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Abstract

The primary aim of this project is to obtain a fundamental understanding of the fluid

dynamics and thermodynamics of the primary and secondary flows in a Ranque-

Hilsch Vortex Tube (RHVT). These flows are highly complex and are three-

dimensional, compressible, and viscous in nature. To obtain an understanding of

these, a state-of-the-art Computational Fluid Dynamics (CFD) software package is

applied for flow prediction with advanced turbulence models, and is employed to

predict the primary and secondary flows in a RHVT. The models that are used

include: the k-� model, the SST model by Menter, and the Reynolds Stress Model.

The results from the turbulence modes are analysed and compared to establish how

accurate they are at computing this type of flow field.

In this CFD study of the RHVT, the flow fields and temperature outputs are

investigated. This study begins with the appropriate selection of experimental results

from a range of authors for similar vortex tubes. These results are collated and a three

dimensional model of a similar experimental RHVT is drawn, upon which an

unstructured tetrahedral mesh is developed using the CAD and meshing facilities of

the CFD package respectively. This model is developed in such a way that

components of the RHVT could be easily adjusted in size in order to carry out small

scale parametric studies of the vortex tube.

The analysis moves on to the correct stipulation of suitable and accurate

boundary conditions. Once a set of appropriate and realistic boundary conditions is

established, the flow fields within the RHVT are captured. Initially the k – �

turbulence model is utilised to perform a mesh element density convergence study

with the cold static and total temperature outputs of the RHVT as the measured

criteria. Once mesh independent results are established, additional turbulence models

such as the SST model by Menter and the Reynolds Stress model are run on this mesh

to ascertain the performance of each turbulence model. When the optimum turbulence

model is ascertained an investigation was carried out into the source of heat migration

in the RHVT. This began by varying the tube geometry, i.e. the cold outlet diameter,

and analysing its influence on the presence of secondary flow and therefore the

influence of secondary flow on the heat transfer within the RHVT. An additional
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analysis of the work due to friction within the vortex tube is also performed in order

to verify the presence of such work within the RHVT.

Finally a recommendation is made within the conclusion of this thesis as to a

method of how to take the study of work due to friction within the vortex tube

forward for further analysis.
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Nomenclature

A area m
2

C constant (arbitrary)

cp specific heat capacity at constant pressure J/kgK

cv specific heat capacity at constant volume J/kgK

dc diameter of the cold outlet m

D diameter of the RHVT m

f frequency kHz

ho total specific enthalpy J/kg

hs static specific enthalpy J/kg

i internal energy per unit mass J/kg

k turbulent kinetic energy (m/s)
2

L length of the RHVT m

L reference length for the Reynolds Number m

m mass kg

m� mass flux kg/s

n outward surface vector

P pressure N/m
2

Pr Prandtl number

Prt turbulent Prandtl number

Q heat energy J

Q� heat flux W

r,� polar coordinates

R universal gas constant J/molK

Re Reynolds number

s entropy J/kgK

To total temperature K

Ts static temperature K

t time s

U velocity vector m/s

u x - component of the velocity vector (axial velocity) m/s
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u’ fluctuating x - component of the velocity vector m/s

U mean x - component of the velocity vector m/s

V volume m
3

v y - component of the velocity vector (tangential velocity) m/s

v’ fluctuating y - component of the velocity vector m/s

V mean y - component of the velocity vector m/s

W mean z - component of the velocity vector m/s

W work (for Section 1.5.1 only) J

W� work flux W

W�� work flux per unit area W/m
2

w z - component of the velocity vector (radial velocity) m/s

w’ fluctuating z - component of the velocity vector m/s

x,y,z cartesian coordinates

Z height above a datum level m

Greek Symbols

� diffusivity m
2
/s

�eff effective turbulent diffusivity m
2
/s

�t turbulent diffusivity m
2
/s

γ ratio of specific heat capacities

� rate of turbulent dissipation per unit mass m
2
/s

3

� thermal conductivity W/mK

µ viscosity kg/ms

c
µ cold gas fraction

eff
µ effective turbulent viscosity kg/ms

t
µ turbulent viscosity kg/ms

�t turbulent kinematic viscosity m
2
/s

ρ density kg/m
3

� viscous shear stress N/m
2

�
R

Reynolds shear stress N/m
2

� inverse time scale associated with turbulence 1/s

Subscripts

c cold outlet of Ranque-Hilsch Vortex Tube
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h hot outlet of Ranque-Hilsch Vortex Tube

in inlet of Ranque-Hilsch Vortex Tube

i,j tensor notation

ip integration point

s surface region of integration

Superscripts

o old time level
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1 – The Ranque – Hilsch Vortex Tube 1

1 The Ranque – Hilsch Vortex Tube

1.1 Introduction

The RHVT is an ingenious invention credited to both Georges Joseph Ranque and

Rudolf Hilsch, who contrived the device independently during war torn Europe in the

1940’s [1].

A RHVT separates an injected stream of gas into two streams, one

significantly hotter along with another substantially colder than the injected stream.

This is remarkable considering the absence of any moving parts or work input. While

geometrically simple, the fluid dynamic and thermodynamic processes in a RHVT are

extremely complex. To experimentally measure and plot velocity, pressure and

temperature contours accurately within the tube in order to gain a better insight into

the mode of heat migration is very difficult. A simpler alternative is to employ CFD.

Currently there is no conclusive evidence as to the mode of energy migration within

the RHVT.

1.2 The Ranque - Hilsch Vortex Tube

In the 19
th

century British physicist James Maxwell suggested that a system of

drawing both hot and cold water out of a single pipe might be devised if we could

capture a small demon and train him to open and close a tiny valve. The demon would

open the valve only when a fast (hot) molecule approached it, and close the valve

against slow (cold) molecules [2]. This imaginary device, and with the help of

Maxwell’s demon, could be a source of hot and cold fluids on demand from ambient

temperatures. Although hypothesising, Maxwell may have been startled to know that

within the next century such a device would become a reality. This device which

initially bared the nickname Maxwell’s Demon Tube, was soon to be known as its

name today, the RHVT. The cross sectional schematic shown overleaf in Fig. 1-1

illustrates quite clearly that the RHVT is a device that does indeed separate

simultaneously a flow of gas into two streams, significantly hotter and cooler than the

inlet temperature, despite the absence of any moving parts or work input, electrically

or chemically. This lack of a conventional energy source is in principle the core
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reason as to why there is so much interest in the device through academics and

enthusiasts alike.

Fig. 1-1: Typical Operation of a Modern Counter-Flow RHVT [3].

As stated previously the origin of the RHVT is accredited to two men during and after

war-time Europe circa 1933-1946, namely French man Georges Joseph Ranque and a

German called Rudolf Hilsch. Their contributions will now be discussed.

1.3 Ranque’s Contribution

One of the most comprehensive historical documents detailing the chain of events

leading to and analysing the discovery of the RHVT was documented by C.D. Fulton

[1] shortly after Ranque and Hilsch’s findings. Fulton ascertained that when “Ranque,

the discoverer of this technology, presented himself before the Société Francaise de

Physique in June 1933 and told his audience that hot and cold air came out of opposite

ends of a simple piece of pipe, (he) was received with scepticism….. Aerodynamicists

at the time simply came to the conclusion that stagnation temperature had been

confused with static temperature; the two streams weren’t really cold and hot” [1].

The illustration below, along with others in this passage, have been obtained

directly from Ranque’s patent [4].

Fig. 1-2: Cross-Section of Ranque’s Vortex Tube Design [4].
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Notably modern day commercial vortex tubes are fundamentally very similar to the

design given in Fig. 1-2 as shown by the exploded parts view of a modern RHVT

below in Fig. 1-3.

Fig. 1-3: Commercial RHVT by Exair [5].

The first published record of the principle of the RHVT phenomenon occurred on 12
th

December 1931, when Ranque filed a French patent docket. After the French patent

issued in 1931, he filed the same docket in the United States as previously mentioned.

In this patent Ranque showed that the tangential entrance may consist of a single

nozzle, a plurality of nozzles, or a set of blades. He also described how, by adjusting

the size of the cold-air orifice or the restriction at the end of the hot tube, one may

obtain a small quantity of moderately cold air, and mentioned that the temperature of

the hot tube reaches its maximum when the end of the hot tube is entirely closed, and

that the higher the pressure of the air supplied, the colder the cold air will be.

Furthermore Ranque spoke of having measured the pressure distribution inside the

tube, a task which is very much easier said than done, as illustrated in Fig. 2-1 later in

this work.

The theory Ranque gives in the United States patent, was stated as follows,

“The rotating gas spreads out in a thick sheet on the wall of the tube and the inner

layers of this sheet press upon the outer layers by centrifugal force and compress

them, thus heating them. At the same time the inner layers expand and grow cold.

Friction between the layers is to be minimised” [4].
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1.4 Hilsch’s Contribution

It is thought that Hilsch, physicist of the University of Erlangen, got to know of this

device due to information supplied to him from occupied France [1]. Hilsch published

an article in 1946 [6] and in it he refers briefly to Ranque’s paper of 1933 as the

source of the idea, but it seems that he had not learned of the patent. He had arrived

nevertheless at exactly the same design shown in certain of Ranque’s drawings [1].

In this article Hilsch wrote: “The air passing through the orifice has been

expanded in the centrifugal field from the region of high pressure at the wall of the

tube to a low pressure near the axis. During this expansion it gives considerable part

of its kinetic energy to the peripheral layers through increased friction. The peripheral

layers then flow away with increased temperature….The internal friction….causes a

flow of energy from the axis to the circumference by trying to establish a uniform

angular velocity across the entire cross section of the tube” [6].

Following Hilsch, nearly everyone has used similar counter-flow designs to

the complete neglect of the uniflow type, as shown for example in Fig. 1-4 below.

This is in part to the fact that a counter-flow type is easier to manufacture and offers

two distinct hot and cold outlets at opposite ends of the tube where the thermal output

of each cannot interfere with each other. As a consequence of this, the counter – flow

design is the primary focus of this project.

Fig. 1-4: Cross Section of a Uniflow RHVT [7].
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1.5 Fundamentals of the Ranque-Hilsch Vortex Tube

Before exploring current published research papers, theses, articles etc. on the RHVT

it is important to have the fundamental aspects of the device understood and in place.

These basic understandings of the RHVT draw from the well established principles of

Thermodynamics and Fluid Dynamics, and it will be shown that the heat migration

within the RHVT is not in conflict with long accepted aspects of both these

engineering disciplines.

1.5.1 Thermodynamics of the Ranque – Hilsch Vortex Tube

When first introduced to vortex tube technology, it would appear that there has been a

violation of the laws of thermodynamics. It would seem that there is an internal heat

flux without any work input. As in any refrigeration process, work input is paramount

to its operation. Herein lies the crux of the problem, and the almost century long quest

to fully understand the operation of the tube.

The First Law of Thermodynamics can be written as follows, “When a system

undergoes a thermodynamic cycle then the net heat supplied to the surroundings plus

the net work input to the system from its surroundings is equal to zero” [8].

Mathematically this statement is written as:

0Q W+ =� � (1.1)

where Q and W denote the heat supplied and work input to the system respectively.

From this First Law the steady flow energy equation can be applied to the RHVT’s

boundary as shown in Fig. 1-5.

Fig. 1-5: System Boundary applied to RHVT.
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Resulting in an equation of the following form:

2 2 2

, , ,
2 2 2

in c h
in s in in c s c c h s h hm h Z Q W m h Z m h Z
� � � � � �

+ + + + = + + + + +� � � � � �
� � � � � �

U U U
� �� � � (1.2)

where m� , ho, hs, U, Z, Q� and W� denote the mass flow rate, the total enthalpy, the

static enthalpy, the velocity vector, the height above the datum, the rate of heat and

work inputs supplied respectively, and the subscripts in, c and h denote the inlet, cold

and hot outlets respectively.

By using some simple elimination of a few equal and negligible terms, the

steady – flow energy equation reduces to a reversed adiabatic mixing equation with

use of the following steps:

1. Combining static enthalpies and kinetic energies into total enthalpy.

2. Acknowledging that the potential energies at each point are approximately

the same.

3. There is no heat or work input.

The reversed adiabatic mixing equation is as follows, and it shows that the RHVT

does indeed satisfy the first law, as energy is conserved:

, , ,in o in c o c h o h
m h m h m h= +� � � (1.3)

This can be reduced further by introducing the ratio used to describe the ratios of cold

and hot gas flows as compared to the supplied gas flow; this ratio is called the cold

gas fraction:

c
c

in

m

m
µ =

�

�
(1.4)

which is easily recognised by dividing Equation (1.3) by the inlet mass flux,
in

m� :

( ), , ,1o in c o c c o hh h hµ µ= + − (1.5)

If the gas flowing through the RHVT is treated approximately as an ideal gas and

changes in kinetic energy are neglected we can write the above conservation equation

as follows:

( ), , ,1p o in c p o c c p o hc T c T c Tµ µ= + − (1.6)
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where cp and To are the specific heat capacity at constant pressure and the total

temperature respectively. Dividing across by cp, we get:

( ), , ,1o in c o c c o hT T Tµ µ= + − (1.7)

results in a rather simplistic energy balance equation, but it does illustrate quite

clearly that when considered as a system with boundaries the RHVT does indeed

satisfy basic thermodynamic rules.

A much broader perspective of the system needs to be conducted to show that

the Second Law of Thermodynamics is satisfied, i.e. that “it is impossible to construct

a device that operating in a cycle will produce no effect other than the transfer of heat

from a cooler to a hotter body” [8].

As there is no mechanical work input to a RHVT, and yet there is a heat flux,

to obey the above two classic laws of thermodynamics; there must be a supply of

work of some other form. The source of this work has been the main argument since

the establishment of this technology.

Fig. 1-6: Complete Ranque-Hilsch Vortex Tube System Including Compressed Air

Supply [9].
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Analysis of the complete RHVT system from the source of the flow potential, as in

the compressor supply, to the exit of the two streams of hot and cold air, gains a

different perspective. The system is now viewed from the suction of atmospheric air

through the compressor, channelled through the supply piping and back to the

atmosphere, through both exits of the RHVT. It is now is easier to see that the RHVT

does indeed satisfy the second law above, and that equilibrium is indeed maintained,

in that the compressed air does indeed return to atmospheric conditions, once it has

completed its cycle. Fig. 1-6 shows the RHVT as a complete system does indeed

satisfy the second law of thermodynamics.

1.5.2 Fluid Dynamics of the Ranque – Hilsch Vortex Tube

In a RHVT a high pressure fluid, mainly compressed air, enters the tube and passes

through nozzles achieving a high angular velocity and hence causing a vortex-type

flow, as can be seen in Fig. 1-1. There are two outlets to the tube: the hot outlet is

placed near the outer radius of the tube at the end away from the inlet nozzles and the

cold outlet is placed at the centre of the tube at the same end as the air inlet.

By adjusting a control valve downstream of the hot outlet it is possible to vary

the fraction of the incoming flow that leaves through the hot outlet on the periphery of

the tube. The proportion of cold gas deflected back through the cold outlet is referred

to as the cold fraction, �c, previously defined in Equation (1.4). By varying the cold

fraction the cold outlet total temperature drop (�To,c= To,in - To,c) can be adjusted

accordingly, as can be seen for example in the experimental results in Fig. 1-7
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Promvonge et al.:Pin=2Bar, L/D=45, To,in=29oC, dc/D=0.5, Nozzles=2, [10]

Soni:Pin=2Bar, L/D=50, To,in=24oC, dc/D=0.5, Nozzles=2, [11]

Fig. 1-7: Variation of �To,c with �c for typical RHVT [10,11].
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where the terms Pin, To,in, L, dc, and D, denote static gauge pressure and total

temperature at the inlet, the length of the RHVT, diameter of the cold outlet and

diameter of the RHVT respectively.

Fig. 1-8: Axial velocity streamline plot and graphs of tangential and axial velocity and

their distribution along the central axis of the RHVT.

An analysis of a basic axial velocity streamline plot gives a clearer understanding of

the variance of both the axial and indeed the tangential velocities throughout the

RHVT. Where, the graphs of the axial and tangential velocities in Fig. 1-8 denote the

axial direction and rotational strength of the vortex, at various axial and radial

locations along the RHVT. As can be seen Fig. 1-8 in the streamline plot the

compressed air enters through the inlet nozzles and a proportion of this flow leaves

through the hot and cold outlets respectively. In addition to the streamline plot, graphs

of the tangential and axial velocities (denoted by v and u respectively) and their

variance along the axial, x – direction, of the RHVT has been shown. These graphs

are visual representations of more comprehensive experimental results shown later in

Fig. 4–32 and Fig. 4-33.

It can be easily observed from the graphs in Fig. 1-8 the RHVT that the

tangential velocity i.e. the swirling/rotating component of the vortex flow is strongest
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at the entrance region (i.e. near the inlet nozzles) of the RHVT and decays

significantly in magnitude towards the hot outlet. In the lower graphs it can be seen

that in the entrance region the axial velocity of the vortex flow is positive (i.e. in a

direction towards the hot outlet) at outer radial locations in the RHVT, and moves in a

negative direction at inner radial locations of the vortex flow. What this means is that

there are two vortices moving in opposite axial directions within this region. This

reversal in flow towards the cold exit occurs in the positive x – direction from the inlet

nozzles up to a point defined as the stagnation point, as highlighted in Fig. 1-8.

The stagnation point also marks the limiting point where further increases of

the vortex tube length beyond this point does not improve the energy separation, as

observed by Aljuwayhel et al. [12]. This important aspect has been utilised later on in

reducing the length of the computational domain of the vortex tube to that used by

researchers in their experiments. Towards the hot outlet the motion is no longer purely

rotational due to friction from walls, slowing the tangential components of the flow

substantially.

1.6 Commercial Vortex Tubes

Currently there is no conclusive evidence as to the mode of energy migration within

the RHVT. However, recently, it has been developed commercially for small-scale

spot-cooling applications despite an incomplete understanding of vortex tube physics.

There are a range of RHVT manufacturers who have developed and applied RHVT

theory into practical and effective cooling solutions for industrial use. Such

companies include Exair and ITW Vortec, both in the United States. Locally for the

Irish market, Flowtech, UK, supplies Exair RHVTs. They market their product for a

range of different applications, based on the following qualities of RHVT technology:

• Clean form of cooling

• Maintenance free – no moving parts

• Stable temperature output

• Cools without electricity or refrigerants

• Exceptionally reliable, compact and lightweight

• Low cost

There is a wide variety of applications for vortex tubes including previously

mentioned spot cooling, but also some not so obvious innovative ideas are marketed.
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1.6.1 Spot Cooling Applications

RHVTs have a very wide range of application for industrial spot cooling on machines,

assembly lines and processes.

Fig. 1-9: Cold Air Gun by ITW Vortec [13].

One such example is the Cold Air Gun with magnet base, shown in Fig. 1-9 above

used as a substitute for coolant in machining processes.

