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Abstract Data generated from naturally occurring processes tends to be non-
stationary. For example, seasonal and gradual changes in climate data and sudden
changes in financial data. In machine learning the degradation in classifier perfor-
mance due to such changes in the data is known as concept drift and there are
many approaches to detecting and handling it. Most approaches to detecting con-
cept drift, however, make the assumption that true classes for test examples will
be available at no cost shortly after classification and base the detection of concept
drift on measures relying on these labels. The high labelling cost in many domains
provides a strong motivation to reduce the number of labelled instances required
to detect and handle concept drift. Triggered detection approaches that do not
require labelled instances to detect concept drift show great promise for achieving
this. In this paper we present Confidence Distribution Batch Detection (CDBD),
an approach that provides a signal correlated to changes in concept without using
labelled data. This signal combined with a trigger and a rebuild policy can main-
tain classifier accuracy which, in most cases, matches the accuracy achieved using
classification error based detection techniques but using only a limited amount of
labelled data.

Keywords concept drift · explicit drift detection · labelling cost · classifier
confidence

1 Introduction

A key assumption in supervised machine learning is that the data used to train a
classifier is representative of the data a classifier will later encounter. Data gathered
from real life processes, however, can vary over time. For example, seasonal changes
can affect classification of customer spending habits, or the sudden occurrence of
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major events – such as elections or the introduction of new laws – can affect
news filtering models. Using a static classifier in such domains is inadequate as
the data is exhibiting a phenomenon known as concept drift. A concept can be
defined (in the machine learning context) as a set of instances generated by the
same underlying function (Gama et al 2004). Concept drift, then, occurs when
this underlying function changes for some reason.

According to Kuncheva (2009) there are two approaches to handling concept
drift. The first approach, which we refer to as continuous rebuild, does not attempt
to identify when drift is occurring but continuously and regularly updates the
classifier assuming that this will allow any drift that occurs to be handled (e.g.
(Kubat 1989)). The second kind of approach, which we refer to as a triggered

rebuild, explicitly detects when a change in concept is occurring by monitoring a
suitable indicator, and only then updates the classifier (e.g. (Lanquillon 1999)).
There are many examples in the literature showing how both continuous and
triggered rebuild approaches can successfully handle the problem of concept drift.

The majority of continuous and triggered rebuild approaches to concept drift,
however, require that the true class of instances presented to the classifier for
classification become available shortly after classification occurs (Kuncheva 2009;
Kubat 1989; Gama et al 2004; Nishida and Yamauchi 2007). While in many do-
mains this is not a restriction (for example in short term stock market predictions),
in domains where labelling instances with their true class has a high cost, these ap-
proaches are not feasible. For example, consider a news analytics application that
receives a continuous stream of news articles and attempts to determine which
pre-defined category each article belongs to. It would be unreasonable to ask an
expert to provide the true label for each document given such a large volume, and
so true labels will only become available when explicitly sought. The situation is
similar in most document filtering tasks (Lanquillon 1999).

This high labelling cost provides a strong motivation to reduce the number
of labelled instances required in techniques for handling concept drift. While the
number of labels required by continuous rebuild approaches can be reduced by
using sampling (e.g. (Lindstrom et al 2010; Žliobaite et al 2011)), triggered re-
build approaches also offer significant potential to reduce the number of labelled
instances required.

In this article we present Confidence Distribution Batch Detection (CDBD);
an earlier version of this study appeared in (Lindstrom et al 2011). CDBD is a
concept drift handling approach that explicitly detects changes without requiring
the true classes of test instances. CDBD compares the distribution of classifier out-
put confidences in a batch of test examples to a reference distribution constructed
from training data, and uses this comparison to generate a measure of concept
drift. When this measure is above a given threshold, concept drift is deemed to
have taken place, and the classifier is updated. CDBD only requires labelled data
to update the classifier once concept drift has been identified, and so using CDBD
can significantly reduce the overall amount of labelled data required to keep a clas-
sification model up to date. Furthermore, because CDBD measures the occurrence
of concept drift based on classifier output alone, it can be used with any classifier
capable of producing confidence scores. In a series of experiments using eight text
classification datasets we show that using CDBD gives comparable results to other
drift handling approaches, while using a smaller amount of labelled instances.
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The remainder of this article is organised as follows. Section 2 discusses the
current state-of-the art in concept drift handling, and in particular the issue of high
labelling cost. Section 3 describes the CDBD approach. Section 4 describes how
CDBD has been evaluated on eight text classification problems and compares the
performance of this approach to existing concept drift handling techniques. Finally,
conclusions and proposed directions for future work are presented in Section 5.

