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Abstract

This thesis investigates those abelian groups which are minimal with
respect to certain quasi-orders defined on Ab, ,7 rthe category of abelian
groups of a given infinite cardinality x. Six such quasi-orders are defined
and groups which are minimal with respect to these quasi-orders are
called either quasi-minimal, with the associated concepts of purely and
directly quasi-minimal groups, or simply minimal with the correspond-
ing associated groups. A complete characterisation is derived for the
quasi-minimal groups and, assuming GCH, for the purely quasi-minimnal
groups. Moreover, it is shown that the direct quasi-minimality of a group
may be undecidable in ZFC. In the minimal case, consideration of tor-
sion groups can be reduced to that of p-groups, and a criterion for the
minimality of a p-group is found in terms of its Ul invariants. The
minimality of various classes of torsion-free groups is determined. In
particular, a characterisation in terms of their critical typesets is found
for all finite rank and for large classes of infinite rank completely decom-
posable groups. Several equivalent conditions are given for the minimal-
ity of general separable groups. The minimality of mixed groups is also

investigated, particularly those of torsion-free rank 1.
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Introduction

The notions of strong and weak quasi-mmimality first appeared in the
context of topological spaces (see e.g. {18]), building on observations from
an important paper of Ginsburg and Sands in 1979 [12]). The essential
ingredients were: a family F of topological spaces and the quasi-ordering
of spaces obtained by saying, for X, Y € 7, X XY if X is homeomorphic
to a subspace of Y. Then we say X € F is strongly quasi-minimal if
Y < X,Y € F, implies X is homeomorphic to Y. The surprising result
in this context is that if  is the family of all countably infinite topological
spaces then the strongly quasi-minimal members of F are precisely the
five spaces singled out by Ginsburg and Sands {12].

Some related concepts have been extended by Matier and McMaster
(see [17]) to the more general setting of what they call a sized category.
By this they mean a category C with an equivalence relation ~ on the
objects of C, a quasi-order (i.e. a reflexive and transitive but, not nec-
essarily anti-symmetric, binary relation) “sub” on C, an assignment ¢
which associates with each object X € C a “size” ¢(X) of X and another

quasi-order < on the range of ¢ satisfying:

v



(1) Xsub Y, X ~ X" Y ~ Y’ together imply X’ sub ¥,
(2) X sub Y implies ¢ X) < ¢(Y),
(3) if o{X) < ¢(Y) then there exists Z € C such that X sub Z and

(4) if e{X) < ¢(Y) then there exists W € C such that W sub Y and

(In almost all cases of interest the size ¢{ X) will be the cardinality of the

set X with < the usual ordering on cardinals.)

We then say that X € C is strongly quasi-minimalif Y sub X,V € C,
implies X ~ Y. !

The categories of interest to Matier and McMaster derive mainly
from general topology. Our interest, however, lies in another direction
and we focus exclusively on the category Ab, of all abelian groups of the
fixed but arbitrary cardinal k. The relation “sub” on objects X, Y € Ab,

may take a number of different forms:

INote that the quasi-order sub induces another quasi-order, again called sub, on
the equivalence classes of objects in C where we say X sub Y if and only if X sub ¥
forall X € X and ¥ € Y, for equivalence classes X and Y. In the case of abelian
groups, however, where the equivalence relation is isomorphism, a natural concept,

this plays no significant role.



(i) X sub Y if X is isomorphic to a subgroup of Y,

(ii) X sub.Y if X is isomorphic to a pure subgroup of Y,

(1) X subcY if X is isomorphic to a direct summand of Y,

(iv) X suby; Y if X is isomorphic to a subgroup of finite index of Y,
(v) X suby;,Y if X is isomorphic to a pure subgroup of finite index of
Y,

(vi) X suby,; Y if X is isomorphic to a direct summand of finite index

of Y.

In each case the equivalence relation ~ will be isomorphism and ¢(X)
will denote the cardinality of X. Thus we have six different concepts
of strong quasi-minimality, corresponding to the various forms of “sub”

above. Henceforth we omit the adjective “strong”. Specifically, we say:

(a) X is quasi-mintmal in Ab, if X is quasi-minimal with respect to
sub,

(b) X is purely quasi-minimal in Ab, if X is quasi-minimal with respect
to sub,,

(c) X is directly quasi-minimal in Ab, if X is quasi-minimal with re-
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spect to subg,

(d) X is mmimalin Ab, if X is quasi-minimal with respect to suby,;,
(e) X is purely minimal in Ab, if X is quasi-minimal with respect to
subyi.,

(f) X is directly minimal in Ab, if X is quasi-minimal with respect to

su.bf‘,-,c.

Note that a group is purely minimal if and only if it is directly min-
imal since a pure subgroup of finite index is always a summand. Also
note that a group is quasi-minimal if and only if it is isomorphic to all its
subgroups of the same cardinality, with similar statements for the other
five types of minimality. In practice this is the more useful viewpoint
of minimality to take. We will make the corresponding definitions as
required.

In the context of topological spaces it was also of interest to have a
notion of weak quasi-minimality: the essential difference here being that
Y X X,Y € F, now implies X < Y only. Since the order < is not
necessarily anti-symmetric, this is, a priori, a different concept to strong
quasi-minimality. In a similar way we introduce the corresponding con-

cept in Ab,. Just as in topological spaces, the orders introduced in (i) —
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(vi) are not anti-symmetric as the following examples show:

() Let P=1]]Ze,, S=@@Zen, Pye= [l Zes, Sope=

n<w n<w nodd/even

od§/9 Ze, and G = S, & P., where e,, is the n'® unit vector. Then G
n odd/even

sub.P and P sub,.G but G # P:

obviously G is a pure subgroup of P and also P = P, (n — 2n), a pure
subgroup of G. However, G # P since G = S; & P, is uncountable
(see [10, Theorem 43.1)) and so is not isomorphic to P* = S which is
countable (see [11, Lemma 94.1 and Proposition 94.2)).

{b) (Corner, [5)) There exists a group X such that X = X ¢ X @ X
but X ¥ X & X. Letting G = X @ X, we get that G subr X and X
subr G but X # G.

(c) We will see later, in chapter V, that there exist weakly minimal

groups which are not minimal.

Observe that the failure of anti-symmetry displayed above is not, in
itself, a guarantee that there will be e.g. weakly quasi-minimal groups
that are not quasi-minimal. Of course quasi-minimality (of any type)
will always imply the corresponding weak concept.

The principal objective of this thesis is to investigate these concepts
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with a view to obtaining characterisations of the groups involved. A
complete characterisation of quasi-minimal groups and, assuming the
generalised continuum hypothesis, of purely quasi-minimal groups is ob-
tained. An independence result is established for directly quasi-minimal
groups. The pr;i;lem of determining mini;nal and purely minimal groups
is considerably more difficult but we obtain complete characterisations
for some restricted classes of groups. It is perhaps worth noting that
the concept we have described as “minimality” has been studied in the
context of general, not necessarily abelian, groups where such groups are
referred to as “hc-groups”; the terminology derives from considerations

of counectedness of manifolds. Further details may be found in Robinson

and Timm [24)].

The notation used throughout the thesis is standard and follows that

of [10] and [11] except that maps are written on the right.
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I Preliminaries

In this first chapter we list the basic definitions and results from abelian
group theory which are used in the thesis. All of these can be found in

the standard textbooks of L. Fuchs ([10] and [11]).

§1 General Abelian Groups

All groups in this work are assumed to be abelian. If G is any abelian
group the torsion subgroup, G, of G is the subgroup of G consisting of
elements of finite order. If G = tG we say G is a torsion group and if
tG = 0 we say G is torsion-free. G is a mized group if 0 # tG # G. We

say a mixed group G splits if G is a direct summand of G.

Definition 1.1 The torsion-free rank of an arbitrary group G, ro(G), s
the cardinality of any mazimal linearly independent subset of G consisting

of torsion-free elements.

It is not difficult to see that ro(G) = ro(G/tG), so we need only
consider torsion-free groups when looking at the torsion-free rank and in

this case we simply write 7(G) for ro(G).



The study of torsion groups is reduced to that of p-groups, p a prime,
i.e. groups all of whose elements have order a power of p, by the following

structure theorem.

Lemma 1.2 Euvery torsion group G can be written in the form
G = @ Gp where I is the set of primes and G, is a p-group. The groups

pell
G, are called the primary components of G.

Proof: See [10, Theorem 8.4.]. O

An important concept in the study of abelian groups is divisibility. If
G is any group, then an element ¢ € G is divisible by n € Z in G if there
exists some ¢ € G such that g = ng’. A group D is divisible if every
element in D is divisible by n for all n € Z. If p is any prime then D is
p-divisible if p" D = D for all n € N. It is easily seen that D is divisible if
and only if D is p-divisible for all p. Every group has a maximal divisible
subgroup and every group can be embedded in a minimal divisible group,
called a divisible hull of the group.

We say a group C is reduced if C has no divisible subgroups. The
structure theorem on divisible groups says that every divisible group G

can be written as G = @ P Z(p*™) & @ Q for some index sets I,, and I
pell I I



(see [10, Theorem 23.1}).

Lemma 1.3 Fuvery group A is the direct sum of a divisible group D and
a reduced group C where D is the mazimal divisible subgroup of A and is

uniquely determined.

Proof:  See [10, Theorem 21.3]. 0

Another important concept 1s that of an exact sequence:

Definition 1.4 A sequence of groups A; and homomorphisms a;
Ao =5 AL 2 A, A, H A (B> 2)

is exact if Im(a;) = Ker(ajy), forj=1,... k- 1.

In particular, an exact sequence
0—4-5%B%Cc—0 (1)

is called a short eract sequence. Here a is monic, 3 is epic and C =
B/Im(a). In this case B is called an extension of A by C. We identify
two such short exact sequences

0—54A-55B2 00

and

04582 c o0



if there exists a homomorphism ¢ : B — B’ such that o = a¢ and

#8' = B. The 5-Lemma {10, Lemma 2.3} tells us that ¢ must, in fact,
be an isomorphism. In this way we get an equivalence relation on these
short exact sequences. The equivalence classes form a group Ext(C, A4),
ca.llec; ;he group of extensions of A by C. We refer to e.g. [10, IX] for
more details.

The group A @ C is called the splitting eztension of A by C. The
equivalence class of this splitting extension is the zero element in the
group Ext(C,A). We say the short exact sequence (1) splits if there
exists a homomorphism ~ : C — B such that 43 = I or, equivalently,
there exists a homomorphism § : B — A such that aé = I4. All
such sequences are equivalent to the splitting extension since, in this

case, B = Aa ¢ C~. The following lemma is an important result from

homological algebra involving the functors Hom and Ext.

Lemma 1.5 (Cartan and Edenberg) For the ezact sequence (1) and an
arbitrary group G the induced sequences
0 — Hom{C,G) — Hom(B,G) — Hom(A,G) —
—Eet(C,G) — Ext{B,G) — Ext(A,G) — 0
and

0 —sHom(G, A) — Hom(G, B) — Hom{G, C) —»



— Ezt(G, A) — Ert(G, B) — Ezt(G,C) — 0

with the usual connecting homomorphisms, are exact.

Proof:  See [10, Theorem 51.3]. O

An alternative approach to divisibility is the idea of injectivity:

Definition 1.6 A group D is injective if for every ezact sequence
0— A5 B
and every homomorphism ¢ : A — D there ezists a homomorphism
¥ : B — D such that b = ¢,
Injective groups are easily characterised:
Lemma 1.7 For any group D the following are equivalent:
(1) D is injective;
(i1) D s divisible;
(iiil) D is a summand of every group containing D.

Proof:  See [10, Theorem 24.5]. O

We now come to another essential idea in the theory of abelian

groups, namely the so-called pure subgroups. If G is any group we say a



subgroup H of G is pure in G, written H <, G, if nH = nG N H for all
n €Z,ie if h =ngfor some h € H g € G and n € Z then there exists
hy € H such that h = nh,. If p is any prime, then H is p-pure in G if
p"H =p"GN H for all n € N. Again H is pure in G if and only if it is
p-pure in G for all p- The main facts concerning pure subgroups used in

this thesis are the following:

Lemma 1.8 If B, C are subgroups of A such that C < B < A, then we
have:

(1) IfC is pure in B and B is pure in A, then C is pure in A;

(1) If B is pure in A, then B/C is pure in A/C;

(iii) If C is pure in A and B/C is pure in A/C, then B is pure in A.

Proof: See [10, Lemma 26.1]. O

Lemma 1.9 A bounded pure subgroup is a direct summand where a

group G is bounded if there exists n € N such that nG = 0.

Proof: See [10, Theorem 27.5]. O

Lemma 1.10 If C is a pure subgroup of A such that A/C 15 a direct

sum of cyclic groups, then C is a direct summand of A.



Proof:  See [10, Theorem 28.2]. O

Returning to short exact sequences we say the sequence (1) is pure

ezact if Ao <. B. This leads to the following definition of a pure injective
group.

Definition 1.11 A group G is pure injective if it is injective with respect

to all pure ezact sequences, i.e. given a pure ezact sequence
0—A-5B-2c—a0

and a homomorphism ¢ : A — G there exists ¢ homomorphism ¢ :

B — G such thet ayp = ¢.
These groups can be characterised in different ways. First we need:

Definition 1.12 A group G is algebraically compact if whenever S is a
system of equations over G with coefficients in Z such that every finite

subsystem of S has a solution in G, then § has a solution in G.

Lemma 1.13 For any group G the following are equivalent:

(i) G is pure injective;

(ii) G is algebraically compact;

(i) G is a summand of every group that contains G as a pure sub-

group.



Proof: See [10, Theorem 38.1]. O

For a torsion-free group A an important notion is the purification
of any subset S of A, written (S}, or simply (5),, if A is understood,
where (5), is the smallest pure subgroup of A containing S, i.e. the
intersection of all pure subgroups of A which contain 5. It is easy to see

that (S), = {¢ € A:na € S for some n € Z}.

Next we consider the idea of a p-basic subgroup of a group A.

Definition 1.14 Let p be any prime. A subgroup B of a group A is
called a p-basic subgroup of A if B satisfies the following conditions:
(1) B is a direct sum of cyclic p-groups and infinite cyclic groups;

(i1) B is p-pure in A,

(i) A/B is p-divisible.

Lemma 1.15 Fvery group has p-basic subgroups, for every prime p.

Moreover, for a given p, all p-basic subgroups of a group are wsomorphic.

Proof: See [10, Theorem 32.3] and [10, Theorem 35.2]. O



If B is a p-basic subgroup of A, then B can always be written in the
form B = BO@B[@@Bn® where Bg = @Zand Bn: @Z(pn)
I I
for n > 1 and some index sets I, I,,.

Lemma 1.16 Let A be any group and B as above. Then, for anyn > 1,

A=B®---® B, ® (B, +p"A) where B, = B, ® @ B..

i>n

Proof:  See [10, Theorem 32.4]. O

If G is any group we can define a linear topology on G by taking
{nG : n € N} as a fundamental system of neighbourhoods of 0. This
topology is called the Z-adic topology on G. If we take {p"G : n € N} as
our fundamental system, where p is some prime, then we get the p-adic
topologyon . We say that G is complete in its Z-adic (or p-adic) topology
if the topology is Hausdorff and if every Cauchy sequence in G has a limit
in G. Every group G, that is Hausdorff in some linear topology, can be
embedded as a pure dense subgroup of a complete group G, called a
completion of &, and any two such completions are homeomorphically
isomorphic.

The Z-adic completion of Z is denoted by 7 and, if p is any prime,

the p-adic completion of Z is denoted by 2p, the ring of p-adic integers.



29 may be taken as the set of all elements of the form

z=bo+bp+bep*+ ...+ bp" + ...
where 0 < b, < p—1land b, € Zforall n. fy € ip is given by

y=ctaptap’+.. . teap*+.. . with0 < ¢, < p—1ande, € Z for all
n then z+y is given by so+s,p+8,0%+. .. +8,p"+... with0 < s, < p—1
and s,, € Z for all n where sp = by + ¢5 — kop, 3p = bn + ¢n + kg — knp
for all n > 1; the product zy is given by o+ qip+ @p° +... +g.p™ + . ..
with 0 < g, < p—1 and ¢, € Z for all n where go = boco — mop and
gn = bocn +b1cn 1+ baco+ oy —mapforn > 1 ko, kLl
™Mo, ..., My ... are uniquely determined by the fact that b, and ¢, are
between 0 and p — 1 for all n.

The additive group of 2p 1s denoted by .J, and is called the group of
p-adic integers.

The next result characterises groups which are complete in their Z-

adic topologies.

Lemma 1.17 A group G is complete in its Z-adic topology if and only

if G is reduced and algebraically compact.

Proof: See [10, Theorem 39.1]. O

10



Finally, we have a characterisation for reduced algebraically compact

groups in terms of p-adic complete groups.

Lemma 1.18 A reduced group A s algebraically compact if and only if

it is of the form A = []| A, where each A, is complete in its p-adic

pell
topology. In particular, A= I 7o
pell
Proof: See [10, Proposition 40.1]. O

To finish this section we consider another important class of groups,
namely the cotorsion groups. It is easily seen that a group G is torsion
if and only if Hom(G, J) = 0 for all torsion-free groups J. The definition

of cotorsion groups is, in a sense, the dual of this.

Definition 1.19 A group G is cotorsion if Ext(J, G) = 0 for all torsion-
free groups J. In other words G 1s a summand of every group that con-

tains it with a torsion-free quotient.

It is not difficult to show (see [10, p.232]) that for a group to be
cotorsion it is sufficient that Ext(QQ, G) = 0. The main results concerning

cotorsion groups that we shall need are given in the following two leminas.

Lemma 1.20 A group is cotorsion if and only if it is an epimorphic

11



image of an algebraically compact group. Especially, a torsion-free group

is cotorsion if and only if it is algebraically compact.
Proof:  See [10, Proposition 54.1] and {10, Corollary 54.5]. a

Lemma 1.21 Every group';l can be embedded in a cotorsion group G,
called its cotorsion completion, such that G/A is torsion-free and divis-
ible. If A is reduced, then G can also be token as reduced. In fact, the

group G can be taken as Ext(Q/Z, A).

Proof: See [10, Theorem 58.1]. O

§2 p-Groups

Let G be a p-group and let Ord be the class of all ordinals. We define a
decreasing sequence of subgroups p?G,o € Ord, of G by
PG =G,
PG = p(p°G), if o+ 1 is a successor ordinal,
p°G = O p"G, if o is a limit ordinal.
Obviously, there exists a least ordinal A such that p*G = p**’G. Then

p*G is the maximal divisible subgroup of G and so G is reduced if and

only if p*G = 0. This X is called the length of the group G.

12



Definition 2.1 Let G be a p-group and g € G. The height of g in G,
written h%(g), is defined by
h¥(g) =0 if g € "G\ p*'G

and

h%(g) =00 ifge N p°G.

ecO0rd

Next we introduce the idea of the socle of a p-group. For any p-group
G the socle of G, G[p), is defined to be the subgroup of G consisting of
those elements of order p, i.e. G[p} = {g € G : pg = 0}. Obviously, we
can consider G[p| as a vector space over Z(p) = Z/pZ. The socle plays a
very important role in the theory of p-groups.

We now come to the definition of the Ulm invariants of a p-group G.
The descending chain of subgroups of G, {p” G}, gives rise to a descending
chain of Z(p)-vector spaces, {p” G[p]} where p°G[p] = (p"G){p|. Hence,
for each ¢ € Ord, we have the vector space decomposition p”Glp] =

Se & p°t1G[p] where S, consists of those elements in G[p] of height o.

Definition 2.2 For each o € Ord the o** Ulm invariant of G, f+(G), is

the dimension of S, as a vector space over Z(p), i.e.

fo(G) = dimg () (p” Glp] /p"+ Glp]).

13



If two p-groups are isomorphic then their Ulm invariants are equal for
all . A p-group G is said to be totally projective if p Ext(G/p°G,C) =0
for all & € Ord and all groups C. The Ulm invariants form a complete
system of invariants for the totally projective p-groups.