Other spot cooling applications include:

• Cool plastic injection moulds

• Dehumidify gas operations

• Cool heat seal operations

• Cooling of control cabinet electrical enclosures, as illustrated below in

Fig. 1-10 and overleaf in Fig. 1-11

Fig. 1-10: Control Cabinet RHVT by Exair [5].
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Fig. 1-11: Explanation of Control Cabinet Cooling RHVT by Exair [5].

1.6.2 Spot Heating Applications

Not neglecting the hot air output, spot heating applications include:

• Setting solders and adhesives

• Dry ink on labels and bottles

1.6.3 Experimental Ranque-Hilsch Vortex Tube Equipment

Experimental equipment for use in thermodynamic and fluid dynamic laboratories is

available commercially from P.A. Hilton Ltd. in the U.K. A picture of this apparatus

is shown in Fig. 1-12 below.

Fig. 1-12: Experimental RHVT Equipment, by P.A. Hilton Ltd [14].
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1.6.4 Personal Air Conditioners

RHVTs can be used in an Air Vest, as marketed by ITW Vortec to distribute cooled

or heated air over the upper body, as illustrated in Fig. 1-13 below.

Fig. 1-13: Personal Air Conditioner by ITW Vortec [13].

1.7 Current Energy Separation Theory

The longest serving and most established theory was first proposed by Hilsch [6]. He

suggested that angular velocity gradients in the radial direction give rise to frictional

coupling between different layers of the rotating flow resulting in a migration of

energy via shear work from the inner layers to the outer layers. However this theory

may not altogether explain the mode of heat transfer within the tube.

To supplement this theory a hypothesis has been forwarded by Ahlborn et al.

[15 – 17], that the presence of a secondary flow field contributes to the energy

migration within the RHVT. The hypothesis states that a primary fluid flow consisting

of outer and inner vortices exists that spans the length of the tube, and that an

embedded secondary flow loop exists that convects heat between the two vortex

flows, acting as the refrigerant of an open thermodynamic cycle. This theory has since

been supported by Gao et al. [18] and it is based on experimental evidence. Capturing

this secondary flow and quantifying its influence in relation to the proposed heat

pump theory using CFD is just one of the main objectives of this study.

1.8 Summary

In this section the fundamental operation of the RHVT has been introduced along

with some examples of applications of the tube within various industries. The next

section of this work will develop the current energy separation theory into the mode

of heat transfer within the tube.
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2 Literature Review

2.1 Introduction

It has already been shown that an external analysis of the RHVT proves that the

RHVT obeys both the First and Second Laws of Thermodynamics. However this

external perspective does not offer any insight into the internal mechanisms in the

RHVT which force the temperature separations to both the hot and cold outlets.

Despite the simplicity of the vortex tube's geometry, the energy separation

phenomenon within the RHVT is quite complex. The RHVT requires no work or heat

interaction with the environment. Consequently, the separation effect must be

attributable to an energy interaction that occurs internally between the hot and cold

vortices. At present several conflicting theories have been advanced to explain the

vortex tube's behaviour since its initial observation by Ranque. Despite the various

experimental and analytical investigations that have been carried out on the vortex

tube, the mechanism of the temperature separation effect is still in question due in part

to a lack of reliable measurements of the internal temperature and velocity

distributions.

Unfortunately internal experimental analysis has been shown by Cockerill [9]

to distort the flow field through the use of pressure and temperature probes, which can

only offer up limited accuracy. Pitot tubes by their very design can only disrupt the

flow so as to alter the dynamics of what is happening. Despite these restrictions

researchers have not been hindered in discovering important characteristics of the

internal flow field of which will provide a basis of comparison to the results found in

this CFD study.

2.2 Velocity Profiles in the Ranque – Hilsch Vortex Tube

Useful comparative velocity profiles within the RHVT are available from only a very

limited amount of authors including Gao et al. [7], Ahlborn et al. [15] and Bruun [19].

At present Gao et al. [7] results are to the best of the authors knowledge, the most

recent and comprehensive results published for both tangential and axial velocities. In

order to obtain their data Gao et al. developed the experimental apparatus shown

overleaf in Fig. 2-1.
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Fig. 2-1:Experimental Set-Up to measure flows internal to the RHVT [7].

The cylindrical pitot device highlighted above can be rotated and translated through

radial planes at different axial locations within the RHVT and was used successfully

to give the velocity profiles shown in Fig. 2-2 below and Fig. 2-3 overleaf.
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Fig. 2-2: Experimental results of internal normalised tangential velocities at normalised

radial and axial locations within a RHVT for Pin=6bar, L/D=65, and �c= 0.4 [7].

It should be noted that these experimental results are normalised across radial

locations for different axial distances (x/L) from the inlet nozzles and this means that

they can be compared to results from similar RHVT with different geometries to that

used by Gao et al [7].
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Fig. 2-3: Experimental results of internal normalised axial velocities at normalised

radial and axial locations within a RHVT for Pin=6bar, L/D=65 and �c= 0.4 [7].

2.3 Experimental Proof of Secondary Flow

Experimental proof of a secondary circulation within the RHVT was first published

by Ahlborn et al. [15] and subsequently by Gao et al. [18]. These authors ascertained

the presence of this secondary flow by using apparatus such as that shown in Fig. 2-1

and by measuring the axial and tangential velocities in the RHVT. The recirculating

region of flow was discovered when it was established that the mass flow returning

towards the cold outlet is much larger than the cold mass flow emerging out the cold

end. An illustration of both primary and secondary flow is given below in Fig. 2-4.

Fig. 2-4: Primary and Secondary circulation within the RHVT [15].
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2.3.1 Secondary Flow working as a Refrigeration Cycle

In subsequent publications Ahlborn et al. [16,17] went on to explain the function of

secondary flow within the RHVT is to provide a method of temperature separation

based on the analogy of conventional heat pump mechanisms, as illustrated in Fig. 2-5

below.

Fig. 2-5: Heat pump cycle within a RHVT [16].

With reference to the diagram above heat pump cycle within the RHVT can be

explained as follows:

• From points 4�1 heat is rejected in the vicinity of the entrance nozzle,

relatively warm gas in the secondary loop rejects heat to the cooler gas in the

primary circulation.

• From points 1 �2 �3 the working fluid adiabatically expands from the high

pressure heat exchange region and travels towards the tube’s hot end. There it

turns inwards at point 2 to join the backflow core at point 3. As there is a

sizeable angular velocity remaining, the pressure at point 2 must be higher at

point 3, therefore the gas in the secondary loop expands adiabatically.

• From points 3�c energy absorption occurs between these points and as such

this is the refrigeration branch in which the gas in the primary loop cools by

transferring energy to the secondary circulation. The fluid resistance

experienced by the axial flow is not like wall friction in an ordinary pipe, but

rather an effect of momentum transfer to the adjacent fluid in the secondary

flow, so as energy is pumped from the primary to the secondary loop.

• From points c � 4 adiabatic compression occurs in this region where the

secondary circulation is pushed outwards, where it is recompressed as it

moves towards point 4.
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Although there is experimental evidence of a secondary flow within the RHVT, the

analogy of its operation being similar to that of a heat pump contributing to the heat

migration is still open to question. In these experimental investigations of secondary

flow its presence was numerically deduced from careful analysis of the axial and

tangential velocities. These researchers had, and continue to have, no means of

visualising this secondary flow. By capturing this secondary flow through the use of

CFD, a clearer insight can be gained. A greater foundation for this theory can be

quantified if evidence of the heat pump cycle of expansion, heat rejection,

compression and energy absorption can be detected.

Comprehensive analysis of evidence of this hypothesis will be conducted, as a

core aspect of this project as outlined previously. As this is a new conceptual theory,

at present there are few supporting papers on this hypothesis. However a much older

theory of frictional heat transfer has numerous supporters and is described below.

2.4 Frictional Heat Transfer

When Hilsch [6] rejected Ranque’s hypothesis on the source of the energy migration

within the RHVT, he proposed theory that angular velocity gradients in the radial

direction give rise to frictional coupling between different layers of the rotating flow

resulting in a migration of energy via shear work from the inner layers to the outer

layers. This working principle has since been utilised by numerous contributors

including Lewins et al. [20], Frohlingsdorf et al. [21], Deissler and Perlmutter [22],

and Young and Cutcheon [23].

Comprehensive theory on the frictional heat transfer has been published by

Fulton [1] where he describes the main shear stress �r� as being caused by the turning

of one cylinder inside another. This stress according to frictional heat transfer theory

given by Fulton is by far the largest shear stress and it is the primary cause of the

energy migration within the RHVT. This rotational shear stress is expressed as

follows from [1]:

r

v v

r r
θτ µ

∂� �
= −� �

∂� �
(2.1)

This shear stress is constantly at work to convert the free vortex into a forced vortex

resulting in a free vortex as a peripheral warm stream and a forced vortex as a inner

cold stream, as can be seen overleaf in Fig. 2-6.
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Fig. 2-6: Schematic Flow Pattern of a RHVT.

These vortices are described quite simply below where it can be seen that within a

forced vortex the tangential velocity, v, is directly proportional to the radial location r,

and the free vortex the tangential velocity is inversely proportional to the radial

location r squared.

Fig. 2-7: Forced Vortex and Free Vortex.

In frictional heat transfer theory it is this interaction of free and forced vortices that

results in a flow of work and hence heat migration in a RHVT.
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2.4.1 Flow of Work in the Ranque – Hilsch Vortex Tube

As work is simply force times the distance travelled it can be implied that in a fluid

where the shear stress at the surface is ijτ and the velocity of the fluid is U, the rate of

flow of work per unit area of the surface is:

ij ijW τ= U�� (2.2)

This work flows perpendicularly across the surface from the more rapidly moving

fluid to the less rapidly moving fluid. Therefore the rotational work per unit area
r

W θ
�� ,

produced by the main shear stress �r� is as follows:

r

v v
W

r r
θ µ

∂� �
= −� �

∂� �
U�� (2.3)

This rotational work per unit area is the main source of frictional energy transfer from

the cold inner region to the hot peripheral vortex flow.

2.5 Acoustic Streaming in Vortex Tubes

Another explanation worthy of mention as to how the energy separation occurs in a

RHVT, is the work of Kurosaka [24] who attributes the energy separation in the

RHVT to acoustic streaming (sound waves) caused by the vortex whistle. As the

RHVT operating theory mentioned here has little association with theories of CFD, it

is presented here in its most basic form, as a means to show that there maybe further

considerations to take into account when explaining RHVT operation. This published

work shows there is evidence of acoustic streaming having a tangible effect on the

operation of the RHVT. It does not however conclusively explain the mode of

operation of the RHVT in any way.

In his work Kurosaka [24] derived a relationship between the swirl velocity

and the expected angular frequencies of disturbances generated by the vortex whistle,

and indirectly a means of measuring the performance of the RHVT with a sound

spectrum. To investigate his theory, Kurosaka measured the acoustic output of a

RHVT. He obtained a series of spectra similar to that shown in Fig. 2-8 overleaf, with

peaks at discrete frequencies, clearly showing harmonics.
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Fig. 2-8: The spectral density of the acoustic signal obtained by Kurosaka [24].

By drilling out the sides of the tube, and installing tuned acoustic suppressors,

Kurosaka attempted to attenuate the disturbances at a particular inlet pressure and by

gradually increasing this pressure, he observed the energy separation of his tube

developed in the normal way, until the pressure was such that acoustic disturbances

are attenuated, yielding spectra such as that in Fig. 2-8. At this point there was a fairly

substantial drop in the separation performance, as can be seen in Fig. 2-9 overleaf.

The graph overleaf shows that any suppression in the vortex whistle will lead

to degradation in the energy separation effect of the RHVT. Cockerill [9] suggests

that the general validity of the acoustic streaming explanation has to be questioned as

other researchers such as McDuffie [25] also measure the sound output from a vortex

tube similar to Kurosaka and find no evidence of the frequencies detected by

Kurosaka. Cockerill also tried to measure such spectrums and failed to find such close

relationships between temperature lift and sound spectrums.
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Fig. 2-9: Graph illustrating the behaviour of the energy separation, and the acoustical

output from Kurosaka’s tube as the excitation frequency is increased [24].

Suffice to say that this is not the limit of published operating theory on the RHVT.

Additional conflicting theories have been published including for example, Harnett

and Eckert [26] who invoke turbulent eddies, Stephan et al. [27] propose that Görtler

vortices form on the inside wall of the vortex tube and drive the fluid motion, Camiré

[28] attributes the energy seperation to heat transfer from the cold region to the hot

flow region during periods where the hot flows static temperature is less than that of

the cold flow due to its large kinetic energy.
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2.6 Previous CFD Studies.

Contributors to CFD studies on the mode of energy transfer within the RHVT are few.

Easily found papers on this subject have been published by Promvonge et al. [10],

N.F. Aljuwayhel et al. [12], Frohlingsdorf et al. [21], Behera et al. [29] and Skye et al.

[30].

N.F. Aljuwayhel et al. suggest that “by sub-dividing the computational region

of the numerical model into control volumes associated with the hot and cold fluid

streams it is possible to show that a work transfer associated with shears layers

occurs”, i.e. frictional heat transfer explained in Section 2.3., of which Frohlingsdorf

et al. [21], also agree. N.F. Aljuwayhel et al. also stress that the choice of the

turbulence model has a large effect on the vortex tube’s predicted performance but it

does not lead them to a different conclusion as to the mode of heat transfer. However

Colgate et al. [31] have reservations about Frohlingsdorf and Unger’s work due to the

fact that “an artificial enhancement of the Prandtl number by a staggering factor of 10

to fudge the unsteadiness” within their turbulence model.

Only Behera et al. [29] have previously published literature on a RHVT using

a complete three dimensional vortex tube. Most researchers have simplified the

analysis to either two dimensional models or three dimensional partial sectors of the

flow. All previous studies have been small scale parametric studies, and although

Behera et al. [29] have successfully captured secondary flow, as can be seen in Fig. 2-

10 overleaf, they have not tried to suggest its thermodynamic influence in relation to

Ahlborn et al. [17] and Gao et al. [18] heat pump cycle theory. They did however

suggest that secondary flow may be a performance degradation mechanism and is best

avoided. N.F. Aljuwayhel et al. [12] have also presented results of similar

recirculating streamlines.

Behera et al. also found that the presence of secondary flow superimposed on

the primary forced vortex for low values of dc/D as reported by Ahlborn et al. [15].

They have also suggested that the transition to purely primary flow occurs as the dc/D

value is increased whereby the magnitude of secondary flow decreases and is

completely eliminated for dc/D = 0.58 (cold end diameter = 7 mm) as shown in Fig. 2-

11 overleaf.
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Fig. 2-10: Streamline plot of axial velocity on the central axis of a RHVT with

dc/D = 0.417 near the cold end exit zone [29].

Fig. 2-11: Flow pattern near cold end exit for dc/D = 0.323 showing secondary

circulation flow; (b) flow pattern near cold end exit for dc/D = 0.58 showing no

secondary circulation flow [29].

2.7 Summary

In this section the current energy separation theory has been presented including heat

migration explanations such as secondary flow acting as a heat pump and frictional

heat transfer within the RHVT. The section ended with illustrations of CFD results in

this area, and as such it marks a suitable point in which to develop the applications

and theory of this software technology, which is the content of the next section.
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3 Computational Fluid Dynamics

3.1 Introduction

Computational Fluid Dynamics or CFD is a computer-based tool for simulating the

behaviour of systems involving fluid flow, heat transfer, and other related physical

processes. CFD is now regarded as the “third” technique for the solution of fluid flow

problems, complementing, but not replacing, the well-established approaches of

theory and experiment. It is a relatively new branch of fluid mechanics and finds its

niche in predicting fluid flows that are difficult or impossible to analyse using theory

and are complex, time consuming, or expensive to measure experimentally.

3.2 The History of CFD

Computers have been used to solve fluid flow problems for many years. Numerous

programs have been written to solve either specific problems, or specific classes of

problems. From the mid-1970s, the complex mathematics required to generalise the

algorithms began to be understood, and general purpose CFD solvers were developed.

These began to appear in the early 1980s and required what were then very

powerful computers, as well as an in-depth knowledge of fluid dynamics, and large

amounts of time to set up simulations. Consequently, CFD was a tool used almost

exclusively in research. Recent advances in computing power, together with powerful

graphics and interactive 3-D manipulation of models have made the process of

creating a CFD model and analysing results much less labour intensive, reducing time

and, hence, cost. Advanced solvers contain algorithms which enable robust solutions

of the flow field in a reasonable time.

As a result of these factors, CFD is now an established industrial design tool,

helping to reduce design timescales and improve processes throughout the

engineering world. CFD provides a cost-effective and accurate alternative to scale

model testing, with variations on the simulation being performed quickly, offering

obvious advantages.
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3.2.1 Uses of CFD

CFD is used by engineers and scientists in a wide range of fields. Typical applications

include:

• Process industry: Mixing vessels and chemical reactors

• Building services: Ventilation of buildings, such as atria

• Health and safety: Investigating the effects of fire and smoke

• Motor industry: Combustion modelling, car aerodynamics

• Electronics: Heat transfer within and around circuit boards

• Environmental: Dispersion of pollutants in air or water

• Power and energy: Optimisation of combustion processes

• Medical: Blood flow through grafted blood vessels

CFD works by solving the equations of fluid flow (in a special form) over a region of

interest, with specified (known) conditions on the boundary of that region. The

governing equations of CFD utilise adapted forms of the governing equations of fluid

flow and heat transfer which are given below for cartesian co-ordinates.

3.3 Navier – Stokes Equations

The Navier – Stokes equations in cartesian coordinates which govern the time –

dependent, three – dimensional fluid flow and heat transfer of a compressible

Newtonian fluid are given as follows from [32]:

Continuity Equation:

( ) 0Udiv
t

ρ
ρ

∂
+ =

∂
(3.1)

x – momentum Equation:

( ) ( )
u P

div u div grad u
t x

ρ
ρ µ

∂ ∂
+ = − +

∂ ∂
U (3.2)

y – momentum Equation:

( ) ( )
v P

div v div grad v
t y

ρ
ρ µ

∂ ∂
+ = − +

∂ ∂
U (3.3)
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z – momentum Equation:

( ) ( )
w P

div w div grad w
t z

ρ
ρ µ

∂ ∂
+ = − +

∂ ∂
U (3.4)

Energy Equation:

( ) ( )o

o s

h P
div h div grad T

t t

ρ
ρ λ

∂ ∂
− + =

∂ ∂
U (3.5)

Equations of State (ideal gas laws):

P = P(�,Ts), hs = hs(�,Ts), P = �RTs, hs = i+P/�, i = CvTs and ho = hs+1/2U
2

(3.6)

where �, �, U, u, v, w, P and i denote density, viscosity, the velocity vector, the x, y

and z components of the velocity vector, static pressure and the internal energy per

unit mass respectively. When solved, these differential equation yield details about

the velocity, density, pressure, etc., at every point throughout an entire flow domain of

interest. These equations are coupled, meaning that some of the variables appear in all

of the equations. As a result the set of equations must be solved simultaneously for

each unknown. In addition boundary conditions for the variables must be specified at

all boundaries of the flow domain, including inlets, outlets, and walls.