2 Background

In ideal classification scenarios we expect the stationary assumption to hold – the
data that classifiers are trained on will be representative of the data the classifier
will encounter in the future – which allows for good generalisation on unseen
instances. Real classification scenarios, however, are rarely ideal, and in most cases
concept drift occurs due to changes in the natural underlying function from which
data instances arise. Gao et al (2007) identify three ways in which the underlying
data generation function can change to give rise to concept drift. If P is the
probability of a given event, x is a feature vector and y is a class label, the causes
of concept drift can be:

– Feature change: a change in the probability of the occurrence of a particular
set of feature values, i.e. a change in P (x).

– Conditional change: a change in the conditional probability of a class given
a particular set of feature values, i.e. a change in P (y|x).

– Dual change: a feature and conditional change, i.e. a change in both P (x)
and P (y|x).

When concept drift occurs, a concept drift handling technique is required in
order to keep a classification model up to date. Concept drift handling techniques
attempt to update the classification model when drift occurs, using recent data
representative of the changed concept, so as to maintain high generalisation ac-
curacy. As described in Section 1 the different concept drift handling techniques
are categorised into two main groups based on how they deal with the problem
of recognising that concept drift has occurred. Continuous rebuild approaches ig-
nore this issue, and simply update the classification model at regular intervals.
Triggered rebuild approaches, on the other hand, only update the classification
model when a significant change in concept is indicated by some explicit measure
of concept change. This section will first describe the state of the art in continu-
ous rebuild and triggered rebuild approaches for handling concept drift. Following
this, Section 2.3 will describe how these approaches have been adapted to handle
scenarios that are constrained by high labelling costs.

2.1 Continuous Rebuild

The most common continuous rebuild approach to handling concept drift is to
periodically retrain the classifier using a set of recent instances as the new training
data. This approach is known as the sliding window. Using a fixed-size sliding
window (in which the size of the set of recent instances used to retrain the classifier
is always the same) has been shown to be a simple and effective way to handle
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concept drift (Kubat 1989). Using a fixed-size window, however, requires a trade-
off between maximising the use of historic data to fine-tune classifier performance
and prioritising new data so as to counteract the impact of concept drift.

Adaptive-sized sliding window approaches use an explicit indicator of the oc-
currence of concept drift to adjust the size of the set of recent data used to update
the classifier. These approaches attempt to use a long data horizon to update the
classifier when the concept is stable, but to collapse this horizon to just the most
recent data when a change in concept is suspected. Klinkenberg and Renz (1998)
developed a seminal window resizing heuristic based on monitoring the error rate,
precision and recall achieved by a classifier on batches of test instances. There
have since been many other viable error-based heuristics used in adaptive-sized
sliding window approaches to handling drift (e.g. (Gama et al 2004)).

2.2 Triggered Rebuild

Triggered rebuild approaches to handling concept drift monitor the value of an
indicator which is believed to be correlated to a change in concept. A change in
concept is flagged when the value of the indicator moves above some threshold.
Klinkenberg and Renz (1998) categorized concept change indicators into three
groups, each derived from a different source: using properties of the classifier,
using properties of the data, and using properties of the classification output.

The first set of indicators are derived from the internal workings of the classifier,
with decision trees being particularly common. Decision tree characteristics such
as leaf changing statistics (Fan et al 2004) and expected loss (Fan et al 2004;
Huang and Dong 2007) have been found to be well correlated with changes in
concept. Such approaches are obviously limited to working with a single classifier
type, however.

The second group of concept drift indicators are derived from the feature values
in the data, and tend to be domain specific. For example, concept drift in textual
data streams can be identified by monitoring word frequencies (Swan and Allan
1999) and the formation of new word clusters (Hsiao and Chang 2008; Spinosa
et al 2007). Kifer et al (2004) introduce a more generic approach that uses a two
window paradigm to detect changes in feature distribution. The distribution of
a single feature inside a reference batch is compared to the distribution inside
the test batches to determine if the data in both batches is likely to have been
generated by the same underlying process. This is achieved using a statistical
distance function based on Chernoff bounds. Sebastio and Gama (2007) take a
similar approach but use Kullback-Leibler divergence to measure the difference.
While both approaches have been shown to be effective they are unlikely to be
suitable in high-dimensional classification problems such as text classification as a
single feature is unlikely to yield a concept drift signal of sufficient strength and
reliability.

The final group of indicators are those derived from the output of a classifier.
Kuncheva (2009) enhances the sliding window heuristic in Klinkenberg and Renz
(1998) to create an explicit detection algorithm, Window Resize Algorithm for
Batch Data (WRABD). WRABD monitors the error rate and flags a change in
concept if there is a significant change in the error rate. The advantages of using
classifier output as a concept change indicator are that it is classifier and data
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independent, and does not presuppose knowledge about which feature(s) might be
indicative of a change in concept if monitored.

