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Mitochondria after Exposure to both Direct � Radiation and
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Radiation Sciences Unit, McMaster University, Hamilton, Ontario, Canada; and c St. Luke’s Hospital, Rathgar, Dublin 6, Ireland

Nugent, S. M. E., Mothersill, C. E., Seymour, C., McClean,
B., Lyng, F. M. and Murphy, J. E. J. Increased Mitochondrial
Mass in Cells with Functionally Compromised Mitochondria
after Exposure to both Direct � Radiation and Bystander Fac-
tors. Radiat. Res. 168, 134–142 (2007).

The bystander effect describes radiation-like damage in un-
irradiated cells either in the vicinity of irradiated cells or ex-
posed to medium from irradiated cells. This study aimed to
further characterize the poorly understood mitochondrial re-
sponse to both direct irradiation and bystander factor(s) in
human keratinocytes (HPV-G) and Chinese hamster ovarian
cells (CHO-K1). Oxygen consumption rates were determined
during periods of state 4, state 3 and uncoupled respiration.
Mitochondrial mass was determined using MitoTracker FM.
CHO-K1 cells showed significantly reduced oxygen consump-
tion rates 4 h after exposure to 5 Gy direct radiation and
irradiated cell conditioned medium (ICCM) and an apparent
recovery 12–24 h later. The apparent recovery was likely due
to the substantial increase in mitochondrial mass observed in
these cells as soon as 4 h after exposure. HPV-G cells, on the
other hand, showed a sustained increase in oxygen consump-
tion rates after ICCM exposure and a transient increase 4 h
after exposure to 5 Gy direct radiation. A significant increase
in mitochondrial mass per HPV-G cell was observed after ex-
posure to both direct radiation and ICCM. These findings are
indicative of a stress response to mitochondrial dysfunction
that increases the number of mitochondria per cell. � 2007 by

Radiation Research Society

INTRODUCTION

Reports continue to accumulate that show that radiation-
like damage occurs in cells that were never irradiated but
were in the vicinity of irradiated cells or were exposed to
medium from irradiated cells (1–4). These bystander effects
are thought to be the result of a factor or number of factors

1 Address for correspondence: Radiation and Environmental Science
Centre, Focas Institute, Dublin Institute of Technology, Dublin 8, Ireland;
e-mail: nugentsharon@yahoo.co.uk.

released from irradiated cells and sensed by ‘‘bystander’’
cells. These factors remain uncharacterized, though their
effects are known to induce chromosome aberrations (5),
micronucleus induction (6), changes in gene expression (7),
sister chromatid exchanges (8), apoptosis (9), increases in
reactive oxygen species (ROS) (10), and genomic instabil-
ity (11). According to Mothersill and Seymour, (12) the
bystander factor can pass through a 0.22-�m filter, is pre-
sent as early as 1 h after irradiation, and persists for several
hours thereafter. Evidence suggests that at very low doses
of radiation, any subsequent damage is induced predomi-
nantly as a result of the release of a bystander factor(s) and
the direct effects of the radiation are negligible (13). There
are currently three reported approaches to model bystander
effects separately from the direct effect of radiation expo-
sure in vitro. The first involves using low-fluence � parti-
cles, such that a small number of cells are traversed by a
radiation track and the surrounding cells are thus consid-
ered as bystander cells (8). The second involves using a
charged-particle microbeam to irradiate a specific cell or a
specific region of a cell so that all neighboring cells are
bystander cells (6, 14). The third involves the transfer of
irradiated cell conditioned medium (ICCM) to previously
unexposed, and thus bystander, cells (15).