3.4 Governing Equations of CFD

In CFD however, adapted forms of the Navier – Stokes equations are used in the

analysis of turbulent flows, such as those present within the RHVT. The governing

equations of CFD are the Reynolds Averaged Navier – Stokes (RANS) equations

which are obtained by time – averaging the general form of the Navier – Stokes

equations. This process of time averaged equations is discussed in depth in Section A

– Turbulence and Turbulence Modelling, where the RANS equations and a general

Scalar Transport equation, can be seen. The governing equations of CFD are given as

follows from [33]:

Continuity Equation:

( ) 0div
t

ρ
ρ

∂
+ =

∂
U (3.7)

x – momentum Equation:

( ) ( )eff

U P
div U div grad U

t x

ρ
ρ µ

∂ ∂
+ = − +

∂ ∂
U (3.8)
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y – momentum Equation:

( ) ( )eff

V P
div V div grad V

t y

ρ
ρ µ

∂ ∂
+ = − +

∂ ∂
U (3.9)

z – momentum Equation:

( ) ( )eff

W P
div W div grad W

t z

ρ
ρ µ

∂ ∂
+ = − +

∂ ∂
U (3.10)

Energy Equation:

( ) ( )o
o eff o

h
div h div div h

t

ρ
ρ

∂
+ = Γ

∂
U (3.11)

where U, V and W are the mean x, y and z components of the velocity vector U

respectively as defined in Section A.2. These simplified equations have been

formulated through the use of two new terms called the effective viscosity, �eff, and

effective diffusivity, �eff, defined as follows:

eff t
µ µ µ= + (3.12)

eff t
Γ = Γ + Γ ,

Pr

µ
Γ = and

Pr

t
t

t

µ
Γ = (3.13)

where �, �t, Pr and Prt are the viscosity, turbulent viscosity, Prandtl number and the

turbulent Prandtl number respectively. Equations (3.12) and (3.13) can only express

the turbulent fluctuation terms as a function of the mean variables of the RANS if the

turbulent viscosity, �t, is known. It is the turbulence models, such as the k – � and k –

� models, that provide a value for �t, as also discussed in Section A and as can be

seen for example in Equation (A.21).

Analytical solutions to these equations, (3.7) - (3.11) exist for only the

simplest of flows under ideal conditions. To obtain solutions for real flows a

numerical approach must be adopted whereby the equations are replaced by algebraic

approximations which may be solved using a numerical method.

3.4.1 Discretisation of the Governing Equations of CFD

The numerical method employed in many CFD software packages, including the

ANSYS CFX 10 package used in this study, involves discretising the spatial domain

into finite control volumes using a mesh as shown in Fig. 3-1 overleaf. The governing
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equations are integrated over each control volume, such that the relevant quantity

(mass, momentum, energy etc.) is conserved in a discrete sense for each control

volume.

Fig. 3-1: Cell Vertex Finite Volume Scheme [33].

It is clear that each node is surrounded by a set of surfaces which comprise the finite

volume, as shown in Fig. 3-1. All the solution variables and fluid properties are stored

at the element nodes. The governing equations are integrated over a control volume,

and Gauss’ divergence theorem is applied to convert some volume integrals to surface

integrals. For control volumes that do not deform in time, the time derivatives can be

moved outside of the volume integrals and the equations become:

Continuity Equation:

0
s

d
d dn

dt
ρ ρ+ =� �V

V U (3.14)

x – momentum Equation:

( ) ( )eff
s s s

d
Ud div U dn Pdn grad U dn

dt
ρ µ+ = − +� � � �V

V U (3.15)
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y – momentum Equation:

( ) ( )eff
s s s

d
Vd div V dn Pdn grad V dn

dt
ρ µ+ = − +� � � �V

V U (3.16)

z – momentum Equation:

( ) ( )eff
s s s

d
Wd div W dn Pdn grad W dn

dt
ρ µ+ = − +� � � �V

V U (3.17)

Energy Equation:

( ) ( )o o eff o
s s

d
h d div h dn grad h dn

dt
ρ+ = Γ� � �V

V U (3.18)

where V (not to be confused with V the y – component of the average velocity) and s

respectively denote volume and surface regions of integration, and dn are the

differential Cartesian components of the outward normal surface vector in the

direction of interest. The first step in solving these continuous equations numerically

is to approximate them using discrete functions, an example of which is outlined

below.

Fig. 3-2: Isolated mesh element and its associated integration points [33].

Considering an isolated mesh element such as the one shown above, the surface fluxes

must be discretely represented at the integration points to complete the conversion of

the continuous equation into their discrete form. The integration points, ipn, are

located at the centre of each surface segment in a 3D element surrounding the finite

volume. Using a First Order Backward Euler scheme the discrete form of the integral

equations are written as:
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Continuity Equation:

( ) 0
ip

n
ρ ρ

ρ
� �

+ ∆ =� �
∆� �

�
o-

V U
t

(3.19)

x – momentum Equation:

( ) ( )( )
o o

ip eff

ip ip ip

U U
m U P n grad U n

t

ρ ρ
µ

� �−
+ = ∆ + ∆� �

∆� �
� � �V � (3.20)

y – momentum Equation:

( ) ( )( )
o o

ip eff

ip ip ip

V V
m V P n grad V n

t

ρ ρ
µ

� �−
+ = ∆ + ∆� �

∆� �
� � �V � (3.21)

z – momentum Equation:

( ) ( )( )
o o

ip eff

ip ip ip

W W
m W P n grad W n

t

ρ ρ
µ

� �−
+ = ∆ + ∆� �

∆� �
� � �V � (3.22)

Energy Equation:

( ) ( )( )
o o

o o
ip o eff o

ip ip

h h
m h grad h n

t

ρ ρ
µ

� �−
+ = ∆� �

∆� �
� �V � (3.23)

where the subscript ip denotes an integration point, the summation is over all the

integration points of the finite volume,�n is the discrete outward surface vector and

�t is the time-step. The transient term has no bearing on a steady state solution such

as that for a RHVT. After large times, the solution approaches a steady state, where

the time derivatives approach zero. This time – marching approach is widely used in

modern CFD and provides greater numerical convergence stability and frequently

leads to faster convergence to the steady state solution [34]. Indeed for steady state

problems the time-step behaves like an ‘acceleration parameter’, to guide the

approximate solutions in a physically based manner to a steady-state solution. This

reduces the number of iterations required for convergence to a steady state, or to

calculate the solution for each time step in a time dependent analysis [33].

Superscripts,
o
, above refer to the old time level. For the advection terms, �, U, V, W

and ho above, there is a choice of different discretisation schemes including an

Upwind Differencing Scheme, which is numerically more stable than the choice of a
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Higher Resolution Scheme, which may be more accurate. The discrete mass flow

through a surface of the finite volume is denoted by and is given by:

( )Uipm nρ= ∆� (3.24)

These equations relating to fluid flow can be closed numerically by the specification

of conditions on the external boundaries of a domain. It is the boundary conditions

that produce different solutions for a given geometry and set of physical models.

Hence boundary conditions determine to a large extent the characteristics of the

solution obtained. Therefore, it is important to set boundary conditions that accurately

reflect the real situation to allow you to obtain accurate results.

3.5 Boundary Conditions

The types of boundary condition that can be applied depend upon what sort of

boundary or interface the boundary condition is placed on. The following fluid

boundary condition types are available in ANSYS CFX 10:

1. Inlet - fluid is constrained to flow into the flow domain only.

2. Outlet - fluid is constrained to flow out of the flow domain only.

3. Opening - fluid can simultaneously flow both in and out of the flow

domain. This is not available for flow domains with more than one

fluid present.

4. Wall - impenetrable boundary to fluid flow.

5. Symmetry Plane - a plane of both geometric and flow symmetry.

6. Periodic- In many practical situations, a portion of the flow field is

repeated in many identical regions e.g. the flow around a single turbine

blade in a rotating machine. These problems are said to exhibit

rotational or translational periodicity. Although the complete flow

problem can be modelled, it is more efficient to model the flow in a

single periodic region and apply periodic boundary conditions at faces

which connect them, allowing flow out of one boundary to flow into

the corresponding boundary.

In addition to fluid boundaries the following solid boundary condition types are also

available in ANSYS CFX 10:

1. Wall - impenetrable boundary to fluid flow.

2. Symmetry Plane - a plane of both geometric and flow symmetry.
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For a given computational domain, boundary conditions can be applied that over-

specify or under-specify the problem. This usually results in non-physical solutions or

failure of the solution to converge. It is important, therefore, to understand the

meaning of well-posed boundary conditions. The best way to determine if the

boundary conditions are well posed is to ask the question “Could the problem defined

in the CFD study be physically recreated in a laboratory?”. This is why it is so

important in any CFD study to have comparative accurate experimental results in

order to direct the ANSYS CFX 10 solver to realistic results.

3.6 Solution Strategy of the ANSYS CFX 10 Solver

In order to solve for a flow problem the solver must be supplied with an appropriate

flow domain, including a finite volume mesh along with appropriate boundary

conditions. When supplied with this information the ANSYS CFX 10 solver employs

a solution strategy where the momentum equations are first solved, using a guessed

pressure. Because of the ‘guess-and-correct’ nature of the linear system, a large

number of iterations are typically required in addition to the need for judiciously

selecting relaxation parameters for the variables.

Fig. 3-3: Solver solution procedure for a steady, compressible, turbulent flow with

thermal gradients [33].
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ANSYS CFX 10 uses a coupled solver, which solves the hydrodynamic equations (for

U, V, W, P) as a single system. This solution approach uses a fully implicit

discretisation of the equations at any given time step. The flow chart shown in Fig. 3-

3 illustrates the general solution procedure. In addition to the general solution

procedure utilised by the solver, any user of commercial CFD such as ANSYS CFX

10 must follow standard methodology in order to solve complex fluid dynamic

problems with the solver. This methodology normally utilises complementary

additional software modules in a process outlined below.

3.7 CFD Methodology

Now that the theoretical aspects of CFD have been covered it can now be shown how

the process of performing a single CFD simulation is split into four components

which are:

1. Creating the geometry and mesh.

2. Definition of the physics of the fluid flow.

3. Solving for a solution of the fluid flow.

4. Post-processing of the results.

In order to do this, in ANSYS CFX 10 there consists five software modules which are

linked by the flow of information required to perform a CFD analysis:

Fig. 3-4: Software modules available in ANSYS CFX 10 [35].

As already stated the process of performing a CFD simulation begins with creating

the geometry and a mesh based on this drawn computational flow domain.

3.7.1 Creating the Geometry and Mesh

The first objective is to produce a mesh for input to the physics pre-processor. Before

a mesh can be produced, a closed geometric solid is required. The geometry and mesh

are created in CAD and meshing packages respectively.
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The basic steps involve:

1. Defining the geometry of the region of interest.

2. Creating regions of fluid flow, solid regions and surface boundary

names.

3. Setting properties for the mesh.

3.7.2 Definition of the Physics of the Fluid Flow

These mesh files are then loaded into the physics pre-processor, ANSYS CFX 10-Pre

along with fluid properties and boundary condition specification.

3.7.3 Solving for a Solution of the Fluid Flow

These physical definitions along with the mesh are then loaded into the solver. The

algebraic governing equations of CFD are solved iteratively to satisfy the boundary

conditions of the flow domain. An iterative approach is required because of the non-

linear nature of the equations, and as the solution approaches the exact solution, it is

said to converge.

3.7.3.1 Residuals

For each iteration, an error, or residual, is reported as a measure of the overall

conservation of the flow properties. The raw residual is calculated as the imbalance of

each governing equation of CFD for each iteration to the next. The raw residuals are

then normalised for the purpose of solution monitoring and to obtain a convergence

criteria. How close the final solution is to the exact solution depends on a number of

factors, including the size and shape of the control volumes and the size of the final

residuals. Once a convergence target is met the solver will then produce a results file

which is then passed to the post-processor.

3.7.4 Post-Processing of the Results

The post-processor is the module employed to analyse, visualise and present the

results of the converged solution interactively. Examples of some important features

of post-processors are:

• Visualisation of the geometry and control volumes.

• Vector plots showing the direction and magnitude of the flow.
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• Visualisation of the variation of scalar variables (e.g. temperature,

pressure and velocity) through the domain.

• Quantitative numerical calculations.

• Animation.

• Charts showing graphical plots of variables.

• Hardcopy output.

3.8 Summary

In this chapter the fundamental principles of CFD have been addressed including an

insight into standard CFD methodology and the essential requirements in order to gain

a successful solution to a flowfield problem. However, before a CFD analysis of the

RHVT was conducted, a preliminary validation of CFD principles was carried out in

order to demonstrate the authors proficiency in applying this technology to an

established fluid dynamics problem; this study can be seen in Appendix B – Flat Plate

Boundary Layers. Following this validation process, the study moved back to the

RHVT, were the CFD analysis began with capturing the total temperature distribution

within the tube equivalent to that found by experimental researchers. This is the

subject of the next chapter of this thesis.
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4 CFD Analysis of the RHVT

4.1 Introduction

Now that CFD methodology has been developed and the known characteristics of the

RHVT have been established, along with theories advanced by numerous authors into

how the tube generates its remarkable temperature drop, can this CFD analysis of the

vortex tube begin. But before any conclusions into the mode of heat transfer within

the RHVT can be made, known properties of the vortex tube must be verified

including:

• Cold outlet temperature drop i.e. �To.c= To,in - To,c.

• Tangential velocity profile at the entrance region.

• Axial velocity profile at the entrance region.

• Confirmation of the presence of secondary flow.

• Confirmation of a location of a stagnation point in the flow.

4.2 Procedure Adopted

It will be shown in due course that each of these properties have been confirmed as a

result of the following steps undertaken to arrive at a computational model with the

ability to satisfy all known RHVT criteria. The steps undertaken in order to

accomplish this were as follows:

1. Published experimental results of thermal outputs and internal velocities using

similar vortex tubes were found in order to finalise the dimensions of the

vortex tube to be modelled.

2. A computational domain was draw using the dimensions of the experimental

vortex tubes with the CAD component of the ANSYS CFX 10 software.

3. Boundary conditions were applied using the known input conditions supplied

to the vortex tubes recorded by the experimental authors.

4. A mesh convergence study was performed using the cold outlet total

temperatures recorded by the experimental authors as a target for grid

convergence.
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5. Once a mesh independent solution was obtained, the optimum turbulence

model available in ANSYS CFX 10 for analysing vortex tube flows was

established.

6. Using this optimum turbulence model an investigation into the mode of heat

transfer was conducted.

What follows is the first of the steps above which was establishing comparable

experimental results which could be used to throughout this CFD study of the RHVT.

4.3 Utilised Experimental Results

As already stated in Section 3.5 CFD results should never be accepted without

validation against available experimental or other CFD data. In order to satisfy this

requirement experimental and CFD results of many researchers have been analysed.

This selection of comparable results has focused on those authors who have

documented the cold thermal output of the RHVT in relation to the cold fraction

distribution along with additional information regarding the geometry of the device,

and has resulted in the following table of relevant published results.

Table 4-1: Previous publishers of the variation of �Tc with �c in a RHVT and their

respective configurations.

In order to have more than one source of comparison, the results of Promvonge et al.

[10] and Soni [11] results have been utilised, as their experimental results have been

ascertained from common vortex tube geometry and air supply conditions. From this

study, Fig. 1–7 has been produced and these comparative results are used in the mesh

convergence studies shown later in Table 4-2 and Fig 4-12 respectively. Internal

velocity profiles will be compared to the experimental results published by Gao et al.

[7], as their results are, to the best of the author's knowledge, the most recent and

Author
Research

Method
Pin

(Bar Gauge)
dc/D L/D

No. of

Nozzles

Ref

No.

Gao, C. M. Expt. 6.5 0.25 13 1 [7]

Promvonge et al. Expt. 2 0.5 45 1 – 4 [10]

Soni, Y. Expt. 0.34 – 2.04 0.15–0.55 10-50 2 [11]

Aljuwayhel et al. CFD 2 0.32 5 1 [12]

Ahlborn et al. Expt. 3 – 10 – [15]

Behera et al. CFD 4.42 0.42-0.625 10 – 35 1 – 6 [29]

Saidi et al. Expt. 1 – 3 0.5 20 – 55.5 3 – 4 [36]
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comprehensive results published for both tangential and axial velocities. The profiles

from Gao et al. are given below in Fig. 4-1 where, vmax is the maximum value of the

tangential velocity, v, utilised in order to normalise the results.
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Fig. 4-1: Experimental results of internal normalised tangential and axial velocities at

normalised radial locations from [7] at the inlet region within the RHVT.

4.4 RHVT CFD Model

Previously shown in Fig. 1-3 are the components that comprise a commercial RHVT.

However, for the purposes of CFD analysis, this complicated shape can be resolved

down to a very simple model without the loss of the most important aspects of the

device. From the exploded view of a commercial vortex tube in Fig. 1-3 the only

elements required are

• A cylindrical tube.

• A vortex generator at the entrance plane.

• A central hole for the cold outlet.

• An outlet on the periphery of the tube for the hot outlet.

These requirements have resulted in the basic shape as shown in Fig. 4-2, Fig. 4-3,

Fig. 4-4 and Fig. 4-5 overleaf for analysis by the ANSYS CFX 10 software. The

geometry of this RHVT is the same size as that used by Promvonge et al. [10] and
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Soni [11] in their experiments. However the length of the tube has been shortened

considerably as previously stated in Section 1.5.2. This shortening saves a

considerable amount of computational effort, both memory wise and CPU processing

time.

Fig. 4-2: Isometric view of the CFD model of the 3D RHVT with two inlet nozzles, cold

outlet and a conical hot outlet.

Fig. 4-3: Plan view of the CFD model of the 3D RHVT with two inlet nozzles, cold outlet

and a conical hot outlet.
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Fig. 4-4: Hot outlet end view of the CFD model of the 3D RHVT with two inlet nozzles

and a conical hot outlet.

Fig. 4-5: Cold outlet end view of the CFD model of the 3D RHVT with two inlet nozzles

and the cold outlet.
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The elongated cold outlet as shown in Fig. 4-2 and Fig. 4-3 has been included because

of the secondary flow in the RHVT. If the cold outlet was placed on the main body of

the RHVT, it could cause significant problems for any outlet boundary condition

specified, as secondary flow may recirculate at the outlet. Thus any flow trying to re-

enter the domain would affect the solution considerably. Also as can be seen above

the vortex generator of Fig. 1-3 has been simplified by only including the relevant

nozzles.

4.5 Boundary Conditions

Previous publications have successfully implemented total pressure and static

temperature at the inlet nozzles along with static pressures at the outlets as boundary

conditions [12, 29, 30]. However to implement these conditions, the total pressure at

the inlet must be calculated and as a result a sufficient static pressure drop through the

RHVT may not occur. This is because the total pressure specification at the inlet is

proportioned out as both static and dynamic pressure and this may mean an

insufficient static pressure drop is calculated by the ANSYS CFX 10 solver.