-F:inally, in the case of a p—éroup G, a g-basic subgroup of G must be

0 for all ¢ # p, so for p-groups we may, without fear of ambiguity, refer

to their p-basic subgroups simply as basic subgroups.

§3 Torsion-Free Groups

In this final section we consider torsion-free groups.

A fundamental concept in the theory of torsion-free groups is the type
of an element. In order to define type we must first consider the idea
of height in a torsion-free group. To this end let A be any torsion-free
group and ¢ € A. If p is any prime, then the p-height of a in A, denoted
by h#(a) or simply hp{a), if A is understood, is the largest k € N such
that p* divides a. If no such k exists we put h,(a) = co.

If {p),p2,...} is the set of primes in increasing magnitude then the
sequence of p-heights (h,, (a), hp,(a),...) is called the height-sequence or
characteristicof a in A, ya(a). Any sequence (ki, ks, ...}, where each k; is

either a non-negative integer or the symbol oo, represents a characteristic,
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namely the characteristic of 1 in the subgroup R of Q generated by
{p7" :1; < kyy1 € N} where, if k; = 0o, we use {p;" : { € w}.

The set of all characteristics can be partially ordered by defining
(ki ka,...) > (I, {2,...) ifand only if k; > [; for all : € N and it becomes a
lattice under the operations (k;, k2, .. JA(l1, {2, ...} = (man(ky, 1), min(ks, [2), .. .)
and (ki,ka,...) V (I1,12,...) = (maz(k, 1), maz(ks,{2),...), with mini-
mum element (0,0,...) and maximum element (oo, c0,...).

For every torsion-free group A the following facts can readily be
proved:
(i) If B < A, then xg(b) < xa(b) forallbe B
(i) If B <. A4, then xp(b) = xa(b) forallbe B
(iii) x(b+c) > x{b) A x{c) for all b,c € A where we have equality if
A=BodC withbe Bandce C
(iv)  For any homomorphism ¢ : A — B between torsion-free groups

A and B we have ya(a) < xg(a¢) for all a € A.

We define two characteristics (ky,kz,...) and ({1,{z,...) to be equiv-
alent if |{¢ € w : k; # {;}| is finite and for these ¢ both k; and {; are finite.
This is easily seen to be an equivalence relation on the set of character-

istics and an equivalence class of characteristics is called a type. If x 4(a)



belongs to the type ¢t then we write t4(a) = ¢ or just t(a) = ¢, if A is
understood, and we say that the type of a (in A4) is .

There 1s an induced partial order defined on the set of types. 1f
x1 = {(k1,ka,...) and x2 = (l1,0s,...) are any two characteristics in the
types t and s, resp'e::tively, then we define ¢ 2 sif k; < l; for only finitely
many ¢ and, for these ¢, both k; and I; are finite. Again we get a lattice
where t A s and ¢t V s are the types given by the characteristics x; A x2
and y; V x2 respectively. It is now straightforward to check that the
properties (i), (ii), (ii1), and (iv) above also hold for types.

If A is any torsion-free group, then the typeset of A, T(A), is the set
of types of elements of A, i.e. T(A) = {t: ¢t = t{a) for some a € A}. If
{ is any type we can define two fully invariant subgroups of A, A(¢) and
A*(t), by A(t) ={e€ A:t{a) > t} and A*(t) =(e€ A:t{a) > t). It is

easily seen that A*(t) < A(t) and that A(¢) is pure in A.

Definition 3.1 A torsion-free group A is homogeneous if all of its ele-
ments have the same type. In this case we can meaningfully speak about

the type of the group.

A rank 1 torsion-free group is obviously homogeneous and, in fact,

rank 1 torsion-free groups are characterised by their types.
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Lemma 3.2 Two rank ! torsion-free groups are isomorphic if and only
if they have the same type. Every type is realised by some rational group,

i.e. a subgroup of Q.

Proof: See [11, Theorem 85.1]. a

A very important class of torsion-free groups is the class of completely
decomposable groups where a group is completely decomposable if it is
a direct sum of rank 1 groups. Trivial examples of such groups are
free groups and torsion-free divisible groups. Completely decomposable
groups can be characterised by the number of summands of each type

that occur in the decomposition.

Lemma 3.3 Any two direct decompositions of a completely decompos-
able group into direct sums of rank I groups are isomorphic and the
number of rank 1 summands of any type t in such a decomposition is
given by the rank of Ay = A(t)/A™(¢).

In particular, the ranks r(A,) taken for all types t form a complete and

ndependent system of invariants for completely decomposable groups.

Proof: See {11, Proposition 86.1]. O
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Another very useful result on completely decomposable groups is

Baer’s Lemma:

Lemma 3.4 (Baer'sLemma) If C is a pure subgroup of the torsion-
free group A such that

(a) A/C is completely decomposable and homogeneous of type t,

(b) all the elements in A\ C are of type t,

then C s a summand of A.

Proof: See [11, Theorem 86.5]. a

The next result gives conditions for a subgroup of a homogeneous

completely decomposable group to be completely decomposable.

Lemma 3.5 If A i3 a homogeneous completely decomposable group of
type t, then every subgroup C of A which is homogeneous of type t (in

particular, every pure subgroup of A) is completely decomposable.

Proof: See [11, Theorem 86.6].

Finally, we have a fundamental result on completely decomposable

groups.
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Lemma 3.6 A direct summand of a completely decomposable group is

again completely decomposable.

Proof: See [11, Theorem 86.7]. O

A more general concept than a completely decomposable group is
that of a separable group where we say a torsion-free group A is separable
if every finite subset of A is contained in a completely decomposable
direct summand of A. Completely decomposable groups are obviously
separable and in the countable case the converse is true, as the following

result shows.

Lemma 3.7 Every countable torsion-free separable group is completely

decomposable.

Proof:  See [11, Theorem 87.1]. O

In the case of homogeneous groups we have a characterisation of

separable groups.

Lemma 3.8 A homogeneous group A is separable if and only if every

finite rank pure subgroup of A is a summand of A.
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Proof See {11, Proposition 87.2]. O

Finally we have a corresponding result to Lemma 3.6 for separable

groups.
Lemma 3.9 A direct summand of a separable group is separable.

Proof: See {11, Theorem 87.5]. O
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IT Quasi-Minimal Groups

Qur study of groups with minimal properties begins with the idea of
quast-minimality and its associated concepts of weak and pure quasi-
minimality. To this end let & be an infinite cardinal and let Ab, be the
set of all abelian groups of cardinality k. We first consider the quasi-

minimal groups in Ab,.

§1 Quasi-Minimal Groups

Definition 1.1 A group G € Ab. is quasi-minimal if G s somorphic

to all its subgroups of cardinality .

In the following we achieve a complete characterisation of quasi-

minimal groups in Ab,.

Lemma 1.2 If G is quasi-minimal, then G is either torsion-free or a

D-group.

Proof: If |tG| = |G|, then G = tG, since G is quasi-minimal. Now,

iG = @ G, where G, is a p-group for all p. Choose p such that G, # 0.

pell
Then {G = G,& @ Gy, 0 |G| = |Gyl or 1G] = | @ Gol. 1 1G] = | @ G,
9P qEP ki
then G = @ G,, a contradiction, since G, # 0. Therefore |G| = |G,|
9#Ep
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and so G = G,. Now suppose [tG| < |G|. Then |G/tG| = |G| = «. If
&k = Np. then tG is finite and so tG C G, by I, Lemma 1.9, since tG is
pure in G. Then G = tG & C where C is torsion-free and |G| = |C| = Ry,
and so G = C (and tG = 0), i.e. G is torsion-free. If & > Ry then
r(GftG) = |G/tG], so w;z“can choose « linearly inéependent elements
Ty =9a +tG,a < k. Let C = {9, : a < k) < G. C is torsion-free since,
ife= 3" koga € tG where k, = 0 for almost all «, then )’ kg, +tG =0

a<K a<K

in G/tG, so Y kg, = 0 and hence k, = 0 for all a, i.e. ¢ = 0. Now

a<xK

|G| = |C| and so G = C, i.e. G is torsion-free. 0

Lemma 1.3 If G s quast-minimal and torsion-free, then
(i) forRo=x=|G|, G=Z, and

(i) forRo<w=|G,G=ZPZ.

Proof: First Z is quasi-minimal since the only non-zero subgroups of
Z are of the form nZ = Z where n € N. Also @@ Z is quasi-minimal for
k>Rosinceif H<@PZ (x>8) with |H{ = « then H is free of rank
« and so H = . It remains to show that these are the only torsion-free
quasi-minimal groups.

(i) Let 0 # g € G and consider {g). Since G is torsion-free |{g) | = ®p

and so G = {g) = Z.
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(ii) In this case r(G) = &k so G has « linearly independent elements

{ga s < k}. Now (go 1 @ < &) = @B (go) and | € {ga) | = 5. Therefore

K <K

C=@ (o) = P2 O

a K

Lemma 1.4 IfG is quasi-minimal, then G is either divisible or reduced.

Proof: Let G be any quasi-minimal group. By I, Lemma 1.3, we may
write G as G = D@ R where D is divisible and R is reduced. We clearly
have |G| = |D| or |G| = |R|. I |G| = |D|, then G = D and G is divisible.

If |D| < |G|, then |G} = |R| and so G = R and G is reduced. O

Lemma 1.5 If G is quasi-minimal and divisible, then G = Z(p™) for

some prime p.

Proof: The group Z(p™) is obviously quasi-minimal since its only sub-
group of cardinality Yo is itself. So let G be a divisible quasi-minimal
group. Then G is either torsion-free or a p-group, by Lemma 1.2. The
group G is not torsion-free, by Lemma 1.3. Therefore G is a divisible
p-group, i.e. G = GI)Z(p“’), for some index set I and for some prime
p, by [10, Theorem 23.1). If |I| > 2, then G contains a subgroup H =
Z(p) & @Z(pm) where I = JU {ig}, say. Now |H| = |G]= G = H, a
contradiction, since H is not divisible. Therefore |I| = 1 and G = Z(p™).

O
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Lemma 1.6 If G is a reduced quasi-minimal p-group, then G = @ Z(p)

where |G| = x.

Proof: First, @ Z(p) is quasi-minimal since any subgroup is of the

form @ Z(p) and if the cardinalities are equal then A = x. Let G be
A

a reduced quasi-minimal p-group of cardinality k > Ro. We claim that

|G| = |G[p]| where G[p] is the socle of G.
Let B be a basic subgroup of G, B = @ @ (z:) with o(z;) = p" for
ﬂEN!EIn

t € I, where I, = 0 is allowed.

First suppose |G} > Ry. If |[B] = |G|, then some [, has cardinality

x and so |Bpll = | P @ {(p"~'z;)| = « and hence |G[p]| > |Blp]| =

neN In
£ = |G|. If |B| < |G|, then |G/B| = |G| and G/B is divisible, so

G/B = @ Z(p™) where |J| = k. There exists C < G, containing

JeJ
B, such that C/B = @ Z(p). Then C = B & @ Z(p), by I, Lemma
€l i€t
1.10, since B is pure in C, and so C[p] = Blp] ® @ Z(p). Therefore
ieJ

|G| =|G/B| = x = |C[p]] < |G[p)|. So, in both cases, |G[p]| = |G].
If K = Wy, then |B| = |G|, since if B is finite then BT G, G = B&® D,
say, with D = G/B, divisible. Now, G is reduced, so D = 0 and hence
G is finite, a contradiction. Again we conclude |{G[p]| = Ro = |G].

We have that |G[p]| = |G| in all cases and, since G is quasi-minimal, we
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get G = Glp| = ?Z(p). O

We summarise what we have proved about quasi-minimal groups in

the following theorem:

Theorem 1.7 If G is a quasi-minimal group of cardinality k, then
(1) K=2Ng G=2Z, Z(p™) or @QZ(p);
Ro

(i) & >N G=@PZ or PZp.

§2 Weakly Quasi-Minimal Groups

The condition on a group G of cardinality & necessary for quasi-minimality
may be relaxed in various different ways. One way is to require that G
be isomorphic only to a subgroup of each of its subgroups of cardinality
k. This idea leads us to the concept of weak quasi-minimality. Another
way 1s to insist that G must be isomorphic only to its pure subgroups of
cardinality . In this case G is said to be purely quasi-minimal. In this
section we deal with the weakly quasi-minimal groups and in the next

section we consider the purely quasi-minimal case.

Definition 2.1 A group G € Ab, is weakly quasi-minimal if, whenever

H < G with |H| = &, then H contains a subgroup which is isomorphic
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to G5.

By definition, every quast-minimal group is weakly quasi-minimal.
We wish to investigate if there are weakly quasi—minimél groups which
are not quasi-miljima.l.

Since a subgroup of a p-group 1s a p-group and a subgroup of a
torston-free group is a torsion-free group, Lemma 1.2 is true for weakly
quast-minimal groups, with a similar proof. Also Lemma 1.3 holds for
weakly quasi-minimal groups since a subgroup of a free group is free and
the rank of a free group is equal to its cardinality if the cardinality is
uncountable. However Lemma 1.4 need not be true because a subgroup of

a divisible group is not necessarily divisible, but we do have the following

lemma.

Lemma 2.2 If G is a weakly gquast-minimal p-group, then G = Z(p™)

or G = @ Z(p) where |G| = k.

Proof: Let B be a basic subgroup of G, possibly B = 0.

If |G| = & > Ry, then, as in Lemma 1.6, |G[p}} = |G| and s0 G & e)‘) Z(p),
for some A, where \@ Z(p)| = k, and s0 A = &.

If |G| = N and |B| = Ry, then, again as in Lemma 1.6, G & ?Z(p).

Finally, in this case, if B is finite, then B C G, i.e. G = B & D, where
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D = G/B and so is divisible. Now, D = @ Z(p™) for some index set I,
]
so Z{p™®) < G and, since G is weakly quasi-minimal and Z(p™) has no

proper countable subgroups, we get G = Z(p™). O

So, in fact, we get nothing new in the weakly quasi-minimal case
since the class of weakly quasi-minimal groups is the same as the class

of quasi-minimal groups.

§3 Purely Quasi-Minimal Groups

Next we consider the purely quasi-minimal groups in Ab,.

Definition 3.1 A group G € Ab. is purely quasi-minimal if G is iso-

maorphic to all its pure subgroups of cardinality «.

Lemma 3.2 If G is purely quasi-minimal, then G is either dinsible or

reduced.

Proof: The arguments are the same as in Lemma 1.4, using the fact

that direct summands are pure. O

Lemma 3.3 For a dwisible purely quasi-minimal group G one of the

following is true



(i) G=2Q (k=1
(ii) G = Z{(p™), for somep (k= V),
(iii) G=ZPQ (x>Ro),

(iv) G =P Z(p™), for some p (k> Vo).

Proof: First note that Q, Z(p™), P Q, P Z(p™) are indeed purely quasi-

minimal since a pure subgroup of a divisible group is again divisible.

Let G be divisible and purely quasi-minimal. Then G = @ Q& Q% @ Z(p*),
pe

for some index sets I, I,. If |G| = Rq, then G must be isomorphic pto ei-

ther Q@ or Z({(p™), for some p. Now suppose |G| = & > No. Then, if

|I| = &, we have G = @ Q, whereas if |I| < x, then some {I,| = x and

we get G = @ Z(p™). O
I

Theorem 3.4 If G is a reduced purely quast-minimal group, then G is
either @ homocyclic p-group, i.e. G = @ Z(p") for some indez set I and
I

some n € N, or G 15 torsion-free.

Proof: First we show that a honiocyclic group is purely quasi-minimal.

Let G = €B y:Z(p"), for some n and some infinite cardinal x, and let
i<x

H <. G with |H| = |G|. Now, H is again a direct sum of cyclics, by [10,

Theorem 18.1}, H = @ {z:), say, with |I| = x since |H| = x. Suppose

o(z;} = p™ for some m < n and some : € . We have z; = 3 kjy; where
j<n
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k; = 0 for almost all j. Since p™2; = 0 it follows that 0 = ) p™k;y; and
i<n
so pk;y; = 0 for all j. Therefore p” divides p™k; for all j, so p divides
k; for all j and hence z; = p Z r;y; where k; = pr; for all ;. We get
3<x

that p divides z; in G and so p divides z; in H since H is pure in G,
a contradiction, since z; is a generator of {z;) in H. We conclude that
o{x;)=p" forall: € ] and so H = G.

Now let G be a reduced purely quasi-minimal group. If ¢G = 0, then G is
torsion-free, so suppose tG # 0. Choose p such that G, # 0 and let B be
a p-basic subgroup of G. B # 0since 0 # G, which is not divisible and so
G is not p-divisible. I will show that the group B cannot be torsion-free.
Since G, is not divisible there exists some & € Gp[p] with finite p-height
(see {10, 20{c)]), and since G/ B is p-divisible we have = = p”g,, + by, for
each n, where g, € G and b, € B. Now pz = 0 implies p"*'g, + pb, = 0,
so p"tlg, = —pb, € p"t'G N B = p"*' B and hence pb, = p"*'b!, where
b, € B. If B is torsion-free then we get b, = p"b), and so 2 = p"(gn +1b,),
1.e. p” divides z for all n, a contradiction.

Therefore B = By él B, where By is free and not all B, = 0. Let £ > 0
be the smallest integer with By # 0. Then G = By @ (B™ + p*G) where
B*=By® @ B,, by I, Lemma 1.16. If (G| = | Bx| then G = By and so

n>k

G = @ Z(p*) and hence G is homocyclic. Otherwise |G| = |B* + p*G|
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and hence G = B* + p*G = H, say.

We claim that B* is a p-basic subgroup of H.

By definition, B* is a direct sum of cycles. Also B* is pure in B which is
pure in G and so B* is pure in G and hence in H. Finally B*= BN H
since if b € BN H then b = b* —{-p"g where b* € B* and g € G, and
sob—b € pPPGN B = p*B < B*, which means that BN H < B~
The converse inclusion is obvious. Therefore H/B* = H/(BN H) =
(H + B)/B = G/B which is p-divisible.

Since H = G we get B* = B, a contradiction, since By # 0.

Hence |G| = |By| and G is a homocyclic group. O

It remains to consider the reduced torsion-free case. Before the char-
acterisation can be established we need some general results on reduced

torsion-free groups. First we give a definition.

Definition 3.5 Let A be a subgroup of a torsion-free group G. A sub-
group K of G is an A-high subgroup of G f ANK =0 and if ' D K
such that ANK' =0, then K" = K, i.e. A is mazimal with respect to

the property AN K =0.

Lemma 3.6 Let A be a subgroup of a torsion-free group G and let K be
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an A-high subgroup of G. Then K <, G and G/(A & K) s torsion.

Proof:  Suppose that mg € K for some g € G\ A and some m € Z.
Then (K, g) NA # 0, so there exists some non-zero ¢ € A with ¢ = k+ng
for some k € K and n € Z. Therefore mec = mk+mng € ANK =0
and so ¢ = 0, since A is torsion-free, a contradiction. Hence mg ¢ K if
g & K and so K <. G.

For the second part consider g € G\ A® K. Then ¢ € G\ K and hence
(K,g)NA# 0. Therefore —k+ng = cforsome k € K,c € Aand n € Z.
We have ng=c+ kandson(g+ Ad K)=0in G/(A@ K) and hence

G/(A @ K) is torsion. O

Lemma 3.7 If G is a reduced torsion-free purely quasi-minimal group,

then GG is t-homogeneous for some type t.

Proof: Let t € T(G), the typeset of G. Then there exists some g £ 0
in G such that t(g) = t. Consider G(t) = {g € G : t(g) > t} # 0.
G(t) <. G and we claim that |G(t)| = |G|

Let A be a G(t)-high subgroup of G. Lemma 3.6 now tells us that
K <. G and G/(K & G(t)) is torsion. Therefore G = (K @ G(t)). and
hence |G| = [K®G(t)|-Ro = [K|-|G(t)]-Re = |K] 0z [G(1)]. I |G| = |K],

then G = K, since K <, G, and we get G(¢) = K(t) < G(t)N K =0,
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a contradiction, since G(t) # 0. Therefore |G| = |G(¢)| and hence G =
G(t) whenever G(t) # 0. Now, if t,s € T(G), then there exist a,b € G
such that t(a) = t and #(b) = s. Since G = G(t) and G = G(s) we get
G(t) 2 G(s). Now t{a) = t(ad) and #(b) = t(b¢~1) imply that ¢ = s and

therefore G is t-homog‘e;leous. “ D

Definition 3.8 A linearly independent subset S of a torsion-free group

G is quasi-pure independent if €P (z), i a pure subgroup of G where

€S

-

{z), = (z) whenever (), is cyclic.