Mitochondria are the only other location of genetic ma-
terial outside the nucleus. They contain a circular double-
stranded genome (16,569 bp) with no protective histone
coat that is incredibly compact with some genes overlap-
ping and only a small fraction of the genome is non-coding
(16). There are approximately 2–10 copies of the mito-
chondrial genome per mitochondrion and tens to hundreds
of mitochondria per cell, such that one cell may contain up
to several thousand mitochondrial genomes (17). The hu-
man mitochondrial genome encodes 22 tRNAs, 2 rRNAs
and 13 polypeptides that are all subunits of enzyme com-
plexes of the oxidative phosphorylation (OXPHOS) path-
way. This OXPHOS pathway consists of five enzyme com-
plexes embedded in the inner mitochondrial membrane and
thus is close to the mitochondrial genome in the matrix.
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Electrons are passed from complex to complex in the elec-
tron transport chain (ETC); like any biological system, this
is never 100% efficient, and thus electrons are periodically
lost into the matrix. The proximity of mitochondrial DNA
(mtDNA) to this potential source of highly reactive species
and its lack of any histone coat render it particularly sus-
ceptible to damage, even in ‘‘normal’’ conditions. Com-
plexes I, III, IV and V of OXPHOS consist of both nuclear
DNA (nDNA) and mtDNA encoded subunits, and therefore
any phenotypic effect of mtDNA damage will be manifest
in this pathway (only complex II is entirely encoded by
nDNA).

Recent reports have shown an increase in ROS to be
linked to an increase in mitochondrial mass (18–20) in what
appears to be a cellular response to compensate for reduced
mitochondrial function. Limoli et al. (18) reported that hu-
man-hamster hybrid unstable clones had a 15% increase in
mitochondrial mass after exposure to ionizing radiation.
ROS have also been shown to have a role in perpetuating
bystander effects (21, 22). Lee et al. (19) showed an in-
crease in mitochondrial mass in human osteosarcoma 143
B cells exposed to a high dose of hydrogen peroxide
(H2O2). At these higher doses mtDNA content was reduced
drastically, while lower doses of H2O2 resulted in a much
higher mtDNA content. Other chemicals have been found
to cause an increase in mitochondrial mass and are linked
to mitochondrial damage. These include herbimycin A (23),
genistein (24), taxol (25), aphidicolin (26), zidobudine (27)
and mimosine and lovastatin (28). An increase in mito-
chondrial proliferation occurs frequently in aged individu-
als in whom defective respiratory chain activity is typical,
resulting from mtDNA depletion and the progressive ac-
cumulation of mtDNA mutations and/or deletions (19).
Murphy et al. (29) recently reported that mtDNA damage
was induced by both direct � radiation and bystander fac-
tors in HPV-G cells. mtDNA deletions are also associated
with many human diseases such as chronic progressive ex-
ternal ophthalmoplegia (CPEO) and myoclonic epilepsy
and ragged-red fiber (MERRF) (19). Rossignol et al. (30)
showed that glucocorticoid-treated mice suffering from a
mitochondrial myopathy had an increase in mitochondrial
mass and suggested that this was a mechanism within the
cell to compensate for an oxidative defect, facilitating max-
imum oxygen uptake and a higher yield of ATP in the cell.

In the present study, we examined HPV-G and CHO-K1
cells, in which nonuniform bystander susceptibility has
been observed previously (44–�31), to determine whether
direct irradiation and bystander factors compromised mi-
tochondrial function, specifically OXPHOS, and whether
any subsequent variation in mitochondrial mass could be
observed.

MATERIALS AND METHODS

Cell Culture

Cells of two cell lines were used: HPV-G, a human keratinocyte cell
line derived from human neonatal foreskin transfected with the HPV 16

virus (32), supplied as a kind gift by J. Di Paolo (NIH, Bethesda, MD),
and CHO-K1, a spontaneously transformed Chinese hamster ovarian cell
line (ECACC) (33). HPV-G cells were maintained in Dulbecco’s modi-
fication of Eagle medium:F12 (1:1) (Sigma, Dorset, UK) supplemented
with 10% fetal calf serum (Gibco, Irvine, UK), 1 U/ml penicillin/strep-
tomycin (Gibco), 20 mM L-glutamine (Gibco), and 1 �g/ml hydrocorti-
sone (Sigma). CHO-K1 cells were maintained in Nutrient Mixture, F12
(Ham) (Sigma) containing 12% fetal calf serum (Gibco), 1 U/ml peni-
cillin/streptomycin (Gibco), 20 mM L-glutamine (Gibco), and 25 mM
Hepes buffer (Gibco).

