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Abstract 
 

An efficient procedure has been developed for 
the computation of the three-dimensional, 
compressible, viscous flow field around a general 
propeller geometry with the inflow at zero angles 
of incidence and yaw. The solution procedure 
combines a recently developed Reynolds-
Averaged-Navier-Stokes equations solver with a 
commercially available grid generator designed 
specifically for turbomachinery configurations. 
Preliminary results from the calculation of 
laminar and turbulent incompressible flow over a 
flat plate demonstrate that the flow solver is 
capable of capturing boundary-layer behaviour 
accurately. Results from the prediction of the 
transonic flow over a two-bladed propeller 
geometry show that the procedure is accurate and 
efficient for general propeller flow field 
calculations. 
 
 

Introduction 
 
The OPEC oil crisis of the mid 1970s led to a 
revival in interest in the propeller as a possible 
fuel-efficient propulsor for aircraft operating at 
transonic cruise speeds. As a consequence, 
international research carried out over the last 20 
years has led to the development of the advanced 
propeller concept; a multi bladed, highly loaded, 
variable pitch, unducted propeller, that can 
achieve a significantly higher fuel efficiency than 
an equivalent technology turbofan engine 
operating at competitive speeds and altitudes. 
High fuel efficiency is achieved through the use 
of highly swept and twisted blades that 
incorporate thin airfoil sections in their outboard 
regions.  
 
To-date, potential cabin noise problems, the 
reduction of aviation fuel costs, and the 
perceived prejudice of the general public towards 
propeller driven aircraft, have hindered the 
introduction of advanced propellers on large 
commercial aircraft.  
 
*Lecturer, Member AIAA 
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Meanwhile, propellers showing blade shape 
characteristics clearly influenced by advanced 
propeller research have been introduced on 
regional and general aviation aircraft that were 
traditionally propeller driven. However, some 
interest still remains in the advanced propeller 
concept both for commercial and military use, as 
fuel efficiency will inevitably become of crucial 
importance in the development of future 
propulsion systems. 
 
In order to further improve the aerodynamic and 
acoustic performance of the advanced propeller, 
it is necessary to fully understand the complex 
flow patterns occurring on the blade and spinner 
surfaces and in the general surrounding flow 
field. To this end, a computational fluid 
dynamics (CFD) procedure has been developed 
to predict the three-dimensional, compressible, 
viscous flow field around general propeller 
configurations with the inflow along the main 
axis of the propeller. This procedure is tailored 
towards advanced propeller flow field 
calculations but is in no way restricted to these 
geometries. The procedure itself consists of the 
use of an accurate and efficient flow solver 
recently developed by the author, coupled with a 
commercially available turbomachinery grid 
generator that allows rapid grid generation 
around propeller geometries.  
 
The flow solver, named NAVPROP, solves the 
Reynolds-Averaged-Navier-Stokes equations 
formulated in a steadily-rotating, blade-attached, 
non-inertial reference frame. With this 
formulation the flow can then be treated as 
steady relative to the propeller. To solve the 
governing equations, a cell-centre finite volume 
scheme is employed. Explicit multistage Runge-
Kutta time stepping marches the solution towards 
a steady-state, while local time-stepping, implicit 
residual averaging, and multigrid are employed 
to increase the rate of convergence. The grid 
generator, named TIGER, is used to discretise 
the computational domain into a contiguous set 
of hexahedral cells as part of a C-H grid system. 
 
The development of NAVPROP has been the 
focus of this work and is described in detail, 
while the operation of TIGER is briefly 
described. Results are presented from three test 
cases. 
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Flow Solver 
 
The governing equations of viscous flow, i.e., the 
Navier-Stokes equations, are initially formulated 
using the flow model of a fixed finite control 
volume in a non-inertial reference frame that is 
attached to the rotating propeller1. A right-
handed Cartesian coordinate system is employed 
and it is assumed that the propeller rotates with 
constant angular velocity ω around the x axis. 
The equations thus obtained are then re-written 
in partial differential equation form, non-
dimensionalised using a standard non-
dimensionalisation procedure, and finally 
transformed to a body-fitted curvilinear 
coordinate system.  
 