Importantly, experimental researchers recorded information regarding the

gauge pressure and temperature at the inlet. It would appear that these recorded values

appear to be the most useful boundary conditions at this location. Significantly, the

temperature at the outlets of the RHVT published by these researchers is the

total/stagnation temperature of the fluid. This is because the temperature measurement

probe creates a stagnation point in the high speed air flow, as also concluded by Skye

et al. [30]. The resulting boundary conditions that were applied are as follows:

4.5.1 Nozzle Inlet

The static pressure was set to 2 Bar gauge along with a total temperature of 296.5 K at

the inlet. This was in conjunction with the utilised experimental results of Promvonge

et al. [10] and Soni [11]. The total temperature used at the inlet provides a basis for

calculating and limiting the mass flow through the domain.

4.5.2 Cold Outlet

The static pressure at the cold outlet was set to atmospheric pressure (0 Bar gauge) as

this outlet is open to the atmosphere.



4 – CFD Analysis of the RHVT 43

4.5.3 Hot Outlet

The static pressure at the hot outlet was set to 0.5 Bar gauge. This was in order to

obtain a cold fraction, �c�0.4, as required in order to compare predicted and

experimental results in the mesh convergence study later on in Table 4-2 and Fig 4-

12. The pressure at the hot outlet of the computational domain is always above

atmospheric. This is because the hot valve in an actual RHVT serves to increase the

back pressure at the peripheral outlet before the valve which is where the

computational outlet is located.

4.5.4 Periodic Boundaries

Rotational periodic boundary conditions have also been applied to the computational

RHVT, at the periodic faces shown in Fig. 4-6. The use of this boundary condition is

only applicable to even number inlet nozzle RHVTs, where the flow is periodic in the

circumferential direction with a period of 2	/n where n is the number of inlet nozzles.

This rotational periodicity exists about the central axis on boundaries of sectors of the

vortex tube defined by each inlet nozzle, as illustrated below in Fig. 4-6. This

approach has led to substantial savings in the computational mesh, as the volume of

the domain has been halved, resulting in the computational domain below.

Fig. 4-6: Utilised CFD model of the halved RHVT highlighting the rotational periodicy

property of a vortex tube with an even number inlet nozzles and the periodic faces on

the central axis of the RHVT.
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4.6 Mesh Convergence Study

A mesh convergence study focusing on both the static and total temperature outputs

of the RHVT was conducted. The flow chart below summarises the procedure used to

perform this mesh convergence study of the computational model of the RHVT.
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Fig. 4-7: Flow chart of the procedure used to ascertain a mesh independent solution.

This study was carried out in order to ascertain a mesh density such that any potential

increase in the number of elements/nodes above the largest solved mesh density

would yield a marginal increase in accuracy of CFD results, insufficient to warrant

any increase in mesh density. This final mesh density was then used with confidence

for comparative and analytical studies of factors such as choice of turbulence model

and changes in dimensional variables of the RHVT. The results of this required mesh

convergence study are shown overleaf and it has focused on the most important

characteristic of the RHVT, i.e. the thermal output.



4 – CFD Analysis of the RHVT 45

Mesh

No. of

Elements No. of Nodes

Average Control

Volume at each Node

(mm
3
)

Utilised

RAM

(GB)

Ts,c - Ts,in

(K)

Ts,h - Ts,in

(K)

To,c - To,in

(K)

To,h - To,in

(K)

1 6902 1705 4.4065 0.02 33.8 34.4 0.0 0.1

2 444770 85863 0.0875 0.2 20.1 23.0 0.0 0.1

3 1567678 285071 0.0264 0.6 10.2 21.1 -4.7 2.9

4 5511274 978352 0.0077 2.0 6.4 19.5 -6.7 4.0

5 8571077 1522948 0.0049 2.9 5.0 20.6 -8.4 4.9

Table 4-2: Mesh convergence study for a RHVT subject to values of �c=0.4, Pin=2Bar

and L/D=10, using the k-� turbulence model.

Included in Appendix C – Solver Output File for Mesh No. 2 is a summary of the

solver run for Mesh No. 2, where the definition of the fluid flow including the

boundary conditions and turbulence model criteria along with an interpolation of the

results of Mesh No. 1 as the initial values of Mesh No. 2 and a brief convergence

history of this solver run can be seen. The Average Node Density above was used as a

means of measuring the average distribution of calculable nodes within the CFD

model for performance analysis.

Fig. 4-8 and Fig 4-9 are shown overleaf to illustrate both the density of

elements and contrasting difference between the first (Mesh No. 1) and final (Mesh

No. 5) meshes utilised in the mesh convergence study of Table 4-2. In the initial mesh

of Fig. 4-8 it can be seen that the mesh has been structured in such a way so as to

concentrate elements in the entrance and exit regions of the RHVT. The same

approach was used to develop the final mesh. However as can be seen in Fig. 4-9, the

density of the 8,571,077 elements and 1,522,948 nodes within the RHVT is of such a

scale as to make the view of these elements and nodes non-transparent, when the full

axial view of the RHVT is displayed. In order to appropriately illustrate Mesh No. 5

zoomed in views from different perspectives of the RHVT have been included in Fig.

4-10 and Fig. 4-11.
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Fig. 4-8: Axial view of Mesh No. 1 from the mesh convergence study of Table 4-2.

Fig. 4-9: Axial view of Mesh No. 5 from the mesh convergence study of Table 4-2.

Fig. 4-10: Zoomed view of Mesh No. 5 when viewed from the right hand side of the

RHVT as shown in Fig: 4-9.
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Fig. 4-11: Isometric view of Mesh No. 5 when viewed from the left hand side of the

RHVT as shown in Fig: 4-9.

Finally the utilised Random Access Memory (RAM) of each mesh run has been

recorded in Table 4-2 above so as to demonstrate the level of RAM addressed by the

ANSYS CFX 10 software in order to numerically solve the RHVT problem. A graph

of the information within Table 4-2, can be seen in Fig. 4-12, where the total

temperature drop (To,c – To,in) at the cold outlet in the computational RHVT, has

developed at quite high mesh densities, but has not yet reached the target temperature

drops specified by the experimental results from [10] and [11].
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Fig. 4-12: CFD mesh convergence study for a RHVT similar to [10] and [11]. The graph

shows the variance of the cold outlet total temperature drop (To,c – Tin,c) and cold static

temperature difference (Ts,c – Tin,c) versus the mesh density in the form of the average

control volume at each node. The targeted computed total temperature drop from the

experimental results of [10] and [11] are highlighted along with the utilised RAM for

each CFD run.

However, as the RAM, required by the ANSYS CFX 10 software to solve for all the

variables in the governing equations of CFD at each node of the computational

domain, has risen exponentially, as can be seen in Fig. 4-12, in comparison to small

increases in the temperature drop out of the computational RHVT, it was therefore

deemed unnecessary to further increase the mesh density of this mesh convergence

study. It should be also noted that RAM requirements of this nature are extremely

computationally intensive with solver run–times in excess of one week. From this

study all further analysis of the RHVT have been conducted on Mesh No. 5 in Table

4-2, which incorporates 8,571,077 elements and 1,522,948 calculable nodal points.
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4.7 Turbulence Model Performance

Following the mesh convergence study detailed above, the optimum performing

turbulence model was ascertained. In order to do this, the results from each of the

utilised turbulence models were compared for their ability to capture total temperature

drops at the cold outlet and internal velocity profiles in comparison to the

experimental results illustrated previously.

4.7.1 Thermal Performance

Comparative temperature output results for both the k – � and SST turbulence models

were ascertained relatively easily as can be seen in the table below, where the k – �

turbulence model outperformed the SST model substantially. This can be seen in

Table 4-3 below, where the total temperature drop (To,c – To,in) at the cold outlet, from

the results of the k – � turbulence model are much closer to that of the experimental

results of Fig. 4-12.

Turbulence

Model

Ts,c - Ts,in

(K)

Ts,h - Ts,in

(K)

To,c - To,in

(K)

To,h - To,in

(K)

k - � 5.0 20.6 -8.4 4.9

SST 9.9 18.4 -2.9 2.0

Table 4-3: Thermal output of a RHVT subject to values of �c=0.4, Pin=2Bar and L/D=10,

using the k-� and SST turbulence models respectively.

Despite this the contour plots of total temperature from both of these turbulence

model runs are quite similar in distribution as can be seen in Fig 4-14 and Fig. 4-15

overleaf. What can be seen is the vast difference in the total temperatures at the cold

outlet. Additional contour plots of static temperature, density, axial velocity,

tangential velocity and radial velocity are also illustrated from the same results of the

k – � and SST turbulence models using Mesh No. 5 of Table 4-2 in Fig. 4-17, Fig. 4-

18, Fig. 4-20, Fig. 4-21, Fig. 4-23, Fig. 4-24, Fig. 4-26, Fig. 27, Fig. 29 and Fig. 4-30;

where again all respective contour plot have similar characteristics. The same contour

plots from the results of Mesh No.1 using the k – � turbulence model have also been

included in Fig. 4-13, Fig. 4-16, Fig. 4-19, Fig. 4-22, Fig. 25 and Fig. 28, so as to

demonstrate the development of the flowfield within the RHVT from the mesh

convergence study of Table 4-2. In Fig. 4-13, Fig. 4-14 and Fig. 4-15 it can be easily

shown that the total temperature distribution in each contour plot follows the adiabatic
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mixing equation of Equation (1.7), approximately with negligible numerical error, e.g.

for Fig. 4-13:

( )

( ) ( )
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Fig. 4-13: Total temperature contour plot along the central axis of the RHVT, for Mesh

No.1 containing 1,705 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence

model.

Fig. 4-14: Total temperature contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – �

turbulence model.

Fig. 4-15: Total temperature contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the SST

turbulence model.
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Fig. 4-16: Static temperature contour plot along the central axis of the RHVT, for Mesh

No.1 containing 1,705 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence

model.

Fig. 4-17: Static temperature contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – �

turbulence model.

Fig. 4-18: Static temperature contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the SST

turbulence model.
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Fig. 4-19: Density contour plot along the central axis of the RHVT, for Mesh No.1

containing 1,705 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence model.

Fig. 4-20: Density contour plot along the central axis of the RHVT, for Mesh No.5

containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence

model.

Fig. 4-21: Density contour plot along the central axis of the RHVT, for Mesh No.5

containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the SST turbulence

model.
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Fig. 4-22: Axial velocity contour plot along the central axis of the RHVT, for Mesh No.1

containing 1,705 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence model.

Fig. 4-23: Axial velocity contour plot along the central axis of the RHVT, for Mesh No.5

containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence

model.

Fig. 4-24: Axial velocity contour plot along the central axis of the RHVT, for Mesh No.5

containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the SST turbulence

model.
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Fig. 4-25: Tangential velocity contour plot along the central axis of the RHVT, for Mesh

No.1 containing 1,705 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence

model.

Fig. 4-26: Tangential velocity contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – �

turbulence model.

Fig. 4-27: Tangential velocity contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the SST

turbulence model.
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Fig. 4-28: Radial velocity contour plot along the central axis of the RHVT, for Mesh

No.1 containing 1,705 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – � turbulence

model.

Fig. 4-29: Radial velocity contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the k – �

turbulence model.

Fig. 4-30: Radial velocity contour plot along the central axis of the RHVT, for Mesh

No.5 containing 1,522,948 nodes, �c=0.4, Pin=2Bar and L/D=10, using the SST

turbulence model.
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4.7.2 Reynolds Stress Model Performance

Such results as those in Fig. 4-12 to Fig. 4-30 were not possible using the Reynolds

Stress turbulence model as it failed to converge to a final solution, even though it had

been provided with a starting point of the results obtained from the k – � turbulence

model. Proof of this can be seen in the residual convergence plot provided below,

where it can be seen that this model is inherently unstable and crashed after only a

few time-steps. Such a result is not unsurprising as this turbulence model contains

several extra partial differential equations as detailed in Section A.3.6. Where these

extra equations have an associated computation cost both in processing time and

stability.
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Fig. 4-31: Residual plot of mass and velocity components for the failed Reynolds Stress

Model.

4.7.3 Flowfield Performance

Internal velocity profiles have been compared to the experimental results published by

Gao et al. [7]. Although Gao et al used a different vortex tube configuration to that

used by Promvonge et al. and Soni, Gao et al’s experimental results are non-

dimensionalised and can therefore be compared to results from similar vortex tubes

shown overleaf in Fig. 4-32 and Fig. 4-33. Similar plots to those of Fig. 4-32 and Fig.

4-33 cannot be recreated for different axial (x/L) locations, as already stated in

Section 4.4, the RHVT CFD model developed for this analysis has been shortened

considerably in comparison to experimental researchers such as Gao et al. [7], hence
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rendering the entrance region the only comparable axial location for these velocity

distributions. The comparison between measured and predicted normalised velocity

distributions shown below and overleaf is very encouraging for both the k – � and SST

turbulence models. However it can be easily seen that yet again the k – � turbulence

model follows the utilised experimental results better than the SST turbulence model,

as was also the case of the thermal analysis of Table 4-3. It is for this reason the k – �

turbulence model is be utilised for all future studies of the RHVT within this work.
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Fig. 4-32: Comparison of the computed variation of internal normalised axial velocity at

normalised radial locations with experimental results from [7] at the inlet region within

the RHVT, using both the k-� and SST turbulence models respectively.
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Fig. 4-33: Comparison of the computed variation of internal normalised tangential

velocity at normalised radial locations with experimental results from [7] at the inlet

region within the RHVT, using both the k-� and SST turbulence models respectively.

4.8 Summary

In this section a mesh independent solution was found for the computation RHVT

model utilised. This preceded an investigation to find the optimum performing

turbulence model for studying the flowfield characteristics of the RHVT. It was found

that for the hardware available to the author that the k-� turbulence model gave the

best results when compared to known experimental results, as already illustrated on a

mesh of approximately 8.5 million elements. Once it was established that the k – �

turbulence model was the optimum performing turbulence model this study of the

RHVT moved on to an investigation into the mode of heat transfer within the RHVT.

This is the subject of the next section of this work.
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5 Investigation into the Mode of Heat Transfer

5.1 Introduction

Now that the known characteristics of the RHVT have been verified on a reliable

computational mesh and turbulence model, can this study begin to investigate the

mode of heat transfer within the RHVT. As already suggested this investigation will

begin with a focus on the hypothesis that the function of secondary flow within the

RHVT is to act as a conventional heat pump.

5.2 Secondary Flow

The first analysis of the numerical results of this CFD study of the RHVT is to

quantify the influence of secondary flow within the tube. Namely, whether or not its

function is to operate analogous to a refrigeration cycle as suggested by Ahlborn et.

al. and illustrated earlier in Section 2.3.1. Before suggesting its influence, this

secondary flow had to be captured, and it can be seen that a region of recirculating

secondary flow is present within the RHVT, as can be seen in Fig. 5-1 and Fig. 5-2 for

the boundary conditions stipulated earlier along with a stagnation point location as

also shown in Fig. 5-1.

Fig. 5-1: Predicted streamline plot along the central axis show a successfully captured

secondary flow within the RHVT, for �c=0.4, Pin=2Bar and L/D=10.
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Fig. 5-2: Zoomed in view of the secondary flow within the RHVT, for �c=0.4, Pin=2Bar

and L/D=10.

5.2.1 Relationship to Temperature Output

Following the successful capture of secondary flow, its relationship to temperature

output was established by encouraging smaller and larger regions of recirculation by

varying the ratio of cold diameter to vortex tube diameter, i.e. dc/D. The captured

secondary flows at the entrance region are shown below in Fig. 5-3.

Fig. 5-3: Secondary flow captured at the entrance region of similar vortex tubes and the

same original boundary conditions of Section 6.3 for (a) dc/D=0.4, (b) dc/D=0.5 and (c)

dc/D=0.6.

Restricting the flow out of the cold outlet has led to stronger recirculation for the

narrow outlet in case (a) as can be seen in Fig. 5-3 above. This restriction of flow out

of the cold outlet also leads to colder total temperature outputs in comparison to a
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higher temperature outputs for the widening of the cold outlet, as recorded in the table

below.

dc/D
Ts,c - Ts,in

(K)

To,c - To,in

(K)

0.4 -3.5 -10.0

0.5 -5.6 -8.4

0.6 -5.6 -7.8

Table 5-1: Thermal output of a RHVT subject to values of Pin=2Bar, L/D=10, using (a)

dc/D=0.4, (b) dc/D=0.5 and (c) dc/D=0.6 respectively.

Such results were expected, as by restricting and expanding the cold outlet has

resulted in smaller and larger cold fractions (�c) respectively, leading to similar

temperature distribution predicted by the experimental results shown in Fig.1.7.

Contour plots of these results are given below in Fig. 5-4, Fig. 5-5 and Fig. 5-6.

Fig. 5-4: Total temperature contour plot along the central axis of the RHVT, for

dc/D=0.4, �c=0.38, Pin=2Bar and L/D=10.

Fig. 5-5: Total temperature contour plot along the central axis of the RHVT, for

dc/D=0.5, �c=0.38, Pin=2Bar and L/D=10.
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Fig. 5-6: Total temperature contour plot along the central axis of the RHVT, for

dc/D=0.6, �c=0.42, Pin=2Bar and L/D=10.

5.2.2 Thermodynamic Influence of Secondary Flow

The thermodynamic influence of secondary flow has been investigated in the figure

below, in which the secondary flow streamlines have been superimposed onto a

contour plot of the variance of density within the RHVT.

Fig. 5-7: Density contour plot along the central axis at the entrance region of the RHVT,

for �c=0.4, Pin=2Bar, L/D=10 and dc/D=0.5, with streamlines of the secondary flow

superimposed on the plot.

In the figure above it can be easily observed that there is no evidence of expansion or

contraction of the fluid flow in the vicinity of the recirculatory region. Such variance

of density (or pressure and temperature) in this region is paramount to support the



5 – Investigation into the Mode of Heat Transfer 63

theory of secondary flow acting as a refrigeration loop. The reason being that for any

compressible fluid, density variance is related to temperature according to the ideal

gas law of Equation 3.6. i.e. P = �RTs. As this is the case not only for density but also

for the static temperature, total temperature and pressure contour plots shown below

in Fig. 5-8, it can be now observed that there is no variation of these variables in

tandem with secondary flow in the entrance region, sufficient to prove Ahlborn et

al.’s refrigeration theory. As a direct result of this, this study will now move on to

ascertain if there is any evidence of frictional heat transfer within the RHVT.