2.3 Handling Concept Drift When Label Costs Are High

The continuous rebuild approaches to handling concept drift described in Section
2.1 rely on the full availability of true class labels for test instances shortly after
classification so that the classifier can be continuously retrained. Similarly, the
classifier-output-based triggered rebuild approaches described in Section 2.2, re-
quire the full availability of true class labels so that classifier error rate can be
calculated.

In certain real life scenarios, e.g. news filtering, the full availability of true class
labels is unrealistic due to the high cost of labelling (accessing true labels requires
an explicit, time-consuming manual intervention). In such scenarios concept drift
handling approaches that do not require full access to true class labels are required.

There are modifications to continuous rebuild approaches suggested in the liter-
ature that specifically address the issue of label cost. In particular, active learning
(AL) techniques (Cohn et al 1994) can help maintain classification accuracy in the
presence of concept drift while maintaining a low labelling cost, by only labelling
the test instances believed to be of most benefit in updating the classifier. Lind-
strom et al (2010) propose a sliding-window-based approach that samples a fixed
number of instances closest to the classifier decision boundary from every test
batch and retrains the classifier periodically using a training set augmented with
these instances. Zhu et al (2007), similarly, use the variance of the base classifiers
in an ensemble classifier to sample a fixed number of instances in each batch of
data while updating the ensemble periodically to handle concept drift.

Žliobaite et al (2011) present an approach that processes the data at an in-
stance level, rather than in batches. The approach uses a sampling heuristic which
ensures that instances close to the decision boundary are more likely to be labelled
when a change in concept occurs. Instances further from the decision boundary
are sampled when the concept is stable. The label budget is a parameter to the
sampling heuristic ensuring that the labelling budget is spread fairly evenly over
the stream. There are also approaches which combine semi-supervised learning
with clustering to deal with streams of data, where only a fixed percentage of the
stream is labelled (Masud et al 2008; Woolam et al 2009) . The task is to classify
the stream with high accuracy and handling concept drift, whilst only using a
small amount of labelled data.

While the approaches described above have all been shown to effectively handle
concept drift without requiring full access to true class labels for test instances,
they all do so using a fixed sample rate (e.g. 10% of the test data). If the concept
does not change frequently, the label cost of keeping the classifier up to date can
still be high as labelled instances are required regardless of whether or not the
concept is changing. Conversely when the concept does change, the low sampling
rate slows down adaptation to the new concept as it can take some time to collect
sufficient examples to model the new concept. Triggered rebuild approaches can
overcome these difficulties and only require labelled data when a change in concept
is suspected.
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The triggered rebuild techniques based on classifier properties and data dis-
tributions described in Section 2.2 do not require full access to true class labels
and can be used in scenarios constrained by high labelling costs. These techniques
are, however, heavily dependent on classifier type and application specific data
structures respectively, and so, more generic approaches based on classifier output
are preferable. Although there are not many examples of such techniques in the
literature there are some that have been shown to be successful.

One of the earliest works in autonomous text classification systems (Lewis
1995) uses an estimated classifier accuracy measure based on a combination of
classifier output and class membership probabilities which can be used to no-
tify an expert when these estimates indicate a problem with handling new data.
Žliobaite (2010) uses a window paradigm to compare the posterior class probabil-
ities in a reference window to the probability of class memberships in the current
test window, using statistical tests to flag significant differences, and hence the
occurrence of concept drift. Although these approaches have been shown to be
capable of detecting concept drift without requiring full labelling of test datasets
neither develop an end-to-end system which detects a change, updates the model
and evaluates the resultant classification accuracy. Lanquillon (1999) does develop
an end-to-end approach which estimates the classifier output range in which classi-
fications can be deemed confident and flags a change in concept when the number
of predictions in the confident range for a test batch exceeds a threshold. However
this approach is only evaluated on very simplistic artificial data.

Before presenting the CDBD approach that has been designed to address these
shortcomings, it is important to consider the kinds of concept drift (outlined at
the beginning of Section 2) that are feasible to detect using classifier-output-based
triggered rebuild approaches that do not require extensive labelled data. Classifier
outputs will act as a strong proxy measure for feature change (i.e. a change in the
probability of the occurrence of a particular set of feature values). So, for example,
in an email filtering task the occurrence of a new kind of spam email in the data
presented to a classifier will result in changes in classifier output, and a subsequent
concept drift detection.

