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Abstract
The stability of soil organic matter (SOM) that governs soil organic carbon (SOC) storage depends on its characteristics 
and components, but little is known about how tree species in forest ecosystems affect SOM components and char-
acteristics. In this study, we used FTIR spectroscopy to investigate plantations of two ecologically and economically 
significant tree species—namely, spruce (Picea spp.) and sycamore (Acer pseudoplatanus)—in order to determine how 
the different litter inputs and root-microbe interactions of these two plantations affect the functional groups, compo-
nents, and characteristics of their SOM. Soil samples were taken from the topsoil (0–10 cm) and subsoil (10–20 cm). In 
the 0–10 cm soil depth, the SOM’s hydrophilic, hydrophobic, and aromatic components differ between the spruce and 
sycamore plantations. The hydrophobic components constitute the primary constituents of the SOM of the two forest 
plantations, in contrast to the expected predominance of the hydrophilic component of the SOM. Also, the high hydro-
phobicity (hydrophilic/hydrophobic) in the subsoil of the spruce plantations was attributed to a decrease in hydrophilic 
components and a subsequent increase in hydrophobic components of the SOM. The sycamore plantations exhibited 
a higher SOM aromaticity and a greater degree of decomposition than the spruce plantations. The aforementioned 
distinctions emphasise the contrasting mechanisms involved in transforming and turnover of the two-tree species’ soil 
organic matter (SOM).

Keywords  Hydrophobic · Hydrophilic · Hydrophobicity · Aromaticity

1  Introduction

Forest ecosystems possess a significant quantity of terrestrial carbon (C) stocks, with over 50% in soil [1–3]. Therefore, 
carbon accumulation in soil within forest ecosystems is considered a prospective approach to mitigate atmospheric 
carbon dioxide concentration [4, 5]. The stability of Soil Organic Matter (SOM), which governs the carbon reservoir in 
terrestrial ecosystems, is intricately linked to the composition of its constituent components (hydrophilic, aromatic, 
hydrophobic, etc.), their inherent attributes (hydrophobicity, aromaticity, and extent of decomposition), and their dis-
tinctive carbon chemistry signature [6, 7]. SOM characteristics such as the hydrophobicity primarily caused by aliphatic 
C–H units found in methyl, methylene, and methine groups[8, 9] regulate the water affinity, influencing the resistance to 
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microbial degradation, wetting rate, and adsorption processes [10]. The hydrophobic organic constituents are likely the 
main contributors to soil repellence, while the hydrophilic constituents impact soil wettability [11].

One major factor influencing the soil C pools in forest ecosystems is tree species [12]. The selection of tree species for 
afforestation or reforestation projects is a widely recognised tool utilised by foresters for management purposes, and 
in more recent years, it has been the subject of discourse as a potential method for enhancing carbon sequestration in 
soils [5].

Numerous studies have demonstrated the impact of tree species on soil organic carbon (SOC) sequestration (SOC) 
[13–15]. For instance, Díaz-Pinés et al. [13] demonstrated that Scot’s pine soils exhibit a significantly higher carbon storage 
capacity as compared to Pyrenean oak soils in Central Spain, which was linked to the quality of the SOM. Nonetheless, 
despite the fact that the stability of SOM that governs SOC storage depends on the SOM characteristics and components, 
there is still a lack of research on the components and characteristics of soil organic matter (SOM) affected by tree spe-
cies. Tree species have the potential to influence soil organic matter components and characteristics through variation 
in C inputs (that is, net primary production), litter quality and the release of root exudates, thereby affecting the SOM 
decomposition rate [16].