Letting ρ, u, v, w, p, and E denote density, the x, 
y, and z components of the absolute velocity, 
static pressure and total energy per unit volume 
respectively, the final form of the governing 
equations in vector form is as follows 
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U, V, and W are the contravariant velocity 
components in the ξ, η, and ζ directions 
respectively, and are defined as  
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and the shear stress terns are  
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In the equations given above ξx, ξy, ξz, ξt, ηx, ηy, 
ηz, ηt, ζx, ζy, ζz, and ζt are the metrics of the 
transformation, and J-1 is the Jacobian of the 
inverse transformation.  
 
Additionally, µ and k are the molecular or 
laminar coefficients of viscosity and thermal 
conductivity respectively, γ is the ratio of 
specific heats, Ma∞ is the freestream Mach 
number, and Re∞ is the freestream Reynolds 
number. Stokes’ hypothesis was employed in the 
writing of the shear stress terms in order to relate 
the first (laminar) and the second coefficients of 
viscosity. 
 
The above set of unsteady equations can be 
solved for laminar flow problems but not for 
turbulent flows ones because of the very small 
spatial and temporal scales required and the 
computational resources this entails. In order to 
obtain meaningful results for turbulent flow 
problems, a time-averaged form of these 
equations is solved. The time-averaged 
equations, called the Reynolds-Averaged Navier-
Stokes equations, have the same form as the 
original ones presented, except that extra terms 
such as apparent stresses and heat flux terms 
appear. Closure for this system of equations is 
achieved by using an eddy viscosity hypothesis, 
which assumes that these extra terms can be 
related to the gradients of mean flow variables. 
To this end, the laminar viscosity in the original 
equations is replaced by an effective viscosity 
defined as 
 
 e l tµ µ µ= +   (5) 

 
where µe is the effective viscosity, µl is the 
laminar viscosity, and µt is the turbulent eddy 
viscosity. Also, the thermal conductivity is 
replaced by the following using a constant 
Prandlt number assumption 

 

 
1e

l t

k
Pr Pr

γ µ µ
γ

    = +    −     
 (6) 

 
where again l and t denote laminar and turbulent 
respectively, and Pr is the Prandtl number. The 
laminar and turbulent Prandlt numbers are taken 
to be 0.72 and 0.9 respectively in this work. The 
eddy viscosity is computed using the algebraic 
two-layer eddy-viscosity model of Baldwin and 
Lomax2, and once known the effective thermal 
conductivity can be calculated.  
 
It is worth noting that with this particular 
formulation of the governing equations the flow 
around a steadily rotating propeller with an 
inflow at zero angles of incidence and yaw can 
be treated as steady and results in an algorithm 
that is far more efficient than one that solves for 
the unsteady flow field in an inertial reference 
frame. 
 
Solution Procedure 
 
As mentioned earlier the computational domain 
is discretised into a contiguous set of structured 
hexahedral cells as part of a C-H grid system and 
Equation 1 is integrated over each cell in the 
domain. A cell-centre finite-volume scheme is 
employed in the solver, with the cell centre 
values of the conserved variables representing 
cell average quantities. At the cell faces central 
differencing is used for the evaluation of the 
convective fluxes, while the viscous fluxes are 
easily evaluated once the values of the velocity 
and temperature derivatives are known at these 
locations. These derivatives require careful 
evaluation and are calculated using the method 
described by Lacor et al3. 
 
A controlled amount of artificial dissipation is 
added to the resulting equations in order to 
prevent odd-even point decoupling associated 
with a central-difference scheme and the 
appearance of undesirable oscillations near shock 
waves and stagnation points. The artificial 
dissipation model used is basically the one 
originally introduced by Jameson, Schmidt, and 
Turkel4, and consists of blended first and third 
differences of the conserved variables for each 
equation. Anisotropic scaling of the dissipation 
terms is employed to prevent the addition of 
excessive dissipation in the high aspect ratio cells 
that are necessary when performing viscous flow 
calculations. Two different scaling models, by 
Martinelli5 and Radespiel6, are used and have 
proven satisfactory. 
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Following the spatial discretisation, a system of 
ordinary differential equations is obtained. To 
integrate these equations in time to a steady- 
state an explicit, multistage, Runge-Kutta time-
stepping scheme is used. A five-stage scheme is 
chosen with the artificial dissipation terms being 
evaluated on the first, third, and fifth stages only, 
and frozen on the second and fourth. This 
scheme has good high frequency damping 
properties, which is important if it is to drive the 
multigrid scheme described below. 
 