Direct Irradiation

Cells were grown to 70–80% confluence in cell culture flasks (NUNC,
Denmark). Cells were either directly irradiated or sham-irradiated at room
temperature using a 60Co teletherapy unit (St. Luke’s Hospital, Rathgar,
Dublin). The dose rate during the experiment was either 1.8 Gy/min at a
source-to-flask distance of 80 cm (for 0.5 and 5 Gy) or 0.4 Gy/min at a
source-to-flask distance of 170 cm (for 5 mGy). Flasks were exposed to
either 0 Gy (sham), 5 mGy, 0.5 Gy or 5 Gy. The flasks were immediately
returned to the incubator and were analyzed 4–96 h later.

Exposure to Irradiated Cell Conditioned Medium

Donor T-25 flasks (NUNC, Denmark) containing 5 � 105 cells in 5
ml of medium were either directly irradiated or sham-irradiated at room
temperature using a 60Co teletherapy unit (St. Luke’s Hospital, Rathgar,
Dublin). The dose rate during the experiment was either 1.8 Gy/min at a
source-to-flask distance of 80 cm (for 0.5 and 5 Gy) or 0.4 Gy/min at a
source-to-flask distance of 170 cm (for 5 mGy). Flasks were exposed to
either 0 Gy (sham), 5 mGy, 0.5 Gy or 5 Gy. Medium was removed from
each flask 1 h postirradiation, filtered through a 0.22-�m sterile filter, and
transferred to flasks of unirradiated cells at 70–80% confluence using T-
25 flasks for mitochondrial mass analysis or T-75 flasks for polarographic
analysis (T-75 recipient flasks received ICCM from 3 � T-25 donor
flasks). These ICCM recipient flasks were immediately returned to the
incubator and were analyzed 4–96 h later.

Polarography

A Clarke-type oxygen electrode (Dual Digital, model 20) was used to
measure oxygen consumption rates. The reaction chamber was main-
tained at 30�C throughout each experiment. A total of 3–5 � 106 cells
were maintained in suspension in 400 �l oxygen electrode buffer (OE
buffer) containing 0.3 M sucrose, 5 mM MgCl2, 10 mM KCl, and 10 mM
KH2PO4, pH 7.4. Succinate (20 mM) was added as an energy source.
Digitonin was added at a concentration to selectively permeabilize cell
membranes and not mitochondrial membranes. It was found that 7 or 5
�g of digitonin was optimal to permeabilize 1 � 106 CHO-K1 cells or
1 � 106 HPV-G cells, respectively.

ADP (200 nM) was added to induce state 3 respiration (active respi-
ration). Once all the ADP was exhausted, the respiration rate within the
cells was considered state 4 respiration (inactive respiration). Then 50
�M 2,4-dinitrophenol (DNP) was added to dissipate the mitochondrial
membrane potential and induce uncoupled respiration (uncontrolled OX-
PHOS).

Cellular oxygen consumption rates were expressed as nanomoles of
atomic oxygen per minute per 1 � 106 cells. OE buffer was estimated to
contain 406 nM of oxygen/ml at 30�C (34). A total of 400 �M KCN was
added to the chamber to establish the percentage of cellular oxygen con-
sumption resulting from OXPHOS.

Mitochondrial Mass Analysis

Relative mitochondrial number per cell was measured using Mito-
Tracker� Green FM (Molecular Probes, Leiden). MitoTracker is a fluo-
rescent dye that localizes to the mitochondrial matrix regardless of the
mitochondrial membrane potential and covalently binds to mitochondrial
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proteins by reacting with free thiol groups of cysteine residues. Fluores-
cence was considered relative to mitochondrial number since analysis of
a broad concentration range of MitoTracker confirmed that fluorescence
intensity increases linearly in proportion with MitoTracker concentration
over the concentration range used in this study (data not shown). Cells
were exposed as described previously and incubated for 4–96 h after
exposure. Growth medium was removed from cells, which were then
rinsed with Mg2�/Ca2� buffer (1 mM MgCl2 and 1 mM CaCl2 in PBS).
Then 150 nM MitoTracker (in Mg2�/Ca2� buffer) was added to each flask
and incubated at 37�C for 20 min, after which cells were rinsed three
times in Mg2�/Ca2� buffer. Cells were then harvested and counted using
a Cell Counter (Coulter Z2), and fluorescence intensity was measured in
a fluorescent plate reader (TECAN GENios) using excitation and emis-
sion wavelengths of 485 nm and 535 nm, respectively. Fluorescence in-
tensity measurements were normalized against cell numbers before being
expressed as percentages of control values.