Among the tree species, sycamore (Platanus spp.) and spruce (Picea spp.) have gained considerable interest in the 
field of plantation forestry due to their unique growth patterns, litter characteristics, and potential influence on the 
accumulation of SOC [17–19]. Sycamore and spruce exemplify tree species that belong to the categories of deciduous 
and coniferous, respectively. Deciduous trees commonly undergo a seasonal shedding of their leaves, introducing a 
combination of labile and recalcitrant organic substances into the soil [20]. In contrast, coniferous trees generate needles 
that decompose slower, resulting in variations in litter composition and decomposition rates [21]. The dissimilarities in 
litterfall and decomposition patterns between these two tree species can consequently impact the SOM component 
and characteristics influencing carbon storage.

Fourier-transform infrared (FTIR) spectroscopy proves to be a cost-effective and efficient spectroscopic method, suc-
cessfully used to examine the characteristics and the components of SOM in different types of ecosystems [6–8, 22–24]. 
Therefore, we used FTIR spectroscopy to investigate plantations of two ecologically and economically significant tree 
species—namely, spruce (Picea spp.) and sycamore (Acer pseudoplatanus)—in order to determine how the different litter 
inputs and root-microbe interactions of these two plantations affect the functional groups, components, and charac-
teristics of their soil organic matter. We hypothesise that sycamore and spruce differ in SOM components and forest soil 
characteristics due to their distinct litterfall and decomposition rates.

2 � Materials and methods

2.1 � Study site and soil sampling

The study was conducted in forest plantations (spruce and sycamore plantations) located in Tullamore, Co-Offaly, Ire-
land. The annual air temperature in the county exhibits a range of 5.7 °C to 13.0 °C, with a mean precipitation of 819 mm 
[25]. The study area exhibits the presence of histosol soil, characterised by a drainage channel that effectively manages 
water flow. For the purpose of this study, fifteen forest plantations were chosen, comprising six sycamore plantations and 
nine spruce plantations. The criteria for selecting these forest plantations across the region included the consent of the 
landowners to take soil samples in their fields, and forest that adhere to contemporary Irish forestry best management 
practices as delineated by the Forest Service (2000). The age of the forest plantations selected for this study ranged from 
12 to 15 years. The sycamore plantations exhibited a notable height ranging from approximately 8 to 14 m, with a well-
established canopy whilst the spruce plantations exhibited a height range of 10 to 16 m. The thickness of the peat layer 
differs between 0.5 m and 7.5 m across the selected forest plantations. The average soil pH under the selected spruce 
forest plantations and the sycamore forest plantations was 5.6 and 6.1, respectively. The soil pH was measured in a soil-
to-water suspension ratio of 1:2.5, using a glass electrode in a pH meter [26].

A total of 30 soil samples (15 topsoils and 15 subsoils) were collected from 15 forest plantations (six sycamore plan-
tations and nine spruce plantations) between October 2021 and January 2022. Therefore, 12 and 18 soil samples (sub 
and topsoil) were collected from the six sycamore plantations and nine spruce plantations, respectively. Ten quadrants 
measuring 0.5 m × 0.5 m were strategically positioned at random distances along a diagonal line within 5 m × 50 m plots 
for each location. The collection of soil samples was carried out using a Russian peat corer with a diameter of 15 cm. The 
samples were taken up to 20 cm and subsequently divided into two layers: 0–10 cm and 10–20 cm. In each of the 15 
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forest plantations, one composite soil sample consisting of ten cores was collected from every quadrant and placed in 
self-sealing plastic bags. The soil samples were subjected to drying in an oven at a temperature of 45 °C within a labora-
tory environment. After the samples were dried, they underwent crushing and subsequent sieving using a 2 mm mesh 
to facilitate their preparation for Fourier Transform Infrared (FTIR) analysis.