Fig. 5-8: Static temperature, total temperature, density and pressure contour plots along

the central axis of the RHVT, for �c=0.4, Pin=2Bar, L/D=10 and dc/D=0.5.
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5.3 Rotary Work due to Friction

As previously discussed in Section 2.4, the main component of work due to friction of

fluid layers impinging on each other occurs in the r – � plane. This was expressed as

the rate of flow of work per unit area of the surface i.e.

ij ijW τ= U�� (5.1)

where for this case the relevant stress:

r

v v

r r
θτ µ

∂� �
= −� �

∂� �
(5.2)

Therefore, the rotational work per unit area can be written as:

( )r

v v
W u v w

r r
θ µ

∂� �
= − + +� �

∂� �
�� (5.3)

A user defined function of this rotational stress and work per unit area (due to

friction) has been developed by the author within the post – processing package of

ANSYS CFX 10, where this has enabled the development of contour plots of these

variables across planes within the RHVT. The results of which are shown overleaf

where the rotational stress and work per unit area across the central axis of the RHVT

are presented in Fig. 5-9 and Fig. 5-10.

From Fig. 5-10, shown overleaf, it can be seen that there is distinct evidence

of a flux of rotary work at the inlet region of the RHVT which suggests evidence to

support the long held theory that the source of heat migration is due to friction.

Furthermore this region of rotary work is only visible where there is a reversal in flow

towards the cold outlet, supporting the theory that the length of the vortex tube should

only be long enough to encompass the stagnation point as suggested earlier in Section

1.5.2.
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Fig. 5-9: Rotational shear stress along the central axis of the RHVT for �c=0.4, Pin=2Bar,

L/D=10 and dc/D=0.5.

Fig. 5-10: Rotational flow of work per unit area along the central axis of the RHVT for

�c=0.4, Pin=2Bar, L/D=10 and dc/D=0.5.
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6 Conclusions

This computational study of the RHVT has shown that CFD techniques are well

suited to analysing the highly complex flows contained within the RHVT. The

computed flow fields compare favourably to previous experimental results and have

shown that the utilised ANSYS CFX 10 software is capable of calculating the

following:

• A comparable cold outlet total temperature drop i.e. �To,c= To,in - To,c.

• Confirmation of the presence of secondary flow.

• Confirmation of a location of a stagnation point in the flow.

In addition to solving for the above properties of the RHVT, the CFD model has

proven extremely successful at capturing and proving previously known flow - field

characteristics of the vortex tube such as:

• The tangential velocity distribution at the entrance region.

• The axial velocity profile at the entrance region.

Such is the successful nature of the calculated results of the flows within the vortex

tube, the author has been able to draw a conclusion as to the mode of heat transfer

driving the cold and hot total temperature compressed air flow out of the tube.

Additionally, it was shown conclusively that there can be no longer any

confusion as to the nature of the temperature measured by experimental researchers,

as in Section 4.7.1 it was proven that the total temperature of the compressed air

obeyed the adiabatic mixing equation of Section 1.5.1 fundamental to the 1
st

Law of

Thermodynamics.

It has been shown that although there is a secondary flow region within the

RHVT, it has been suggested that its presence is superfluous to the source of the

energy separation. Evidence of this has been shown in Fig. 5-7 where there exists no

correlation between the secondary flow streamlines and that of the analogous heat

pump forwarded by Ahlborn et al. [17]

What has been shown is that there is evidence of rotary work due to friction

within the RHVT. Such an outcome leads the author to support this long established
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frictional heat transfer theory forwarded by the many authors, previously discussed in

Section 2.4.

6.1 Recommendations for Future Work

It can be also concluded that the state-of-the–art CFD package when used along with

the k-� turbulence model is well suited to further studies of the RHVT. Currently the

only limitation of this technology is the required RAM to operate the CFD model of

the RHVT successfully. However as hardware capabilities of computers continue to

improve, with the current emergence of 64-Bit processors, and the associated

availability of larger capacity RAM chips, can a mesh convergence study similar to

the study published herein be completed to a cold temperature output a close as

possible to that of the experimental researchers. In addition to this the entire

experimental RHVT may be modelled without the need to shorten the length of the

RHVT CFD model, as quantified in Sections 1.5.2 and 4.4.

At such a time the author recommends that the rotary work due to friction

present within the RHVT should be analysed further. The author also recommends

that this variable be predefined in the physics pre-processor and be made subject to

stringent convergence criteria in the solution stage of CFD analysis. Such a process

would lead to sharper contour plots to those of Fig. 5-9 and Fig. 5-10, and hence a

greater scope to make additional conclusions to support frictional heat transfer theory.
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A  Turbulence and Turbulence Modelling 

A.1 Introduction 
As part of the studies in completing the numerical analysis of the RHVT additional 

coursework essential to the understanding of the basics of CFD was conducted. These 

studies began with a report on turbulence and turbulence modelling as follows, which 

formed an additional submission (to this thesis) to the Department of Mechanical 

Engineering, D.I.T. Bolton St. 

A.2 Turbulence 
The analysis of any fluid flow domain is generally classified by two different fluid 

flow regimes that have been termed laminar and turbulent flow.  

 

Fig. A-1: Laminar and Turbulent Flows of Water from a tap. 

The classic illustration to describe the common occurrence of laminar flow and the 

onset to turbulence is by looking at water flowing out of a tap as shown in Fig. A-1. 

As the flow rate of water is gradually increased the flow will eventually lead to a 

turbulent structure as in the picture above. In a laminar flows particles of fluid move 

smoothly along well – defined, relatively simple paths, or in layers without mixing. 

Turbulent flows on the other hand have pronounced random, chaotic characteristics 

with much particle mixing, and are best defined in terms of their statistical properties 

such as averages and deviations from that average. Generally, it can be expected that 

very slow flows are laminar and the viscous stresses produced, play a very important 

retarding part in governing the flow. As the speed of the flow is increased most flows 

become unstable and change to a turbulent nature, where inertial forces play a 
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significant role in displacing this fluid. When the motion of a fluid particle is 

disturbed, its inertia will tend to carry it on in the new direction, but the viscous forces 

due to the surrounding fluid will tend to make it conform to the motion of the rest of 

the stream. In a laminar flow the viscous shear stresses are sufficient to eliminate the 

effect of these deviations; however in turbulent flow they are inadequate. The 

criterion which determines whether flow will be laminar or turbulent is therefore the 

ratio of the inertial force to the viscous force acting on the particle, this ratio is known 

as the Reynolds number, and is given as:  

 
Inertial Force

Re
Viscous Force

= Uρ
µ

= L
 (A.1) 

where for this case L is the length of the region of interest respectively. 

Experimentation can yield values of Reynolds number at which transition to 

turbulence occurs. Turbulent flows occur more frequently in nature and in many 

instances a turbulent flow is preferable to a laminar flow as particles of fluid which 

are initially separated by a long distance can be brought closer together by the 

eddying motions in turbulent flows as can be seen for example in Fig. A-2 below. As 

a consequence, heat, mass and momentum are very effectively exchanged. 

 
Fig. A-2: Magnified view of a Turbulent Boundary Layer [32] 

The random nature of a turbulent flow renders computations based on a complete 

description of the motion of all the fluid particles impossible. Instead the velocity and 

other properties of the fluid are decomposed into a steady mean value with a 

fluctuating component superimposed on it, as for example in the simple illustration in 

Fig. A-3 overleaf. 
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Fig. A-3: Mean velocity U and fluctuating velocity u’ of the total velocity u. 

Such an analysis of a fluid flow property as this has lead to a means of studying the 

influence of turbulence on the mean flow properties of the flow, where the mean Φ , 

of a flow propertyϕ , can defined as follows: 

 ( )
0

1 t
t dt

t
ϕ

∆
Φ =

∆ �
 (A.2) 

Flow properties are time dependent and can be thought of as the sum of a steady mean 

component and a time varying fluctuating component with zero mean value as follows  

 ( ) ( )'t tϕ ϕ= Φ +  and ( )
0

' 0
t

t dtϕ
∆

=�  (A.3) 

To illustrate the influence of turbulence fluctuations on mean flow properties of fluid 

flow, the components of velocity and pressure in the Cartesian form of the 

compressible Navier – Stokes equations, (3.1) – (3.5), are replaced with the sum of a 

mean and fluctuating component e.g. u is replaced with U + u’ etc. the result of which 

is given by the Reynolds Averaged Navier – Stokes (RANS) equations below: 

 ( ) 0div
t
ρ ρ∂ + =

∂
U  (A.4) 

 ( ) ( )
( ) ( ) ( )2' ' ' ' '

  
u u v u wU P

div U div grad U
t x x y z

ρ ρ ρρ ρ µ
� �∂ ∂ ∂∂ ∂ � �+ = − + + − − −
� �∂ ∂ ∂ ∂ ∂
� �� �

U  (A.5) 

 ( ) ( ) ( ) ( ) ( )2'' ' ' '
  

vu v v wV P
div V div grad V

t y x y z

ρρ ρρ ρ µ
� �∂∂ ∂∂ ∂ � �+ = − + + − − −
� �∂ ∂ ∂ ∂ ∂
� �� �

U  (A.6) 
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 ( ) ( ) ( ) ( ) ( )2'' ' ' '
  

wu w v wW P
div W div grad W

t z x y z

ρρ ρρ ρ µ
� �∂∂ ∂∂ ∂ � �+ = − + + − − −
� �∂ ∂ ∂ ∂ ∂
� �� �

U  (A.7) 

( ) ( ) ( ) ( ) ( )' ' ' ' ' '
  U

s s so
o s

u h v h w hh P
div h div grad T

t t x y z

ρ ρ ρρ ρ λ
� �∂ ∂ ∂∂ ∂ � �− + = + − − −
� �∂ ∂ ∂ ∂ ∂
� �

 (A.8) 

Where u’, v’ and w’ are the fluctuating x, y and z components of the velocity vector U 

respectively and hs’ is the fluctuating component of the static specific enthalpy, hs. 

Also a scalar transport equation can be derived by an analogous formation of the 

RANS equations, note the pressure gradient term has been incorporated into the div 

diffusion term below 

 ( ) ( ) ( ) ( ) ( )' ' ' ' ' '
  

u u u
div div grad

t x y z

ρ ϕ ρ ϕ ρ ϕρ ρ Φ

� �∂ ∂ ∂∂ Φ � �+ Φ = Γ Φ + − − −
∂ ∂ ∂ ∂� �

� �

U  (A.9) 

By introducing time average components new additional terms that involve products 

of the fluctuating velocities, have been introduced. Their role is reflected as additional 

turbulent stresses to the pressure and viscous stresses acting upon the mean velocity 

components U, V and W, on the RHS of the RANS equations. To clarify these stresses 

they are as follows: 

2 2 2, , ,  , ,'  '  ' ' ' ' '  R R R R R R R
xx yy zz xy yx xz zxu v w u v u wτ ρ τ ρ τ ρ τ τ ρ τ τ ρ= − = − = − = = − = = − and

' 'R R
yz zy v wτ τ ρ= = − . 

Theses extra stresses are called the Reynolds stresses, this name is merely a 

pseudonym for the terms above as it is only dimensionally correct to call these terms, 

stresses.  

A.3 Turbulence Modelling  
As the original Navier – Stokes equations (3.1) – (3.4) (less the energy equation (3.5) 

which is not warranted for purpose of illustrating the concepts of turbulence 

modelling) plus the ideal gas law (3.6) form a closed mathematical system of 

equations i.e. an equal number of unknown variables as there is equations, these 

equations can be solved iteratively. However as a result of time – averaging of the 

equations (3.1) – (3.4), six additional unknowns have been formed and as in any 

system of simultaneous equations of independent variables, there must be an equal 

amount of equations as there are variables, in order to solve for each variable in turn. 
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This leads to the necessity of turbulence modelling which develops computational 

procedures of predicting the Reynolds stresses, in order to close the RANS equations 

to find a solution for all the variables. Some of the most popular turbulence models 

that will be summarised in turn are given below: 

1. Prandtl’s mixing model. 

2. The k – � model. 

3. The k – � model. 

4. The SST model by Menter. 

5. Reynolds stress equation model. 

A.3.1 Boussinesq Hypothesis 

Many turbulence models are based upon the Boussinesq Hypothesis [32]. It was 

experimentally observed by Boussinesq that turbulence decays unless there is shear in 

isothermal incompressible flow and was also found to increase as the main rate of 

deformation increases. Based on this observation an analogy is drawn between the 

viscous stresses and the Reynolds stresses in the RANS equations. As the viscous 

stresses can be equated to gradients of the fluid velocity by Newtons Law of Viscosity 

as follows: 

 ji
ij ij

j i

uue
x x

τ µ µ
� 	

 �

 �
� 


∂∂= = +
∂ ∂

 (A.10) 

in a similar fashion Reynolds stresses are linked to the mean rates of deformation in 

the relationship below. 

 ' 'R
ij ij

j ji i
t t ti j

j i j i
E

U UU Uu u
x x x x

τ ρ µ µ ρν
� 	 � 	

 � 
 �=

 � 
 �
� 
 � 


∂ ∂∂ ∂= − = + = +
∂ ∂ ∂ ∂

 (A.11) 

In the above formula a new proportionality variable �t, the turbulent viscosity, and its 

associated turbulent kinematic viscosity, �t, have been introduced. The turbulent 

viscosity is not a homogeneous term. It is however assumed to be isotropic in the 

formation of turbulence models based on Boussinesq hypothesis. This assumption is 

valid for many fluid flows, but not all, e.g. flows with strong separation or swirl. Due 

consideration of the rate of deformation is warranted here as it is given in tensor 
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notation ije above. This rate of decomposition of a fluid element in a turbulent flow 

can be decomposed into a mean and fluctuating component as follows 

 'ij ij ijEe e= +  (A.12) 

The components of which appear frequently in turbulent modelling theory. 

A.3.2 Prandtl’s Mixing Length Model 

This model is based on the Boussinesq hypothesis, and use of this simple model is 

limited to academic fields, including here where formation of its theory helps to 

develop an understanding of more advanced models. The mixing length model 

attempts to describe the Reynolds stresses by means of simple algebraic formulae for 

tµ as a function of position. 

 
Fig. A-4: Dye trace injected into a parallel mean flow. In the developing turbulent flow 
eddies of many sizes are superimposed onto the mean flow. An example of the turbulent 
length scale has been highlighted. 

The model assumes on dimensional grounds that the turbulent kinematic viscosity tν , 

which has dimensions m2/s, is proportional to a product of a turbulent velocity scale 

ϑ  (m/s) and a length scale �  (m) as illustrated in Fig. A-4, sufficing to describe the 

effects of turbulence as follows 

 t Cν ϑ= �  (A.13) 

C is a dimensionless constant to equate the proportional quantities above. 

It is correct to say that most of the kinetic energy of turbulence is contained in 

the largest eddies within the turbulent flow, and therefore the turbulence length scale 

illustrated above is characteristic of these eddies which interact with the mean flow. 

The mixing length model is used in simple two dimensional flow calculations, where 
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it can be argued that the only significant Reynolds stress is ' 'R R
xy yx u vτ τ ρ= = − with the 

only significant mean velocity gradient being U y∂ ∂ . For such a flow regime it is 

therefore dimensionally correct to state that, if the eddy length scale is � , the turbulent 

velocity scale ϑ , can be stated as: 

 Uc
y

ϑ ∂=
∂
�  (A.14) 

with c a dimensional constant. The absolute value is to ensure that the velocity scale is 

always a positive quantity irrespective of the sign of the velocity gradient. 

Combination of equations (A.13), (A.14), and absorption of constants which appear in 

the two formulae into a new length scale, an adjustable mixing length m� , we obtain 

Prandtl’s mixing length model 

 2
t m

U
y

ν ∂=
∂

�  (A.15) 

Noting that in this mixing length model the only significant mean velocity gradient is 

U y∂ ∂ , hence the Reynolds stress xyτ  can be described in the following manner 

 
' 'R

xy ti j
U Vu u
y x

τ ρ ρν ∂ ∂= − = +∂ ∂

2R
xy t m

U U U
y y y

τ ρν ρ

� 	

 �

 �
� 


� 	

 �
 �
� 


∂ ∂ ∂= =∂ ∂ ∂�

 (A.16) 

If, in the flow regime of interest, the convection and diffusion of turbulence properties 

can be neglected, it is possible to express the influence of turbulence on the mean 

flow in terms of the mixing length. When using this model the effects of turbulence 

changes can be accounted for by varying the adjustable mixing length m� . The 

advantages and disadvantages of this turbulence model are given below in Table A-1 

from [32]. 

Advantages Disadvantages 

• Easy to implement and cheap in terms 

of computing resources. 

• Good predictions for shear layers: 

mixing layers, and boundary layers. 

• Completely incapable of describing 

flows with separation and recirculation. 

• Only calculates mean flow properties 

and turbulent shear stresses. 

Table A-1: Advantages and disadvantages of Prandtl’s Mixing Length Model [32]. 
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A.3.3 The k – � Model 

If convection and diffusion are not negligible, as is the case for example in 

recirculating flows, a compact algebraic prescription for the mixing length is no 

longer feasible. The way forward is to consider statements regarding the dynamics of 

turbulence. A useful method of analysing a turbulent flow regime is to consider the 

level of kinetic energy in the flow field which is analogous to the inertial forces 

leading to a high Reynolds number characteristic of turbulent flows. Kinetic energy in 

a turbulent flow interacts with the flow by inducing a turbulent chaotic behaviour. 

Similarly the flow field can act to dissipate this kinetic energy and hence dampen out 

this turbulent flow regime. This is the premise behind the k – � model, which focuses 

on the mechanisms that affect turbulent kinetic energy.  

The instantaneous kinetic energy, k, of a turbulent flow can be viewed as the 

sum of the mean kinetic energy K=1/2(U2+V2+W2) and the turbulent kinetic energy 

2 2 21 2( ' ' ')' u v wk + += . An equation for the mean kinetic energy K can be obtained by 

multiplying the x – component of the Reynolds equation by U, the y – component 

equation by V and the z – component equation by W. By adding all of these results 

together, the time – average equation governing the mean kinetic energy of the flow 

can be established. Similarly an equation for the turbulent kinetic energy k can be 

obtained by multiplying each of the compressible Navier – Stokes equations by 

appropriate fluctuating velocity components e.g. the x – component equation 

multiplied by u’  etc. and addition of all the results, followed by a repeat of this 

process on the Reynolds equations, subtraction of the two resulting equations along 

with re-arrangement yields an equation for turbulent kinetic energy k. Both equations 

for the mean kinetic energy and turbulent kinetic energy are given as follows 

 
( ) ( ) ( )2 ' '

                                   2 ' '

U U U Uij i j

ij ij i j ij

K
div K div P + E u u

t
E E u u E

ρ
ρ µ ρ

µ ρ

∂
+ = − −

∂
− ⋅ − ⋅

 (A.17) 

 
( ) ( ) ( )1' ' 2 '' ' ' '2

                                 2 ' ' ' '

U u u ij i i j

ij ij i j ij

k
div k div p + e u u u

t
e e u u E

ρ
ρ µ ρ

µ ρ

∂
+ = − − ⋅

∂
− ⋅ + ⋅

 (A.18) 
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where the behaviour of each term in the two above equations can be viewed as: 

 

Rate of Transport Transport Transport Transport
change +  of K or k by = of K or k by + of K or k by + of K or k by
of K or k convection pressure viscous stresses Reynolds stress

Rate of Turbulence
dissipation
of K or k

− − production 
of K or k

 

These equations are similar to normal transport equations, however they do contain 

some significant extra terms whose function warrants discussion such as the 

turbulence production terms in both the mean and turbulent kinetic energy equations. 

