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1	Introduction
Replacing	artificial	light	with	daylight	(i)	reduces	the	building	energy	consumption	[1]	(ii)	enhances	visual	comfort	[2]	(iii)	prevents	or	reduces	eyes	tiredness	and	fatigue	[3]	and	(iv)	achieves	natural	daylight	colour	rendering	[4,5].	Reducing	artificial	lighting	energy

demand	in	building	during	the	day	requires	appropriate	daylighting	design	[6–8].	Occupant	visual	comfort	can	be	maintained	via	the	use	of	curtains,	blinds	and	adaptive	glazings	that	actively	or	passively	adjust	their	optical	properties	[9–11].

Acceptable	illuminances	for	work	and	study	inside	a	room	can	vary	between	100	and	2000	lx	as	shown	in	Table	1	[12].

Table	1	Acceptability	of	illumination.

alt-text:	Table	1

Acceptability Activity Reference

Illuminance	level	(Lux) ≥	150 Comfort Working	space [13]

500 Comfortable Office	work [14]

500 Comfortable Office	work [15]

840–2146	(morning)	840–2146 (morning) Comfortable Office	work [4,5,15]

782–1278	(afternoon)	782–1278 (afternoon) Comfortable

700–1800		700–1800  Comfortable Computer	work [16]

100–2000		100–2000  Useful	Daylight	Illuminance Any	types	of	work [12]

Switchable	glazing	includes	electrochromic	(EC)	[17–19],	gasochromic	[20],	thermochromic	[21],	thermotropic	[22,23],	liquid	crystal	(LC)	[24],	suspended	particle	device	(SPD)	[25–28]	and	phase	change	materials	(PCM)	[29].	These	glazing	can	be	electrically,
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Abstract

The	daylighting	performance	of	a	polymer	dispersed	 liquid	 crystal	 (PDLC)	switchable	glazing	has	been	evaluated	using	an	unfurnished	outdoor	 south-facing	 test	 cell	with	a	glazing-to-wall	 ratio	of	1:9.	Useful	 daylight	 illuminance	 levels	 (UDI)	were

determined	for	clear	sunny,	intermittent	cloudy	and	overcast	cloudy	days.	Daylight	glare	indexes	(DGIN)	was	calculated	for	the	PDLC	glazing	in	its	transparent	and	translucent	states.	An	electrically-actuated	adaptive	PDLC	switchable	glazing	with	transparency

that	varied	between	27%	and	71%	was	able	to	control	daylight	glare.
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thermally,	or	chemically	actuated.	Electrical	actuation	of	switchable	glazings	EC,	SPD,	and	LC	gives	control	of	the	switchability	of	glazing	[30–34].	EC	glazing	changes	its	transparency	from	transparent	to	opaque	state	in	the	presence	of	direct	current	power	supply.	EC

glazing	can	control	NIR	[35,36].	Higher	switching	time	of	EC	glazing	can	be	mitigated	using	suitable	powering	[37].	Degraded	EC	films	(both	based	on	W	oxide	and	Ti	oxide)	can	be	rejuvenated	by	galvanostatic	treatment	[38–40].	Large	scale	(1.2	m×0.8m	×	0.8	m	and

1.2	m×0.5m	×	0.5	m)	EC	device	was	also	investigated	using	PASSYS	test	cell	[41].	Daylight	and	glare	performance	of	EC	glazing	has	been	evaluated	theoretically	in	a	hot	climate	in	a	west	orientated	wall	[42–44]	and	evaluated	experimentally	performed	for	computer	tasks

[45].	Operated	by	an	alternating	current	power	supply,	SPD	glazing	changes	its	state	from	opaque	to	transparent	[46].	SPD	glazing	has	a	low	switching	time	[47]	intermediate	transmission	states	between	opaque	and	transparent	state	and	high	stability	[48].	However

controlling	thermal	comfort	with	SPD	requires	additional	coated	panes	as	the	near	infrared	transmission	is	high	[49].	Daylight	and	glare	performance	of	SPD	glazing	has	been	evaluated	[50].	In	a	liquid	crystal	(LC)	glazing,	LC	films	are	sandwiched	between	two	glass

panes	as	shown	in	Fig.	1.	Due	to	the	anisotropic	electrooptic	properties	of	the	LC	material,	transmitted	light	through	the	cell	is	controllable	by	applying	appropriate	voltages	[51–54].	Polymer	dispersed	liquid	crystals	(PDLC)	types	are	suitable	compared	to	twisted	nematic,

ferroelectric	and	guest	host	type	LC	as	they	don’t	need	polarizer	to	operate	[55].	Liquid	crystal	droplets	with	diameters	in	the	range	of	11–20		to	20	μm	µm	in	a	polymer	matrix	form	a	PDLC.	In	the	presence	of	an	electric	field	LC	droplets	are	aligned	with	electric	field	so

allowing	light	passes	through	it.	In	the	absence	of	an	electric	field	LC	droplets	orient	isotropically,	scattering	incident	beam	so	becoming	white	translucent.