2.2 � ATR‑FTIR measurements

To conduct a comparison of the SOM functional group in the two forest plantations systems, an analysis was performed 
on a dried soil sample using Fourier-transform infrared spectroscopy (FTIR) in attenuated total reflection (ATR) mode with 
DTGS detector (Perkin Elmer Spectrum One, PerkinElmer Inc., Waltham, MA, USA). The ATR crystal underwent a cleaning 
process using anhydrous ethanol after each sample. To maintain the integrity of the measurements and minimise the 
influence of atmospheric variations within the laboratory, the instrument was calibrated relative to the ambient air in 
the surrounding environment prior to each measurement. This precautionary step aimed to prevent any potential devia-
tions in the results that could be attributed to fluctuations in the laboratory’s atmosphere. The soil samples underwent 
spectral characterisation with a resolution of 4 cm−1 and a scan range of 4000–650 cm−1. The processing of spectra data, 
including baseline correction (using the connecting line method), smoothing (employing the Savitzzky-Golay method), 
and normalisation, was conducted using the OriginPro 2023 software (OriginLab Corporation based in Northampton, 
MA, USA). The intensity of the peak (measured by height) was recorded to evaluate the extent of infrared absorption for 
the selected peak. The observed absorption bands have been attributed to their corresponding organic carbon assign-
ments, as specified in Table 1.

The peaks at 2980 and 2920 cm−1 were integrated by aggregating their respective heights, thereby consolidating 
them into a singular peak representing hydrophobic soil organic matter (SOM) functional groups. The hydrophobicity 
was calculated by the ratio of hydrophobic (C–H) and hydrophilic (C = O) functional groups at 2920 + 2980 cm−1 and 
1720 cm−1, respectively [33, 34]. The decomposition of SOM has been conducted by examining the ratio of the hydrophilic 
functional group to the total sum of aromatic and aliphatic compounds [24, 35]. Therefore, the degree of decomposition 
index (DDI) of peat organic matter was calculated by dividing the intensity peak at 1720 cm−1, indicative of hydrophilic 
components, by the sum of the peak height at 2980 + 2920 cm−1, which corresponds to the hydrophobic component of 
SOM. The assessment of SOM aromaticity involved calculating the ratio between aromatic (1610 cm−1 + 1520 cm−1) and 
aliphatic (2980 + 2920 cm−1) groups.

2.3 � Data analysis

A significance test using an Independent t-test was performed using OriginPro 2023 (OriginLab Corporation, Northamp-
ton, MA, USA) to determine if there is a significant difference in the functional groups, components, and characteristics 
of Soil Organic Matter (SOM) between the spruce and sycamore plantations. Additionally, Correlation and Principal 
Component Analysis (PCA) were utilized to examine the interconnections among the functional groups, components, 
and characteristics of SOM in both the spruce and sycamore plantations.

Table 1   Peak positions in the FT-IR spectra, as documented in the literature, along with their suggested assignments

Peak name Wavenumber
limits (cm−1)

Characterization References

1050 1070–1040 O–H deformation and C–O Stretching [27]
1110 1116–1080 Secondary alcohol [28]
1410 1420–1410 O–H deformation and C–O stretching of phenolics group [29]
1520 1535–1500 Aromatic rings, amides II vibration [30]
1610 1620–1600 Aromatic C = C stretch, strong H-bond C = O of conjugated ketones [30, 31]
1640 1660–1630 C = O stretching of amide groups [32]
2920, 2980 3020–2800 Symmetric and asymmetric aliphatic C–H stretching vibrations or aliphatic 

methyl and methylene
[27]
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3 � Results

3.1 � SOM functional groups

The FTIR spectra of the soil in the spruce and sycamore plantations displayed similarities, as shown in Fig. 1. Neverthe-
less, the differentiation in SOM functional groups of the soil originating from the two plantations was contingent upon 
the examination of peak intensity, specifically focusing on the height of specific peaks, as detailed in Table 2. In the two 
soil depths (0–10 and 10–20 cm), SOM functional groups such as secondary alcohols (peak, 1110), O–H deformation 
and C–O stretching of phenolics (peak, 1410) aromatic C = C, strong H-bond C = O of conjugated ketones (peak, 1610) 
and C = O stretching of amide groups (peak, 1640) did not differ significantly among the forest soil in the spruce and 
sycamore plantations. Nevertheless, the spruce plantations demonstrated a greater C–O stretching of polysaccharides 
(peak, 1050), aromatic rings in amides II vibration (peak, 1520) and aliphatic methyl and methylene (peaks, 2920 and 
2980) than the sycamore plantations.