Conditional change (i.e. a change in the conditional probability of classes given
particular feature values), however, is not detectable without using labelled data,
as measures of changes in classifier output themselves cannot act as a proxy for
such change. So, for example, in an email filtering task when a decision is made
by a user that a particular newsletter is no longer interesting and should be con-
sidered spam, there is no way to trigger an associated concept drift detection us-
ing classifier-output-based approaches without the use of extensive labelled data.
Continuous rebuild approaches can obviously cope in these kind of concept drift
scenarios, although with the associated issues outlined at the beginning of this
section. In the results presented in Section 4, however, it will be shown that the
CDBD approach can handle the concept drift present in a real-world email filtering
dataset which, like all real datasets that exhibit concept drift, is likely to contain
a combination of feature change and conditional change.
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3 Confidence Distribution Batch Detection

The Confidence Distribution Batch Detection (CDBD) approach uses a two win-
dow paradigm (similar to Kifer et al (2004); Sebastio and Gama (2007); Žliobaite
(2010)) coupled with a distribution divergence measure (similar to Sebastio and
Gama (2007)) applied to an indicator, the classifier confidence, that is classifier and
data independent. The usage scenario envisaged is that a constant stream of test
instances (divided into batches) arrive at a classifier (trained using a set of initial
labelled training examples) to be filtered. It is expected that, while labels for test
instances are expensive to obtain and so labelling effort should be minimised, true
class labels for test instances are available immediately when explicitly requested.

Fig. 1 An overview of the CDBD approach

Figure 1 shows an overview of the CDBD process. At a high level CDBD
monitors an indicator for the occurrence of concept drift and when it triggers the
classifier is rebuilt using recent data. The important components of the approach
are thus: the classifier, the indicator signal, the trigger used to flag the occurrence
of concept drift and a process for rebuilding the classifier.

CDBD can be used with any classifier that produces a score that can be inter-
preted as an estimate of confidence that the prediction made by the classifier is
correct, such as k-NN and decision trees. In the current implementation of CDBD
a support vector machine (SVM) (Vapnik 1995) with a linear kernel is used, as
the linear kernel has been found to be very suitable for text classification (Yang
and Liu 1999). The confidence score produced by the SVM is a function of the
distance between a test instance and the classification hyperplane.

The indicator used in CDBD is a measure of the divergence between the dis-
tribution of the classifier outputs for a batch of test instances, batchi, and the
distribution of classifier outputs in a batch of reference instances, batchref . This
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is based on the expectation that when feature change occurs, the distributions of
classifier outputs will change significantly. The reference batch used in the current
implementation of CDBD is the first batch of instances classified immediately after
the classifier is trained, and the distribution is generated by discretising the values
of the indicator over the possible range of values. The bins used were selected by
first identifying a range in which most of the classifier output lay, then dividing
the range into uniformly sized bins. Initial experiments seemed to indicate that
between 7 and 13 bins produced a signal which was well correlated to changes in
concept so we used {−2.0,−1.5,−1.0,−0.5, 0.0, 0.5,1.0, 1.5,2.0} as our bins in all
subsequent experiments, with any value outside the range put in the first and last
bin respectively. The choice of measure used to calculate the divergence between
distributions can significantly affect the indicator and subsequently the concept
drift detection ability of the algorithm. Sebastio and Gama (2007) provide a good
comparison of such measures and we use Kullback-Leibler divergence which was
found to be particularly effective.

The trigger in CDBD is the rule, or rules, which use the indicator to determine
that concept drift has occurred and the classifier should be updated. In CDBD a
variation of the Western Electric rules (Montgomery 2004) is used. The trigger
fires when the indicator values for x out of the last y test batches have been above a
threshold. For example, a 3/5 trigger fires when three out of the last five indicator
values are above the threshold, and so on. To set the threshold value for the trigger
we use an approach similar to that used by Lanquillon (1999). The distribution
divergence between each of the first n test batches immediately after the reference
batch and the reference batch itself are calculated. The threshold is set to one
standard deviation above the mean of these n divergences.

When the occurrence of concept drift is flagged by the trigger the classifier
needs to be updated using true class labels obtained for a set of recent test in-
stances. The simplest approach to updating the classifier is to retrain it using the
instances in the current test batch as the new training data. However, class imbal-
ance can be very common in real life data streams such as in document filtering
scenarios, so it is unreasonable to assume that the current test batch will give a
balanced dataset from which to retrain the classifier. Instead, a balanced training
set with d instances from each class, is constructed from as many test batches as
are required. The batch where the detection takes place becomes the beginning of
the new training window and new test batches are added to the training window
as they arrive until the number of instances of each class is equal to, or greater
than d. True class labels must be sought for every test instance in the training
window. The reference histogram is then reconstructed from the batch following
the end of the training window and the trigger threshold is recalculated using the
n batches after the reference window.

4 Evaluation

To evaluate CDBD, its performance on eight document filtering problems, exhibit-
ing a mixture of natural and artificially induced concept drift, was compared to
existing approaches that use different amounts of labelled data. This section will
describe the datasets used in these evaluations, and experiments to evaluate the
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performance of the concept drift indicator used by CDBD and the CDBD approach
in its entirety.