Note that every torsion-free group has quasi-pure independent sub-
sets and Zorn’s Lemma implies that any quasi-pure independent set is
contained in a maximal one.

Next we state some results concerning quasi-pure independent sub-

sets of a torsion-free group G.

Lemma 3.9 Let G be any torsion-free group. Then

(i) IfT,S are two infinite mazimal quasi-pure independent sets of G,
then |T| = |S|;

(1) If S o mazimal quasi-pure independent subset of G, then |G| <

(|1S] + 1)¥.
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Proof: See [13, Corollary 125 and Theorem 126]. i

Note that If |G] > 2% then it can easily be deduced from Lemma
3.9 that any two maximal quasi-pure independent subsets of G have the

same cardinality.

Definition 3.10 A subgroup H of a torsion-free group G is pure essen-
tial i n Gif H<.Gand if A< Guwith ANH =0and Ap H <. G,
then A = 0, in other words, G/(A @ H) is not torsion-free for any such

non-zero A < G.

Theorem 3.11 (See [13, Theorern 129]) Every torsion-free group G has
a completely decomposable pure essential subgroup C such that |G| <

[C|%.

Proof: Let 5§ be a maximal quasi-pure independent subset of G and
let C = @ {(z).. Then Lemma 3.9 implies that |G| < (|S|+1)% = |C|R.
reS

C is obviously completely decomposable so it remains to show that C is
pure essential in G. First of all C <, G. If 0 # A < G such that
ANC =0and CH A <. G, then choose some ¢ # 0 in A and con-
sider {a), (purification in A). We have C @ (a}, <. C P A <. G. Also

{a), <. A <. CP A <. G, so the purification of {a) in G is the same as
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its purification in A. Therefore S U {e} is again a quasi-pure indepen-
dent subset of ¢, which contradicts the maximality of S. Thus we can

conclude that C is pure essential in G. d

We are now ready to establish the characterisation of reduced torsion-

free purely quasi-minimal groups.

Theorem 3.12 (GCH) If G € Ab, is a torsion-free reduced purely quasi-
minimal group, then either G2 R (k =Vy), ot G Z P R (k > Vo), for
some rank 1 group R.

Obviously, we do not need GCH in the countable case.

Proof: First we show that R and @ R are purely quasi-minimal. If
0# H <. R, then R/H is torsion-free. Now, if there exists r € R\ H,
then, for any A € H. we can find non-zero integers m and n such that
mh + nr = 0 and so n(r + H) = 0, a contradiction. Hence the only non-
zero pure subgroup of R is R itself and so R is purely quasi-minimal.
If H <. @R, then H is also homogeneous completely decomposable
of the same type as R, by I, Lemma 3.5. Therefore H = @R and if
|H| = & > Rg then |I| = x and so H = P R.

Now let G be a torsion-free reduced purely quasi-minimal group. Lemma

34



3.7 tells us that G is t-homogeneous for some type . By Theorem 3.11
there exists a pure essential completely decomposable subgroup C of G
such that |G| < |C|®. Let C = @R, where R is a rank 1 group whose
type must be ¢ since R <. C <, G.

If |G| = Rg, then |R] = |C| = |G| = Ry and hence G = R. So consider
|G| = k > Ro. If |C| = |G| = &, then G = C and we are finished. We
wish to prove that |C| < |G| is impossible. Let us assume that |C| < |G|
to obtain a contradiction. First note that |C| < |G| implies 2I°l < |G|,
assuming GCH, and |G| < |C{% < (2I€1)Fe = 2/€1 50 |G| = 2I¢]. Now
consider the short exact sequence 0 — C 65 G/C — 0
where 1 is inclusion and 7 is canonical projection. The induced se-
quence 0 —Hom(G/C,G} — Hom(G,G)} — Hom(C, G} is exact,
by 1, Lemma 1.5. We claim that Hom(G/C,G) = 0.

Let g+ C € G/C. Then t(g + C) > t(g) = ¢t since homomorphisms do
not decrease types. If ¢{(g + C} = ¢, then R = (g + C),, by I, Lemma
3.2. Let (¢+C), = B/C <. G/C. Then C <, B and B/C is homo-
geneous completely decomposable of type ¢t and every element of B\ C
is of type ¢t since B <, G, so C [C B, by I, Lemma 3.4. Therefore
B =C o R, where Ry =2 R, and B <, G, but this contradicts the

fact that C is pure essential in G. We conclude that #(g + C) > ¢ for
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all ¢ € G. Hence Hom(G/C,G) = 0, again since homomorphisms do
not decrease types. Therefore 0 — Hom(G,G) —Hom(C,G) is ex-
act, so Hom(G, G) is isomorphic to a subgroup of Hom(C,G) and hence
|[Hom(G, G)| < |Hom(C,G)| < |G)I€l = (2I°hicl = 2 = (G]. But
|G| > Ro meahs that r(G) = |G| and s6 there exists a maximal linearly
independent set in G of cardinality . Then this set contains 2% different
linearly independent subsets of G of cardinality « (see [15, p.43]). Each
of these subsets S generates a pure subgroup (5), of G. Furthermore, if
S1 # S,, then (S5)), # {S,), since otherwise, for any s € Sy \ 5,3, we have
s € (5,), and so there exist non-zero integers n,n;,...,ng, for some k,
such that ns = nyz, + ... 4+ ngzy with z;,..., 24 € S;; but this contra-
dicts the fact that S; U S, is contained in a maximal linearly independent
subset of G.

Now, if A; and A are two such pure subgroups of G, then G = K
and G =2 K), since G is purely quasi-minimal. If ¢, : G — A, and
¢2 : G — K, are isomorphisms, then K, # K, implies ¢ # ¢, and
thus there exist at least 2% different endomorphisms of G. Therefore
21¢1 < |End(G)| < |G| which is obviously a contradiction. Hence we can
deduce that |C| < |G| is impossible and so |C] = |G} and G is homoge-

neous completely decomposable. 0
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Note that, in Theorem 3.12, if |G| < R, then it is enough to as-
sume the continuum hypothesis (CH), i.e. 2% = ®,, as the following
argument shows. The Hausdorff Formula (see [13, p.48]) tells us that
RS = Ropr-Ra? forall o, 8 € Ord with 8 <a +1;50 R = R, - R¥ =
¥; - 2% = Ry, using CH, and a simple induction argument now gives
R =R for all n > 1. So, in Theorem 3.12, if:

(i) |G| =R, and |C| = Ry, then CH gives us that |G} = 2/°! and we get
a contradiction as in Theorem 3.12;
(ii) |G| = R, where 1 < & < w and |C| = R,,n < a, then |[C[M =

R¥e = R, (CH) < R, = |G|, a contradiction to |G| < |C]*.

I have not been able to establish whether Theorem 3.12 is true or
not in ZFC; it may indeed be undecidable in ZFC.
As in the quasi-minimal case, we summarise what we have established

concerning the purely quasi-minimal groups in the following theorem.

Theorem 3.13 If G € Ab, is a purely quasi-minimal group, then
(i) K= NO G = RJ Z(poo), or @ Z(pk);

Ro
(i) &> Ny G=@R (GCH), @Z(p™), or PIZ(p),

where R 13 a rank 1 group, p is any prime and k is any positive integer.
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§4 Weakly Purely Quasi-Minimal Groups

If we now relax the quasi-minimal condition in both ways, i.e. weakly

and purely, we can define the coucept of a weakly purely quasi-minimal

group.

Definition 4.1 A group G € Ab. is weakly purely quasi-minimal zf
whenever H € Ab, is a pure subgroup of G, then G s isomorphic to

a pure subgroup of H.

Any purely quasi-minimal group is obviously weakly purely quasi-
minimal. As in section 2 we wish to investigate if there are other weakly
purely quasi-minimal groups. Siuce a subgroup of a reduced group is
obviously reduced and a pure subgroup of a divisible group is divisible
Lemma 3.2 and Lemma 3.3 hold in the weakly purely quasi-minimal case.
The following two lemmas are the analogues of Theorem 3.4 and Lemma

3.7.

Lemma 4.2 If G is a reduced weakly purely quasi-minimal group, then

G s either torsion-free or a homocyclic p-group.

Proof:  As in Theorem 3.4 choose some p such that G, # 0 and let

B be a p-basic subgroup of G. Then B is not torsion-free. Let £k > 0
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be the least integer such that By # 0; we have G = By @ (B~ + p*G)
where B* = By & Q: B,. If |G| = |Bk/|, then G is isomorphic to a pure
n>
subgroup of Bx. We have shown in Theorem 3.4 that a pure subgroup
of a homocyclic p-group is again homocyclic, so we can deduce that G
is homocyclic. If |G| > |Byl|, then |G| = |B™ + p*G|. Again letting
H = B* + p*G we get that G is isomorphic to some C, a pure subgroup
of H. Asbefore B* is a p-basic subgroup of H. Now a p-basic subgroup of
C can be extended to a p-basic subgroup of H since a p-pure independent
subset of C is also p-pure independent in H. Therefore B is isomorphic

to a summand of B*, since all p-basic subgroups of € are isomorphic,

and so we get the same contradiction as in Theorem 3.4 . O

Lemma 4.3 If G s a torsion-free weakly purely gquasi-minimal group,

then G is t-homogeneous for some type t.

Proof: Lett ¢ T(G). AsinLemma 3.7, if |G(t)| < |G| then |G| = | K],
where K is some G(t)-high subgroup of G. Therefore G = K, where A
is some pure subgroup of K. We have G(t) = K,(t) = {k € K, :
th (k) 2t} ={k € K, : tg(k) > t} = KN G(t) < AN G(¢) = 0 which
is a contradiction since G(t) # 0. Therefore, as before, |G| = [G(2)]

and hence G = G,, where G, is some pure subgroup of G(¢). Now, if
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G = Gy <. G(t) and G = G, <. G(s) where t,s € T(G), then there
exist ¢4 € G, and g, € G with {5 (g1) = s and t5,(g2) = t. Hence
tc(g1) = s and tg(g2) =t and so weget s > tand t > s, l.e. 5 = ¢ and
so G is t-homogeneous. O

The characterisation theorem now follows.

Theorem 4.4 (GCH) If G € Ab, is a torsion-free reduced weakly purely
quasi-minimal group, then either G = R, if k = Vg, or G = @R, if
K > Wy, for some rank 1 group R.

Again, obviously, we do not need GCH in the countable case.

Proof As in Theorem 3.12, let C = Q{@R be a pure essential com-
pletely decomposable subgroup of G such that |G| < |C|%e. If |G| = Ry,
then |R| = |C| = |G| = R and so G is isomorphic to a pure subgroup
of R. But we have seen in Theorem 3.12 that the only non-zero pure
subgroup of R is R itself, so G = R.

Now suppose that |G| = & > Re. If |C] = |G| = &, then G = H
where H is some pure subgroup of C. By I, Lemma 3.5 we have H is

also homogeneous completely decomposable of the same type as R, i.e.

H = @ R where |J| = &, since G = H. Now suppose |[C] < |G| = &,
J
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As before, |G| = 2!, using GCH, and |End(G)| < |G| and there exists a
maximal linearly independent subset X of G of cardinality x. Assuming
GCH, there exist 2° almost disjoint subsets of X of cardinality « (see
[15, p.252]), i.e. Y NY’| < k for any pair ¥,Y’ of such subsets. Each
such subset Y generates a pure subgroup A = (Y), of G of cardinality
k. We claim that (Y NY’) =(Y) N{¥"),.
If z € (Y NY’),, then there exists n € Z such that nz € (Y NY’)
so nx € (Y)N (Y") and thus = € (YY), N (Y’),. Conversely, if ¢z €
(Y), N(Y"),, then there exist non-zero n,m € Z such that nz € (Y")
and mz € (Y'). Therefore there exist non-zero integers ni,...,n; and
mi,...,m, and elements y;,...,yx € Y and yi,...,y. € Y’ such that
nt = nyy) + ... + nkyx and mx = myy; + ... + myy.. Then we get
that mnz = mnyyy + ...+ mngye = nmay) + ... + nm,y.. Since G is
torsion-free and X is a linearly independent subset of G we obtain that
k = r and each y;(i = 1,..., k) must be equal to some yi(j =1,...,r).
Hence y; € YNY forall 1 < 7 € k and so nz € (Y NY'), ie
z € (YNY’),. We conclude that |[K N A'| = [{(YNY"),| < x where
K' = {Y"). Now, K and K’ are pure in G with |K| = |G| = |K’|, thus
there exist monomorphisms ¢: G — K and ¢ : G — K'. If ¢ = &/,

then G =Im(¢) =Im(¢') < AN K’ and so |G| < |K N K| < &, which is



a contradiction. Therefore |End(G)| > 2" since in the proof of Theorem
3.12 we showed that we have 2* different such pure subgroups. We now
have 2¢ < |End(G)| < «, again a contradiction. Hence, as in Theorem
3.12, |C| = |G| and this completes the proof. O

So, just as for the quasi-minimal case, the class of weakly purely
quasi-minimal groups is, in fact, the same as the class of purely quasi-
minimal groups. However, in this case, we needed GCH to show the

equality of the two classes. It is an open question whether this fact is

true in ZFC.

§5 Directly Quasi-Minimal Groups

The final type of quasi-minimal group G we consider is where we re-
quire that G be isomorphic only to all its direct summands of the same

cardinality as itself. In this case G is called directly quasi-minimal.

Definition 5.1 A group G € Ab, is directly quasi-minimal if G is iso-

morphic to all its summands of cardinality «.

Lemma 5.2 If G is directly quasi-minimal, then G is either divisible or

reduced.

42



Proof: The arguments are the same as in Lemma 1.4, 0

We can immediately characterise the divisible directly quasi-minimal

groups.

Lemma 5.3 For a divisible directly quasi-minimal group G one of the
following is true:

(i) G=Q (=R,

(i1) G 2 Z(p™), for somep (k= Vy),

(i) G=PQ (k>1R),

(iv) G Z@PZ(p™), for somep (k> Np).
Proof: The arguments are similar to those in Lemma 3.3. )

Theorem 5.4 If G is a reduced directly quasi-minimal group, then G is

either a homocyclic p-group or G is torsion-free.

Proof: The same arguments as in Theorem 3.4. O
It remains to consider the torsion-free reduced case. Every inde-
composable torsion-free reduced group is trivially directly quasi-minimal.

Such groups exist in abundance: Shelah [26) has shown that, for each in-
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finite cardinal k, there exist 2* non-isomorphic indecomposable groups
of cardinality .
For a countable decomposable directly quasi-minimal group we have

the following lemma.

Lemma 5.5 IfG is a countable torsion-free directly quasi-minimal group
which s decomposable, then
(1) G=@G, for alln € N and so G must have infinite rank;

(i) G- =Hom(G,Z) = 0.

Proof: (i) Since G is decomposable G = A @ B where |A| = [B] =
|G| = Rg. Therefore G 2 4 and G & B and so G = G @ G. A straight-
forward induction now completes the proof.

(ii) Stein’s Theorem (see [10, Corollary 19.3]) tells us that G = N F
where F' is free and N has no free quotient groups (or equivalently,
N*=0). f F#0, then G= F (and N = 0), so G = Z since G is
directly quasi-minimal, a contradiction. Therefore F = 0 and G = N

and hence G* = (. d

Properties (1) and (it} of Lemma 5.5 are not sufficient to characterise

the countable directly quasi-minimal decomposable torsion-free groups
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as the following example shows:

Corner [5] has given an example of a countable group G with countable
endomorphism ring where G = @ G for all n but G # @G. Stein’s
n 0

Theorem tells us that G = N © F where N and F are as in Lemma
5.5. Therefore G* = N* @ F* = F* (see [10, Theorem 43.1]). Since
G* = G* @ G" we get that F* =2 F* @ F~ and so either F* = 0 or F*
has infinite rank. Hence the same must be true for F, since F is free.
Now, if F has infinite rank, then |F*] = 2% and so |G*| = 2%. But
G* <End(G), since G is torsion-free, so G~ is countable. We conclude
that F* = G* = 0. Now, if we take two such groups G; # G3, then
G19G; clearly satisfies properties (i) and (i1) but is obviously not directly
quasi-minimal.

I have not been able to establish whether the group G above is di-

rectly quasi-minimal or not.

Turning to the uncountable case, every purely quasi-minimal group
is, of course, directly quasi-minimal. The following lemma gives an exam-
ple of an uncountable decomposable torsion-free reduced directly quasi-

miniral group which is not purely quasi-minimal.
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Lemma 5.6 The Baer-Specker group [| Z is directly quasi-minimal.
Mo

Proof Let P =][]Z. If P = A® B, then both A and B are products of
Ng
Z (see [8, IX, Theorem 1.4]) and either |4| = |P| = 2% or |B| = |P| = 2%
or both. Suppose that A = [|[Z and |A| = |P}. Then |I| = A, say, with
el ; §

A < ¥ and 2* = 2%, Then A = ¥y and hence A = P. O

However, if we consider G = [[Z where £ > g, then the direct
"

quasi-minimality of G may be undecidable in ZFC, as is shown by the

next lemma.

Lemma 5.7 Let k > ¥ and let G = [[Z. Then:
(1) Assuming GCH, G s directly quasi-minimal;
(ii) Assuming - CH and 2% = 2% for all Ry < k < 2% then, for all

such k, G is not directly quasi-minimal.

Proof (i) Suppose G = A@® B with |A| = |G| = 2%, say. Then, as
above, A = E[Z with |I| = A, for some A < &, and so 2* = 2°. Assuming
GCH we get A = « and so A 2 G and hence & is directly quasi-minimal.
(i1) Now assume that the assumption = CH and 2% = 2~ for all Xy <
k < 2% holds. Let G = []Z where Rg < x < 2®. Then G =[] Z & B,

g

say, with |HZ| = |G| but HZ % G, since @Z = (H Z)“‘ % G* = @Z’
o Ry Rg Ro "
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and so G is not directly quasi-minimal. O

Since both GCH and the assumption that - CH and 2% = 2% for all
Re < & < 2% holds can be shown to be consistent with ZFC (see [27])
we can deduce that the direct quasi-minimality of e.g. G = [[Z is not

¥,

decidable in ZFC.



IIT General Minimal Groups and Finite

Index Subgroups

In this chapter we consider some properties of minimal groups in general
while in later chapters we examine the torsion and torsion-free cases
separately. Some facts concerning the finite index subgroups of a group

are also proved.

§1 General Minimal Groups

We begin with the required definitions.

Definition 1.1 Let G be any group. A subgroup H of G is of finite index

in G if |G/ H| is finite.

Definition 1.2 G is minimal if G 2 H for all finite indez subgroups H

of G.

Clearly a finite group is minimal if and only if it is the trivial group
and so it makes sense to consider infinite groups only. In the following

we prove some general results on minimal groups.

Lemma 1.3 Every divisible group is minimal.
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Proof: Let G be divisible and let H be of finite index in G. There
exists n € N such that n(G/H) = 0, i.e. nG < H. But nG = G, so
G < H. Hence G = H and the only finite index subgroup of G is G

itself. Therefore G is minimal. O

The next theorem shows that in considering minimal groups only

reduced groups have to be looked at.

Theorem 1.4 Let G = DB M where D is the mazimal divisible subgroup

of G and M s reduced. Then G is minimal if and only if M is minimal.