To significantly increase the rate of convergence 
to a steady state, three well-proven convergence 
acceleration techniques associated with explicit 
type schemes are employed concurrently: local 
time-stepping, implicit residual averaging, and 
multigrid. With local time-stepping each cell in 
the computational domain is advanced in time 
using its own time-step that is determined by 
stability considerations. The time accuracy of the 
solution is destroyed but a significant increase in 
convergence rate is achieved. Implicit residual 
averaging is used to both extend the stability 
range and robustness of the basic time-stepping 
scheme. The residual smoothing is applied in 
factored form. A Full approximation storage 
(FAS) multigrid scheme based on the work of 
Jameson7 is employed. For the multigrid process, 
coarser grids are obtained by deleting every other 
mesh line in each coordinate direction of the next 
finer grid. The solution and residuals are 
transferred to the coarser grid and a forcing 
function constructed so that the coarse grid 
solution is driven by the residuals collected from 
the next finer grid.  Corrections are transferred 
between grid levels using trilinear interpolation. 
The work split between by the various grid levels 
is achieved using a fixed cycling strategy. Two 
alternatives are implemented in the solver: a V-
cycle and a W-cycle. The robustness of the 
multigrid scheme is significantly enhanced by 
the smoothing of the coarse grid corrections 
before addition to the fine grid solution. This 
reduces high-frequency oscillations introduced 
by the trilinear interpolation. The factored 
scheme used for the residual averaging, but with 
constant coefficients, appear to be the most 
efficient way of achieving this.  
 
The flow around a propeller with the inflow at 
zero angles of incidence and yaw is periodic in 
the circumferential direction from one inter-blade 
region to the next. It is therefore necessary to 
solve for the flow in one inter-blade region only. 
A C-H type mesh is used to discretise the 
computational domain, with the C-part in the 
axial direction and the H-part in the 
circumferential direction. The boundary 
conditions are implemented using an extra layer 

of ghost cells exterior to the flow domain and are 
described in detail by Boyle8-10. 
 
A Full Multigrid Method (FMG) is used to 
provide a well-conditioned starting solution for 
the finest mesh. With the FMG strategy, the 
solution is initialised on the coarsest of a 
specified series of grids and iterated for a set 
number of multigrid cycles using the FAS 
multigrid scheme. The solution is then 
transferred to the next finer grid using trilinear 
interpolation. This process is repeated until the 
finest mesh level is reached. In the present 
scheme two or three FMG levels are used and a 
maximum of three multigrid levels used on all 
grid levels. 50-100 multigird cycles are typically 
performed on each grid level. The freestream 
values of the variables are used as the starting 
solution on the coarsest grid. 
 

 
Grid Generator 

 
The generation of well-defined grids for 
propeller configurations can be a difficult and 
time-consuming task because of the complexity 
of the geometries involved. This is especially 
true for viscous flow field calculations where 
mesh resolution is of particular importance for 
accurate results. In the past the generation of 
grids has been a bottleneck in propeller CFD 
analyses, but fortunately this is no so today due 
to availability of high performance grid 
generators. The grids employed in this work 
were generated using TIGER11,12 
(Turbomachinery Interactive Grid Generation), 
Version X3.1, a commercially available grid 
generator tailored specifically towards 
turbomachinery applications that allows grids to 
be generated rapidly and with relative ease. 
Using TIGER, a structured C-H grid system is 
used to discretise the computational domain as 
discussed above, with the C and H-type grids in 
the streamwise and the circumferential directions 
respectively. To demonstrate the use of TIGER a 
C-H grid is generated for the two bladed NACA 
10-(3)(066)-033 propeller shown in Figure 1. 
Sections from a low-density mesh for this 
configuration are shown in Figures 2 to 4. The 
grid clustering near the blade leading and trailing 
edges and near the blade root and tip can be 
clearly seen. 
 
 

Results  
 
Introduction 
 
As an effective starting point in the validation of 
the accuracy of NAVPROP, results were 
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obtained for two often employed test cases. The 
two cases were for incompressible laminar and 
turbulent flow over a smooth flat plate. These 
test cases were employed as calculated data can 
be compared directly with theory. 
 
To demonstrate the operation of the overall 
procedure, results are also presented for the case 
of inviscid transonic flow over a two-bladed 
NACA 10-(3)(066)-033 propeller. This test case 
was selected to enable comparison of predictions 
with reliable wind tunnel measurements. 
 