4.1 Datasets

Two datasets exhibiting natural concept drift are used in these evaluations. These
are both based on a spam detection problem and were collected from real users’
email accounts (Delany et al 2005). The classification task is to classify an email
as relevant (ham) or non-relevant (spam) to a given user. These datasets are
characterised by very high class imbalance and nothing is known about the amount
or nature of the natural concept drift present. Emails were sorted chronologically
and parsed to a bag-of-words representation with stop-word removal and Porter’s
stemming applied. Details of the spam datasets, Spam-1 and Spam-2, are given in
Table 1.

The lack of knowledge about the amount and nature of the concept drift in
real datasets makes formal evaluation of drift handling or detection approaches
troublesome. While it is paramount that drift handling approaches are evaluated
on real datasets exhibiting natural drift, it is also useful to evaluate approaches
on datasets exhibiting controlled artificial drift. Artificial datasets tend to be one
of two types:

– Synthetic data: in which the data is generated algorithmically in such a way
as to ensure that drift occurs (for example the STAGGER approach (Schlimmer
and Granger 1986) and the moving hyperplane approach (Kolter and Maloof
2003)).

– Drift induced data: in which real data is tweaked to introduce concept drift
(for example, as in Huang and Dong (2007) and Klinkenberg (2004)).

In the evaluations presented in this article drift induced datasets are used, as
we believe they retain some of the interesting artefacts which fully artificial data
lacks (including underlying natural drift in addition to that induced artificially)
and therefore lead to more informative evaluations. The drift induced datasets used
in our evaluations are derived from three text corpora: the Reuters1 collection, the
20 Newsgroups2 collection and a custom collection of news articles, News Sources,
collected from national and international sources over a period of two months in
2011. The documents in the three corpora each belong to one of a set of predefined
topics. Each classification task attempts to classify documents from one topic (the
target topic) as relevant to a user, and classifies documents of all other topics as
non-relevant to that user. To introduce concept drift the relevant topic is changed
over time - an example of feature change. This approach to inducing concept drift
into datasets is similar to that used by Lanquillon (1999).

The documents in each corpus were sorted chronologically and parsed to a bag-
of-words representation with stop-word removal and Porter’s stemming applied.
One dataset was built from each corpus which was then divided into subsections
or intervals as shown in Table 1. All documents with the target topic in each
interval are labelled as relevant for that interval. All other documents are labelled

1 http://www.daviddlewis.com/resources/testcollections/reuters21578
2 http://people.csail.mit.edu/jrennie/20Newsgroups
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as non-relevant. As the target topic changes between intervals, documents that
belong to a target topic will not appear in any other interval that has a different
target topic to prevent introducing concept drift based on a conditional change.
So, for example, for the News Sources datasets no documents from the Business

topic will appear in interval C2 or C3.

We suspect that data streams with a balanced class distribution will be easier
to handle so both balanced and skewed datasets are generated from the three text
corpora. For the balanced datasets the labelled data stream was further processed
to construct batches after which non-relevant documents were removed from the
stream to ensure that each batch contained an equal number of relevant and non-
relevant documents.

Interval

Dataset Interval Target Topic Size #Rel. #Non-rel.

Training earn 300 150 150
C1 earn 4000 924 3076

Reuters: C2 acq 4000 642 3358
109, 881 features C3 earn 4000 570 3430

C4 acq 4000 536 3464
C5 earn 1700 434 1266
Training comp.* 300 150 150

20 Newsgroups: C1 comp.* 3900 1199 2701
66, 581 features C2 rec.* 4000 1217 2783

C3 comp.* 4000 1119 2881
Training Business 300 150 150

News Sources: C1 Business 14900 3712 11188
123, 502 features C2 Sports 15000 4867 10133

C3 Entertainment 15000 2350 12650
Training earn 300 150 150

Reuters Balanced: C1 earn 2000 1000 1000
46, 360 features C2 acq 2000 1000 1000

C3 earn 2200 1100 1100
Training comp.* 300 150 150

20 Newsgroups Balanced: C1 comp.* 2000 1000 1000
63, 244 features C2 rec.* 3800 1900 1900

C3 comp.* 2900 1450 1450
Training Business 300 150 150

News Sources Balanced: C1 Business 7900 3950 3950
89, 733 features C2 Sports 8000 4000 4000

C3 Entertainment 5700 2850 2850
Spam-1: Training

-
300 150 150

137, 817 features Test Set 8200 688 7512
Spam-2: Training

-
300 150 150

206, 852 features Test Set 9900 1036 8864

Table 1 Details of the datasets used in the evaluation.