Proof: First suppose M is minimal. Let H be of finite index in G.
Then HND < Dand D/(HND) = (D+H)/H < G/H is finite. There-
fore HND = D by Lemma 1.3. We have D < Handso H =D& N
where N is reduced. Now M = G/D and N = H/D and M/N =
(G/D)/(H/D) = G/H is finite, so H/D = G/D since G/D = M is
minimal. Therefore V = M and hence H = G.

Conversely, if G is minimal and N is of finite index in M then D& N is
of finite indexin D M,so D M é D @ N. Therefore M 2 G/D

= (DD N)/D¢p. Now, D < D and D¢ is divisible,so Do C D, 1.e. D =

D¢ @ F with F also divisible. Hence M =2 F @ N. Since M is a reduced
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group we get that £ must he 0 and so M = N. O

If p 1s any prime we can define a local version of minimality at p in

the following way:

Definition 1.5 We say a group G s pminimal if G is isomorphic to all

its subgroups of indez p.

The following theorem shows that in investigating the minimality of

a group it suffices to consider the local case.

Theorem 1.6 (i) A group G is minimal if and only if G 1s p-minimal
for all primes p;

(1) A group G is p-minimal if and only if G is isomorphic to all its
subgroups of indez a power of p;

(1) A p-group is minimal if and only if it is p-minimal.

Proof: (i) If G is minimal, then obviously G is p-minimal for all p.
Conversely, suppose that G is p-minimal for all p and that H is any finite
index subgroup of G. We show that G is isomorphic to H by induction
on the order of G/H. Uf |G/H| = 1, then G = H. Now, assume that
G is isomorphic to all its subgroups of index less than some integer n

and let {G/H| = n. If n is prime, then G = H by assumption. If n is
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not prime, then n = r - 5 for some r,5 < n. Now, G has a subgroup
G, containing H such that |G,/H| = s. Then |G/G;| = r and so the
induction hypothesis gives us G 2 G, and hence &) is isomorphic to all
its subgroups of index less than n since this property is an isomorphic
invariant. Therefore G; = H and so G = H, i.e. (G is minimal.

(1) The same argument as in (i), where the induction now is on the
power of p.

(iii)  This follows from (ii) and the fact that a p-group has no sub-

groups of index ¢ for any prime ¢ # p since it is ¢-divisible. a

Finally, we show that in the case of torsion minimal groups we may

restrict ourselves to the study of p-groups.

Theorem 1.7 A torsion group is mimumal if and only if all of its primary

components are minimal.

Proof: Let G = @ G,. If G is minimal and H, is of finite index in
pEIl

Gp, then @ G, & H, is of finite index in G and so P G, @ H,

q%£p g#p

1128

G.
Therefore ¢ | H, : H, — G, is an isomorphism.

Conversely, suppose that G, is minimal for all p and H is of index ¢ in
G, for some prime q. Then H = @ H, with H, = H N G, for all p

pell
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and Z(q) = G/H = @(G,/H,). Therefore H, = G, for all p # ¢q and
pell
Z(q) = G,/ H,. Now, since G, is minimal, we get that G, = H, and so

H = G. Hence G i1s minimal, by Theorem 1.6. I

§2 Finite Indéx Subgroups

Before we can study minimal groups in more detail we need some results

on finite index subgroups.

Proposition 2.1 Every infinite reduced group G has non-trivial finite

inder subgroups.

Proof: Since G is not divisible, by assumption, there exists a prime p
such that pG # G. Now, G/pG is a Z(p)-vector space and thus G/pG =
QZ(p) for some index set . If pG = 0, then G = QZ(p). Therefore
€ i€

we deduce in this case that [ must be infinite and obviously G has finite
index subgroups. If pG # 0, then, for each j € I, there exists H; < G
such that H;/pG = ?Z(p). Then G/H; = (G/pG)/(H/pG) = Z(p)

i#7
and so H; is a non-trivial finite index subgroup of G. O

We now get a lower bound for the number of finite index subgroups

of a reduced group G. For this purpose we introduce the notation F.I1(G)



to denote the set of all the finite index subgroups of a given group G.

Theorem 2.2 Let G be a reduced group and G/pG = @ Z(p) for each
Ip
p. Then |F.I(G)| 2 Y I, of I, s finite for all p, or else |[F.1(G)] >
pell

sup{2Wl : I is infinite, p € II}.

Proof: Since G is reduced there exists some p such that pG # G
and G/pG = EIBZ(p), ie. I, # @ for at least one prime p. If |I]
is finite for all :), then, for each p, we have at least |I,| different fi-
nite index subgroups of G and so the first part of the theorem fol-
lows. If [I,| is infinite for some p, then G/pG is a vector space over
Z(p) of dimension |[,]. Then, if H/pG is a vector subspace of G/pG
of finite codimension, we have that G/H = (G/pG)/(H/pG) is a fi-
nite group, and so H is of finite index in G. Hence |F.I(G)| is not
less than the number of subspaces of G/pG of codimension 1. It is
well-known that if V = % (e;) i1s an infinite-dimensional vector space
over a field F' then the number of subspaces of V' of codimension 1 is
not less than rank(V*) where V* =Hom(V, F') (see e.g. [16, Chapter 4,
13.6]). Now, V™ =Hom(V, F') =Hom(@ ¢;F, F) = [[Hom(F, F'), and so

iel el

|V*| = | [THom(F, F)| = 2"l if Hom(F, F) is countable which is the case
icf

for F = Z(p). Therefore rank(V") = 2!/ and so there exists at least 21’
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subgroups of finite index of G. Since this is true for all p with I, infinite,

the result follows. O

When G is a minimal group we can also get an upper bound for

|F.I.(G)|, as the next proposition shows.

Proposition 2.3 If G is minimal, then |F.L(G)| < |End(G)| where

End(G) is the endomorphism ring of G.

Proof: If G is minimal and H is of finite index in G, then there exists
an isomorphism ¢y : G — H. If H, # H,, then ¢y, # ¢m, and so

IF.I(G)| < |End(G). 0

Finally, we consider residually finite groups. If G is an arbitrary
group, then the set F.I(G) induces a linear topology on G called the

finite indez topology.

Definition 2.4 The group GG is residually finite if G is Hausdorff in the

finite indez topology i.e. () H; = 0 where F.1.(G) = {H; : i1 € I}.
iel

Lemma 2.5 An infinite reduced residually finite group G has infinitely

many finite index subgroups.
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Proof: If G has only finitely many finite index subgroups H;,..., H,

then, for each i(1 < i < m), there exists n; € N such that n;G < H,.

Letting n = ny - - - n,, we get nG < h H; = 0, so G is bounded, and

=1

hence is a direct sum of cycles. Now, since G has only finitely many finite

index subgroups, G must be finite, a contradiction. 0

Note that if H;,..., H,, are finite index subgroups of G then an easy

i=m
induction argument shows that so is [} H; and thus, in the previous
=1

lemma, 0 is a finite index subgroup of G if G has only finitely many

finite index subgroups, and hence G is finite.

The next result gives a characterisation of a residually finite group

in terms of the Z-adic topology on the group.

Theorem 2.6 A group G is residually finite if and only if it is Hausdorff

in its Z-adic topology i.e. G' =0 where G' = (| nG. In fact G' = () H;

new el

where again F.1(G) = {H; : 1 € I'}.
Proof: First suppose that G is residually finite. For each H; € F.I1.(G),
there exists some n € w such that nG < H; and so G’ < [} H,. Hence G

tel

1s Hausdorff in its Z-adic topology.



Conversely, suppose that G is Hausdorff in its Z-adic topology. Note
that the closure of a subgroup A in the finite index topology is given by

N{(A+ H)= [ H, since if H; is of finite index in G|, then so is
el {iel:A<H;}

A+ H,. Using this we show that nG is closed in the finite index topology

for all n:

if nG is not closed, for some n, then we can find g € N H; such
{ieI'nG<H;)

that ¢ € nG. Now, G/nG = G?IAJ-, for some index set J, where each of
j€
the A; is a finite cyclic group. The element g + nG € G/nG has finite
support J', say. Define H < G by H/nG = Q% A;. Then H is a finite
JeENT
index subgroup of G containing nG but not containing ¢, a contradiction.
Since each nG is closed we get that [ nG must be closed i.e. 0 is closed
nEw
and so the finite index topology is Hausdorfl.
Now, if G is any group, then G/G’ is Hausdorff in its Z-adic topology.
The above argument then implies that nI(H,-/G’) = 0 since H/G" is of
HS
finite index in G/G’ if and only if H is of finite index in G. It now follows
that G' = n H". O

i€l

We conclude this chapter with a characterisation of a residually finite
group as a subdirect sum of the quotient groups G/H;. Recall that a

subgroup G of the direct product A = [] B, is a subdirect sum of the B,
i€l
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if, for each ¢, the projection m; [ G : G — B; is epic (see [10, p.42]).

Proposition 2.7 If G is residually finite then G is isomorphic to a sub-

direct sum of [[(G/H;).

el

Proof: Define ¢ : G — [[(G/H;) by g¢ = (g + H:)ic;. Then ¢ is
el

a homomorphism with Ker(¢) = [ H; = 0. Therefore G = Im(¢) =
el
{{(g + Hi)ier : ¢ € G}, which is obviously a subdirect sum of the G/H;.

a
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IV Torsion and Mixed Minimal Groups

We have already seen that the consideration of torsion minimal groups
can be confined to the case of reduced p-groups. We now wish to char-
acterise minimal p-groups. The characterisation is in terms of the Ulm
invariants. Before we tackle the characterisation problem we need some
properties of Ulm invariants and basic subgroups of p-groups. These
properties are well-known but we include the proofs here for the sake of

completeness.

§1 Ulm Invariants and Basic Subgroups

Lemma 1.1 IfG is any p-group then fo(G) = fo(G/p“G) for alln < w.

Proof: Define ¢: (p"G/p“G)[p] — p"G[p)/p™*' Glp] by the following:
if (p"g+ p*G) € (p"G/p*G)[p] then p"*t'g € p*G, so there exists z € pG
such that p**tig = p"tiz.

Then p(p"g — p"z) = 0 and so p"(g — z) € p"G{p]. Let (p"g+ p*G)¢ =
p"(g — z) + p" "' Glp|. ¢ is well-defined since, if (p*g — p"g1) € p*G with
p" g, p"tlg, € p*G then, choosing z,z, € pG such that p"tlg = p**'z

n+1

and p"*tlg, = p"tlay, we get p™(g — z) — p™(g1 — 1) = p* (g — G1) —

Pz — 1) € pP"H'G and p(p*(g — ) — p(1 — 71)) = 0, so p"(g —
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r) — p"(g1 — 1) € p"t'G[p]. ¢ is obviously an epimorphism. Ker(¢) =
(p"t1G/p“G)[p] since, if p"g + p*G € Ker(d), then p*(g — z) € p"+' G[p]

n+2

so p*(g — ) = p"T' g1 where p*t?g, = 0; hence p"g = p"z + p*tlg =

p"tley +p*tlg = p"t(z,+q1), for some z; € G since z € pG. Therefore
p"g + p°G € (p"'G/p*G)[p]. -
Conversely, if p**'g 4+ p*G € (p"' G/p*G)[p], then (p"*'g + p*G)¢ =
(p"(pg) +p*G)¢ = p"(pg — z) + p*t'G[p] = 0. We have
(P"G/p*G)p)/ (P G/ G)p] = p"Glp]/p"H' Glp] for all n < w, e

fa(G/p*G) = f(G) for all n < w. 0

Lemma 1.2 Let G be a reduced p-group and B one of ils basic subgroups.

If B is bounded then G = B.

Proof: Since G/B is divisible we have G = B + p"G for all n. Thus
G/B =(B+p"G)/B = p"G/(BNp"G) = p"G/p" B for all n. Now, there
exists m € N such that p"B =0, so G/B = p" . But G/B is divisible

and p™G is reduced, so G/B = p"G =0, ie. G = B. a

The next lemma tells us that for finite ordinals the Ulm invariants of
a basic subgroup of a p-group G are in fact the same as the Ulm invari-

ants of G. This result is essential in establishing the characterisation of



minimal p-groups.

Lemma 1.3 If B is basic in the reduced p-group G, then f,(G) = f.(B)

for all n < w.

Proof: Tfn € N we have p"Blp]/p™* Bp] = p" B[pl/(3"**G N B)[p] =
p"Blpl/(p"t' G N p"G N B)p] = p" Blp]/(p"*' G N p"B)[p] =

p" Blp}/(p"*' Glp] N p"Blp]) = (p"Blp] + p"*'Glp])/p"*! G[p]. We claim
that p"B[p] + p"*'G[p] = p"GIp].

Obviously p"Blp| + p"+'Gp| < p"Glp].

Couversely, if ¢ € G[p], then, for any n € N, g = b+ ¢, where b € B
and g, € p"G, since G = B + p"G. Now, 0 = pb + pg1, so pg €
B Np*ttG = p"*'B. Therefore pg; = pb, where b; € p"B. Hence
g =b+b +¢g —b where (b4 b)) € B and (g — b)) € p"G[p], so
(b+ b1) € Blp]. Therefore G[p} < B[p] + p"G|p] for any n € N. Now let
9 € p"Glpl; g € Glp] = Blp} +p"*'Glp|, s0 g = b+ g1 where b € B[p] and
g1 € p"tG[p]. Therefore b= (g~g;) € BNp"G = p"B and so b € p" B[p|.
Henceg € p" Blp]+p™t' G[p] and thus p" G[p] < " Blp)+p" "' G[p]. There-
fore p" Blpl/p"*"Blp] = p"Glpl/p""'Glp] and so fuo(B) = fa(G) for all

n < . ' a
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Note that Lemma 1.3 is a special case of a more general result which
gives criteria for the equality of the Ulm invariants of a p-group G and
the Ulm invariants of certain of its subgroups (see [25, 2, Proposition

7.4]).

Now we establish some important properties of the Ulm invariants of

minimal p-groups.

Proposition 1.4 Let G be a minimal p-group such that f,(G) = 0 for

some n < w. Then f,(G) =0 for ell m > n and G is bounded.

Proof: Let B be a basic subgroup of G. By Lemma 1.3 f.(B) = fi(G)
for all m. So if foy1(G) # 0, then B has a summand Z(p"t?) and, since
B <. G, so has G, G = Z(p"*?) @ G,, say. Now H = pZ(p"*?) ® G,
is a finite index subgroup of G and so H 2 G. We have 0 = f,(G) =
fa(H)Y =14 fo(G1) = 1+ fo(G) = 1, which is a contradiction. Therefore
fat1{G) = 0. A simple induction argument now gives that fn(G) =0
for all m > n. Also fu(B) = 0 for all m > n so B is bounded. Therefore

G = B, by Lemma 1.2. U

Proposition 1.5 Let G be a minimal p-group such that f.(G) # 0 for

some n < w. Then f,(G) ts infinite.
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Proof: Let B be a basic subgroup of G. Then f,(B) # 0. Therefore
B, and hence G, has a summand Z{p"™!), i.e. G = Z(p"*™') & G,. Since
G/G, is finite, G; = G and so f,(G)) = fo(G); this means that f,,(G) =

1 + fu(G) and so f{G) must be infinite. O

§2 The Characterisation of Minimal p-Groups

The following theorem, based on an argument due to Pierce (see [21,
Lemma 16.5]), is the main tool used in characterising minimal p-groups.
We could, of course, have restricted our considerations to subgroups of

mdex p but we shall need the more general result later on.

Theorem 2.1 If G 1s a p-group and H is a finite indez subgroup of G,

then there exists K < H such that K " G and G/K s finite.

Proof: The proof is by induction on the exponent of the order of G/H.
First suppose |G/H| =p. If H <. G, then G = H & A where A = Z(p),
by I, Lemma 1.10. Thus A = H gives the result. If H £. G, then (see
(10, p.114 (h)]) there exists some y € H|p] such that h¥(y) is finite and
hH(y) < hS{y). ¥ hH(y) = k — 1, then hC(y) = k since if there exists
x € G\ H such that y = pF*'z then p*(pz) = y and pr € H, since

pG < H, a contradiction. So cousider = where y = p*z. Then (pz) <. H
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(see [10, Corollary 27.2]) and is finite, so {(pz) C H, by I, Lemma 1.9, i.e.
H = K & (pz). We claim that G = K & (z).

We certainly have G = (z) + H = (z) + K + {pz) = (z)} + K. Also
(z) N H = (pz) since if nx € (z) N H, then n(x + H) = 0 so p di-
vides n and hence nr € (pz); obviously (pz) C (z) ‘ﬂ#H. Therefore
(tYNK =(&)NKNH =RKN{{z)ynNnH) = KN {pz) = 0, and so
G = K&®{z). Now suppose the result is true for all subgroups L of G such
that |G/L| < p", and let |G/ H| = p**!. There exists a subgroup Hy of G
such that # < H; < G and |H,/H| = p. Then G/H, = (G/H)/(H\/H)
which has order p” and so the hypothesis implies there exists A, < H,
such that K} C G with G/K finite. f K, < Hlet A = K,. If K| £ H,
then 0 # A /(KiNH) = (A, + H)/H < Hi/H so |K}/(K1 N H)| = p.
The first part of the proof now gives some A < AN H such that K T A,
and K,/K is finite. We have K < H and A C K| C G with G/A finite

since G/ K, = (G/K)/(K,/K). O

We are now ready to state aud prove the characterisation.

Theorem 2.2 If G is a reduced p-group, then G is minimal if and only
if fa(G) is infinite for all n < w or there ezists some X < w such that

fulG) is infinite for all n < A and fo(G) =0 for el n > A
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Proof: If G is minimal the necessity of the condition is given by Propo-
sition 1.4 and Proposition 1.5. For sufficiency consider H, a subgroup
of index p in G. Theorem 2.1 tells us that there exists K < H such
that G = K & A where A is cyclic. Then H=RK G(HNA)=HK & B,
say. We get fu(G) = fu(K) + fa(A) and falH) = fu(K) + fu(B),
so f.(A) and f.(H) are both infinite when f.(G) is infinite. Also, if
fo(G) =0, then 0 = f,(G) = fu(K) + fa(A), s0 fu( K} = f,(A) =0 and
fo(H) = 0+ f.(B) = 0, since B < A and A is a cyclic group. If By
is a basic subgroup of K, then f.(Bx) = fo(K)} = fu(G) for all n, so
By = @ Z(p)@@ Z(p*) - - —EB@ Z(p")®- - - with I, infinite for all n < w
1 2 n
or I, infinite for all n < some A < w and I, empty for all n > A. Since A
is cyclic we get that A = Z(p") for some n. By has a bounded summand
Cx = @ Z(p") which is pure in K and so Cx — K, K = K @ Chr, say.
Therefoze G=KgA=K &Cka A K, ®Cg = K. Similarly we get
that H = K and so H = G. Therefore G is minimal, by III, Theorem
1.6. O

We finish this section with some consequences of Theorem 2.2.

Corollary 2.3 A direct sum of cyclic p-groups is minimal if and only

if it is of the form @ Z(p) D PZ(pH) & - & PZL(p") @ - - - where I
h I In

is infinite for all n < w or there exists n such that I; is infinite for all

64



7 <n andl; is empty for all 37 > n.

Proof: If G is a direct sum of cyclic p-groups, then f,(G) is the number
of copies of Z(p"*!) for each n > 0§ and now the result is immediate from

Theorem 2.2. A~

Corollary 2.4 A direct sum of minimal p-groups is minimal.

Proof: If G = @ G; where each G, is a minimal p-group, then f.(G)
ief

is infinite if some f,(G;) is infinite since Ulm invariants are additive. O

Note that a summand of a minimal p-group need not be minimal since
if A is minimal, then f,,(A® B) is infinite if f,(A) is, for all p-groups B.
Also note that the only Ulm invariants involved in the characterisation

are the finite ones. This is reflected in the following corollary.

Corollary 2.5 A reduced p-group G is minimal if and only if G/p“G is

mantmal,

Proof: Lemma 1.1 shows that f,(G) = fu(G/p*G) for all n < w and

now the result follows trivially from Theorem 2.2. O
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§3 Purely Minimal p-Groups

Having characterised the minimal p-groups, following the same procedure

as in the quasi-minimal case, we now consider the class of purely minimal

P-groups.