Case 1: Laminar Flow Over a Smooth Flat 
Plate 
 
The first set of results that is presented is for the 
case of incompressible laminar flow over a 
smooth flat plate with zero freestream pressure 
gradient in the axial direction.  In order to 
approximate incompressible flow the freestream 
Mach number was set at 0.3. The Reynolds 
number based on plate length was 
ReL=1,000,000. This high value was employed to 
ensure that the calculated boundary layer 
thickness was small in comparison to the length 
of the computational domain in the direction 
normal to the plate, i.e., the vertical direction. 
The computational domain had non-dimensional 
lengths of 1.0, 0.1, and 0.l in the axial, vertical, 
and transverse directions respectively. The grid 
dimensions were 97x65x9 in the axial, vertical, 
and transverse directions also. Note that only 9 
cells were required in the transverse direction as 
there should be no tranverse variations of the 
flow variables.  
 
The variation of the skin friction coefficient with 
axial location is shown in Figure 5, while axial 
velocity profiles at various axial locations along 
the plate are presented in Figure 6. In both 
figures the predictions are compared with the 
exact solutions of Blasius13. The velocity profiles 
all collapse onto a single curve that compares 
very well with the Blasius curve. Overall the 
comparisons are very good. Velocity vectors in 
the boundary layer at an axial location near the 
plate trailing edge are shown in Figure 7.   
 
Case 2: Turbulent Flow Over a Smooth Flat 
Plate 
 
The second test case was for incompressible 
turbulent flow over a smooth flat plate with zero 
freestream pressure gradient. A computational 
domain with the same dimensions and grid 
density as employed for the first test case were 
used for this case also, but with higher grid 
spacing the vertical direction in order to 
accurately resolve the laminar wall-layer region. 

The chosen Reynolds number was 
ReL=10,000,000. The results are presented in 
Figure 8 to 10. Figure 8 shows the calculated and 
theoretical variation of skin friction coefficient 
with axial position The two curves differ slightly 
but show the same variation with axial position. 
Similar trends in skin friction were also observed 
by other researchers14. Axial velocity profiles at 
several axial locations are shown in Figure 9. 
The laminar wall layer, the overlap layer, and the 
turbulent outer layer are all distinctly captured in 
each profile. The theoretical law of the wall and 
logarithmic-overlap layer law are also plotted 
and compare very well with the predictions. As 
with the previous test case velocity vectors in the 
boundary layer near the plate trailing edge are 
presented in Figure 10. 
 
Case 3: Inviscid Transonic Flow Around the 
NACA 10-(3)(066)-033 Propeller 
 
The two-bladed NACA 10-(3)(066)-033 
propeller15 is composed of NACA 16 series 
airfoil sections and has a rectangular planform. A 
series of wind tunnel tests were carried out by 
NACA around 1950 on full-scale propellers, 
including a 10-ft diameter NACA 10-(3)(066)-
033 propeller to determine blade section 
characteristics by measuring the pressure 
distributions on the airfoil sections under 
operating conditions. The measurements for the 
NACA 10-(3)(066)-033 propeller are extensive 
and it is a standard test case for validating a 
propeller algorithm. For this test case NAVPROP 
was run in inviscid mode. A freestream Mach 
number and advance ratio of 0.56 and 0.23 were 
chosen respectively. The blade angle at 75% 
radius was 45˚. A medium density grid with 
129x49x73 points in the axial, radial, and 
circumferential directions respectively was used.  
The results of the test case are presented in 
Figure 11 to 14. The convergence history and the 
development of the thrust coefficient CT are 
shown in Figures 11 and 12 respectively. For this 
test case four FMG levels were specified and the 
solver was allowed to converge to machine zero 
on each level. This was done for demonstration 
purposes only. Convergence was rapid with 
engineering accuracy (i.e., four orders reduction 
in the residual of the continuity equation) 
achieved in 138 multigrid cycles and machine 
zero (i.e., thirteen orders reduction) in 707 cycles 
on the finest grid level. A comparison of 
computed and measured surface pressure 
coefficient at four radial locations is shown in 
Figure 13. Note that the computed pressures 
were obtained at the experimental locations using 
simple interpolation. The comparison between 
the predictions and measurements is very good 
considering the complexity of the flow field. A 
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shock wave can be clearly identified on the 
suction surface and spans from about 65% of the 
blade radius out to the blade tip. The disparity in 
surface pressure can be attributed to the omission 
of viscous effects and to the fact that the blade 
deformation due to centrifugal and aerodynamic 
loading was not accounted for. The undeformed 
blade shape, also called the “cold blade” shape, 
was used in the present calculation. Contours of 
relative Mach number at the cell centres adjacent 
to the blade pressure and suction surfaces are 
shown in Figure 14. The supersonic flow region 
and the shock wave on the suction surface can be 
clearly identified in the figure. 
 