The data in the intervals after the training interval was considered in batches
of 100 documents. The reference histogram was constructed from the first batch
after the training window and the threshold was set using the next 5 batches.
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4.2 Signal Experiment

The aim of the first experiment was to test whether a signal derived from the dis-
tribution of classifier output, coupled with a trigger based on the Western electric
rules could be used to detect concept drift. This evaluation was performed using
the Reuters, 20 Newsgroups and News Sources datasets. The signal was evaluated
on the imbalanced versions of the datasets as these are the datasets on which the
signal was expected to perform the poorest. The signal experiment was run on
only the first two intervals, C1 and C2, described in Table 1. Intuitively the signal
is expected to be low and stable during interval C1 as the target topic is the same
as that used in the training data. The signal should be significantly higher during
interval C2 as the target topic is different.

Figures 2, 3 and 4 show the indicator, mean and standard deviations (calculated
as described in Section 3) over the two intervals for each dataset. The concept
drift point is marked by the dashed vertical line. Figures 2, 3 and 4 illustrate that
although the signal is not perfect, in general the indicator values before the change
in concept are substantially different from the values after the change in concept.
This was confirmed using unpaired two-tailed t-tests which showed a statistically
significant difference (at the 95% confidence level) in indicator values before and
after the concept drift on all three datasets.

On the News Sourcesdataset it is evident from Figure 4 that the signal starts
increasing before the change in concept. We suggest that this is due to naturally
occurring concept drift in the data, as might be expected in real data (particularly
in the News Sourcesdataset as it is a lot larger than the other datasets used) making
a gradual change in concept more likely to occur. Figure 10, which will be discussed
in Section 4.3, supports this interpretation of the results as there is a significant
drop in classification accuracy in the same part of the graph (around instance
7, 500). Performing the same experiment but with the instance order randomized
within each concept showed no major increase in the signal before the change in
concept, which seems to support our argument that the signal increase seen in
Figure 4 is due to natural concept drift. It also strengthens the argument that
ordering the data chronologically can preserve interesting characteristics of the
data which might otherwise be lost.

Figures 2, 3 and 4 also show that most signal values are below the mean plus
one standard deviation before the change in concept, and above the mean plus one
standard deviation after the change in concept. A detection threshold of the mean
plus two or three times the standard deviation seems unable to separate the before
and after signal so a detection threshold of the mean plus one standard deviation

was used for all the experiments. The signal graphs also show the importance
of using the Western Electric rules. Even though the signal is reasonably well
behaved, it does often break the mean plus one standard deviation threshold before
the concept changes. This would make a 1/1 trigger, although able to detect a
change in concept the fastest, susceptible to false positives. A 3/5 trigger is a
more cautious approach, slower to react to changes in concept. In a domain where
the cost of labelling is high and a false positive trigger would result in unnecessary
labelling, a 3/5 trigger would be better suited than a 1/1 trigger.

The signal experiment shows that the CDBD signal can be used to detect
concept drift in a document stream. The signal experiment is, however, artificial
as when the full CDBD approach is applied the classifier will be rebuilt and the
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Fig. 2 Signal over time on the Reuters dataset

Fig. 3 Signal over time on the 20 Newsgroups dataset

Fig. 4 Signal over time on the News Sourcesdataset

detection algorithm re-initialised when detection occurs. The aim of the next ex-
periment was to evaluate whether the CDBD detection mechanism coupled with
a rebuild policy could handle concept drift.

4.3 Detection and Rebuild Experiment

This evaluation compared the performance of the full CDBD approach to the
performance of:

– No Update: No concept drift handling.
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Reuters 20 NG NS Spam-1 Spam-2

Bal Skew Bal Skew Bal Skew

No update
77.98% 73.43% 70.32% 73.52% 59.67% 58.45% 72.11% 80.87%

− − − − − − − −

− − − − − − − −

CDBD 1/1
79.05% 78.30% 74.67% 76.62% 83.50% 81.80% 85.59% 95.79%
900 6, 054 900 1, 573 2, 700 8, 018 3, 575 4, 499

14.52% 34.20% 10.34% 13.22% 12.50% 17.86% 44.14% 45.44%

CDBD 2/3
83.85% 77.96% 79.79% 71.68% 80.81% 83.75% 87.79% 93.16%
900 4, 919 600 366 1, 200 7, 541 3, 412 2, 388

14.52% 27.79% 6.90% 3.08% 5.56% 16.80% 42.12% 24.12%

CDBD 3/5
79.26% 74.90% 78.48% 78.22% 83.42% 83.55% 83.69% 90.38%
600 3, 211 600 984 900 4, 332 3, 653 2, 048

9.68% 18.14% 6.90% 8.27% 4.17% 9.65% 45.10% 20.69%

WRABD
83.68% 80.10% 79.57% 72.81% 82.75% 76.70% 81.84% 92.62%
6, 200 17, 700 8, 700 11, 900 21, 600 47, 300 8, 100 9, 900
100% 100% 100% 100% 100% 100% 100% 100%