3.2 � SOM components

The surface soil exhibited a greater hydrophilic component of the SOM compared to the subsoil. The hydrophilic compo-
nent of the SOM of the spruce plantations was higher than the sycamore plantations in 0–10 cm (Fig. 2A). The hydrophilic 
components of the soil organic matter (SOM) in spruce and sycamore plantations showed no significant differences 
(P > 0.05) within the 10–20 cm depth range of the forest soil (Fig. 2A). Like the hydrophilic components, a significant dif-
ference (P < 0.05) in the hydrophobic component was exhibited on the surface soil (0–10 cm) such that the soil samples 
from the spruce plantations showed higher hydrophobic functional group than the soil samples from the sycamore 
plantations (Fig. 2B).

In the 10–20 cm soil depth, there was no significant difference (P > 0.05) observed in the hydrophobic components of 
the soil organic matter (SOM) between the spruce and sycamore plantations. In the 0–10 cm soil depth, there is a notable 
difference (statistically significant at P < 0.05) in the aromatic composition of the soil organic matter (SOM) between the 
spruce and sycamore plantations (Fig. 2C). In the case of the spruce plantations, there is a notably higher aromatic SOM 
component, reaching 24.15%, when compared to the sycamore plantations (Fig. 2C). However, for the 10–20 cm sample, 
there is no significant difference in aromatic components between the sycamore and spruce plantations (Fig. 2C).

3.3 � SOM characteristics

In the top 0–10 cm, greater aromaticity was observed in the sycamore plantations forest soil compared to the aromatic-
ity of SOM in the spruce plantations (Fig. 3A) while the aromaticity levels of the SOM exhibited no substantial variance 
(P > 0.05) between sycamore and spruce plantations within the 10–20 cm depth (Fig. 3A). The hydrophobicity of the forest 
SOM was higher on the subsoil soil than on the surface soil (Fig. 3B). In the 0–10 cm layer, there was no significant differ-
ence in hydrophobicity (P > 0.05). However, the hydrophobicity of the soil in the spruce plantations showed a significant 
variance compared to that in the sycamore plantations within 10–20 cm (Fig. 3B). The sycamore plantations exhibited a 
greater DDI compared to the spruce plantations, although there was no significant difference observed at both depths 
(0–10 and 10–20 cm) (Fig. 3C).

3.4 � Pearson correlation and principal component analysis

Two principal components (PC) were extracted from SOM functional groups, components, and characteristics of forest 
SOM (Fig. 4). In the 0–10 cm soil depth, the first PC (64.47% of total variance) comprises hydrophobicity, hydrophobic, 
aromatic, hydrophilic, O–H deformation and C– O stretching related to phenolics (peak, 1410), aromatic C = C, strong 
hydrogen bonding in C = O of conjugated ketones (peak, 1610) and C = O stretching associated with amide group (peak, 
1640), C–O stretching linked to polysaccharides (peak, 1050) and aliphatic methyl and methylene features (peaks, 2920 
and 2980). The grouping of aliphatic methyl and methylenes (peaks 2920 and 2980) with the hydrophobic functional 
group suggests that the changes in hydrophobic properties of SOM depend on the availability of the SOM’s aliphatic 
methyl and methylene functional group at both peaks (2920 and 2980). The second PC accounted for a variance of 22.7%, 
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indicating that the variation in the data was primarily influenced by the aromaticity, secondary alcohols (peak, 1110) and 
degree of decomposition (Fig. 4). In 10–20 cm, the first PC (51.8% of total variance) comprised variables characterising 
all the identified carbon chemistry signatures, aromatic, hydrophilic, hydrophobic and hydrophobicity. The grouping 
of aliphatic methyl and methylene (peak 2920) and hydrophobicity indicate that the decrease in aliphatic methyl and 

Fig. 1   FTIR spectra of forest 
soil in spruce and sycamore 
plantations established on a 
Histosols



Vol:.(1234567890)

Research	 Discover Agriculture            (2024) 2:18  | https://doi.org/10.1007/s44279-024-00031-4

methylene functional group during SOM decomposition will decrease the hydrophobicity of the SOM. The second PC 
(29.7% total variance) consisted of aromaticity and the DDI, occurring at the positive part of the second PC (Fig. 4).