As these terms are equal but opposite in sign, the turbulence production term hence 

destroys the mean kinetic flow energy, inducing turbulent flow behaviour. The 

viscous dissipation term 2 ' 'ij ije eµ− ⋅ of the turbulent kinetic energy is caused by work 

done by the smallest eddies against viscous stresses. It leads to the rate of dissipation 

per unit mass, which is of vital importance in the study of turbulence dynamics and is 

denoted by  

 2 ' 'ij ije eε ν= ⋅  (A.19) 

This term is always the main turbulent destruction term in the turbulent kinetic energy 

equation. It contains many unknown and immeasurable terms as follows 

 2 2 2 2 2 2
11 22 33 12 13 232 ' ' 2 ' ' ' 2 ' 2 ' 2 'ij ije e e e e e e eε ν ν � 	


 �
� 


= ⋅ = + + + + +  (A.20) 

A complete understanding of what, �, the rate of dissipation per unit mass means can 

be obtained from analysis of the viscous dissipation term 2 ' 'ij ije eµ− ⋅ . It can be 

observed from the viscous dissipation term that if one concentrates solely on 'ijeµ ⋅ , it 

can be been seen that this product is always a viscous stress. As it is also understood 

that a viscous stress has a dissipative effect in a fluid flow, and as this product 'ijeµ ⋅  

is multiplied by a further rate of decomposition to give ' 'ij ije eµ ⋅ , it can deduced that 

the term has a viscous dissipative function within a turbulent fluid flow, and as such 

its effect is to reduce the turbulence of the flow.  
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Consequently due to the fact that � is immeasurable, and that it is an important 

measure of the level to turbulent kinetic energy, the standard k – � model equations 

have been developed so as to have calculable model equations to determine � and 

therefore k, based on an understanding of the relevant processes causing changes to 

these two variables, in that k is the turbulent kinetic energy in the flow and 

concurrently � is rate at which this energy is dissipated.  

In a similar manner to the mixing length model a velocity scale ϑ , and length 

scale � , representative of the large scale turbulence, is defined in relation to k (m/s)2 

and � (m2/s3) as 1 2kϑ =  (m/s) and 3 2k ε=�  (m). The turbulent viscosity can be now 

specified as 

 
2

t
kC Cµµ ρϑ ρ ε= =�  (A.21) 

where Cµ  is a newly introduced dimensionless constant. To compute values of k and � 

the following standard modelled transport equations are used. It should be noted that 

the structure of each equation on the LHS follows conventional practice of transport 

equations. 

 
( ) ( )  2t

t ij ij
k

k
div k div grad k E E

t
ρ µρ µ ρεσ

� �
� �
� �� �

∂
+ = + ⋅ −∂ U  (A.22) 

 ( ) ( )
2

1 2 2t
t ij ijdiv div grad C E E C

t k kε ε
ε

ρε µ ε ερε ε µ ρσ
� �
� �
� �� �

∂
+ = + ⋅ −

∂
U  (A.23) 

However the RHS of both equations have been developed to be in their most usable 

form. Equations (A.22) and (A.18)  are somewhat different but both describe the same 

transport of turbulent kinetic energy. Equations (A.22) and (A.23) are modelled from 

exact forms of their transport equations respectively. In words the two above 

equations obey familiar transport equation structure as follows 

 

Transport of TransportRate of Rate of 
change of +  or  by = of  or  by + production of 

 or convection diffusion  or 

Rate of
         destruction

of  or 

k k
k k

k

ε ε
ε ε

ε
−
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The inclusion of adjustable constants suffices to dampen out any discrepancies in the 

computed results.  

Turbulent transport terms such as div[(�t/�k)grad k] in Equation (A.22) are 

representative of the transport terms of the scalar transport equation, where the ratios 

(�t/�k) and (�t/��) are an approach at stipulating values of the diffusivities of  k and � 

respectively, analogous to the dissipative viscosity terms necessary in the RANS 

equations. The form of these ratios can be justified as follows: 

 
kinematic viscosity

Prandtl Number = 
thermal diffusivity k

ν=  (A.24) 

similarly  

t

turbulent viscosity
turbulent kinetic energy diffusivity

turbulent kinetic energy diffusivity = 

k

k

σ

µ
σ

=
  (A.25) 

As the pressure terms of the exact equations cannot be measured their effect is 

accounted for in both equations within the turbulent transport term. Significantly the 

immeasurable dissipation term 2 ' 'ij ije eµ− ⋅ in the exact turbulent kinetic equation is 

accounted for with a tangible expression for the calculable mean kinetic energy 

dissipation 2 t ij ijE Eµ ⋅ in Equation (A.17). The model equation for � assumes that its 

production and destruction terms are proportional to the production and destruction 

terms of the model equation for k. Adoption of such forms of equations ensures that � 

increases rapidly if k increases rapidly and that it decreases sufficiently fast to avoid 

non-physical negative values of turbulent kinetic energy if k decreases. To compute 

the Reynolds stresses with the k – � model the following relationship is used 

 
1 if 

;  
0 if 

2' '
3 ij

ji
ti j ij

j i

i j

i j

UUu u k
x x

δρ µ ρ δ
� 	 =� �

 � = � �

 � ≠� �� 


∂∂− = + −
∂ ∂

 (A.26) 

The extra term on the RHS involving ijδ serves to make the formula applicable to the 

normal Reynolds stresses for which i = j, i.e. 2'R
xx uτ ρ= − , 2'R

yy vτ ρ= − and 2'R
zz wτ ρ= − . 

Should an incompressible flow be considered along with only the first term of 

Equation (A.26), if all of the normal stresses are added together, the following is 

obtained with acknowledgment that the compressible continuity equation is equal to 

zero: 
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 2 2 2 0t t tij
U V WE div
x y z

µ µ µ� �
� �
� �� �

∂ ∂ ∂= + + = =
∂ ∂ ∂

U  (A.27) 

As this is certainly not the case for the three normal stresses it can be shown that the 

for any flow the sum of the normal Reynolds stresses is equal to minus twice the 

turbulence kinetic energy per unit volume as follows: 

 ( )

( )

2

2 2 2 2

2 2 2

1
Turbulent K.E. = m '

2

Turbulent K.E. 1 1
= ' ' ' '

per unit volume 2 2

Sum of normal 
= ' ' '

Reynolds stresses

u v w

u v w

ρ ρ

ρ

= + +

− + +

u

u  

Hence in Equation (A.26) an equal third of the turbulent kinetic energy is allocated to 

each normal stress component to ensure that the computed normal Reynolds stresses 

have a physically correct value. 

Finally in the k – � equations there are five adjustable constants, values of 

which have been arrived at by comprehensive data fitting for a wide range of 

turbulent flows: 

 1 20.09; 1.00;  1.30; 1.44;  1.92kC C Cµ ε ε εσ σ= = = = =  

The advantages and disadvantages of this turbulence model are given below in Table 

A-2 from [32]. 

Advantages Disadvantages 

• Simplest turbulence model for which 

only initial and/or boundary conditions 

need to be supplied. 

• Excellent performance for many 

industrially relevant flows. 

• Well established; the most widely 

validated turbulence model 

• More expensive to implement than 

mixing length model due to two extra 

PDEs 

• Poor performance in a variety of 

important cases such as: 

1. Some unconfined flows. 

2. Flows with large extra strains e.g. 

swirling flows. 

Table A-2: Advantages and disadvantages of the k – � model [32]. 
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A.3.4 The k – � Model 

Another two equation turbulence model is the k – � model which involves a modified 

version of the k equation in the k – � model, and an inverse time scale associated with 

the turbulence, �. The reasoning behind the formulation of this model is to close 

equations (A.26) and (A.22) further; this is in preference to using an equation for the 

turbulent viscosity based on dimensional reasoning with added adjustable constants 

such as in the mixing length and the k – � models equations (A.15) and (A.21). The 

basis of the theory of this model is from the fact that as k appears in the relationship 

given by equation (A.26) it is therefore plausible that t kν ∝ . As the dimensions of 

tν are (length)2/(time) while the dimensions of k are (length)2/(time)2, by dimensional 

reasoning a relationship between these terms is formed if a unit, in this caseω , of 

dimensions of 1/(time) is introduced so that the kinematic turbulent viscosity can be 

calculated from  

 t

kν
ω

=  (A.28) 

An expression for tν is calculated by division of the two following equations for k and 

�. 

 ( )* *  i
j ij t

j j

Uk k
U k div grad k

t x x
ρρ ρ τ β ρ ω µ σ µ∂∂ ∂

� �+ = − + +� �∂ ∂ ∂
 (A.29) 

 ( )2  i
j ij t

j j

U
U div grad

t x k x
ρρω ρω ωα τ βρω µ σµ ω∂∂ ∂+ = − + +� �� �∂ ∂ ∂

 (A.30) 

Values for coefficients in the above equations are given as follows: 
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where ijΩ and ijS are the mean – rotation and mean – strain – rate tensors, respectively 

defined by  

 
1 1

;  
2 2

j ji i
ij ij

j i j i

U UU U
S

x x x x

� 	 � 	∂ ∂∂ ∂Ω = − = +
 � 
 �
 � 
 �∂ ∂ ∂ ∂� 
 � 

 (A.31) 

Once values for k and � are known a value for the turbulent kinematic viscosity is 

obtained from Equation (A.28) along with the required Reynolds stresses from 

Equation (A.26) as normal. The advantages and disadvantages of this turbulence 

model are given below in Table A-3 from [32]. 

Advantages Disadvantages 

• Incorporates modifications for low Re 

number effects, compressibility, and 

shear flow spreading as in far wakes, 

mixing layers, and is thus applicable to 

wall-bounded flows and free shear 

flows 

• Suffers from some of the same 

drawbacks of the k – � model such as 

the assumption that tµ is isotropic. 

• Highly sensitive to � specified in the 

free stream.  

Table A-3: Advantages and disadvantages of the k – � model [32]. 

A.3.5 SST Model by Menter 

Menter [32], proposed that the k – � model has a disadvantage of being highly 

sensitive to � in the freestream. For this reason Menter has since proposed combining 

the k – � model in the inner region of boundary layers and the standard k – � model in 

the outer region of boundary layers and the free stream. The following transport 

equations for the Shear Stress Transport (SST) model are in fact dual transport 

equations for calculating values for k and � from the k – � model or the k – � model 

transported to k – � formulation, with use of a blending function 1F  which is designed 

to be one near and zero away from surfaces. 

 ( ) *ij i
k t

j j j

UDk k
k

Dt x x x

τ
ν σ ν β ω

ρ
� �∂ ∂ ∂= + + −� �∂ ∂ ∂� �� �

 (A.32) 

 ( ) ( )1 2

1
2 1i

ij t
t j j j j j

UD k
F

Dt x x x x xω ω
ω γ ω ωτ ν σ ν σ

ρν ω
� �∂ ∂ ∂ ∂ ∂= + + + −� �∂ ∂ ∂ ∂ ∂� �� �

 (A.33) 

The inner constants given by 
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*
1 1 1

2
1

1 1 1* *

0.85;  0.5;  0.0750;  0.09

0.41;  ;  a 0.31

k

n
n

ω

ω

σ σ β β
βγ σ
β β

= = = =

= = − =
 

and the outer constants given by 
*

2 2 2

2
2

2 2* *

1;  0.856;  0.0828;  0.09

0.41;  

k

n
n

ω

ω

σ σ β β
βγ σ
β β

= = = =

= = −
 

The constants for the inner model 1φ and outer model 2φ , are mixed to give new 

usable constantsφ  using the blending function  1F  as follows 

 ( )1 1 1 21F Fφ φ φ= + −  (A.34) 

where 

 

( )4
1 1

2
1 2 2

tanh arg

4500
arg min max ; ;
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F
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ω

ω
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ω ω

=
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 (A.35) 

where y is the distance to the wall and  

 20
2

1
max 2 ,10k

j j

k
CD

x xω ω
ωσ

ω
−� 	∂ ∂= 
 �
 �∂ ∂� 


 (A.36) 

Finally the turbulent kinetic viscosity for this turbulence model is defined as 

 ( )
1

1 2max ;t

a k
a F

ν
ω

=
Ω

 (A.37) 

where 

 

( )2
2 2

2 2

tanh arg

500
arg max 2 ;

0.09

F

k
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ν
ω ω

=

� 	
= 
 �
 �

� 


 (A.38) 

This modified turbulent viscosity accounts for the transport of principal turbulent 

shear stresses, as a result of using either the k – � or k – � models depending on 

location within the flow field with use of the blending function in the SST model. 
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A.3.6 Reynolds Stress Equation Models 

In addition to the RANS equations used as a basis for turbulence modelling theory, an 

additional equation can be obtained if moments of the compressible Navier – Stokes 

equations are taken. This is carried out by multiplying each term of the compressible 

Navier – Stokes equations independently by the fluctuating components, 'iu and 'ju , 

and taking a time average of the sum of the two respective products of each term in 

turn. The resulting equation for the transport of Reynold stresses in the form of 

' 'R
ij ij i jR u uτ ρ= − = is 

 ij
ij ij ij ij ij

DR
P D

Dt
ε= + − + Π + Ω  (A.39) 

where each term describes: 

 
 

Transport TransportRate of Rate of Rate of
change of + of  by = production of  by dissipation

of of  convection diffusion

Transport of due to Transp
turbulent pressure-strain
interactions

ij ij

ij ij ij

ij

R R
R R R

R

+ −

+ +  

 

ort
of due
to rotation 

ijR

 

The Reynolds stress equation comprises six partial differential equations, one each for 

the transport of the six independent Reynolds stresses, 2 2 2
1 2 3', ', ',R R R

xx yy zzu u uτ τ τ= = =  

1 2 1 3 2 3' ', ' ', ' 'R R R R R R
xy yx xz zx yz zyu u u u u uτ τ τ τ τ τ= = = = = = . Obviously this turbulence 

model does not need any isotropic assumptions of the turbulent viscosity, as was the 

basis of the two equation models. This model follows tµ throughout the flow domain. 

The Reynolds stress equation model does not use exact forms of each term in the 

derivation of the Reynolds stress transport equation above; it incorporates simpler 

analogous forms of some of the RHS terms. However the production term can be 

given in its exact form, as terms contained within it are measurable. 

 j i
ij im jm

m m

U U
P R R

x x

∂� 	∂= − +
 �∂ ∂� 

 (A.40) 
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The diffusion term is modelled by the assumption that the rate of transport of the 

Reynolds stresses by diffusion is proportional to the gradients of the Reynolds stresses 

as follows, similar to diffusion terms within the scalar transport equation: 

 ( )ijt t
ij ij

m k m k

R
D div grad R

x x
ν ν
σ σ

∂� 	 � 	∂= =
 � 
 �∂ ∂� 
 � 

 (A.41) 

The dissipation rate is modelled by assuming isotropy of the small dissipative eddies, 

and it is set that it is affected by the normal Reynolds stresses only and in an equal 

measure. 

 
1 if 2

;  
0 if 3ij ij ij

i j

i j
ε εδ δ

=� �
= = � �≠� �

 (A.42) 

where � is the dissipation rate of turbulent kinetic energy as stated already by (A.19), 

hence  

 
4
3

' 'ij ijij ije eε δν= ⋅  (A.43) 

As the dissipation rate, �ij, contains immeasurable fluctuating rate of deformation 

terms contained within the dissipation rate of turbulent kinetic energy �, a further 

model equation is required for � and this is simply given by equation (A.23) used 

within the k – � model. 

The pressure-strain interactions constitute, at the same time, the most difficult 

term and the most important one to model accurately. Their effect on the Reynolds 

stresses is caused by two distinct processes: pressure fluctuations due to eddies 

interacting with each other and pressure fluctuations due to the interaction of an eddy 

with a region of flow of different mean velocity. The overall effect of the pressure-

strain term is to re-distribute energy amongst the normal Reynolds stresses so as to 

make them more isotropic and to reduce the Reynolds shear stresses. A 

comprehensive model that accounts for all these effects is in the following form: 

 1 2

2 2
3 3ij ij ij ij ijC R k C P P

k
ε δ δ� 	 � 	Π = − − − −
 � 
 �
� 
 � 


 (A.44) 

with C1 = 1.8, C2 = 0.6 and k, the turbulent kinetic energy, is calculated by adding the 

three normal Reynolds stresses together  
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 ( ) ( )2 2 2
11 22 33 1 2 3

1 1
' ' '

2 2
k R R R u u u= + + = + +  (A.45) 

The rotational term is given by  

 

( )2

1 if  and in cyclic order        
1 if  and in anti-cyclic order

0 if any two indices are the same       

ij k jm ikm im jkm

ijk

R e R e

i j k
e i j k

ωΩ = − +

≠ ≠� �
� �= − ≠ ≠� �
� �
� �

 (A.46) 

where kω  is a rotation vector about the k – plane i.e. the direction of rotation is about 

the k – plane. The advantages and disadvantages of this turbulence model are given 

below in Table A-4 from [32]. 

Advantages Disadvantages 

• Potentially the most general of all 

classical turbulence models 

• Only initial and/or boundary conditions 

need to be supplied 

• Very accurate calculation of mean flow 

properties and all Reynolds stresses for 

many simple and more complex flows. 

• Very large computing costs due to 

seven extra partial differential 

equations. 

• Not as widely validated as the mixing 

length and k – � models. 

• Performs just as poorly as the k – � 

model in some flows owing to 

identical problems with the �-

equation modelling. 

Table A-4: Advantages and disadvantages of the Reynolds Stress Equation Model [32]. 

A.4 Summary 
In this section the turbulence models introduced have been devised as a means of 

closing the RANS – Stokes equations, as these models allow for calculation of the 

Reynolds stresses. It was shown that the resulting mathematical expressions of 

turbulence models are quite complicated, and it should be noted that all the models 

contain adjustable constants a result of which any CFD calculations based on these 

models should never by accepted without any validation against experimental or 

theoretical results available. Apart from the main CFD study of the RHVT an 

additional report was submitted to the Department of Mechanical Engineering, Bolton 

St. This report was a preliminary validation of the ANSYS CFX 10 software and is 

included as follows in a study of flat plate boundary layers. 
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B CFD Analysis of Flat Plate Boundary Layers 

B.1 Introduction 
Before an analysis of the RHVT was conducted an additional report was submitted in 

order to demonstrate the authors proficiency in using and understanding the ANSYS 

CFX CFD package. An appropriate problem for which there is a theoretical solution 

in place was selected. The problem addressed was the classic example of boundary 

layer formation due to fluid flow over a flat – plate. 