Perfect Detector
83.68% 80.59% 74.59% 78.50% 84.31% 84.19% − −

600 3, 437 600 977 600 1, 654 − −

9.68% 19.42% 6.90% 8.21% 2.78% 3.68% − −

Sliding Window
87.29% 85.16% 83.30% 81.53% 85.37% 84.88% 94.45% 97.35%
6, 200 17, 700 8, 700 11, 900 21, 600 47, 300 8, 100 9, 900
100% 100% 100% 100% 100% 100% 100% 100%

Table 2 The results of seven approaches on each of the eight evaluation datasets. For each
approach the first row is the average class accuracy, the second row is the number of instances
labelled and the third row is the percentage of instances labelled.

– Sliding Window: A fixed distribution, fixed-size sliding window approach.
Training instances are added to the training window as they arrive and an
equal number of training instances of the same class are discarded from the
tail of the window.

– WRABD(Kuncheva 2009): The triggered rebuild WRABD approach which
detects drift when the classification error in the current batch is above the mean
plus three standard deviations. The mean and standard deviation is calculated
using 10 batches of data, as in (Kuncheva 2009).

– Perfect Detection A notional approach which is set to trigger a classifier
rebuild at each of the known concept drift points (this is used purely as a
indicator of the performance limits of the CDBD approach)

Table 2 summarises the performance of the seven approaches compared on the
balanced (“Bal”) and skewed (“Skew”) datasets derived from the three corpora
and the two real datasets.

For each approach the first row is the average class accuracy over all the inter-
vals, except the training data. The second row is the number of instances labelled
and the third row is the percentage of instances labelled by that approach.

The first important thing to note from these results is that considering the
difference in performance between the No Update and Sliding Window it is evident
that all datasets exhibit significant concept drift.

It is also clear that the SlidingWindow approach achieves the best performance
on all datasets, although at the expense of 100% label usage. It is interesting to
note that Sliding Window obtains higher accuracy than WRABD. We believe
the main reason for this is because the sliding window recovers faster, in terms
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of accuracy, after a change in concept occurs. We also believe that the sliding
window has another advantage, that it handles gradual concept drift which might
be present in the data, whereas WRABD only rebuilds when a significant change is
suspected. Both the WRABD and CDBD approaches manage substantially better
performance than the No Update approach on all datasets except one, where
CDBD 2/3 and WRABD gets lower accuracy than No Update (Figure 9). The
reason for this is that the detection threshold was too high. The signal graph from
this dataset, Figure 3 seems to support this hypothesis. In this graph a larger
proportion of signal values after the change in concept are below the mean plus
one standard deviation than the other two signal graphs. When this experiment
was rerun with the mean as the detection threshold both CDBD 2/3 and WRABD
detected a change shortly after a change had taken place. A threshold of the mean
plus one standard deviation works well on most of the datasets it was tested on,
but is a dataset specific parameter which may need to be adjusted. A signal graph
should help in the choosing of this parameter.

The overall result seems to be that out of the CDBD family of approaches the
2/3 trigger achieves the best balance of high average class accuracy and low label
usage. Most importantly this CDBD approach achieves comparable average class
accuracies to the triggered rebuild WRABD approach, while using only a fraction
of the labelled data.

More detailed explorations of these results are shown in Figures 5 to 12. These
figures plot the average class accuracy over time, using a five point moving average
for smoothing, for the Sliding Window, No Update, CDBD 2/3 and WRABD
approaches. The concept drift points are marked by dashed vertical lines and the
concept drift detection points for the CDBD 2/3 trigger are marked with squares
at the top and the detection points for WRABD are marked with a triangle.

Figure 5 is illustrative of the full suite of graphs, and clearly illustrates the
concept drift process. This graph shows classifier performance on the Reuters Bal-
anced dataset as the relevant topic is changed from earn (which was also relevant
during training) to acq, and back to earn again. The flip-flopping of relevant topics
is evident in the way that the No Update classifier performance drops dramatically
after the first concept change, but improves just as dramatically after the second
concept change as the earn topic on which it was trained becomes relevant again.
The Sliding Window approach manages to maintain a reasonably constant classi-
fication accuracy throughout the concept changes, albeit with a slight dip during
the time that the acq topic is relevant. The CDBD 2/3 profile is an almost perfect
template for what is expected from a triggered rebuild strategy. After the first
concept change the performance falls off dramatically. A concept drift detection
is triggered almost immediately, however, and performance improves again. The
visible delay between detection and performance improvement is partly due to the
use of a moving average line and partly due to the time it takes to gather enough
data to build a new training set. The same effect, although with a slightly longer
delay between drift happening and being detected, is evident around the second
change in concept. There is detection towards the end of Figure 5 which would not
be expected in this region as no change in concept was induced here. However the
accuracy increases after the detection so it could be argued that this detection was
beneficial. Figure 6 tells an almost identical story to Figure 5. WRABD performs
very well in both diagrams as it detects at both shift points.
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Fig. 5 Average class accuracy over time on the Reuters Balanced dataset