2	Methodology
Daylight	glare	index	(DGI)	[56,57]	has	been	used	to	characterise	EC	glazing	[42,43]	and	for	SPD	glazing	[50]	using	data	from	a	test	cell.	The	DGIN	is	given	by

where	 Lext	 is	 the	 exterior	 luminance	 of	 the	 outdoor	 source	 including	 direct	 sunlight,	 diffuse	 skylight	 and	 reflected	 light	 from	 the	 ground	 and	 other	 external	 surfaces	 (cd/m2),	 Lwin	 is	 window	 luminance	 (cd/m2),	 Ladp	 is	 adaptation	 luminance	 of	 the	 surroundings

including	reflections	from	internal	surface	(cd/m2),	ωN	is	solid	angle	subtended	by	the	window,	ΩN	is	solid	angle	subtended	by	the	glare	source.	Schematic	diagram	showing	DGIN	is	given	in	Fig.	2.	The	luminance	level	5	provided	by	glazing,	adaptation	and	exterior	are

Fig.	1	The	“transparent”	and	“translucent”	states	of	a	PDLC	glazing.	As	PDLC	glazings	are	intended	for	architectural	applications,	thus	PDLC	glazing	daylight	and	glare	results	are	essential	information	for	building	integrated	PDLC	switchable	glazing.	In	this	work	first	outdoor	characterisation	of

PDLC	glazing	using	test	cell	was	performed	to	find	out	its	glare	and	daylight	control	potential.

alt-text:	Fig.	1
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calculated	from	Eqs.	(2)–(4).

where

The	configuration	factor	 was	calculated	from	the	Eq.	(7)	using	(Fig.	2)

where

where

X	and	Y	can	be	calculated	from	Eqs.	(8)	and	(9).

(2)

(3)

(4)

(5)

(6)

Fig.	2	Experimental	set	up	used	to	obtain	data	for	the	calculation	of	DGIN,	with	configuration	factor	calculation	diagram.

alt-text:	Fig.	2
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where

a	is	the	width	of	PDLC	glazing,	b	is	the	height	of	PDLC	glazing	and	d	is	the	perpendicular	distance	from	the	observation	place	of	the	centre	of	glazing	as	shown	in	Fig.	2.

A	PDLC	glazing	dimension	of	0.2	m	×	0.15	m	was	investigated	that	unpowered	becomes	translucent	and	powered	become	transparent.	The	PDLC	glazing	was	connected	with	a	0–200	V	variable	AC	supply.	PDLC	spectral	measurements	were	performed	using	a

LAMBDA	1050	UV/Vis/NIR	Spectrophotometer.	Fig.	3	shows	the	variation	of	PDLC	transmission	when	“transparent”	with	71%	average	transmittance	and	“translucent”	with	27%	average	transmittance.

A	0.7	×	0.7	m	×	0.7	m	test	cell	with	unobstructed	solar	illuminance	whose	internal	surfaces	were	painted	with	0.8	reflectance	matt	white	paint.	The	area	of	glazing	on	the	test	cell	was	in	a	ratio	of	1:9.	Six	illuminance	sensors	were	used.	One	on	the	vertical	surface

of	the	outside	surface	of	the	test	cell	and	three	inside	the	test	cell.	Horizontal	measurements	were	made	27	cm	distant	from	the	glazing	inner	surface	as	shown	in	Fig.	2.	All	illuminance	sensors	had	a	350	350–820	nm	sensitivity	spectral	range	with	a	spectral	response

curve	adapted	to	human	eye	sensitivity	[25,26,50].	Data	were	recorded	at	1	min	intervals.	Outdoor	experimental	test	cell	characterisations	were	performed	as	functions	of	time,	different	types	of	day	(clear,	 intermittent	cloudy,	overcast	cloudy),	and	test-cell	orientation

(south)	for	two	switching	states	‘transparent’	and	‘translucent’.	Horizontal	 illuminances	on	a	work	plane	inside	the	test	cell	and	daylight	glare	 index	(DGI)	were	investigated	using	PDLC	glazing	transparent/switch	on	and	translucent/	switch	off	conditions	in	the	Dublin

climate	(53.3478(53.3478°N	latitude)	for	three	days	with	different	prevailing	weather	conditions.