Definition 3.1 A group G is purely minimal if G ts isomorphic to all

its pure subgroups of finite index.

Note that if H <. G and G/H is finite, then G/ H is a direct sum of
cycles, and so H [ G, by |, Lemma 1.10. Therefore G is purely minimal
if and only if G is isomorphic to all its direct summands of finite index,
l.e. G is directly minimal

We do not, however, have a corresponding reduction to subgroups of
index p, in the case of purely minimal groups, as the following example

shows:

Example G = @ Z(p) & Z(p?) is obviously not purely minimal; how-
o
ever, if H <, G of index p, then H = @ Z(p) & @ Z(p*) where |I| = Rg
1 J
and [J| < 1. Now, G = H & Z(p) and so |J| = 1, as a consideration of

the Ulm invariants will show., Thus G = H.
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Lemma 3.2 If a reduced p-group G is purely minimal and f,(G) # 0

for some n < w then f,(G) is infinite.
Proof: The same arguments as in the proof of Proposition 1.5. O

Theorem 3.3 A reduced p-group G is purely mimimal iof and only if

whenever f,(G) # 0 then f.(G) s infinite.

Proof: The necessity is given by the previous lemmna.

For sufficiency, let G = H @ A, where A is fimite. If f,(G) is infinite,
then so is f,(H) and if f,(G) = 0, then so are f,(H) and f.(A). Let
By be a basic subgroup of H. For any n such that f,(A) # 0 we
have that f,(G) is infinite and so f.(Br) = f.(H) is also infinite. If
A= QP Z(p™m) ® @Z(p"’) G- & @ Z(p*r) where I}, I,, ... I, are finite,

) 2 .
then By, and hence H, has a summand Cy = ée Z(p™) @ @Z(p"’) @
\ )
P g} Z(p™) where Jy, .J,, ... J, are infinite, H = H, @& Cg, say. Thus

G=HdoA=H $Cy B A= H &(Cy = H, and hence G is purely

minimal. |

Note that a minimal p-group is obviously purely mininial but the

converse 1s not necessarily true as we see from the following example:
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Example The group G = @ Z(p) @ € Z(p®) is purely minimal but not
Ro Ro

minimal by Theorem 3.3 and Theorem 2.2.

§4 Weakly Minimal p-Groups

The concept of a weakly minimal group is a natural analogue to the
concept of a weakly quasi-minimal group introduced in Chapter II. In
this case, however, the weakly minimal condition gives us a larger class

of groups.

Definition 4.1 A group G is weakly minimal if, whenever H i3 a finite
index subgroup of G, then G is isomorphic to a finite index subgroup of

H.

If we define a group G to be p-weakly minimal if every subgroup of
index p in G contans a finite index copy of GG, then, for weakly minimal

groups, we do get a reduction to the prime case.

Theorem 4.2 A group G is weakly minimal if and only if it is p-weakly

menamal for all primes p.

Proof: If G is weakly minimal, then it is obviously p-weakly minimal

for all p. Conversely, suppose GG is p-weakly minimal for all p. As in
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ITI, Theorem 1.6, the proof is by induction. If |G/H| =1 then G = H.
As a basis for the induction assume that every subgroup of G of index
less than some n contains a finite index copy of G and let |G/H| = n.
If n is a prime, then H has a finite index copy of G, by assumption. If

e

n 1s not prime, then n = r - s where r,s < n. As before there exists
G, < G, containing H, such that |G/G,| = r and |G1/H| = s. The
induction hypothesis tells us that there exists sone K < G of finite
index with K = G. If K < H, then we are finished. If A’ £ H, then
consider K + H < G,. Since K/K N H & (K + H)/H we have that
(K/KNH|=|(K+H)/H| <|G,/H| =s. Now, K = G implies that
K N H contains a finite index subgroup which is isomorphic to G and

thus so also does H since H/K N H is finite. O

The corresponding results to Proposition 1.4 and Proposition 1.5 in

the weakly minimal case are given in the following lemma.

Lemma 4.3 If a reduced p-group is weakly minimal, then its Ulm in-
variants satisfy one of the following

(1) if fu(G) #0 and fi(G) =0 for all i > n, then f.(G) is infinite;
(11) o f.(G) # 0 for infinitely many n, then f,(G) is infinite for in-

finitely many n.
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Proof: (i) To prove (i} let fo(G) # 0 and fi(G) = 0forall ¢ > n. As-
sume for contradiction that f,(G) is finite. Then G = G, & ;e Z(p"*t)
where f,(G) = |I,| is finite, and f.(G;) = 0. Now, |G/G1rl‘ is finite
and G is weakly minimal and so there exists some G5 of finite index
in G, suc“h that G; 2 G. By Theorem 2.1 there exists K such that
G, = K& A Gy = KW@ B where B < 4 and A is finite. Thus
0 = fa(G1) = falK) + fa(A), so fu(K) = fu(A) = 0 and fi(G1) = 0
for all ¢ > n gives fi( K) = fi(A) = 0 for all ¢+ > n. Therefore the finite
group A has no summand of order > p™*! and so neither has B. Hence
fo(B) =0 and so f,(G3) = 0, a contradiction, since G; = G.

(1) Suppose fi(G) # 0 for infinitely many :. Assume f;(G) is finite
for all ¢ greater than some n, and choose m > n. Then we have f,(G)
is finite and so G = G, & ;9 Z(p™*') where |I,| = f.(G) is finite and
fm{G1) = 0. There exists so;e G, of finite index in G, such that G; = G.
Again, by Theorem 2.1, there exists A such that G, = K § A,G; =
K @ B with B < A and A finite. Then 0 = f.(G1) = fu(K) + fm(A4)
and so f,(K) = fn(A) = 0. Also fu(G2) = fu(K) + fm(B) and so
Il = fnl(G2) = fm(K) + fin(B) = fm(B). Moreover, for all i > m,
we have fi(G) = fi(G1) and fi(G) = fi(G;) and so fi(A) = fi( B). Now

fm(A) = 0, fu(B) # 0 and fi(A) = fi(B) for all { > m and hence B



must have more elements of order greater than p™ than A, contradicting

B<A. O

As in Theorem 2.2 the following theorem characterises the weakly

minimal p-groups in terms of their Ulm invariants.

Theorem 4.4 A reduced p-group G is weakly minimal if and only if its
Ulm invariants satisfy one of the following

(i) i fu(G) # 0 and fi(G) =0 for all i > n, then f.(G) is infinite;
(i1) if fo(G) # 0 for infinitely many n, then [.(G) is infinite for in-

finitely many n.

Proof: If G is weakly minimal the necessity of the conditions is given
by the previous lemma.

Conversely, suppose the Ulm invariants of G satisfy (i) or (ii}. Let H be
of index p in G. Then there exists A such that G = KA G A H=K&® B
with B < A and A cyclic.

(1} Suppose that A = Z(p") for some r < n+1. Since f,(G) = fu(K)+
fn(A) implies that f,(A’) is infinite, we get that K = K, @ GIB Z{p™th),
where |I| is infinite. Therefore A = K7 & Z(p"*t!) & QJBZ(p"“) where

|J] = |I]. Hence K has a subgroup of finite index which is isomorphic to
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Ki& A Q{) Z(p"*') = A & A = G. A finite index subgroup of A is of
finite index in H since H = K & B, with B finite, and so G is isomorphic
to a finite index subgroup of H.

(1) Let G = K A where 4 is as in (i), for some n. By assumption we
can choose m > n such that f,(G) is infinite. Then f,.(K’) is infinite and
so K = K| ® QIB Z(p™*') with |I| infinite. As above, A has a finite index
subgroup which is isomorphic to K, § A ® GI) Z(p™*t*!')= K® A =G and

which is of finite index in H. U

Note that Theorem 3.3 and Theorem 4.4 tell us that a purely mini-
mal p-group is weakly minirmal but again the couverse is not necessarily

true as the mext exainple shows:

Example The gronp G = @ Z(p) & P Z(p*) & P Z(p*), where I is
No T Ko
finite, is weakly minimal but not purely minimal by Theorem 4.4 and

Theorem 3.3.

§5 Weakly Purely Minimal p-Groups

To conclude our discussion of minimal p-groups, just as in Chapter 11, we

relax the minimality condition in both the weak and the pure directions
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and we now consider weakly purely minimal groups.

Definition 5.1 A group G is weakly purely minimal if whenever H is
a pure subgroup of finite indez of G, then G 1is isomorphic to a pure

subgroup of finite indez of H. -

Again, in this case, we have an analogue of Proposition 1.5.

Lemma 5.2 If a reduced p-group G is weakly purely minimal and f.(G) #

0, for some n < w, then f,(G) i3 infinite.

Proof: As in Proposition 1.5, G = Z(p"*!) & G,. Since G/G, is finite
we get that G; = K @ A for some finite A and some A = G. Then
f(G) =14 fu(Gy) = 1 + fo(K) + fa(A) = 1 4+ fu(G) + fa(A) and so

fn(G) must be infinite. ' O

As the next theorem shows, we get nothing new in the weakly purely
minimal case, siuce every weakly purely minimal p-group is in fact purely

minimal.

Theorem 5.3 A reduced p-group G is weakly purely minimal if and only

if G s purely minimal.
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Proof: If G is weakly purely minimal, then Lemma 5.2 and Theorem
3.3 tell us that G is purely minimal. The converse is obvious from the

definitions. |

Having obtained a complete characterisation of minimal p-groups we
now proceed, in the final section of this chapter, to see how this can be

used to investigate mixed minimal groups.

§6 Mixed Minimal Groups

We now consider mixed minimal groups. First we have some results
on mixed minimal groups in general and then we concentrate on mixed

groups of torsion-free rank 1.

Theorem 6.1 Let G be a mized group. If G is minimal, then both tG

and G/t(G) are minimal where t(G) is the torsion subgroup of G.

Proof: First we show that #(G) is minimal. Let S be of finite index
in tG. Then G/tG = (G/S)/(tG/S) so (G/S)/(tG/S) is torsion-free
and hence tG/S <. G/S. But tG/S is finite, especially it is bounded,
and hence tG/S C G/S, G/S = tG/S @& K/S, say. Now, G/K =

(G/S)(K/S) = tG/S is finite and so A = @ since G is minimal. There-



fore tG = th. Also K/S = (G/S)/(tG/S) = G/tG is torsion-free, so
S =1tK, ie S =tG as required.

It remains to show that G/#(G) is minimal. Let H/tG be of finite index
in G/tG. Then G/H = (G/tG)/(H/tG) is finite and so G = H, since

G is minimal. Therefore G/tG = H/tH. But tH = HNtG = tG since

tG < H and so G/tG = H/tG. O

The next theorem shows that if G splits then the converse is true.
First we prove a lemma, due to Prochazka [22], but the proof given here

is based on Theorem 2.1.

Lemma 6.2 Let G be a mized group and H a finite indez subgroup of

G. Then, if G splits, so does H.

Proof If G/H is finite, then tG/tH = tG/(HNtG) = (tG+ H)/H <
G/H, so tG/tH is finite. Now, tG = @ G,, tH = @ Hp, and tG/tH =

pell pell
@ (G,/H,), so H, = G, for almost all p. Suppose H, # G, for p =

pell

P1,P2,---,Pa and we have equality for all other p. For each pi(: =

1,2,...,n), by Theorem 2.1, there exists K,, < Hp, such that G,, =

K, ® Ap, and H,, = K, & B,,, where B,, < A, and Ay, is finite.

Therefore tG = @ Gy, & é(Kp‘. G Ay) =K & é Ap, and tH =
i=1 i=1

p#pl 1P
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G G.oPK,@B,,)=Ka@B, where K = @ G,
PFP1,--Pn =1 i=1 PFEP1 e

@ K,.. Now, G splits, by assumption, and so G = tG @ G’ where
i=1

G’ is torsion-free, 1.e. G = K & A ® G where A = @ A,,. Hence

=1

H=HNG=K8%HN(A®G') =K P H where H = HN(A®G"). But
#{H') is finite and so it is a summand of H'. Hence H = K @ t{H') & H

where H is torsion-free and so H also splits. [

Using Lemma 6.2 we can now establish the following partial converse

to Theorem 6.1.

Theorem 6.3 If G splits and tG and G [tG are both minimal, then G is

minimal.

Proof: Let H be of finite index in G. Then, as in Lemma 6.2, tH is
of finite index in tG and thus tG = tH. Also (G/tG)/((tG + H)[tG) =
G/(tG + H) = (G/H)/((tG + H)/H) again is finite and so G/tG =
(tG+ H)/tG = H/(HNtG) = H/tH. Now, if G splits, then so does
every finite index subgroup of G, by Lemma 6.2. Hence, if G =G K
and H = tH & L, say, then K = G/tG = H/tH = L and {G = tH.

Therefore G =2 H. O



The second part of Theorem 6.1 and the necessary part of I1I, The-
orem 1.4 are examples of a more general result, concerning the idea of a
preradical. To see this, following Charles [4], we recall the definition of

a preradical.

Definition 6.4 Let Ab denote the class of all abelian groups. A functor
R : Ab — Ab is a preradical if, for all A, B € Ab and for all homomor-

phisms ¢: A — B, we have RA < A and (RA)p < RB.

Note that it is conventional to write the preradical on the left. Note
also that if R is a preradical then R(RA) < RA for all A from the above

definition.

Definition 6.5 A preradical R is a socle preradical if R(RA) = RA for

all A

Obvious exaraples of socle preradicals are
(i) R :Ab — Abwhere RA = t(A), the torsion subgroup of A, and
(it) R :Ab — Abwhere RA = D, the maximal divisible subgroup of

A.

Theorem 6.6 If G € Ab is minimal and R is a socle preradical, then

G/RG is also minimal.



Proof: Let H/RG be of finite index in G/RG. Then H is of finite
index in G and so G é H. We have (RG)¢ < RH and (RH)¢ ! < RG.
Therefore (RH)¢™'¢ < (RG)¢, i.e. RH < {RG)¢ and so (RG)¢ = RH.
Hence G/RG = H/RH. But { : H — G is a homomorphism, so
(RH): < RG, i.e. RH < RG. Also RG < H, by assumption, so
R(RG) < RH (consider: : RG — H) and R(RG) = RG,so0 RG < RH.

We have RG = RH and hence G/RG = H/RG. 4

Lemma 6.7 Let x be any subset of Ab. Then S, defined by S,(A) =
S {Im(¢) : ¢ € Hom{X, A), X € x}, for all A € Ab, is a socle preradical.

We write S¢(A) for Sy (A) if x = {G}.

Proof: S5,(A) < A for all A, by definition. If ¢y : A — B is a homo-
morphism, then ¢y : X — B is a homomorphismn for all ¢ : X — A

and so (S (A))¥ < 5,(B). It is obvious that S\(S,(4)) = S,(4). O

Examples (i) Let G = Z/pZ. Then Sg(A) = Alp| is the p-socle of
A. If 4 is minimal, then so is A/A[p] for all p. If A is a p-group, then
this is obvious by cousidering Ulm invariants and the characterisation of
minimal p-groups, since f.(A4/A[p]) = fay1(A4) foralln > 0.

(i) Let G=@Z/p"Z. Then Sg(A) = A, is the p-torsion subgroup of
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A. If A is minimal, then so is A/A, for all p.
(1) Let G =@ Z/p"Z. Then Sg(A) = tA and we just get a restate-
n,p
ment of the second part of Theorem 6.1.
We shall consider the socle preradical Sg(A) where G is a rank 1

torsion-free group in the next chapter.

For the remainder of this section we concentrate on mixed groups of
torsion-free rank 1. First we need the idea of the generalized p-height of
an element in a group and some associated lemmas. To this end let A be

an arbitrary group and p a prime.

Definition 6.8 If a € A the generalized p-height of ¢ in A, h3#(a) or
just hx(a), if A is understood, is defined by hy(a) = o if a € p” A\ p°T' A
where p° A is defined inductively as for p-groups A. Ifp" A=p 1 A, i.e
p"A is p-divisible, and a € p" A, we set h;{a) = 0o and we consider co

larger than every ordinal.

Lemma 6.9 Ifa € A and n € Z and if p is a prime such that p does

not divide n, then hi(a) = h3(na).



Proof: If a € p”A, then na € p"A, so h}(na) > ky{a). If p does not
divide n, then (p,n) = 1 so there exists r, s € Z such that rp + sn = 1.
Therefore a = rpa + sna and so h}(a) > min(h}(rpa), hy(sna)); now, if
hy(a) = o, then hi(rpa) > o +1 and if hj(na) > o we get hi(sna) > o

and so ¢ > ¢ + 1, a contradiction. O
Lemma 6.10 For all a € A and for all n € N, h34(a) < h3"4(na).

Proof: If « € p”A, then na € np’A, so it suffices to show np”4A <
p°(nA) for all 0. We use transfinite induction on o. It is obviously true
for all ¢ < w. Suppose that np? A < p”(nAd) for all ¢ < p and first
consider p = 7 +1. Then np’A = npp™A = pnp™A < pp"(nd) =
p ™ (nA), by the induction hypothesis. If p is a limit ordinal, then
npPA=n1p"A< N npd < () p°(nAd) = p’(nd), also by the in-

o<p o<p a<p

duction hypothesis. O

Again let A be an arbitrary group. Each element ¢ € A has an
associated matrix, called the height-matrix of a, defined in the following

way.

Definition 6.11 The height-matriz of a is the w X w matriz (whose

k

entries are ordinals or cos) H{a) = (ou) where o = h; (p

~a) and
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n=12,...,k=01,... and the primes are arranged in order of mag-

nitude.

Definition 6.12 Two w x w matrices, on; and pni, whose entries are
ordinals or oos, are equivalent if almost all their rows are identical and
for each of the other rows there ecist integers {,m > 0 such that o, 341 =

Prkym for all k> 0.

It is easily seen that this is an equivalence relation on the class of

such matrices.

Now, if A is a mixed group of torsion-free rank 1 and a,b € A
are any two torsion-free elements, then there exist some r,s € Z such
that ra = sb. If p, 1s any prime such that p, does not divide rs,
then the n'* rows of H(a) and H(b) are the same, by Lemma 6.9. If
pn divides rs, i.e. v = piri,s = pTs, where (p,71) = 1 = (pn, s1),
then h; (ra) = h} (sb), so k> (pha) = k; (pTb), again by Lemma 6.9,

1.e. Onl = ppm, where H(a) = (onx) and H(b) = (pu). Similarly, for

I+k
n

any k > 0, ripht*a = s;p**b and so A} (pEta) = A3 (pET™D), ie.
Onktl = Pni+m- Therefore H(a) and H(b) are equivalent and we denote

this equivalence class simply as H{A).
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We now state a theorem which gives a condition, in terms of height
matrices, for the 1somorphism of groups in large classes of mixed groups
of torsion-free rank 1 and we then apply this theorem to investigate

minimnality in these classes of groups.

Theorem 6.13 Let A and C be countable mized groups of torsion-free
rank 1. Then A = C if and only if
(i) t{A) =Z4C) and

(i) H(A)= H(C).

Proof: See (11, Theorem 104.3). O
This theorem can be extended ([29], [19]) to the cases where
(a) t(A) and t(C) are totally projective

(b) t(A) and ¢(C) are torsion-complete.

We first apply this result to prove a theorem concerning the minimal-
ity of local mixed groups of torsiou-free rank 1 with divisible torsion-free
quotient and then we use it to consider minimality in classes of mixed
groups of torsion-free rank 1 whose height matrices have rows which are

eventually gap-free.
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For the rest of this section we will assume that G 1s a reduced mixed
group of torsion-free rank 1 such that #(G) belongs to one of the classes

described in (a) or (b) above.

Theorem 6.14 Lett{(G) be a p-group for some prime p and let G /{(G) =
Q. Then G is minimal if and only if tG is minimal, i.e. f,{G) is infinite
for all n < w or there ezists A < w such that f.(G) is infinite for all

n < Aand fo(G) =0 for alln > X, where fo(G) is the n'* Ulm invariant

of t(G).

Proof: If G is minimal then #(G) is minimal, by Theorem 6.1.