The Pearson correlation was employed to assess the relationship among the characteristic components and func-
tional groups of forest SOM (Fig. 5). All the identified carbon chemistry except for O–H deformation and C– O stretching 
related to phenolics (peak, 1410) showed a strong positive correlation with the aromatic, hydrophobic and hydrophilic 
components of the SOM in both soil depths (0–10 and 10–20 cm) (Fig. 5). Within the 0–10 cm depth, there was a strong 
negative relationship between the hydrophilic components and the aromatic and hydrophobic components of the soil 
organic matter (SOM) (Fig. 5a). However, at a depth of 10–20 cm, there was a weak negative relationship between the 
hydrophilic and aromatic components of the SOM, although this relationship was not statistically significant (Fig. 5b). 
The aromaticity correlated negatively with hydrophobicity and the DDI (Fig. 5). The DDI exhibited a negative correlation 
with hydrophobicity, indicating that the decrease in the hydrophobicity increases SOM decomposition, occurring at 
both the top and the subsoil (0–10 and 10–20 cm).

3.5 � Discussion

In both the spruce and sycamore plantations, the results of the SOM functional groups indicate the presence of carbon 
compounds containing functional groups of the SOM, including the carbohydrate, lignin content and polyphenolics 
compounds, confirming the expected occurrence of these compounds within the soil organic matter in forest plantations. 
Interestingly, our results exhibit similarities with the functional groups identified in the SOM from diverse geographical 
regions and soil types, namely a tilled Mediterranean Semiarid soil [23], various soil types (automorphic, gleyic, and Gley-
sols) in Estonia [24], various peatland use types (grassland, forestry, cutaway and cutover) in Ireland [7] and regenerating 
cutover peatlands [22]. This convergence in the carbon compounds containing functional groups of the SOM across 
the diverse geographical regions, different soil management practices and soil types implies that the presence of the 
SOM functional groups in this study might not be limited to specific soil types or climate systems. Instead, it suggests a 
broader ecological relevance that transcends geographical boundaries [36, 37], while acknowledging this similarity, it 
is crucial to recognize that the quantity (intensity) of the SOM functional groups differs under different vegetation, soil 
type, and climatic conditions [23, 38].

Table 2   Peak intensity (× 102) 
determined by ATP-FTIR of 
forest soil

The values are the mean ± SD

*Significant at the 0.05 level
a t-test and bSignificant were obtained from Two-Sample t-test, ns, not significant

Peak number (cm1) spruce plantation sycamore plantation t-testa Significantb

0–10 cm
 1050 1.394 ± 0.014 0.344 ± 0.004 0.338 *
 1110 0.073 ± 0.005 0.071 ± 0.003 0.431 ns
 1410 1.449 ± 0.014 1.013 ± 0.002 0.521 ns
 1520 1.329 ± 0.013 0.461 ± 0.003 0.879 *
 1610 1.144 ± 0.011 0.948 ± 0.001 0.707 ns
 1640 1.295 ± 0.012 0.843 ± 0.002 0.607 ns
 2920 2.186 ± 0.018 0.457 ± 0.002 1.958 *
 2980 2.220 ± 0.014 0.916 ± 0.004 0.921 *