 

Concluding Remarks 
 
An efficient procedure has been developed to 
predict the viscous flow around general propeller 
geometries under zero angle of incidence and 
zero angle of yaw inflow conditions. The 
procedure consists of a recently developed 
viscous flow solver and a commercially available 
turbomachinery grid generator. Initial validation 
of the procedure has demonstrated its ability to 
accurately and efficiently predict transonic 
propeller flow fields, and the ability of the flow 
solver to accurately capture laminar and 
turbulent boundary layer behaviour. Further 
validation is already underway and results of 
viscous test cases will be presented in the very 
near future. 
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Figure 1. The two-bladed NACA 10-(3)(066)-
033 propeller. 

 

 

 
 

Figure 2. The computational domain for the 
NACA 10-(3)(066)-033 propeller flow field 
calculation. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. A section of the C-H grid around the 
two-bladed NACA 10-(3)(066)-033 propeller. 

 

 

 
 

Figure 4. A close-up view of the inner part of the 
grid around the NACA 10-(3)(066)-033 
propeller. 
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Figure 5. Comparison of predicted skin friction 
coefficient with Blasius theoretical solution for 
laminar flow over a flat plate. 
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Figure 6. Comparison of predicted axial velocity 
profiles with Blasius theoretical profile for 
laminar flow over a flat plate. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Figure 7. Axial velocity vectors in the laminar 
boundary layer at an axial location near the plate 
trailing edge. 
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Figure 8. Comparison of predicted skin friction 
coefficient with Prandtl theoretical solution for 
turbulent flow over a flat plate. 
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Figure 9. Comparison of predicted axial velocity 
profiles with theoretical laws for turbulent flow 
over a flat plate. 
 
 
 

 
 
 
Figure 10. Axial velocity vectors in the turbulent 
boundary layer at an axial location near the plate 
trailing edge. 
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igure 11. Convergence history of the NACA F
10-(3)(066)-033 propeller flow field calculation. 
Ma∞=0.56, J=2.3, and β3/4=45˚. 
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igure 12. Development of the thrust coefficient F
CT during the NACA 10-(3)(066)-033 propeller 
flow field calculation. Ma∞=0.56, J=2.3, and 
β3/4=45˚. 
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igure 13a. Comparison of chordwise variation F
of computed and measured surface pressure for 
the NACA 10-(3)(066)-033 propeller at a radial 
location of 0.45.  Ma∞=0.56, J=2.3, and β3/4=45˚. 
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igure 13b. Comparison of chordwise variation F
of computed and measured surface pressure for 
the NACA 10-(3)(066)-033 propeller at a radial 
location of 0.65.  Ma∞=0.56, J=2.3, and β3/4=45˚. 
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igure 13c. Comparison of chordwise variation F
of computed and measured surface pressure for 
the NACA 10-(3)(066)-033 propeller at a radial 
location of 0.78.  Ma∞=0.56, J=2.3, and β3/4=45˚. 
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igure 13d. Comparison of chordwise variation F
of computed and measured surface pressure for 
the NACA 10-(3)(066)-033 propeller at a radial 
location of 0.90.  Ma∞=0.56, J=2.3, and β3/4=45˚. 
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Figure 14a. Contours of relative Mach number 
at the cell centres adjacent to the pressure surface 
of the NACA 10-(3)(066)-033 propeller blade. 
Ma∞=0.56, J=2.3, β3/4=45˚, and ∆Marel=0.05. 
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Figure 14b. Contours of relative Mach number 
at the cell centres adjacent to the suction surface 
of the NACA 10-(3)(066)-033 propeller blade. 
Ma∞=0.56, J=2.3, β3/4=45˚, and ∆Marel=0.05. 
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