Counversely, suppose that ¢(G) is minimal. By III, Theorem 1.6 it suffices
to consider subgroups of G of prime index. First, if 4 is a subgroup
of G of some prime index ¢ # p, then t(G)/t{(A) = H{G)JANLG) =
(#(G) + A)/A < G/A. Therefore t{G) = t(A) since t{G)/t{(A) is a p-
group and G/A = Z(q). Now, G/A = (G/H{(G))/(A/t(G)) is both divis-
ible and finite and so must be 0, a contradiction. Hence we need only
consider subgroups A of G of index p. Then pG < A and #(G) = t(A)
since t(G) is minimal. Next note that if #(G) < A, then, as above, G/A
is both divisible and finite and so must be 0. Therefore ¢{(G) £ A and

(A+t(G))/A is a non-zero subgroup of G/A and so (A-+#{G))/A = G/A,
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since G/A is a simple group. Hence there exists some z € ¢(G) \ A such
that G = (A, z). If g € G is any element in G, then ¢ = a + rz for some
a € A and some 0 < r < p and, since ¢{(G) is a p-group, there exists
some k € N such that p*z = 0 and so p*¢ = pFa € A and therefore
“p"G = p*A. Now let ¢ € G be any torsion-free element in G. Then
g =pg € p*G = p*A. For all n > 0 we have h;G(p”gl) > h;A(p"gl)
and if h;G(p"gl) > h;A(p"gl) = g, say, where o > k, then p"¢, = pg; for
some g, € p°G = p” A so p"g; = pa; for some a, € p° A, a contradiction
to h*(p"g:1) = 0. Therefore b7 %(p"g) = k4 (p"g1) for all n > 0. If
q # p, then R;%(q"g1) < h;P%(pg"gy) < k32 (pq"q1) = h;*(¢"g) for all
n > 0, by Lemma 6.9 and Lemma 6.10, and the converse inequality is true
since A < G. We conclude that H%(g,) is equivalent to H4(g;) and so
H(A) = H(G). Hence A = G, by Theorem 6.13, and it follows that G is

minimal, by III, Theorem 1.6. Now, Theorem 2.2 completes the proof. O

In our next result we do not need to assume that the torsion subgroup

is a p-group.

Theorem 6.15 Suppose that each row of H(G) is eventually gap-free,
t.e. given any torsion-free element a in G, for each prime p there exists

some n, such that h2%(p**1a) = k3% (pka) + 1 for allk > n,. Then G
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is minimal if and only if tG is minimal, i.e. for each prime p, fP(G) is
infinite for all n < w or there ezists A\, < w such that fP(G) is infinite
for all n < X, and fP(G) =0 for all n > A, where fP(G) is the n'* Ulm

invariant of the p-primary component of G.

Proof: If G is minimal, then #(G) is minimal, again by Theorem
6.1. Conversely, suppose that t(G) is minimal. As in Theorem 6.14
it suffices to consider a subgroup A of G of prime index p in G for
any prime p. Then pG < A and #(A4) = t(G), since #{G) is mini-
mal. Now, A contains torsion-free elements since if A = t4A < {G we
have G/tG = (G/tA)/(tG/tA) = (G/A)/(tG]A) which is finite, a con-
tradiction. So A is also mixed of torsion-free rank 1. Let a € A be
torsion-free and first consider ¢ # p. Then, for any &, h;G(q"a) <
hiP%(pgta) < h7*(pg*a) = h}4(¢*a), using Lemma 6.9 and Lemma
6.10, and, since A < &, we have h;A(q"a) < h;G(qka). We conclude
that h24(¢*a) = h;%(¢*a). Now suppose that H%(a) has no gaps af-
ter the k** entry in the row corresponding to p. Then h;G(pka) <

hpPS (P a) < R A(p*Ha) < RO (PR a) < RpPS(pHHRa) < hpA(pMa) <
hiC(p**%a) < ... So, if H(a) = (0um) and H*(a) = (pnm), then we

get that opr < ppit1 < Oppt1 < Pprtz < Tprs2 < ... and, since both

sequences are strictly increasing and opk, Opk+1,p k42 ... has no gaps,
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we get that H%(a) and H%(a) are equivalent and so H(A) = H(G) and
hence A 2 G, by Theorem 6.13. Therefore (¢ is minimal and now Theo-

rem 2.2 again completes the proof. O

If G is any mixed group of torsion-free rank 1 Megibben [19] has
observed that the rank 1 torsion-frec group G/t(G) can be recovered
from H(G). If (oy;) is any matrix in H(G), then we define a sequence
(1, ke, ... kn,. ..} as follows:

k, = oo if the n*® row of (0i;) contains an infinite ordinal or the symbol
oc¢ or has infinitely many gaps,

k, = opn;— 7 if the n'® row of (oy;) contains only integers and has no gaps
after o, ;1.

Then it is not difficult to see that (ky, ks, ..., kn, ...} 1s the characteristic
of some element in G/¢(G) and hence determines G/t(G).

If t{G) is a p-group for some prime p, then let p, # p be any other
prime and let 0 # g + {G) = § € G = G/t(G) have characteristic
(kv,ka, ... kn,y...). We have £Z8(g) < h38(3) = k..

If k, is finite, then § = pf~gy and g = pf~g) + ¢, where g, € G and ¢ is
torsion, so p*g = p*pi~ gy, for some s, and hence b} (g) =k, (pfrg1) > kn.

Therefore b7 (g) = ky. Similatly, h2%(pkg) = h2C(p57) = ko + & for all
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ke N.

Now consider k, = oo. First note that p*G = p°G, since G is torsion-
free. We show, by transfinite induction, that whenever § € p°G then
g € p2G. If 0 < w, then 1t has been proved above. Assume that it is
true for all ordinals < ¢ and first conside; ;r =p+1. Thenif ge }f;ﬁ
we have § = p,g7, where g7 € p2G. If g1 = g1 + t(G), then the iuduction
hypothesis tells us that g € p2G. But g = pag1 + t, where p*t = 0,
for some s € N, s0 b} (g) > b () +1 2> p+1 =0. If 5is a limit
ordinal, then § € p£G for all p < & so, again appealing to the induction
hypothesis, we get that g € p? G for all p < 0 and so ¢ € piG. Therefore,
if k,, = oo, we must have that &, (g) = co.

We can conclude that if #(G) is a p-group then G/¢(G) determines all the

rows of H(G) except the row corresponding to p.

We now use this fact to establish our final result in this section.

Theorem 6.16 Suppose that t(G) is a p-group and the row correspond-
ing to p in H(G) is eventually gap-free. Then G is minimal if and only

if both t(G) and G/t(G) are minimal.

Proof: If G is minimal, then both ¢(G) and G/#(G) are minimal, by

Theorern 6.1. Conversely, suppose that #{G) and G/¢(G) are munimal.
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Let A be a subgroup of G of prime index. Then, as in Theorem 6.3,
t(A) = HG) and A/t(A) = G/H(G). Let a € A be torsion-free. We wish
to show that H*(a) is equivalent to H%(a). By what has been said above
we need only consider the row corresponding to p. If |G/A| = q # p, then,
for any k € N, we have h;%(p*a) < h3%%(gp*a) < hyA(gp*a) = h;A(p*a),
and so h}%(p*a) = h;#(p*a). Hence H(A) = H(G) and A = G. I
|G/A| = p, then, since the row corresponding to p has only a finite
number of gaps, proceeding as in Theorem 6.15, we get that H4(a) is
equivalent to H%(a), and again A & G. We conclude that G is minimal.

a
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V Torsion-Free Minimal Groups

In this final chapter we consider torsion-free minimal groups. To begin
we need some properties of the torsion-free rank and the prank of a

torsion-free group

§1 Rank and p-Rank of Torsion-Free Groups

In I, Definition 1.1 we defined the torsion-free rank of any group. Now

we restrict our interest to torsion-free groups.

Definitton 1.1 If G is a torsion-free group then

(1) The (torsion-free) rank of G, r(G), is the cardinality of any mazimal
linearly independent subset of G or, equivalently, the dimension of QR G
as a vector space over Q.

(ii) Ifp is a prime the p-rank of G, r,(G), is defined to be the dimension
of G/pG or, equivalently, the dimension of Z(p) & G, as a vector space

over Z(p).

Note that, if G is a mixed group, then Q ® G = Q ® (G/tG) and so
the torsion-free rank of G is the same as r(G/tG).
The following lemma establishes some facts concerning rank and sub-

groups of a given group. The proof of (ii) is from (1, Theorem 0.2].
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Lemma 1.2 If His a subgroup of G, then
(i) r(G)=r(H)+r(G/H);

(i) rp(G) <rp(H) +7p(G/H);

(iii). If H is a pure subgroup of G, then rp(G) = rp(H) + rp(G/H);

(iv) If H s a fimite index subgroup of G, then r(H) = r(G) and

(v) Ifr(G) is finite, then 7,(G) < r(G).

Proof: (1) Consider the short exact sequence 0 — H BLEN o R
G/H — 0, where ¢ is inclusion and 7 is canonical projection. Since
is torsion-free the sequence 0 — Q© H AN Qs G - QeG/H —0
1s also exact where ' = 1d @1 and #’ = 1d @ 7 are vector space ho-
momorphisms. Hence dim(Q & G) =dim(Ker(7"))+dim(Im(#’)) and so
r(G) =r(H)+r(G/H).

(i1) Again, consider the short exact sequence 0 — H BRI RN
G/H — 0. This induces the sequence

H/pH -2 G/pG -2 (G/H)/p(G/H) —» 0 where (h+ pH)a = h + pG
and (g + pG)8 = (¢ + H) + p(G/H). This sequence is exact since
obviously Im(e) <Ker(f) and 3 is onto and if g + pG €Ker(3) then

g+ H =plg + H) , for some g, € G, so g + pG = h + pG, for some
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he H, e g+ pG €ln(a). Let K =Ker(a) = (H N pG)/pH.

Then 0 —s K — H/pH - G/pG -2 (G/H)/p(G/H) — 0 is exact
and the homomorphisms ¢, @, 8 are Z(p)-vector space homomorphisms.
Therefore dim(G/pG) =dim(Ker(3))+dim(Im(8)) =dim(Im(ea))+dim(Im(3))
< ditn( H/pH)+dim((G]H)[p(G/ H)), k. ry(G) < ry(H) + ryl G/ H).
(i) U H <, G, then K = (HN pG)/pH = pH/pH = 0 and so we get
that 0 —» H/pH 5 G/pG -2+ (G/H)/p(G/H) —> 0 is a short exact
sequence and dim(Imea) =dim(H/pH) and so the result follows from (it).
(iv) I G/H isfinite, then r(G/H) = 0 and so (i) gives r(G) = r(H). In
(i1) we claim K = (G/H)[p], the p-socle of G/H; define ¢ : (G/H)[p] —
K by (¢c+ H)¢ = pc+pH where (G/H)[p] = C/H = {c+H :pcc H}. If
c—c' € H, then pc—pc’ € pH so ¢ is well-defined. Obviously ¢ is a homo-
morphism and ¢ is injective since (¢c+ H)¢ = 0 implies pc € pH and hence
¢ € H since H is torsion-free. Also ¢ 1s surjective since if pg + pH € K
where pg € H N pG, then (¢ + H)p = pg+ pH and ¢+ H € C/H.
Therefore K’ = (G/H){p| = (G/H)/p(G/H) since G/H is a finite group
and this isomorphism is a vector space isomorphism. Now, from (i), we
get dim(H/pH) =dim(Ker(a))+dim(Im(e)) =dimA +dim(Im(a)) and
dim(G/pG) =dim(Ker(3))+dim(Im(8)) =dim(Im{a))+dimA and hence

rp(H) = rp(G).
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(v) Let {g: + pG} be a linearly independent set in G/pG where ¢ € I
with [I| = rp(G). ¥ Y. nigi = 0 for ny,ny-- n, € Z, not all 0, and
1<i<n

g.cd.(ny,nz,...,n) =1, then 3 nfg + pG) = 0, and so n;g; € pG
1<i<r
for 1 < i < n. Therefore p divides n; for each 2 = 1,2,...,n, which is a

contradiction. )

§2 Torsion-Free Complete Groups and Groups with

p-Rank at Most 1

Our first result shows that any torsion-free group that is complete in its

Z-adic topology i1s minimal.

Theorem 2.1 Let G be a torsion-free group that is complete in its Z-

adic topology. Then G is minimal.

Proof: First note that G is reduced and algebraically compact, by I,
Lemma 1.17. Now let H be of index p in G where p is any prime.

Then p(G/H) = 0 and so [} n{G/H) = 0 and hence H is also reduced
neN

algebraically compact (see [10, Corollary 39.2]). Therefore, by I, Lemma

1.18, G = [] G, and H = [] H, where each G, and H, is g-adically
q€ell q€ll

complete and H, = () r*H < [ *G = G, for all ¢, where
kEN, r#q keN, r#q

r € Il. Since G, and H, are complete in their respective ¢g-adic topologies
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we get that G, = é“j‘; and H, = é-};, for some cardinals m and n.
We have Z(p) = G/H = [[ G,/ 1] H, = [](G,/H,) and since each G,
q 7 7
is divisible by p, for ¢ # p, we must have G, = H, for all ¢ # p and
|Gp/ Hpl| = p.
Now, Gy/pGy = @ Jo/o(@ ) = (@ ) /ol @ ) = (D)@ ply) =

D(J/p],) = @Z/pZ and stwilarly H,/pH, = @ Z/pZ. Therefore
m = 1,(G,) = r,(H,) = n, by Lemma 1.2 (iv), and so G, = H,. Hence

G = H and now III, Theorem 1.6 tells us that & is minimal. O

Corollary 2.2 [] J, is minimal.
pell

Proof: []J, = Z, the Z-adic completion of Z by I, Lemma 1.18. O
P

Now we consider groups & with r,(G) < 1 for all p. The following

theorem has been proved by Prochdzka {23] for the finite rank case.

Theorem 2.3 If G is torsion-free such that r,(G) < 1, for all primes p,

then G ts minimal,

Proof: As before it suffices to consider H of index p in G where p is
any prime. If |G/H| = p, then pG < H and G/H = (G/pG)/(H/[pG).

If r,{G) = 0, then H = G, a contradiction, so we may assurne that
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rplG) = 1. Then |G/H||H/pG| = |G/pG|, 1.e. p|H/pG| = p. Therefore
|H/pG| = 1 and so pG = H, i.e. the only subgroup of index p in G is

pG. Since G is torsion-free pG = G and hence H = G. a

Corollary 2.4 Suppose that A is torsion-free with r,(A} < 1 for all p.

If B <. A, then both B and A/B are minimal.

Proof: By Lemma 1.2 (iii} we have that r,(A) = r,(B) + r,(A/B) for
all p. Therefore r,(B) < 1 and r,(A/B) < 1 for all p and hence both B

and A/B are minimal. a

Lemma 2.5 r,(J) <1 for all p where J denotes the group [] Jp.
pell

Proof: J/qJ = ( g_{ T}/ (q L—I[I Jp) = (115} (ade® ] Jp) = (Jo/qJg)®

p7q

Il J,/Jp = Z/qZ, for any prime q. Therefore r,(J) < 1 for all p. a
P#q

Griflith [14] has characterised torsion-free reduced groups G, with
ro(G) < 1 for all p, as pure subgroups of J; to see this we first need a

lemma.

Lemma 2.6 Let G be a torsion-free group and p any prime. Then

ro(G) < 1 if and only if every p-basic subgroup of G has rank at most 1.
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Proof: If B be a p-basic subgroup of G, then G/pG = (B + pG)/pG =

B/(BNpG) = B/pB and so r,{G) = rp( B) = r(B), since B is free. O

Theorem 2.7 If G is a torsion-free reduced group then r,{G) <1 for

all p if and only if G is isomorphic to a pure subgroup of J = [] J,.
pEll

Proof: If G isisomorphic to a pure subgroup of J thenr,(G) < rp(J) <
1 for all p. Conversely, suppose that r,{(G) < 1 for all p. Then every
p-basic subgroup of G is cyclic, by the previous lemma. Embed G in
its cotorsion completion E = Ezt(Q/Z,G). E is reduced and E/G is
torsion-free divisible {see I, Lemma 1.21), so G <, F. Also E is torsion-
free cotorsion and so E is algebraically compact (see I, Lemma 1.20).
Hence F = [] A, where each A, is complete in its p-adic topology and
P
so Is a p-adic module. Since E/G is divisible and G <. E every p-basic
subgroup of G is p-basic in E and so every p-basic subgroup of E is cyclic.
But the p-basic subgroups of E and A, are the same, so rp(A4,) < 1 for all
p. Therefore each A, is indecomposable as a p-adic module, i.e. 4, =0

or A, = J, for each p and so the result follows. O

We now have that pure subgroups of J,, @ J, and []J, are mini-
P P

mal. This gives indecomposable minimal groups of any rank < 2% since



p-pure and hence pure subgroups of J, are indecomposable. It would be
interesting to know if indecomposable minimal groups of arbitrary large

cardinality can be shown to exist in ZFC.

Now we turn our attention to another class of torsion-free groups.

Definition 2.8 A torsion-free group G 1is strongly-indecomposable if
whenever nG < A® B < G, for somen € N and A,B < G, then

either A=0 or B =10.

Proposition 2.9 If A is an indecomposable torsion-free group such that
rp{A) < 1 for all p, then A is strongly indecomposable. In particular,

pure subgroups of J, are strongly indecomposable.

Proof: Let A be as above. First we show, by induction, that [A/nA| <
nforalln € N. If n = 1 this is obviously true. Suppose that |[A/mA| <m
for all m < n. If n is prime, then |{A/nA| < n, again by hypothesis.
If n is not prime, then n = r - s where r,s < n. We have A/rA =
(A/nA)/(rA/nA)and rA/nA = A/sA, so |A/nA| = |A/rA||A/sA] <r-
s =n. NowifnA < B&C < A, then A/(B&C) = (A/nA)/((BRC)/nA)
is finite; hence A 2 B@ C, so B® C is indecomposable, i.e. either A =0

or B=0. O
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Note that Murley [20, p.656] proves this result for finite rank A.

Proposition 2.10 If A is a finite rank minimal group, then A is inde-

composable if and only if A is strongly indecomposable.

Proof: If Aisindecomposable and n4 < B®C < A, then A/(BaC) =
(A/nA)/((B®C)/nA), which is finite. Thus A = B&C and hence either

B =0or C =(. The converse is immediate. O

Beaumont and Pierce [2] have characterised minimal indecomposable
torsion-free groups of rank 2 as those groups with p-rank at most 1 for
all p. The proof given here uses the previous proposition and some other

facts.

Theorem 2.11 If G is torsion-free indecomposable of rank 2 then G is

minimal if and only if v,(G) < 1 for all p.

Proof: If G is torsion-free with r,(G) <1 for all p, then G is minimal
by Theorem 2.3. Conversely, if torsion-free G of rank 2 is indecomposable
and minimal, then G is strongly indecomposable and this implies that
End(G), the endomorphism ring of G, is commutative (see [1, Theorem
3.3)). Faticoni and Goeters have shown that if G is a torsion-free group

of finite rank which is minimal with commutative endomorphism ring,
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then r,(G) < 1 (see [9, Proposition (iii.5)]). O

Finally, we show that, for each prime p, there exists a minimal group
of infinite p-rank which is not complete. Later in this chapter we will
see that there exist non-complete (completely decomposable) minimal

groups of any finite p-rank.
Theorem 2.12 @ J, is minimal for any infinite index sei I.
7

Proof: Let G = @ Jy, where I is infinite, and let H be of prime index
in G. Since G is divisible by all primes ¢ # p we may assume that H is
of index p in G. We claim that H is a p-adic submodule of G.

