiles with Blasius theoretical profile for laminar 
flow over a flat plate. 
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Figure 18. Comparison of predicted skin friction 
coefficient with Prandtl theoretical solution for 
turbulent flow over a flat plate. 
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Figure 19. Comparison of predicted axial velocity 
profiles with theoretical laws for turbulent flow over 
a flat plate. 
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Figure 20. Axial velocity vectors in the turbulent 
boundary layer at an axial location near the plate 
trailing edge. 
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Figure 21. The NACA 10-(3)(066)-033 propeller 
geometry used for the viscous flow calculation. 
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Figure 22. A close-up view of the inner part of the 
grid around the NACA 10-(3)(066)-033 propeller. 
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Figure 23. Contours of relative Mach number for the 
NACA 10-(3)(066)-033 propeller. ∆Marel=0.025. 
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Figure 24. Contours of relative Mach number for the 
NACA 10-(3)(066)-033 propeller. ∆Marel=0.025. 
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Figure 25. Contours of relative Mach number for the 
NACA 10-(3)(066)-033 propeller. ∆Marel=0.025. 
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Figure 26. Contours of relative Mach number for the 
NACA 10-(3)(066)-033 propeller. ∆Marel=0.025. 
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