B.2 Boundary Layers 
Boundary layers are a concept based on the idea to divide a fluid flow into two 

regions: an outer flow region that is inviscid and/or irrotational, and an inner flow 

region called a boundary layer. The boundary layer is a very thin region of flow near a 

solid wall where viscous forces and rotationality cannot be ignored. 

 

 
Fig. B-1: Boundary layer formation over a flat plate. 

By convention the thickness, �, of boundary layer formed at some location along the 

plate is usually defined as the distance away from the wall at which the velocity 

component parallel to the wall is 99% of the fluid speed outside the boundary layer. It 

turns out that for a given fluid and plate, the higher the free stream speed U, the 

thinner the boundary layer. The local Reynolds number for this flow is based on the 

distance x along the plate, 

 Rex

Ux Uxρ
µ ν

= =  (B.1) 

As the flow moves along the plate to larger and larger values of x, Rex increases 

linearly with x. At some point, infinitesimal disturbances in the flow begin to grow, 
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and the boundary layer cannot remain laminar and it begins a transition towards 

turbulent flow. In this case for a smooth flat plate with a uniform free stream, the 

transition process begins at a critical Reynolds number, 5
x, criticalRe 1 10≅ × , and 

continues until the boundary layer is fully turbulent at the transition Reynolds 

number, 6
x, transitionRe 3 10≅ × . In real – life engineering flows, transition to turbulent 

flow usually occurs more abruptly and much earlier than the values given for a 

smooth flat plate with a calm free stream. Factors such as roughness along the surface, 

free – stream disturbances, acoustic noise, flow unsteadiness, vibrations, and 

curvature of the wall contribute to an earlier transition location. Because of this, an 

engineering critical Reynolds number of 5
x, crRe 5 10≅ × is often used to determine 

whether a boundary layer is most likely laminar or most likely turbulent. 

B.2.1 The Laminar Boundary Layer Equations 

These boundary layer equations are derived from the Navier – Stokes equations with 

simplifications based on the significance and magnitude of each term contained 

within these equations.  In order to quantify each of the terms both the x and y 

momentum equations are non-dimensionalised based on appropriate length and 

velocity scales within the boundary layer. The order of magnitude of each variable is: 

 2 1 1
,  , , u U P P U

x L y
ρ

δ∞
∂ ∂≈ − ≈ ≈ ≈
∂ ∂

 (B.2) 

where u and P are the axial velocity and pressure distribution within the boundary 

layer and where U, P ∞  and L are the free stream velocity and pressure and the length 

of the flat plate respectively. Applying the orders of magnitude in Equation (B.2) to 

the incompressible continuity equation in two dimensions we obtain an order of 

magnitude of the velocity component v as follows: 

 
0 0

u v U v
x y L

U
v

L

δ
δ

∂ ∂+ = → + =
∂ ∂

≈
 (B.3) 

Since 1Lδ <<  in a boundary layer, therefore the velocity component v has a much 

smaller value than u within a boundary layer. The following non-dimensional 

variables within the boundary layer can now be stipulated 
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 * * * * *
2,  ,  ,  ,  

P Px y u vL
x y u v P

L U U Uδ δ ρ
∞−= = = = =  (B.4) 

These non-dimensional variables are substituted into the y-momentum equation given 

below as follows: 
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* 2
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2 2
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∂ ∂ ∂ ∂ ∂
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which after rearrangement yields 

 
2 2* * * 2 * 2 *

* *
* * * *2 *2

v v L P v v v L v
u v
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 � 
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 � 
 � 
� 


 (B.5) 

It can be observed quite easily that the last two terms on the right hand side have 

negligible influence as Re 1L UL ν= >> , and therefore they can be neglected. Also 

since L δ>> , the pressure gradient term is of order of magnitude greater than the 

advective terms on the left of the equation, hence this pressure gradient is set to zero, 

and the non-dimensional y – momentum equation reduces to * * 0P y∂ ∂ ≅  or in terms 

of physical variables, the normal pressure gradient through a boundary layer 

 0P y∂ ∂ ≅  (B.6) 

And, therefore, while the pressure may vary along the wall in the x – direction, there 

is negligible change in pressure in the direction normal to the wall. 

In the x – component of the momentum equation since P is not a function of y, 

P x∂ ∂ can be replaced by dP dx , and along with introduction of non-dimensional 

terms in a similar manner as was done with the y – component of the momentum 

equation, the x – component can be resolved to the following form  

 
2

2

1u u dP u
u v

x y dx y
ν

ρ
∂ ∂ ∂+ = − +
∂ ∂ ∂

 (B.7) 

Note that this time the last term on the RHS cannot be neglected as to do so would be 

neglect all viscous terms and the resulting equation would be a Euler inviscid 

equation. Furthermore as the pressure across the boundary layer is the same as that 

outside the boundary layer, i.e. 0P y∂ ∂ ≅ , by applying the Bernoulli equation 
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P/�+0.5U2 to the outer flow region, and differentiating with respect to x, a relationship 

between the pressure gradient and the velocity gradient in the x – direction is obtained 

 
1 dP dU

U
dx dxρ

= −  (B.8) 

This relationship results in the boundary layer equations for steady, incompressible, 

laminar flow in the xy – plane. 

 
2

2

0
u v
x y

u u dU u
u v U

x y dx y
ν

∂ ∂+ =
∂ ∂

∂ ∂ ∂+ = +
∂ ∂ ∂

 (B.9) 

However in laminar boundary layers over an infinitesimally thin semi – infinite flat 

plate, a uniform free stream U flows parallel to the flat plate. This outer fluid flow in 

the inviscid region outside the boundary layer, develops a very thin boundary layer 

along the wall, it is so thin that it has negligible effect on the outer flow in such a way 

that the velocity is of a constant value. 

 ( ) constantU x V= =  (B.10) 

When this is applied to the boundary layer equations it is easily seen that 0dU dx = ; 

which means that there is no pressure gradient term contained within the x – 

momentum boundary equation, which now becomes 

 
2

2

0
u v
x y

u u u
u v

x y y
ν

∂ ∂+ =
∂ ∂

∂ ∂ ∂+ =
∂ ∂ ∂

 (B.11) 

The required four boundary conditions are as follows 

 
0 at 0     as 
0 at 0     for all  at x 0

u y u U y

v y u U y

= = = → ∞
= = = =

 (B.12) 

These boundary layer equations can be solved numerically using Blasius’ s assumption 

of similarity in that no matter how much one zooms in or out on a laminar boundary 

layer the same flow pattern is always observed. Blasius introduced a similarity 

variable � that combines independent variables x and y into one non-dimensional 

independent variable, 
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and he solved for a non-dimensionalised form of the x – component of velocity,  

 ' function of 
u

f
U

η= =  (B.14) 

Subsequently from the Continuity Equation (B.11) an expression for the variation of 

the vertical velocity in the y-direction is obtained as follows [34] 

 ( )1
'

2
v

f f
U Ux

ν η= −  (B.15) 

When Equations (B.13) and (B.14) are substituted into Equations (B.11), subject to 

the boundary conditions of Equation (B.12), ordinary differential equations for 

nondimensional speeds u U and v U are obtained using conventional Runge – Kutta 

numerical techniques, the results of which are shown in the table below 

� f u/U v/U � f u/U v/U 

0.0 0.0000 0.0000 0.0000 1.8 0.5295 0.5748 0.0007 

0.1 0.0017 0.0332 0.0000 2.0 0.6500 0.6298 0.0008 

0.2 0.0066 0.0664 0.0000 2.2 0.7812 0.6813 0.0010 

0.3 0.0149 0.0996 0.0000 2.4 0.9223 0.7290 0.0011 

0.4 0.0266 0.1328 0.0000 2.6 1.0725 0.7725 0.0013 

0.5 0.0415 0.1659 0.0001 2.8 1.2310 0.8115 0.0014 

0.6 0.0597 0.1989 0.0001 3.0 1.3968 0.8460 0.0016 

0.8 0.1061 0.2647 0.0001 3.5 1.8377 0.9130 0.0019 

1.0 0.1656 0.3298 0.0002 4.0 2.3057 0.9555 0.0021 

1.2 0.2380 0.3938 0.0003 4.5 2.7901 0.9795 0.0022 

1.4 0.3230 0.4563 0.0004 5.0 3.2833 0.9915 0.0023 

Table B-1: Solution of the Blasius laminar flat plate boundary layer in similarity 
variables. 

Plots of the variation of the axial and vertical velocities versus the similarity variable 

are given in Fig. B-2, and are a useful reference when analysing the shape of the 

velocity distribution that is to be captured by ANSYS CFX 10. 
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Fig. B-2: Axial and vertical velocity distributions versus Blasius similarity variable. 

Another quantity of interest is a measure of the shear stress along the flat plate, as 

when any object moving through free stream it is the drag developed across this 

object that is of most importance i.e. it is the one of the major costs of propelling any 

object. This shear stress at the wall can be found quite easily from Newton’ s law of 

viscosity 
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A value for this can be obtained from derivation of the similarity results above in 

Table B.1, and finding that the slope at the wall is  
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η
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Substitution of Equation (B.17) into Equation (B.16) along with transformation of 

similarity variables back to physical variables, obtains the shear stress as 

 
2

0.332
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x

Uρτ =  (B.18) 

Equation (B.18) can be non – dimensionalised by defining a skin friction coefficient 

which when intergrated gives a value for the total friction on a flatplate 

 , 2

0.664
0.5 Re

w
f x

x

C
U

τ
ρ

= =  (B.19) 

It can be shown quite easily that by taking logs of both sides of Equation (B.19), this 

expression for the skin coefficient can be expressed on a graph as a straight line, as 

follows: 
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where this new expression for skin coefficient above in Equation (B.20) is of the form 

of the simple equation of a straight line, y =mx +b. A simplified expression for skin 

coefficient is computed and plotted in order to substantiate the results obtained, with 

ANSYS CFX 10, in Fig. B-17 and B-19, as we now know that logarithm of the skin 

coefficient of a flat plate boundary layer flow regime must vary proportionally to the 

logarithm of the Reynolds number of the same flow, by the following reduction of 

Equation B.20: 

( ) ( ),0.5 Ref x xLog C Log=    (B.21) 
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B.2.2 Turbulent Flat Plate Boundary Layer 

Expressions for the boundary layer profile shape and other properties of the turbulent 

boundary layer are obtained empirically. Note that turbulent flows are inherently 

unsteady, and the instantaneous velocity profile shape varies with time. Thus all 

turbulent expressions discussed here represent time-averaged values. One common 

empirical approximation for the time-averaged velocity profile of a turbulent flat plate 

boundary layer is the one-seventh-power law 
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δ
δ
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= >

 (B.20) 

However the approximate turbulent boundary layer velocity profile shape of Equation 

(B.20) is not physically meaningful very close to the wall since it predicts that the 

slope is infinite at y = 0. This large slope at the wall leads to a very high wall shear 

stress and, therefore correspondingly high skin friction along the surface of the plate. 

Another common approximation is the log-law, a semi-empirical expression that is 

commonly expressed in a variable, non-dimensionalised by a characteristic velocity 

called the friction velocity, *u , and it is as follows: 

 *

*

1
ln

yuu
B

u κ ν
= +  (B.21) 

where κ and B are adjustable variables and were the friction velocity is given by: 

 *
wu

τ
ρ

=  (B.22) 

Unfortunately, the law suffers from the fact that it does not work very close to the 

wall as ln0 is undefined, and it also deviates from experimental values very close to 

the boundary layer edge. Nevertheless, it applies across nearly the entire turbulent flat 

plate boundary layer and is useful because it relates the velocity profile shape to the 

local value of wall shear stress through Equation (B.22). A expression that is valid all 

the way to the wall has been developed and is called after its originator, Spalding’ s 

law of the wall [37], 
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Usual values taken for � and B are, � = 0.4 to 0.41 and B = 5.0 to 5.5. Instead of a 

physical plot with linear axes, a semi-log plot of non-dimensional variables is often 

drawn to magnify the near wall region; these variables are y+ and u+ , and are defined 

as follows 

 +*

*

;  
yu u

y u
uν

+ = =  (B.24) 

A plot of Spalding’ s law of the wall is shown below. The region very close to the wall 

0 < y+ < 5 or 6 is called the viscous sub-layer. In this region, turbulent fluctuations are 

suppressed due to the close proximity of the wall, and the velocity profile is nearly 

linear, as can be seen in the region where u+ and y+ are equal. 
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Fig. B-3: Spaldings law of the wall distribution. 

B.3 CFD Solution 
This CFD study of boundary layers began with drawing up the flow domain that will 

discretised into a mesh. 

B.3.1 The Flow Domain 

The flow domain setup and drawn for both the laminar and turbulent problems has 

been arrived at in such a way to mimic as closely as possible a two – dimensional 
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theoretical problem onto a three – dimensional flow regime. In order to achieve this, 

the dimensions of the flat plate have been stipulated as: 

• 1m long 

• 0.01m wide 

• 0.2m fluid flow height.  

The narrow width used is a direct result of not needing a wide domain for what is 

essentially a two – dimensional problem, and the fluid flow height is selected as a 

multiple of the maximum boundary thickness at the end of the plate, to compress 

effects such as accelerating the axial flow due to the boundary layer effectively 

creating a divergence in the flow. A basic illustration of this problem is given below. 

 
Fig. B-4: The flow domain. 

The flat plate is shown highlighted as blue in the picture above, with an short entrance 

region included beforehand. The inlet and outlet are located perpendicular to the axial 

x-direction respectively. Two side faces are located perpendicular to the z-direction, 

and a completely inviscid region is located at uppermost face in the y-direction. 
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B.3.2 The Mesh 

The meshes used in solving for the laminar and turbulent boundary layer profiles have 

been adapted from one set of solver results to the next so as to ensure that a refined 

inflationary layer growing from the flat plate and the entrance region fully covers the 

captured boundary layer as shown in the picture below. The inflationary layer can be 

seen as a logarithmic growth in cells from the flat plate up to the unstructured mesh as 

shown along with the boundary layer velocity contours leading to an inviscid region 

of constant velocity in red. Importantly the inflationary layer is quite dense at the flat 

plate, where for the panned out view it appears as a black line. 

 
Fig. B-5: Close up of the final mesh for the laminar solution showing the inflationary 
layer and course inviscid region cells. 

Shown overleaf are illustrations of just some of the meshes used, leading up to the 

final results for the laminar solution, in Fig. B-6, Fig. B-7, Fig. B-8 and Fig. B-9. Also 

shown overleaf is the final mesh used for the turbulent solution, as can be seen in Fig. 

B-10 and Fig. B-11. 
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Fig. B-6: Inflation layer of the initial mesh used for the laminar solution. Total number 
of elements = 161560. 

 
Fig. B-7: Inflation layer of an intermediate mesh used for the laminar solution. Total 
number of elements = 390076. 

 

 
Fig. B-8: Inflation layer of the final mesh used for the laminar solution. Total number of 
elements = 882324. 
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Fig. B-9: Panned out view of the final mesh, as an illustration of the density of elements 
required for a very accurate solution. 

 
Fig. B-10: Inflation layer of the final mesh used for the turbulent solution. Total number 
of elements = 330538. 

 
Fig. B-11: Panned out view of the final mesh used for the turbulent solution. 
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B.3.3 The Boundary Conditions 

The boundary conditions specified for the laminar boundary layer problem follow 

criteria necessary so as to obtain a flow regime similar to the theoretical flow field 

specified for Blasius’ s solution above. 

• The flat plate – at the flat plate a no – slip condition was selected. 

• The inlet – at the inlet a constant velocity of 2m/s in the axial direction is used 

as the Reynolds number for this speed and plate length of 1m is, 

( )
5

2 1
Re 131926

1.516*10x

U L
ν
∞

−= = =    (B.25) 

which is quite a conservative choice for the velocity as transition to turbulent flow is 

said to occur at a critical Reynolds number, 5Re 5 10critical = × .  

• The outlet – the value of the relative static pressure is specified as 0atm gauge 

so as to ensure a theoretical zero pressure gradient in the axial direction as defined by 

Equation (B.11). In Ansys CFX 10 a reference static pressure for a flow domain from 

which all other pressure stipulations relate to must be specified. In this case the 

reference static pressure of 1atm was selected, and hence by specifying a relevant 

static pressure at the outlet of the flow of 0atm meant that the pressure there was no 

different than anywhere else within the flow. 

• Symmetry boundary conditions – have been specified at the two side faces 

located at the lowest and highest displacement in the z-direction, and the small 

entrance region before the flat plate. A symmetry plane defines a plane of both 

geometric and flow symmetry, and as such it will not effect conditions of the flow 

field of the flow field in its viscinity.  

• Inviscid region – initially the inviscid boundary located at the highest face in 

the vertical direction was first specified as being free slip and later had a free stream 

velocity equal to inlet velocity in order to not affect the flow in that region. However 

later on in the final solution, this boundary condition was specified as an outlet so as 

to improve the appearance of the constant axial velocity required, as can be seen in 

Fig. B-12 which focuses in on velocity contours in a very narrow bandwidth of 

1.98m/s to 2.03m/s. 
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Fig. B-12: Axial velocity contours for a very narrow bandwidth of 1.98 to 2.031m/s for 
(a) free  slip and (b) outlet, inviscid region boundary conditions. 

The maximum value of axial velocity is 2.03m/s and is a result of channelling effects 

of the flow within the flow domain. Theoretically the only way of eliminating this 

slight inaccuracy is to make the domain infinetly long in the vertical y-direction. This 

is due to the large displacement effect caused by viscosity and the no – slip condition. 

In essence the flow velocity near the plate is so small the rest of the flow sees it as a 

blockage around which the flow must be diverted and hence accelerate as an 

overshoot in the axial velocity. 

The same boundary conditions have been used for the turbulent solution 

except for one obvious notable exception for the inlet boundary condition. 

• The Inlet – At the inlet a constant velocity of 15m/s in the axial direction is 

used as the Reynolds number for this speed and plate length of 1m is, 

( )
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15 1
Re 1,000,000

1.516*10x

UL
ν −= = ≈    (B.26) 

which is well above the transition region, Rex criteria. 

The turbulence model selected was the Shear Stress Transport model, with an 

additional wall function chosen so as to ensure that the viscous sub – layer was 

captured. This model was picked in preference to the k-� model as there in no facility 

within ANSYS CFX 10 for the k-� model to cater for the viscous sub – layer due to a 
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requirement of highly refined near-wall grid resolution. Such an approach according 

to ANSYS CFX 10 literature often leads to numerical instability. 

B.3.4 Convergence 

When studying the results of one mesh refinement to the next, for the laminar 

solution, it was observed that the axial velocity varied little, whereas the vertical 

velocity changed more substantially between these refinements. However velocity 

distribution plots offered only a visual analysis of how well the solution had 

converged, a value of the wall shear stress at a particular location offered a numerical 

analysis of convergence. The wall shear stress near the end of the plate at x=0.9m was 

selected, as from Equation (B.18) it can be seen that the value of the wall shear decays 

to the power of ½ along the plate length, so its smallest and hence hardest to capture 

value was at the rear of the plate. 
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The results of the problem have been accepted to be quite close to the most accurate 

solution as possible. Convergence of the solution was accepted when the shear stress 

at the specified location remained constant to four decimal places from one mesh 

refinement to the next. Values of the wall shear stress at 0.9m along the plate varied 

from 0.005142 (Pa) to 0.004678 (Pa) using 5,000 and 600,000 elements respectively. 