10–20 cm
 1050 0.951 ± 0.009 0.429 ± 0.004 0.043 *
 1110 1.106 ± 0.006 0.736 ± 0.004 0.968 ns
 1410 1.086 ± 0.008 1.018 ± 0.002 0.142 ns
 1520 1.467 ± 0.013 0.675 ± 0.003 1.036 *
 1610 1.143 ± 0.008 0.980 ± 0.002 0.351 ns
 1640 1.012 ± 0.007 0.920 ± 0.003 0.195 ns
 2920 2.299 ± 0.009 0.459 ± 0.004 1.233 *
 2980 1.353 ± 0.023 1.110 ± 0.004 0.478 *



Vol.:(0123456789)

Discover Agriculture            (2024) 2:18  | https://doi.org/10.1007/s44279-024-00031-4	 Research

The SOM functional groups, components, and characteristics of forest soil of the studied forest plantations mainly 
depend on the plant litter input quality and quantity, turnover rate, and soil characteristics [13, 39, 40]. The higher C–O 
stretching of polysaccharides (peak, 1050) and aliphatic methyl and methylene (peaks, 2920 and 2980) functional group 
exhibited by the spruce plantations than the sycamore plantations may probably be assigned to the characteristics of 
higher litter C:N ratio and lower annual litterfall [41]. According to Verstraeten et al. [42], a higher C: N ratio of litter under 
the spruce plantations leads to the decrease of the decomposition rates of SOM, which could subsequently increase the 
polysaccharides components of the SOM. Litterfall, comprised of fallen leaves, plant debris, and organic material, serves 
as a primary source of plant-derived carbon compounds, such as cellulose, lignin, and other organic polymer inputs to 
the soil [43, 44]. A lower litterfall can result in decreased inputs of organic carbon, influencing microbial activity and 
decomposition rates. This, in turn, can impact the overall composition of soil organic matter (SOM), potentially causing 

Fig. 2   Average content of (A), hydrophilic (B), hydrophobic and (C) aromatic components of forest soil. Error bars indicate the SD. “ns” repre-
sent not significant (p > 0.05), while “*p ≤ 0.05” denotes significance
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shifts in the relative abundance of various functional groups and chemical constituents within the soil. Hence, this could 
potentially account for the observed differences in aliphatic methyl and methylene (peaks, 2920 and 2980) as well as 
C-O stretching of polysaccharides (peak, 1050) constituents within the SOM between sycamore and spruce plantations.

The peaks at 2980 + 2920 and 1720 indicate the presence of C–H and C = O functional groups, which correspond to 
the hydrophilic and hydrophobic components of the soil, respectively. Generally, hydrophilic components dominate 
the composition of the SOM [23, 45]. Our study’s results indicated that the hydrophobic components constitute the 
primary constituents of SOM, in contrast to the expected predominance of the hydrophilic component of the SOM 
occurring at 0–10 cm depth. The findings are consistent with the observations reported by [7, 10, 23, 46] for histosol 
(peatland). The prevalence of hydrophobic constituents in soil organic matter (SOM) within forested peat soils, as 
observed in our study, can be attributed to the presence of waterlogged conditions that limit microbial activity and 

Fig. 3   Average content of (A), Aromaticity (B), hydrophobicity (C) Degree of decomposition of forest soil. Error bars indicate the SD. “ns” rep-
resent not significant (p > 0.05), while “*p ≤ 0.05” denotes significance
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reduce decomposition rates, which leads to the preservation of recalcitrant organic compounds possessing inherent 
hydrophobic properties [47, 48]. The forest canopy further contributes to hydrophobic constituents by depositing 
compounds like waxes and lipids from plant litter, creating a reservoir of water-insoluble substances as compared 
to other ecosystems such as field crops and grassland ecosystems [49]. This distinctive environment promotes the 

Fig. 4   Biplots of the SOM 
functional groups, characteris-
tics, and components of SOM 
under spruce and sycamore 
plantations. DDI, Degree of 
decomposition index. The 
parameters within the circle 
signify their interconnected-
ness.HI, Hydrophobicity Index
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Fig. 5   Pearson’s rank correlation carbon chemistry signature, characteristics, and components. DDI, degree of decomposition
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persistence and accumulation of hydrophobic organic components, challenging the conventional expectation of 
hydrophilic dominance in SOM composition.