Hr=3 ptan€J,and h € H, then nh+ H = (;‘cp"an)h-{—H, for all

n<w n>

k>1,s0omh+ H=p*y,+ H), for some yx € G, for all k > 1. Hence
mh+ H is divisible by p* in G/H, for all k and so nh € H, since G/H is
a finite p-group. Therefore H is a submodule of the free p-adic module

G. We conclude that H is free and G/H finite implies that r(H) = r(G)

and so H = G. O
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§3 Weakly Minimal Torsion-Free Groups

Just as in Chapters IT and IV we can consider the less restrictive condition
of weak minimality in the torsion-free case. For finite rank torsion-free
groups this concept is rather uninteresting in light of Proposition 3.2
below. However, in the infinite rank case, it is a useful idea as we see in
Theorem 4.20 of this chapter concerning separable minimal groups. First

recall the definition of a weakly minimal group.

Definition 3.1 A group G is weakly minimal if, whenever H is @

finite indezx subgroup of G, then H contains a finite index copy of G.

Proposition 3.2 Any torsion-free group of finite rank is weakly mini-

mal.

Proof: Let G be torsion-free of finite rank and let H be a finite index
subgroup of G. Then there exists an integer n such that nG < H. Since
G is of finite rank we have G/nG is finite and so H/nG, being a subgroup
of G/nG, is also finite. Therefore G is weakly minimal since G torsion-

free means that nG is isomorphic to G. O

Proposition 3.3 If a torsion-free group G has finite p-rank for all p,

then G is weakly minimal.
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Proof: We show, by induction, that G/nG is finite for all n € N. For
n = 1 the result is obvious. Suppose G/mG is finite for all m < n. If
n is prime, then G/nG is finite, by the hypothesis. If n = r . s, then
G/rG = (G/nG)/(rG/r- sG). Therefore |G/nG| = |G/rG{|G/sG| which
is finite. Now, as in the previous proposition, if H is a finite index
subgroup of G, then there exists an integer n such that nG < H and
H/nG < G/nG, which is finite. Now, nG = G since G is torsion-free

and hence G is weakly minimal. (|

Proposition 3.4 If A; is a forsion-free weakly minimal group for 1 <
i < n, then G = @ A; is weakly minimal. In particuler, a finite direct
i<n

sum of mintmal groups 1s weakly minimal.

Proof: If H is of finite index in G, then H N A; is of finite index in
A; for all i < n. Therefore H N A; contains a finite index subgroup B,
such that B; = A;, for all z < n, since each A; is weakly minimal. Now,
G/ @ B, = @(A,-/B,-) whicb is finite and so we get that ? B; is a finite

i<n i<n i<n

index subgroup of H which is isomorphic to G. Therefore G is weakly

minimal. O
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For the final section of this chapter we restrict our attention to two
important classes of torsion-free groups, namely the completely decom-

posable groups and, more generally, the separable groups.

§4 Completely Decomposable and Separable Minimal
Groups

Before we consider completely decomposable and separable minimal groups
we need to establish some important facts concerning types and finite in-
dex subgroups of a general torsion-free group.
Let G be any torsion-free group, H a finite index subgroup of G, and
let s be any type. There exists n € N such that nG < H; if h ¢ H
then tg(h) = tag(nh) < ty(nh) = tg(h) and obviously tg(h) < tg(h).
Therefore ty(h) = tg(h).

In Chapter I we have defined the two fully invariant subgroups G(s) =
{9 € G:t(g) > s} and G*(s) = (g € G:t{G) > s) of G. We will also
need the subgroup G*(s) = G*(s). where the purification is taken in G.
If we denote the rank of G(s)/G¥(s) by rg(s), l.e. rg(s) = r{G(s)/G(s)),
then the next lemma shows that rg({s) = rg(s) whenever H is a finite

index subgroup of G.
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Lemma 4.1 If H is any finite indez subgroup of the torsion-free group

G ond if s is any type, then ry(s) = re(s).

Proof: Let G and H be as above. Then H(s) = {h € H:ty(h) >
s} ={h € H:tg(k) > s} = HNG(s) and Hi(s) = (h € H : ty(h) > o),
(h € H :tg(h) > s),, and we show that H*(s) = H N G*(s). First, if
h € H*(s) then there exists m € Z such that mh = hy + hy + ... + A,
where h,hi,hay... ko € H and tg(hi) > s for i = 1,...,n and there-
fore h € GUs). Conversely, h € H N G*(s) implies that there exists
m € Z and g1,...9- in G with t¢(g) > s (+ = 1,...,r), such that
mh = g, + ...+ g.. Now, there exists n € N such that nG < H and
so nmh = ngy+ ...+ ng, = hy +... + h, where h; = ng; € H and
to(hi) = ta(g:) > s (i = 1,...,r) and this means that h € H*(s).
Therefore we have H(s)/H!(s) = (H N G(s))/(H N G!(s)) =
(HNG(s))/(HNG(s)NG(s)) = (H(s) + G¥(s))/G'(s) < G(s)/G*(s)
and (G(s)/G(s))/((H(s) + GU(s5))/G'(s)) = G(s)/(H(s) + G*(s)) =
(G(s)/H(s))/((H(s)+G*(s))/H(s)) and G(s)/H(s) = G(s)/(HNG(s)) =
(G(s) + H)/H < G/H is finite.
Hence 0 — H(s)/H'(s) —2» G(s)/G*(s) = (G(s)/G¥(s))/Tm(¢) —»
0 is a short exact sequence with (G(s)/G*(s))/Im(¢) finite. Therefore

Q@ (H(s)/H'(s)) = Q @ (G(s)/G*(s)), i.e. Tu(s) = rg(s). O
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We will now apply this result to the case of a completely decompos-

able group G. First recall the definition of a completely decomposable

group.

Definition 4.2 A torsion-free group G is completely decomposable if it

is o direct sum of rank 1 groups.

Also recall the typeset, T(G), of a torsion-free group G, 1.e. T(G) =
{t(g) : ¢ € G}. In the case of completely decomposable groups there is

an important subset of the typeset, namely the set of critical types.

Definition 4.3 If G is completely decomposable , G = @@ G, where each
i€l
G is of rank 1, then the set of critical types of G, T..(G), is {t{G:):1 €

1.

If G 1s completely decomposable, then G = @ A, where A, is homo-
t
geneous completely decomposable of type ¢ and ¢ ranges over all types

in T, (G). Now, G(s) = @ A, and G*(s) = G(s) = @ A,. Therefore
t>g t>s
rg{s) = r(A,) for all types s. If a finite index subgroup H of G is also

completely decomposable, then ry(s) = rg(s) for all types s by Lemma

4.1 and so, by I, Theorem 3.3. we have H & G.
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Definition 4.4 A completely decomposable group G is cofinitely heredi-
tarily completely decomposable if all its finite inder subgroups are com-

pletely decomposable.

The following theorem is now immediate.

Theorem 4.5 A completely decomposable group G 13 minimal if and

only if it is cofinitely hereditarily completely decomposable. a

Corollary 4.6 Rank 1 groups are minimal.

Proof: Any finite index subgroup of a rank 1 group is of rank 1 and

hence is completely decomposable. O

Corollary 4.7 Homogeneous completely decomposable groups are mini-

mal.

Proof: Let G be homogeneous completely decomposable and let H be
of finite index in G. For all h € H, ty(h) = te(h) and so H is also
homogeneous of the same type as G. Now, [, Lemma 3.5 tells us that H

is completely decomposable and so G is minimal. O

Corollary 4.8 A direct summand of ¢ minimal completely decomposable

group 18 minimal.
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Proof: Let G be a minimal completely decomposable group and let
ACG,G = A® B, say. If R is of finite index in A, then K & B is of
finite index in G and so is completely decomposable. Since K — K & B

we deduce that R is also completely decomposable, by I, Lemma 3.6. O

Corollary 4.9 If G is a completely decomposable group whose critical
typeset {t, : 4 < a, o some ordinal } is inversely well-ordered, i.e. t, <1,

for p > v, then G is minimal.

Proof: The proof is by transfinite induction. If 7., (G) = {to}, then G
is homogeneous completely decomposable and so is minimal by Corol-
lary 4.7. Suppose completely decomposable groups with inversely well-
ordered critical typesets {t, : ¢ < v} are minimal for all ¥ < a and
let G have critical typeset {t, : 4 < a}. G = @ G, where G, is ho-
p<a
mogeneous completely decomposable of type t,. For each g < a let
K, = @ G,. K, is minimal, by assumption, for all y < a. If H is a
v<u
finite index subgroup of G, then H, = H N K, is of finite index in A,
since K,/H, = K,/(HNK,) = (K,+ H)/H < G/H is finite. There-
fore H, = K, since K, is minimal. Also, for all p < a,H,/H, =

Hyor/(H N K) = HunJ(H O Ky N K,) = Huer /(o 0 K,) =

(Hysg +K,)/ K, < Kp+1/Ku = G, and (Ku+l/ﬁ’u)/((Hﬂ+l +KL)/ K, =
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Kupi/(Hups + Ky) = (Kur/ Hupt )/ (Hur + KL,) [ Hopt) is finite. Hence
Hun/H, = (Hypr + Ku)/K, = K,4/K, since G, is minimal. If
heH, 1~ H,thenhe K., ~ K, and so tg,,, (k) = t, since h must
have a non-zero G,-component. Therefore ty,,, (k) =1, since H,y, is of
finite index in K 4. Also H, <, H, 4, since H,y,/H, = G, is torsion-
free. By I, Lemma 3.4 we have that H, C H,4,, ie. Hypyy = H, ® B,
where B, 2 H W /H, = K, /R, 2 G

If o is a successor ordinal, @ = y+1, say, then G = @ G866, = K,8G6,

n<y

and, by assumption, A, is minimal. Also H = H,y, = H, ® B, with
H, = K, and B, = G,; therefore H = G. If a is a limit ordinal, then
H = |J H, is completely decomposable since each H,, is and H,, C H,4.

Mo

for all 1 < . Hence G is minimal. a

Beaumont and Pierce (see (3, Corollary 9.6]) give a method of ex-
tending any finite rank torsion-free minimal group to a larger minimal
group by adding on a finite rank completely decomposable gfoup whose
critical typeset is a chain (aud which is of course minimal by Corollary
4.9). The proof given here is by induction on the rank of the completely

decomposable part.

Theorem 4.10 Let C be a finite rank torsion-free minimal group and
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G1,...,G. are rank 1 groups such that t(G,) < t(G,) < ... < #{G,) <

tc) forallce C. ThenG=G,@G: D - & G, @ C is also minimal.

Proof: If H is of finite index in G, then kH < kG < H for some
k € N. Since kG = G it suffices to prove that if kH < G G2 @ -+ B
G, &C < Hthen H=Z G, @G, ®---® G, @ C. First suppose that
kH < Gy & C < H. Letting B = C.,, we have that H/B is torsion-
free of rank 1 since k(H/B) = (kH + B)/B < (G, + B)/B < H/B
where (G; + B)/B = G, /(G N B) 2 G, and k(H/B) = H/B. In fact
H/B = (G, + B)/B = Gy, by I, Lemma 3.3, since their types must be
the same. Now, if h € H\ B then kh € kH < G, ® C < H and so
tu(h) = tun(kh) < teigo(kh) < ta(kh) = tu(k) = HGy) = +(H/B)
since kh ¢ C because h ¢ B. Therefore I, Lemma 3.4 implies that B
is a summand of H, H = B® D, say, where D = H/B = G,. Also
kB < C < B since, if b € B with kb= g, + ¢ where g, € Gy and c € C,
then g = kb—-c¢ € Gy N B =0. Since B/kB is finite we get that kB is
of finite index in C and hence B = kB 2 (. Therefore H 2 G, @ C.

Now suppose the result is true for n and let kH < G P G2 D - B G, P
Gpy1 & C < H with € minimal and #(G)) < #(G;) < ... <HG,) <
HGupr) St(c)forallc € C. Let B=(G2@ -+ & Gay1,C),,- Again

H/B = G,). A similar argument to the first case gives H = B& D with
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DZH/B=G,. NowkB < G, @ -- B Gn ®Gny1 @C < B, s0, by

induction, B G, @ --- B G,,  Guyy @ C and the result 1s proved. 1O

Note that complete decomposability is not suflicient to guarantee
minimality as the following example shows:

Example Let e,,e; be independent elements in a (Fvector space
and let py, p2, ¢ be distinct primes. Let E, = (pf‘”el),Eg = (p;meg)
and G, = (E},q7'e;) ,Gy = (F3,¢7'ez). Then Ey, E,, Gy, G are rank 1
groups where Gy & E|, with type given by the characteristic
(0,0,...,0,00,0,...), with co in the p!" place, and G, & E,, with type
given by the characteristic (0,0,...,00,0,...), with oo in the p! place.
Defining ¢ : Z —>» G\/E; by (z)¢ = 2q7'e; + E\(z € Z) it is easily
seen that ¢ is a surjective homomorphism with kernel gZ. Therefore
Gi/E, = Z/qZ and so |G,/E,| = ¢. Similarly |G3/E,| = ¢. Now,
(G1 & G2)/(E\® E2) = (G1/E)) ® (G2/ Ez), so E, @ E; is of index ¢* in
G & G;.

Let A= (E,® E;,g7'(e; +€)) < Gy &Gy Ais indecomposable (see
(11, p.123, Example 2]) and so A 2 G, & G,. However, (G, ® G3)/A =
(G1BG)/(E1B EL))/(A/(E1@ E,)) and so A is of finite index in Gy B G2

and hence &G; & (7 1s not minimal.
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Note that 4 is also not minimal, since g4 < E, G E; < A and A/qA is
finite since A has finite rank.

More generally, if ¢, and ¢; are two incomparable types whose char-
acteristics have a common finite entry at some prime p, then letting
E, = (p,:""el Sk # p) and E, = (p,:"”‘ez Dk # ;;5 where ¢, and t, are
given by the characteristics {...,ng,...,0,...) and (... ,mg,....0,...),
respectively, with 0 in the p** place and 0 < ng,my < oo for all k € N,
we get that {E;, Ez} is a rigid system (see [11, p.124]).

Now,if G, = (Ej,p~'e1},Gy = (Ez2,p~'ey) and A= (E, & E3,p~ ' e1 + €2))
then A is indecomposable (see [11, Lemma 88.2]), and, as above,

(G D G2)/(E, ® E;)| = p* and so A is of finite index in G, & G2. Hence

1 & G5 1s not minimal. [

The next proposition gives necessary and sufficient conditions for
a completely decomposable group of rank 2 with incomparable critical

types to be minimal.

Proposition 4.11 Let G = G, D G, be completely decomposable of rank
2 where t; = t(G,) is incomparable to t, = t(G,). Then G is minimal if

and only if ro(G)rp(G2) = 0 for all primes p.
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Proof: If r,(G))r,(G;) = 0 for all p, then rp(G) < 1 for all p, so G is
minimal by Theorem 2.3. Conversely, if r,(G1) = 1 = 7,(G2) for some p,
then ¢; and ¢, have a common finite entry in the p!" place since a rank
1 group is p-divisible if and only if its prank is 0. Now the previous

example completes the proof. 0

Theorem 4.12 Let G = @ G, be completely decomposable, with r{G;) =
iel
1 for all i € I, such that its critical typeset is an antichain, i.e. each pair

in the critical typeset is incomparable. Then G is minimal if and only if

rp(Gi)rp(G;) = 0 for all i, € I and for all primes p.

Proof: If r,(G;)r,(Gy) = 0 for all i,5 € I and for all primes p, then
rp(G) < 1 for all p and so G is minimal by Theorem 2.3. Conversely,
if G is minimal, then each G; & G, is minimal by Corollary 4.8 and so

r(Gi)rp(G;) = 0 for all p by Proposition 4.11. ]

Note that the index set I for a completely decomposable minimal

group G = GBIG; with 7{G;) = 1 for all 1 € I, whose critical typeset is an
i€

antichain, is at most countable since if the types of the G; are labelled as

(@in),t € I,n € N and if M; = {n € N: a;, is finite} then M; N M; =0,

for 1 # 7, and |J M; € N. An example of such a countable collection of

iel
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types is given by {{(a;n) : @nn = 0,ain = o}

We now consider the case of general finite rank completely decom-
posable groups. The next result follows from a remark of Warfield (see

Pa—

(30, p.148}).

Proposition 4.13 Let A and B be torsion-free mintmal groups such that

Ext(A, B) is torsion-free. Then A@® B is minimal.

Proof: Suppose H is of finite index in A @& B. First Bf(BnN H) =
(B + H)/H < (A® B)/H is finite. Therefore B= BN H.

Also H/(BNH)= (H+ B)/B<{(A® B)/B = A and

((Ae B)/B)/((H + B)/B) = (A& B)/(H + B) =

((A® B)/H)/{((H + B)/H) again is finite. Hence H/(BN H) = A and
500 — BNH — H £ A — 0is exact, for some 8, where i is inclu-
sion. We show that this short exact sequence is torsion in Ext(A, BN H).
Walker [28], (see [11, Lemma 102.1]), has shown that the exact sequence
0 — B3 C 25 4 — 0is torsion in Ext(4, B) if and only if it is
quasi-splitting, i.e. the sequence 0 —» B —=3 nC + Ba LinA 3 0is
splitting for some n € N. Now, there exists n € N such that n(A @ B) <

H and for this n consider the exact sequence
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0—BNH-SnH+BNH S nd4—0 (i)
We have that nH <n(A9B)< H < A®B. Now,n(A®B)+ BNH =

nA& (BN H) since n{a+b)+b =na+(nb+b') e nd+ BNH wherea €
A,be Band ¥ € BNH and obviously nAG&(BNH) <n(A®B)+BNH.
We havenH+BNH < n(A®B)+BNH = (BNH)@®nA, so the modular
law implies nH+ BNH = (BN H)® [nAN (nH + BN H)]. Therefore
the sequence (i) splits. Hence the sequence 0 — B -2 nH + Ba LN
nA — 0 splits and so the sequence 0 — B — H Fea o0
torsion and hence is 0 since Ext(A, B) is torsion-free. Therefore this se-

quence splits and so H = A @ B and hence A © B is minimal a

We also need the following proposition. Recall that S4(G) is defined
by Sa(G) = >_{lmm(¢) : ¢ €Hom(A, G)} for any groups A and G (see IV,

Lemma 6.7).

Proposition 4.14 Let A and G be torsion-free groups with r(A4) = 1

and t(A) =t and r(G) finite. Then G(t) = S4(G).

Proof: Since t{(a¢) > t(a) for all « € A we get that #(g) > t for all
g € Sa(G). Hence S4(G) C G(t). Conversely, let g € G(t) and let

a € A. Then hy(a) < hy(g) for almost all p and so there exist @, g, with
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a = ma, g = ng for some m,n € N, such that hp(@) < h,(7) for all p
and k(@) = hyp(g) = 0 for all p for which hy(a) > hy(g). Since #(g) > ¢,
there exists a homomorphism ¢ : A —< § >, such that @$ = . Now,
(na)¢ = n(@¢) = ng = g and so g € Sa(G), i.e. G(t) C Sa(G). d

This proposition has the following corollary which gives a sufficient

condition for the minimality of a summand of a minimal torsion-free

group.

Corollary 4.15 Let G = A G B be a minimal group. If sup{s : s €

T(A)} <inf{s: s € TB)} then A is also minimal.

Il

Proof: Let t =inf{s : s € T(B)}. Then G(t) = B and A = G/B
G/G(t). But G(t) = Sy(G) where U is a rank 1 torsion-free group of

type t. Therefore A is minimal by IV, Theorem 6.6. O

The following is due to Warfield.

Lemma 4.16 Let A and B be torsion-free groups with r(A) = 1 and
r(B) finite. Then Ext(A, B) is torsion-free if and only if r,( A)rp{ B/S4(B))

= 0 for all p.
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Proof: See [30, Theorem 3. O

The above result of Warfield, together with Proposttion 4.13, enables
us to give a satisfactory characterisation of minimal finite rank com-
pletely decomposable groups. Notice that the calculation in the theorem

1s straightforward to carry out for a given group.

Theorem 4.17 Let G = é Gi (n > 2) be a completely decomposable
=1
group where 1(G;) =1 (1 = 1,...n). Then G is minimal if and only if

re(Gi)rp(G;) = 0 for all pairs G;, G; of incomparable type and for all p.