The reason for such a substantial increase in elements was due to refining the inflation 

layer to capture all of the boundary layer and also by increasing the number of cells 

within the inflation layer to as high a value as possible to have as accurate a solution 

for the vertical velocity distribution as possible. 

An additional judgement of how well the solution has converged within 

ANSYS CFX 10 numerical solver is obtained from the residual plot outputted from 

the solver during its run. The residual plots in Fig. B-13 and Fig. B-14 show the 

residuals of each calculated variable throughout the domain normalised for the 

purpose of monitoring the solution and setting convergence criteria. As can be seen 

overleaf the laminar solution is highly converged with a residual target of 1.00E-07, 
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compared to 1.00E-05 for the turbulent solution, the main reason for this was to 

capture the laminar axial velocity distribution. Less emphasis was given to judging 

the convergence of the turbulent solution as accurate results were obtained relatively 

easily compared to the laminar solution, with significantly less cells and run – times. 

Speculating as to a potential reason for this, it could be accepted that the developers of 

the ANSYS CFX 10 package focused the meshing and solver components of the 

software to solve for more prevailing turbulent flow problems in the most efficient 

manner achievable to the detriment of potential laminar solutions. 
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Fig. B-13: Residual plot of mass and velocity components for the final laminar solution. 
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Fig. B-14: Residual plot of mass and velocity components for the final turbulent 
solution. 



Appendices 106 
   

B.4 The Results 
The plotted results have been non-dimensionalised to allow comparison with the 

theoretical solutions regardless of axial location along the flat plate. In the figures 

below the CFD predictions compare very well to the theoretical solutions. The 

turbulent solution of u+ against y+ appear to be distorted from the theoretical solution 

as boundary layer approaches the free stream. However these results are accurate as 

the theoretical solution does not take into account that the u+ values are limited by the 

constant velocity in the free stream. 
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Fig. B-15: Comparison of computed axial velocity profiles with Blasius theoretical 
profile for laminar flow over a flat plate. 
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Fig. B-16: Comparison of computed vertical velocity profiles with Blasius theoretical 
profile for laminar flow over a flat plate. 
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Fig. B-17: Comparison of the computed skin friction coefficient with the theoretical 
solution for laminar flow over a flat plate. 
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Fig. B-18: Comparison of computed axial velocity profiles with Spalding’s law of the 
wall solution for turbulent flow over a flat plate. 
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Fig. B-19: Comparison of the computed skin friction coefficient with the theoretical 
solution for turbulent flow over a flat plate. 

B.5 Summary 
Overall the results shown above are very successful and the set – out objective of 

demonstrating the authors ability of using the ANSYS CFX 10 package accurately 

and efficiently have clearly been achieved.  
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C Solver Output File for Mesh No. 2 

C.1 Introduction 
Included below is a summary of the parameters, including the boundary conditions, 

turbulence model and convergence criteria, specified in the ANSYS CFX 10 – Physics 

Pre-Processor module and as run within the ANSYS CFX 10 – Solver as follows: 

 

This run of the CFX-10.0 Solver started at 11:51:56 on 9 Jan 2007 by 

user ronan.oliver 

  

Setting up CFX-5 Solver run ... 

  

 LIBRARY: 

   MATERIAL: Air Ideal Gas 

     Material Description = Air Ideal Gas (constant Cp) 

     Material Group = Air Data, Calorically Perfect Ideal Gases 

     Option = Pure Substance 

     Thermodynamic State = Gas 

     PROPERTIES: 

       Option = General Material 

       ABSORPTION COEFFICIENT: 

         Absorption Coefficient = 0.01 [m^-1] 

         Option = Value 

       DYNAMIC VISCOSITY: 

         Dynamic Viscosity = 1.831E-05 [kg m^-1 s^-1] 

         Option = Value 

       EQUATION OF STATE: 

         Molar Mass = 28.96 [kg kmol^-1] 

         Option = Ideal Gas 

      SPECIFIC HEAT CAPACITY: 

         Option = Value 

         Reference Pressure = 1 [atm] 

         Reference Specific Enthalpy = 0. [J/kg] 

         Reference Specific Entropy = 0. [J/kg/K] 

         Reference Temperature = 25 [C] 

         Specific Heat Capacity = 1.0044E+03 [J kg^-1 K^-1] 

         Specific Heat Type = Constant Pressure 
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       THERMAL CONDUCTIVITY: 

         Option = Value 

         Thermal Conductivity = 2.61E-2 [W m^-1 K^-1] 

 RUN DEFINITION: 

     Definition File = D:/My Documents/RHVT/mesh2_001.def 

     Initial Values File = D:/My Documents/RHVT/mesh1_001.res 

     Interpolate Initial Values = On 

     Run Mode = Full  

 FLOW: 

   DOMAIN: RHVT 

     

     Domain Type = Fluid 

     Fluids List = Air Ideal Gas 

     BOUNDARY: Cold Outlet 

       Boundary Type = OUTLET 

       Location = Cold Outlet 

       BOUNDARY CONDITIONS: 

         FLOW REGIME: 

           Option = Subsonic 

         MASS AND MOMENTUM: 

           Option = Static Pressure 

           Relative Pressure = 0 [Pa] 

       BOUNDARY: Hot Outlet 

       Boundary Type = OUTLET 

       Location = Hot Outlet 

       BOUNDARY CONDITIONS: 

         FLOW REGIME: 

           Option = Subsonic 

         MASS AND MOMENTUM: 

           Option = Static Pressure 

           Relative Pressure = 50000 [Pa] 

     BOUNDARY: Inlet Nozzle 

       Boundary Type = INLET 

       Location = Inlet Nozzle 

       BOUNDARY CONDITIONS: 

         FLOW DIRECTION: 

           Option = Zero Gradient 

         FLOW REGIME: 

           Option = Subsonic 

         HEAT TRANSFER: 

           Option = Total Temperature 
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           Total Temperature = 296.5 [K] 

         MASS AND MOMENTUM: 

           Option = Static Pressure 

           Relative Pressure = 2 [bar] 

         TURBULENCE: 

           Option = Medium Intensity and Eddy Viscosity Ratio 

     BOUNDARY: Periodic Side 1 

       Boundary Type = INTERFACE 

       Location = Periodic Side 1 

       BOUNDARY CONDITIONS: 

         HEAT TRANSFER: 

           Option = Conservative Interface Flux 

         MASS AND MOMENTUM: 

           Option = Conservative Interface Flux 

         TURBULENCE: 

           Option = Conservative Interface Flux 

     BOUNDARY: Periodic Side 2 

       Boundary Type = INTERFACE 

       Location = Periodic Side 2 

       BOUNDARY CONDITIONS: 

         HEAT TRANSFER: 

           Option = Conservative Interface Flux 

         MASS AND MOMENTUM: 

           Option = Conservative Interface Flux 

         TURBULENCE: 

           Option = Conservative Interface Flux 

     BOUNDARY: RHVT Wall 

       Boundary Type = WALL 

       Location = RHVT Wall 

       BOUNDARY CONDITIONS: 

         HEAT TRANSFER: 

           Option = Adiabatic 

         WALL INFLUENCE ON FLOW: 

           Option = No Slip 

         WALL ROUGHNESS: 

           Option = Smooth Wall 

     DOMAIN MODELS: 

       BUOYANCY MODEL: 

         Option = Non Buoyant 

       DOMAIN MOTION: 

         Option = Stationary 
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       REFERENCE PRESSURE: 

         Reference Pressure = 1 [atm] 

     FLUID MODELS: 

       COMBUSTION MODEL: 

         Option = None 

       HEAT TRANSFER MODEL: 

         Include Viscous Work Term = On 

         Option = Total Energy 

       THERMAL RADIATION MODEL: 

         Option = None 

       TURBULENCE MODEL: 

         Option = k epsilon 

       TURBULENT WALL FUNCTIONS: 

         Option = Scalable 

   DOMAIN INTERFACE: Periodic 

     Boundary List1 = Periodic Side 1 

     Boundary List2 = Periodic Side 2 

     Connection Type = Automatic 

     Interface Type = Periodic 

     Periodic Type = Rotational 

     AXIS DEFINITION: 

       Option = Coordinate Axis 

       Rotation Axis = Coord 0.1 

   OUTPUT CONTROL: 

     RESULTS: 

       File Compression Level = Default 

       Option = Standard 

   SIMULATION TYPE: 

     Option = Steady State 

   SOLUTION UNITS: 

     Angle Units = [rad] 

     Length Units = [m] 

     Mass Units = [kg] 

     Solid Angle Units = [sr] 

     Temperature Units = [K] 

     Time Units = [s] 

   SOLVER CONTROL: 

     ADVECTION SCHEME: 

       Option = Upwind 

     CONVERGENCE CONTROL: 

       Length Scale Option = Conservative 
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       Maximum Number of Iterations = 10000 

       Timescale Control = Auto Timescale 

     CONVERGENCE CRITERIA: 

       Residual Target = 1e-05 

       Residual Type = MAX 

     DYNAMIC MODEL CONTROL: 

       Global Dynamic Model Control = On 

Starting Interpolation onto different mesh: 

 25.0% complete 

 50.0% complete 

 75.0% complete 

 100.0% complete 

 

 +--------------------------------------------------------------------+ 

 |                          Job Information                           | 

 +--------------------------------------------------------------------+ 

 

 Run mode:       serial run 

 

 Host computer:  CPL1ST-ROLIVER 

 Job started:    Tue Jan  9 11:52:23 2007 

 

 +--------------------------------------------------------------------+ 

 |        Memory Allocated for Run  (Actual usage may be less)        | 

 +--------------------------------------------------------------------+ 

  Data Type      Kwords  Words/Node  Words/Elem     Kbytes  Bytes/Node 

  

  Real          32881.6      382.95       73.93   128443.7     1531.82 

  Integer       14170.3      165.03       31.86    55352.7      660.14 

  Character      2336.2       27.21        5.25     2281.4       27.21 

  Logical          40.0        0.47        0.09      156.2        1.86 

  Double          608.0        7.08        1.37     4750.0       56.65 

 

 +--------------------------------------------------------------------+ 

 |             Total Number of Nodes, Elements, and Faces             | 

 +--------------------------------------------------------------------+ 

 

 Domain Name : VT 

 

     Total Number of Nodes                                =       85863 

     Total Number of Elements                             =      444770 
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     Total Number of Tetrahedrons                         =      444770 

     Total Number of Faces                                =       39182 

 

 +--------------------------------------------------------------------+ 

 |              The Equations Solved in This Calculation              | 

 +--------------------------------------------------------------------+ 

 

 Subsystem : Momentum and Mass 

 

   U-Mom 

   V-Mom 

   W-Mom 

   P-Mass 

 

 Subsystem : Heat Transfer 

 

   H-Energy 

 

 Subsystem : TurbKE and Diss.K 

   K-TurbKE 

   E-Diss.K 

CFD Solver started: Tue Jan  9 11:52:33 2007 

 

 +--------------------------------------------------------------------+ 

 |                       Convergence History                          | 

 +--------------------------------------------------------------------+ 

 ====================================================================== 

 OUTER LOOP ITERATION =    1                    CPU SECONDS = 6.391E+00 

 ---------------------------------------------------------------------- 

 |       Equation       | Rate | RMS Res | Max Res |  Linear Solution | 

 +----------------------+------+---------+---------+------------------+ 

 | U-Mom                | 0.00 | 3.2E-03 | 6.8E-02 |       3.3E-03  OK| 

 | V-Mom                | 0.00 | 3.0E-03 | 1.5E-01 |       2.6E-03  OK| 

 | W-Mom                | 0.00 | 3.4E-03 | 2.0E-01 |       2.8E-03  OK| 

 | P-Mass               | 0.00 | 3.4E-03 | 1.7E-01 |  8.5  1.1E-02  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | H-Energy             | 0.00 | 3.0E-03 | 1.4E-01 |  5.4  5.6E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | K-TurbKE             | 0.00 | 1.2E-02 | 2.4E-01 |  5.4  1.4E-03  OK| 

 | E-Diss.K             | 0.00 | 2.0E-02 | 8.1E-01 |  8.0  2.8E-04  OK| 
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====================================================================== 

 OUTER LOOP ITERATION =    2                    CPU SECONDS = 5.031E+01 

 ---------------------------------------------------------------------- 

 |       Equation       | Rate | RMS Res | Max Res |  Linear Solution | 

 +----------------------+------+---------+---------+------------------+ 

 | U-Mom                | 0.70 | 2.2E-03 | 4.6E-02 |       3.9E-03  OK| 

 | V-Mom                | 0.55 | 1.7E-03 | 5.5E-02 |       3.6E-03  OK| 

 | W-Mom                | 0.53 | 1.8E-03 | 7.3E-02 |       4.3E-03  OK| 

 | P-Mass               | 0.35 | 1.2E-03 | 1.0E-01 |  8.5  8.2E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | H-Energy             | 0.54 | 1.6E-03 | 1.1E-01 |  5.4  9.7E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | K-TurbKE             | 0.35 | 4.2E-03 | 6.9E-02 |  5.4  2.0E-03  OK| 

 | E-Diss.K             | 0.10 | 2.1E-03 | 6.5E-02 |  8.0  4.4E-04  OK| 

 +----------------------+------+---------+---------+------------------+ 

 

  

====================================================================== 

 OUTER LOOP ITERATION =  850                    CPU SECONDS = 3.533E+04 

 ---------------------------------------------------------------------- 

 |       Equation       | Rate | RMS Res | Max Res |  Linear Solution | 

 +----------------------+------+---------+---------+------------------+ 

 | U-Mom                | 1.00 | 4.0E-08 | 2.4E-06 |       6.4E-04  OK| 

 | V-Mom                | 1.00 | 4.5E-08 | 1.6E-06 |       4.4E-04  OK| 

 | W-Mom                | 1.00 | 4.0E-08 | 4.8E-07 |       5.3E-04  OK| 

 | P-Mass               | 1.00 | 7.4E-09 | 8.4E-08 |  8.5  1.4E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | H-Energy             | 0.99 | 1.2E-07 | 1.2E-05 |  5.4  1.8E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | K-TurbKE             | 1.00 | 7.0E-07 | 5.5E-05 |  5.4  5.0E-05  OK| 

 | E-Diss.K             | 1.00 | 3.2E-07 | 3.1E-05 |  8.0  2.9E-06  OK| 

 +----------------------+------+---------+---------+------------------+ 
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 ====================================================================== 

 OUTER LOOP ITERATION =  851                    CPU SECONDS = 3.537E+04 

 ---------------------------------------------------------------------- 

 |       Equation       | Rate | RMS Res | Max Res |  Linear Solution | 

 +----------------------+------+---------+---------+------------------+ 

 | U-Mom                | 0.98 | 3.9E-08 | 1.5E-06 |       6.7E-04  OK| 

 | V-Mom                | 1.01 | 4.5E-08 | 1.3E-06 |       4.4E-04  OK| 

 | W-Mom                | 1.02 | 4.0E-08 | 7.3E-07 |       5.2E-04  OK| 

 | P-Mass               | 1.01 | 7.4E-09 | 9.6E-08 |  8.5  1.4E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | H-Energy             | 0.99 | 1.2E-07 | 1.2E-05 |  5.4  2.0E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | K-TurbKE             | 1.00 | 7.0E-07 | 5.5E-05 |  5.4  5.0E-05  OK| 

 | E-Diss.K             | 1.00 | 3.2E-07 | 3.1E-05 |  8.0  2.9E-06  OK| 

 +----------------------+------+---------+---------+------------------+ 

 

 ====================================================================== 

 OUTER LOOP ITERATION =  852                    CPU SECONDS = 3.541E+04 

 ---------------------------------------------------------------------- 

 |       Equation       | Rate | RMS Res | Max Res |  Linear Solution | 

 +----------------------+------+---------+---------+------------------+ 

 | U-Mom                | 1.00 | 3.9E-08 | 1.6E-06 |       5.9E-04  OK| 

 | V-Mom                | 1.00 | 4.5E-08 | 1.2E-06 |       3.8E-04  OK| 

 | W-Mom                | 0.98 | 4.0E-08 | 6.5E-07 |       4.5E-04  OK| 

 | P-Mass               | 0.99 | 7.4E-09 | 1.1E-07 |  8.5  1.4E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | H-Energy             | 0.99 | 1.2E-07 | 1.2E-05 |  5.4  2.4E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | K-TurbKE             | 1.00 | 7.0E-07 | 5.5E-05 |  5.4  5.0E-05  OK| 

 | E-Diss.K             | 1.00 | 3.2E-07 | 3.1E-05 |  8.0  2.9E-06  OK| 

 +----------------------+------+---------+---------+------------------+ 



Appendices 117 
   

 

 ====================================================================== 

 OUTER LOOP ITERATION =  853                    CPU SECONDS = 3.545E+04 

 ---------------------------------------------------------------------- 

 |       Equation       | Rate | RMS Res | Max Res |  Linear Solution | 

 +----------------------+------+---------+---------+------------------+ 

 | U-Mom                | 1.00 | 3.9E-08 | 1.7E-06 |       6.3E-04  OK| 

 | V-Mom                | 0.99 | 4.5E-08 | 1.4E-06 |       4.5E-04  OK| 

 | W-Mom                | 1.00 | 4.0E-08 | 9.5E-07 |       6.5E-04  OK| 

 | P-Mass               | 1.01 | 7.4E-09 | 8.4E-08 |  8.5  1.4E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | H-Energy             | 0.97 | 1.2E-07 | 8.6E-06 |  5.4  1.7E-03  OK| 

 +----------------------+------+---------+---------+------------------+ 

 | K-TurbKE             | 1.00 | 7.0E-07 | 5.5E-05 |  5.4  5.0E-05  OK| 

 | E-Diss.K             | 1.00 | 3.2E-07 | 3.1E-05 |  8.0  3.0E-06  OK| 

 +----------------------+------+---------+---------+------------------+ 

                    

 CFD Solver finished: Tue Jan  9 21:48:19 2007 

 CFD Solver wall clock seconds: 3.5746E+04 

 

 Execution terminating:  

 all maximum residual AND global imbalances 

 are below their target criteria. 

 

 +--------------------------------------------------------------------+ 

 |                          Job Information                           | 

 +--------------------------------------------------------------------+ 

 

 Host computer:  CPL1ST-ROLIVER 

 Job finished:   Tue Jan  9 21:48:31 2007 

 Total CPU time: 3.550E+04 seconds 

             or: (          0:         9:        51:    39.312 ) 

                 (       Days:     Hours:   Minutes:   Seconds ) 

End of solution stage. 

 

This run of the CFX-5 Solver has finished. 
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