The lower hydrophobic components in the organic matter of the topsoil in the sycamore plantations suggest a higher 
decomposition rate of labile carbohydrates compared to the spruce plantations (as seen in Table 2 at peaks 2920 and 
2980). The higher aromaticity observed in the sycamore plantations, in comparison to the spruce plantations, can be 
ascribed to the accelerated decomposition rate of aliphatic functional groups present in the SOM compared to the spruce 
plantations. The decomposition of aliphatic structures potentially results in an enrichment of aromatic compounds within 
the SOM [50]. Notably, the observed negative correlation between the hydrophobicity of SOM and its aromaticity, as illus-
trated in Fig. 5, suggests that the process of accelerated decomposition, leading to increased aromaticity, is particularly 
prominent in the subsoil layers (10–20 cm). This correlation implies that as the hydrophobicity of SOM decreases, there 
is a concurrent rise in aromaticity, indicating a dynamic interplay between decomposition processes, hydrophobic com-
ponents, and aromatic structures in modifying the composition of SOM in the subsoil layers of the sycamore plantations.

The hydrophobicity is defined by the ratio of hydrophobic (C-H) groups to hydrophilic (C = O) functional groups [33]. 
The higher hydrophobicity in the subsoil of the spruce plantations than in the sycamore plantations (Fig. 3B) can be attrib-
uted to a decrease in hydrophilic components and a subsequent increase in hydrophobic components of the SOM. Such 
an effect is likely due to the higher C: N ratio and the wax coating characteristics of the litter of the spruce plantations as 
compared to the sycamore plantations [41]. A higher C:N ratio and wax coating have been linked to slower decomposition 
rates and higher tannin content compared to the litter in sycamore plantations [51]. Therefore, the litterfall in the spruce 
plantations, distinct from the sycamore plantations, introduces plant residues with a higher C:N ratio [52, 53]; subsequent 
microbial-driven decomposition preferentially breaks down hydrophilic compounds, reducing their abundance, while 
concurrently yielding recalcitrant organic materials with inherent hydrophobic properties [54, 55], thereby contribut-
ing to the observed increase in hydrophobic components. The observed low hydrophobicity of SOM at the sycamore 
plantations can potentially be ascribed to the heightened microbial activity involved in plant litter degradation [35]. This 
microbial activity may enhance the occurrence of C = O groups, thereby facilitating the formation of stable microbial 
carbohydrates. The similarity in the studied SOM functional group, components and characteristics between the 0–10 cm 
and 10–20 cm layers of the forested soil can be attributed to the uniform distribution of the functional groups (Table 2), 
microbial activity, and decomposition processes throughout the examined soil depths [7].

3.6 � Conclusion

The study findings showed that sycamore and spruce affect the functional groups, characteristics and components of 
SOM. The SOM functional groups, such as the aliphatic methyl and methylene (peaks, 2920 and 2980) and C–O stretching 
of polysaccharides (peak, 1050) functional group, were higher in the soil from the spruce plantations than the sycamore 
plantations. Significant variations were observed in the hydrophilic, hydrophobic, and aromatic soil organic matter (SOM) 
components between the spruce and sycamore plantations. The SOM of the forest soil of the sycamore plantations 
exhibited higher aromaticity than the SOM from the spruce plantations. The noteworthy observation pertained to the 
unforeseen prevalence of hydrophobic components as the principal constituents of soil organic matter, deviating from 
the expected predominance of the hydrophilic component. The high hydrophobicity (hydrophilic/hydrophobic) in the 
subsoil of the spruce plantations can be linked to a decrease in hydrophilic components and a subsequent increase in 
hydrophobic components of the SOM. Also, the high degree of decomposition exhibited by the sycamore can be assigned 
to the low hydrophobic component of the SOM compared to the spruce plantations.
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