Proof: First suppose that G is minimal and that G; and G; bave in-
comparable type. Then G; & G, is minimal, by Corollary 4.8. Now,
Proposition 4.11 tells us that r ,(G;)rp(G;} = 0. The converse is proved
by induction on n. When n = 2 the result has already been estab-
lished since if G = A® B with r(A) = r(B) = 1, then for t{A) = #(B)
see Corollary 4.7, for t{A) and ¢(B) comparable see Corollary 4.9 and,
finally, if ¢(A) and ¢( B) are incomparable see Proposition 4.11. Now, sup-
pose the result is true for all such groups of rank less than some n > 2

and let G = @ G; satisfy the hypotheses. Moreover, let t; = t(G;) for

=1

1 =1,...,n. If all the types t;,t,,...,¢t, are mutually comparable, then
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we are finished, by Corollary 4.9. Thus we may assume that there are
incomparable types among the t;,¢;,...,t,. Choose some type ¢t from
these types such that ¢ < t; or t,¢; are incomparable for all ; = 1,.

By relabelling, if necessary, let this type be t; = {(G,). Let A = G and
B = ?é;G;. Then G = A® B with S4(B) = B(#1), by Lemma 4.14, and
A, B minimal by Corollary 4.6 and the induction hypothesis.

If t, is not comparable to any other type, then S4(B) = B(¢;) = 0 and so
B/S4(B) = %; G, and thus the hypotheses tell us that r, (G )r(B/S4(B))
= 0 for all p.

If¢; <t;forall2 <i < kandt, is not comparable to ¢; for all k < 7 < n,
where 2 < k < n, then Sa(B) = B(t:) '=él G; and B/S4(B) = ea G:.
Again, the hypotheses tell us that r(Gy)r,(Gi) =0 for allk <: < n
and for all p and so r,(G))r,(B/Sa(B)) = 0 for all p. Now Theorem

4.16 implies that Ext(A, B) is torsion-free and hence A & B is minimal

by Proposition 4.13, i.e. G is minimal. O

We now turn our attention to separable groups. First recall the

definition of a separable group.

Definition 4.18 A torsion-free group G is separable if every finite sub-

set of G 13 contained in a completely decomposable summand of G, which
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clearly can be taken to be of finite rank.

For a general separable group we introduce the analogue of Definition

4.4,

Definition 4.19 A torsion-free separable group G is cofinitely heredi-

tarily separable if all its subgroups of finite indez are separable.

The following theorem gives various conditions for the minimality of

a general separable group.

Theorem 4.20 If G is a torsion-free separable group, then the following

are equivalent:
(1) G is minimal;
(1) G is weakly minimal and every finite rank summand of G is mini-

mal;

(1) For every finite index subgroup H of G there erists a separable
subgroup C of H which 1s of finite index in G and every finite rank

summand of G is minimal;

(iv) G is cofinitely hereditarily separable and every finite rank summand

of G is minimal.
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Proof: (i) = (it)

G is obviously weakly minimal. Let A4 be a finite rank summand of G
and let B be a finite index subgroup of A. Then G = A& C, say, and
B4 C is of finite index in G. Hence BA&C = G and so BB C is separable.
Therefore B is separable, by I, Lc;r;lma 3.9, and hence B is.completely
decomposable since it is of finite rank. Thus A is cofinitely hereditarily
completely decomposable and hence is minimal by Theorem 4.5.

(i) = (i)

If H is a finite index subgroup of G, then there exists a finite index
subgroup C of H such that C = G, sin.ce G is weakly minimal. C is
obviously separable.

(ii1) = (iv)

Let H be a finite index subgroup of G. There exists a separable sub-
group C of H such that C is of finite index in G. Then G = C + K
for some finitely generated K. Since C' is separable there exists a finite
rank summand E of C such that CN K C E ie. C = D@ E, say.
Therefore G =C+K =D+ E+R =D+ F where F = E+ K. Now, if
de DNFthend=e+kwheree€ Eandk € Kandsod—ee CNK

which is a subgroup of E. Henced € DN E =0, i.e. d = 0. Therefore

G = D @ F where D is a subgroup of H. The modular law now gives
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H=HNG=D@(HNF). Now F is a finite rank summand of G, so, by
hypothesis, F is minimal. Also, since F/(HNF) = (F+ H)/H < G/H,
we get that H N F is of finite index in F and so HNF = F. We conclude
that H = G and thus H is separable.

(iv) = ()

If H is a finite index subgroup of G, then H is separable. Now taking

H = C in the previous part gives the result. O

We continue with some consequences of the above theorem. The first

corollary is the analogue of Corollary 4.8.

Corollary 4.21 A direct summand of e minimal separable torsion-free

group ts minimal.

Proof: Let G = A® B be a minimal separable torsion-free group and
let H be of finite index in A. Now, A is separable, by I, Lemma 3.9, and
H @ B is a finite index subgroup of G. Hence H & B is separable and so
H is separable, again by I, Lemma 3.9. We conclude that A is cofinitely
hererditarily separable. Also, if X is a summand of A of finite rank, then
X is minimal since X is a summand of G. Therefore A is minimal, by

Theorem 4.20. O
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For a homogeneous separable torsion-free group Theorem 4.20 sim-

plifies considerably, as the next corollary shows.

Corollary 4.22 For a torsion-free separable and homogeneous group G

-

the following are equivalent:
(i) G is minimal;
(ii) G is weakly minimal;

(ii1) For every finite index subgroup H of G there ezists a separable

finite indez subgroup C of G such that C is contained in H;

(iv) G is cofinitely hereditarily separable.

Proof: If G is separable homogeneous then any finite rank summand
of (7 is homogeneous completely decomposable and hence is minimal, by

Corollary 4.7. Now Theorem 4.20 completes the proof. O

Corollary 4.23 Let G be torsion-free separable of finite p-rank for all
primes p. Then G i3 minimal if and only if every finite rank summand

of G i3 minimal.

Proof: By Theorem 3.3, if r,(G) is finite for all p then G is weakly

minimal. Theorem 4.20 now gives the result. ]
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Corollary 4.24 Let G = @ X; be a torsion-free separable group where
i=1

each X; s minimal. Then G is minimal of and only if every finite rank

summand of G is minimal

Proof: Thegroup G = @ X, is weakly minimal by Theorem 3.4. Again
1=1

an application of Theorem 4.20 means that G is minimal. O

Before we prove the next corollary we give another definition.

Definition 4.25 A group is hereditarily separable if all its subgroups are

separable.

Obviously hereditarily separable implies cofinitely hereditarily sepa-
rable.
Recall a group G is a Whitehead group if Ext(G,Z) = 0. Whitehead
groups are separable and homnogeneous of type Z (see [8, IV Theorem

2.1]).
Corollary 4.26 Whitchead groups are minimal.

Proof Let G be a Whitehead group. We show that G is hereditar-

ily separable. Every subgroup of a Whitehead group G is a Whitehead

group: if H < G, then we get the short exact sequence 0 — H SN
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G =3 G/H — 0 which now gives, by I, Lemma 1.5, the exact sequence
0 =Ext(G,Z) —Ext(H,Z) — 0 and hence Ext(H,Z) = 0, so H is also
a Whitehead group. Thus G is (cofinitely) hereditarily separable and so
is minimal, by Corollary 4.22. (I

The question arises as to whether every cofinitely hereditarily sepa-
rable group is hereditarily separable. In fact, this statement cannot be
deduced in ZFC. We will show, using the concept of minimality, that ev-
ery coseparable group is cofinitely hereditarily separable. But, using CH,
it is possible to construct a coseparable group which is not hereditarily
separable. To define the idea of coseparability we first need to consider

N)-free groups.

Definition 4.27 A torsion-free group G is R-free if all its countable

subgroups are free.

Definition 4.28 If G is a torsion-free group, then a collection of sub-
groups of G, {G, : p < R}, is an R;-filtration of G if

(i} G, is countable for all p < R,

(1) G, <G, forallp<v,

(i1} o v is a imit ordinal, then G, = |J G,,,

By
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(ivy G= | G,.

H<R
R -free groups of cardinality < R; can be characterised in terms of

the existence of R;-filtrations of free groups.

Lemma 4.29 A group G of cardinality < R, is R,-free if and only if

there erists an R, -filtration of G where each G, is free.

Proof: See [8, IV, Lemma 1.5]. O

Note that the Pontryagin Criterion (see (8, IV, Theorem 2.3}) tells
us that every finite subset of an ®,-free group G is contained in a pure

free subgroup of G. This means that G must be homogeneous of type Z.

Definition 4.30 A torsion-free group is coseparable if it is Ry -free and if
every subgroup H of G, with G/ H finitely generated, contains a summand

D of G such that G/D s finitely generated.

An alternative definition of coseparability can be given in terms of
Ext, 1.e. a torsion-free group G is coseparable if and only if Ext(G,Z) is
torsion-free and also G is coseparable if and only if G is coseparable and

separable (see [8, IV, Theorem 2.13]).
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Eklof and Mekler prove the following set of implications for homoge-

neous torsion-free groups of type Z:

Lemma 4.31 Free implies hereditarily separable implies coseparable im-

plies separable implies R, -free.

Proof: See [8, p.100]. 0

The next proposition shows that every coseparable group is minimal.

This gives a fairly large class of examples for separable minimal groups.
Proposition 4.32 A coseparable group is minimal.

Proof: Let G be coseparable and let H be of finite index in G,
i.e. G/H is finite. Since G is coseparable there exists D < H such
that D C G and G/D is finitely generated, i.e. G = D @ A with
A finitely generated. Since A is torsion-free we actually have that A
is free. Now, the modular law imphes that H = D ¢ (H N A) and
A/(HNA)= (H + A)/H = G/H is finite. Hence H N A = A since free

groups are minimal and so H = G. 0

Note that Proposition 4.32 gives an alternative proof that Whitehead

groups are minimal, since Ext(G, Z) = 0 obviously implies that Ext(G,Z)

123



is torsion-free and so every Whitehead group is coseparable.

Corollary 4.33 A coseparable group is cofinitely hereditarily separable.

Proof: Coseparable implies minimal implies cofinitely hereditarily

separable, by Proposition 4.32 and Corollary 4.22. O

Eklof and Mekler give an example of a group (assuming CH) which
is coseparable, and hence cofinitely hereditarily separable, by the previ-
ous corollary, but not hereditarily separable (see (8, XII, Corollary 2.12]}.
Since CH is consistent with ZFC this shows that the statement that every
cofinitely hereditarily separable group is hereditarily separable cannot be

deduced in ZFC.

The next theorem gives a rather surprising example of a homogeneous
separable group of type Z, namely the so-called Baer-Specker group,

which is not minimal.

Theorem 4.34 The Baer-Specker group P = [[Z is not minimal.
Ko

Proof: We apply Theorem 4.22 to obtain this result. It is well-known
that P is separable and homogeneous of type Z (see e.g. [10, Theorem

19.2]). We show that, for any prime p, there exists a subgroup of P of
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index p in P which is not separable. In this way we get that P is not

cofinitely hereditarily separable.

Let B be the set of bounded sequences in P, i.e. B = {(Zn)nen : Supn|z,|

is finite}. First we show that B is a basic subgroup of P:

(i) By [11, Corollary 97.4] B is free of rank 2%, i.e. B = Qg;Z, say,

i€

where [I| = 2R0;

(1) B <. P since if {zn)n € B and (z,)n = m(yn)n, then obviously

(yn)n € B also;

(iii) P/Bis divisiblesince if (z,).+B € P/B and m € Z, then, for each

1 € N, there exist y;,r; € Z, with 0 < r; < m, such that z; = my; + r;

and so {z1,22,...) ~m(y,¥2,...) = (r1,72,...) € B.

Therefore B is a basic subgroup of P.

Now, P = B + pP, where p be any prime, since P/ B is divisible. Con-

sider A = By + pP where B = By goZ with By = @ ¢:Z (I = I'U{0}).
T

We claim that A is a finite index subgroup of P which is not separable.

We have P/A = (B + pP)/(Bo + pP) and so if m + A € P/A, then

T+ A = ngo + A for some n € Z. There exist k,r € Z, with 0 < r < p,

such that n = kp+7r, s0o 7+ A = r(go + A). Hence {P/A] < p. On

the other hand, if rigy — rog0 € A for 0 < r,ry < p,7y # 12, then

(ri1 —ra)go € A, so (r) — r2)go = bo + px for some by € By and z € P.
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Therefore (r; — 72)g0 — bo = pr and hence (ry — r2)g0 — bo = p(sgo + b}),
for some s € Z and b, € By, since B <. P, and so r; ~ r3 1s divisible by
p, contradicting ry # ry. Therefore |P/A| = p.

It remains to show that A is not separable. Let H = p(gs) < A. H is
pure in A as the following arguments show. If npgy = m(bo + pz) where
m # 0, bp = (z4)n € By and ¢ = (2,)n, then mpz = npgy — mby € B,
sox € B. Let £ = rgo + b, where r € Z and b, € By. Therefore
npgo = mbg + mrpge + mpb). Hence npgo = mrpgo = m(rpgo) and so H
is pure in A.

However, H is not a summand of A, since if A = H @ K, then any
a € A has the unique form a = npgy + k,where k € K, and so defining
¢ : A-— Z by (a)p = n, we get that (pgo)p = 1. Now,if p: P — A
1s given by mwltiplication by p, then p¢ : P — Z 1s in P™ and so
there exists m € N such that pé [ [] &;Z = 0. Therefore (pgo)p =

i>m

(Pga:P95,-- )6 = (pgoer + ... + pggiem + (0,0,...,0,pg ™, .. ))¢ =
plgser + géea + ... + giem)@ is divisible by p, a contradiction. We con-
clude that A has a finite rank pure subgroup, namely H, which is not a

summand and hence A is not separable by I, Lemma 3.8. O

Since P is separable and homogeneous of type Z it must be R;-free
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and so Theorem 4.34 shows that ®;-freeness is not sufficient to guarantee

minimality. Recall the stronger concept of strong R;-freeness.

Definition 4.35 A torsion-free group G is strongly Ny-free of G s V-

free and every countable subset of G is contained in a countably generated

subgroup H of G such that G H 1is R,-free.

Strongly N;-free groups of cardinality < R; can be characterised in a

similar way to the ®;-free case.

Lemma 4.36 A group G of cardinality < R, is strongly R, -free if and
only if there erists an R,-filtration G = |J G, such that, for u < v,

p<iy

Gu1 and Gy [Guyqy are free.

Proof: See [8, IV, Proposition 1.11). O

However, even strong R;-freeness is not sufficient to ensure minimal-
ity, as the following illustrates:
Dugas and Gobel (see [6, Corollary 3.4]) have shown (assuming 2% < 2%)
that there exists a strongly R,-free group G of cardinality ®; such that
End(G) = Z. G has a basic subgroup B (see {7, Theorem 10]} and if
the rank of B is countable, then B < G4, for some y and so G/G

is a homomorphic image of G/B, which is a a contradiction, since G/B
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is divisible and G/G,41 is reduced. Therefore B has uncountable rank.
For each prime p we have G/pG = (B +pG)/pG = B/(BNpG) = B/pB
so rp(G) = 1,(B) = Ry and hence [F.I(G){ > ®;, by III, Theorem 2.2.
Now, if G is minimal then |F.1.(G)| < |End(G)| = Ry, by III, Proposition
2.3, again a contradiction. Since the weak diamond condition (2% <« 2%)
is consistent with ZFC, we can conclude that the minimality of a general

strongly ®;-free group cannot be deduced in ZFC.

Returning to completely decomposable groups we will now apply
what we have established about separable minimal groups to the com-
pletely decomposable case. For the remainder of this section let G be
a completely decomposable group, G = (BIG; with r(G;) = 1 for all

i€
i € I. Now, if A is a summand of G, then hoth A and its complemen-
tary summand B are completely decomposable, by I, Lemma 3.6. Since
G = A® B, 1, Lemma 3.3 implies that each rank 1 canonical summand of
A or B is isomorphic to some ;. Hence, appealing to Theorem 4.17, all
finite rank summands of G are minimal if and only if r,(G;)r,(G;) = 0

for all p and for all G}, G; of incomparable type where 7,7 € I. So in the

case of completely decomposable groups we get the following theorem.

128



Theorem 4.37 Let G = @ G, be a completely decomposable group.
ief

Then the following are equivalent:

(1) G s minimal;

(1) G is weakly minimal and r,(G)rp(G;) = 0 for all p and for all
Gi,G; of incomparable type where 1,7 € I; h

(iii) If H is a finite indez subgroup of G, then there ezists a separable
group C of finite index in G such that C < H and rp(G;)rp(G;) = 0 for
all p and for all G, G; of incomparable type where 1,5 € I;

(iv} G is cofinitely hereditarily separable and ro(G;)rp(G;) = 0 for all

p and for all G;, G; of incomparable type where ¢,j € I.
Proof: Theorem 4.20 with what has been said above. O

Corollary 4.38 Let G = @ G: be a completely decomposable group of
iel

finite p-rank for all p. Then G is minimal if and only if r,(Gi)rp(Gy) =

0 for all p and for all G;,G; of incomparable type where i,5 € I. In

particular, any completely decomposable group whose critical typeset is

an infinite chain is minimal if it has finite p-rank for all p.

Proof: G is weakly minimal by Theorem 3.3. Now Theorem 4.37 com-

pletes the proof. O
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Corollary 4.39 Suppose a completely decomposable group G can be writ-
ten inthe form G =P G, =X, X,8--- D X, for somen € N, where
i€l

each X; is minimal. Then G is minimal if and only if r(G)rp(G;) =0

for all incomparable types t;,t;, wherei,3 € I, and for all p.

Proof: G is weakly minimal by Theorem 3.4. Again Theorem 4.37

gives the result. O

Note that if G = QG; has the property that rp(G;)r,(G;) = 0 for
i€
all incomparable pairs G;,G; and for all p then:
(1) If r,(G) is finite for all p then G is minimal by Corollary 4.38;
(it) If r,(G) is infinite for some p then the set of critical types of
G,T..(G), must contain an infinite chain for, if not, then r,(Gi}r,(G;) =
1 for some incomparable pair G;, G;.

Hence if T, (G) does not contain an infinite chain then r,(G) is finite for

all p and so G is minimal.

To conclude this chapter, we combine all the information we have

established on minimal completely decomposable groups.

Theorem 4.40 Let G = @ G; be a completely decomposable group such
iel
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that the critical typeset of G contains only a finite number of infinite
chains, each of whose corresponding groups is homogeneous or has finite
p-rank or has an inversely well-ordered critical typeset. Then G is mini-
mal if and only if r,(Gi)rp(G;) =0 for all incomparable pairs G;,G; and

- -

for all p.

Proof: If G is minimal then the condition follows from Corollary 4.8
and Theorem 4.11. Conversely, if G = C, & Cy G- -BC,, &G’ where each
T.-(C;) is a chain of one of the given kinds for ¢ = 1,...n and G’ does
not contain an infinite chain, then each C; is minimal, by Corollaries 4.7,
4.9 and 4.38, and the previous note tells us that G’ is minimal. Now

Corollary 4.39 implies that G is minimal. O
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Some Concluding Remarks

Although considerable progress has been made 1n this work in charac-
terising quasi-minimal and minimal abelian groups, some outstanding
questions remain unanswered. In the quasi-minimal case it would be in-
teresting to know if we can dispense with the assumption of GCH in the
characterisation of the reduced torsion-free purely quasi-minimal groups
(see II, Theorem 3.12). For the directly quasi-minimal groups it seems
that the direct quasi-minimality or otherwise of the group described by
Corner (see II, 5) needs to be decided as a prelude to the complete char-
acterisation of the countable decomposable torsion-free directly quasi-
minimal groups.

Turning to minimal groups, chief among the open problems is the
question of characterising arbitrary rank completely decomposable groups
in terms of the types of their canonical summands, a characterisation that
has been achieved in the finite rank case (see V, Theorem 4.17).

Finally, more information on non-splitting mixed minimal groups,
particularly in the torsion-free rank 1 case, would be desirable. However,

it is not clear how such information might be obtained.
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