Fig. 6 Average class accuracy over time on the 20 Newsgroups Balanced dataset

Fig. 7 Average class accuracy over time on the News SourcesBalanced dataset

Fig. 8 Average class accuracy over time on the Reuters dataset
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Fig. 9 Average class accuracy over time on the 20 Newsgroups dataset

Fig. 10 Average class accuracy over time on the News Sourcesdataset

Fig. 11 Average class accuracy over time on the Spam-1 dataset

Fig. 12 Average class accuracy over time on the Spam-2 dataset
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In Figure 7 both WRABD and CDBD 2/3 show a few false positive concept
drift detections with drift detected in the News Sources Balanced data outside
the artificially induced concept change. In this case, however, we believe that this
may be due to natural concept drift within this data. At around the same period
the performance of the Sliding Window and No Update approaches seem to also
undergo a series of performance fluctuations which would suggest that the nature
of the data is changing.

Figures 8 to 10 show that the performance of the seven approaches on unbal-
anced versions of the same three datasets is not quite as impressive. In two of the
cases CDBD 2/3 makes false positive concept drift detections. In Figure 9 there
is a missed detection, and in all cases once detections are made it takes a consid-
erable amount of time before classification performance improves. This is because
the class imbalance in the data means it takes a large number of test batches to
build a new balanced training set with which to update the classifier. The amount
of labelled data required in these cases is also much higher than for the balanced
datasets for the same reason. In all cases, however, performance is still consider-
ably better than the No Update approach and close to that of the Sliding Window
approach which reinforces the conclusion that the CDBD approach can handle
concept drift without using large numbers of labelled examples.

The classifier performances shown in Figures 11 and 12 for the real Spam-1
and Spam-2 datasets are a little harder to interpret as the nature of the concept
drift present is unknown. The difference between the performance of the Sliding
Window approach and No Update approach clearly show that concept drift is
present. As this is real data this drift is likely to be due to a mixture of feature and
conditional change, so it is interesting that the CDBD approach is able to detect
drift and successfully respond to it. The response is far from perfect, however, and
the rebuilding mechanism used by CDBD and WRABD suffers from the fact that
it can take an excessively large number of test instance batches before an updated
balanced training set can be created. During this time the out of date classifier is
used to classify the stream which is suboptimal. We believe that an improvement
to the rebuild process could decrease the amount of labelled data used and ensure
that a classifier trained on up to date data is used earlier.

The performance of the Perfect Detection approach is included in Table 2 as
an indication of the smallest amount of labelled data a triggered rebuild approach
needs, while still handling concept drift effectively. Any differences between the
amount of data used by the CDBD approaches and Perfect Detection show the
impact of false positives, while the significantly larger amounts of labelled data
required for the Reuters, 20 Newsgroups, Spam-1 and Spam-2 datasets show the
impact of class imbalance.

Taken together the results of the evaluation experiments described above show
that CDBD, a triggered rebuild concept drift detection approach that is based
on classifier output and does not need full access to true class labels, can handle
concept drift as effectively as WRABD, a triggered rebuild approach that requires
full labelling. While CDBD does not perform as effectively as the Sliding Win-
dow approach, the potential that triggered rebuild approaches have for handling
concept drift in scenarios constrained by high labelling cost is clearly evident.
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5 Conclusion

Handling concept drift is important in building classifiers that will be effective in
dynamic real-world environments. Many existing approaches to handling concept
drift rely on full access to true class labels immediately after classification takes
place, which is not realistic in scenarios in which the cost of labels is high. In this
article we presented Confidence Distribution Batch Detection (CDBD) a triggered
rebuild approach to handling concept drift that bases its concept drift trigger
on an analysis of classifier output that does not need any access to actual class
labels. Our evaluations showed that this approach performed more effectively than
a similar triggered rebuild approach that requires full access to actual class labels,
while using only a fraction of the labelled data in rebuilding the classifier.

Planned directions for extending this work include improvements to the rebuild
policy, exploring further refinement of the CDBD concept drift trigger and per-
forming a major evaluation of continuous and triggered rebuild approaches with
the intention of finding the best aspects of both that could be combined into hybrid
techniques.
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