3	Results	and	discussions
Internal	illuminance	into	the	test	cell	for	PDLC	glazing	and	exterior	illuminance	for	clear	sunny,	intermittent	cloudy	and	overcast	cloudy	days	for	Dublin	are	shown	in	Fig.	4.	PDLC	translucent	perfectly	achieved	UDI	level	throughout	the	intermittent	cloudy	day.	Due

to	higher	diffuse	transmission	of	PDLC	translucent	always	offered	higher	UDI	level.

(8)

(9)

Fig.	3	Voltage	dependant	luminous	transmission	of	a	PDLC	glazing	in	transparent,	translucent	and	intermediate	states.

alt-text:	Fig.	3



Figs.	5–7	show	the	daylight	glare	index	(DGIN)	of	PDLC	glazing	for	its	transparent	and	translucent	state	for	clear	sunny,	intermittent	cloudy	and	overcast	cloudy	sky	conditions.

Fig.	4	External	illuminance	and	internal	illuminance	for	south	facing	PDLC	transparent	and	translucent	states	for	clear	sunny,	intermittent	cloudy	and	overcast	cloudy	day	in	Dublin.

alt-text:	Fig.	4

Fig.	5	DGI	of	PDLC	glazing	transparent	and	translucent	states	for	a	sunny	day	in	Dublin.

alt-text:	Fig.	5

Fig.	6	DGI	of	PDLC	glazing	transparent	and	translucent	states	for	an	intermittent	cloudy	day	in	Dublin.

alt-text:	Fig.	6



The	DGI	represent	the	discomfort	glare	of	occupant.	DGIN	is	the	best	method	to	evaluate	as	it	deals	with	direct	sunlight	and	vertical	illuminance.	In	the	equation	Lext	was	measured	using	illuminance	sensor	and	shown	in	Fig.	4.The	.	The	DGI	of	PDLC	glazing	in	its

transparent	and	translucent	states	was	calculated	using	Eq.	(1).	The	solid	angles	subtended	by	the	glare	source	(ΩN)	and	by	the	glazing	(ωN)	were	0.057,	0.03	Sr	and	0.35	Sr	respectively.

For	clear	sunny	day	translucent	PLDC	always	provided	DGI	level	below	the	intolerable	limit.	For	intermittent	and	overcast	cloudy	day	translucent	PDLC	usually	provided	acceptable	DGI	level.	PDLC	glazing	in	its	translucent	state	possess	 	haze	which	offer

high	diffuse	light	and	increase	the	transmission	in	the	switched	off	state	 Due	to	low	contrast	ratio	(contrast	ratio=transmission	ratio	between	PDLC	transparent	and	translucent)	of	this	PDLC	glazing	variation	of	DGI	level	is	less	between	two	states.	For	a	clear	sunny

day	PDLC	transparent	was	above	the	discomfort	level	where	as	translucent	was	above	the	comfort	level.	For	intermittent	day	PDLC	translucent	was	able	to	provide	glare	control	from	morning	to	mid-day	and	afternoon	period.	PDLC	translucent	was	completely	capable	to

control	glare	on	an	overcast	cloudy	day	where	as	transparent	state	offered	discomfort	for	short	time	span.

4	Conclusion
First	outdoor	daylighting	characterisation	using	PDLC	glazing	was	investigated	using	small	scale	test	cell.	Useful	daylight	illuminance	(UDI)	of	a	PDLC	switchable	glazing	in	“transparent”	and	“translucent”	states	has	been	measured	using	test	cell	for	clear	sunny,

intermittent	cloudy	and	overcast	cloudy	skies.	It	was	found	that	PDLC	“translucent”	condition	achieved	the	UDI	level	under	intermittent	and	overcast	cloudy	day.	Daylight	glare	index	(DGI)	was	calculated	for	clear	sunny,	intermittent	cloudy	and	overcast	cloudy	day.	For

clear	sunny	day	PDLC	glazing	was	not	able	to	offer	comfortable	glare.	However	for	 intermittent	and	overcast	cloudy	day	PDLC	glazing's	performance	was	impressive.	Higher	diffuse	transmission	on	translucent	state	helped	PDLC	to	offer	higher	transmission.	This	is

suitable	for	building	façade	application	where	daylight	penetration	get	higher	priority	than	viewing.	For	self-powered	(PV)	PDLC	application,	excess	power	generated	from	PV	can	be	stored	during	day	time	and	stored	power	will	be	utilised	in	the	night	or	cloudy	day	to	make

glazing	transparent.
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Highlights

• Daylight	indices	and	factors	have	been	calculated	for	a	PDLC	glazing	“translucent”	and	“transparent”	states.

• Voltage	dependentdependant	transmission	of	a	PDLC	glazing	is	reported.
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