Statistics

Values are expressed as the means 	 SEM. Data are representative of
three or more experiments. The multiple measures analysis of variance
(ANOVA) was performed to determine significance, and values were con-
sidered significant if P � 0.05.

RESULTS

Polarography Analysis

OXPHOS was confirmed as the dominant contributory
source of the cellular oxygen consumption rates we ob-
served. State 4, state 3 and uncoupled respiration rates were
measured to determine any differences in oxygen con-
sumption rates induced in directly irradiated cells or ICCM-
treated cells in any and/or all respiratory states. Polarog-
raphy analysis from control cells showed the typical rela-
tive oxygen consumption rates during state 4, state 3 (active
respiration) and uncoupled respiration, with state 3 respi-
ration greater than state 4 and uncoupled respiration greater
than state 3 (Figs. 1, 2). Control cell state 4, 3 and uncou-
pled respiration showed no significant variation of rates re-
corded 4, 12 and 24 h after sham exposures.

CHO-K1 cells exposed to 5 Gy � radiation showed a
significant loss of oxygen consumption during state 3 res-
piration only 4 h after exposure (Fig. 1A), an effect simi-
larly observed in CHO-K1 cells 4 h after exposure to 5 Gy
ICCM (Fig. 1B). Equally important was the response to
ADP (lost) and DNP (retained) observed 4 h after direct
irradiation and ICCM. State 3 respiration normally occurs
in the presence of ADP, though it is reliant on both an intact
proton gradient and a functional ATP synthase. DNP is an
uncoupling agent, and if it is seen to increase oxygen con-
sumption rate, it is evidence of an intact proton gradient
across the inner mitochondrial membrane. At 12 h after
direct 5 Gy irradiation and ICCM treatment (Fig. 1), it was
observed that an apparent recovery in oxygen consumption
rates occurred, that was sustained 24 h after exposure, at
which time almost all respiratory states were significantly
greater than control values in CHO-K1 cells.

HPV-G cells exposed to 5 Gy � radiation showed a sig-
nificant increase in oxygen consumption during state 4 res-

piration 4 h after treatment, with no change observed at
state 3 or uncoupled respiration (Fig. 2A). At 12 and 24 h
after direct irradiation, the oxygen consumption rates ob-
served were not significantly different from control levels,
although at 4, 12 and 24 h after direct irradiation, the ratio
of the state 3 to state 4 oxygen consumption rate was re-
duced in these cells compared to that in control cells (Fig.
2A).

HPV-G cells exposed to ICCM showed a significant in-
crease in uncoupled oxygen consumption rates 4 h after
exposure that persisted 12 and 24 h later (Fig. 2B). State 4
and 3 respiration showed no significant change compared
to control at any time, except that state 3 respiration was
increased 24 h after ICCM exposure.

Mitochondrial Mass Analysis

There was a significant increase in mitochondrial mass
in CHO-K1 cells 4 h after direct irradiation that reached a
maximum at 24 h and was sustained at 96 h (Fig. 3A).
Mitochondrial mass was not observed to increase signifi-
cantly until 12 h after exposure to ICCM and continued to
increase at 24 and 96 h, at which time the increase was
comparable to that observed in directly irradiated CHO-K1
cells. At 96 h after direct exposures of 5 mGy to 5 Gy,
CHO-K1 cells showed an increase in mitochondrial mass,
with the greatest increase observed at the highest dose (Fig.
3B). At 96 h after exposure to ICCM, CHO-K1 cells
showed similar significant increases in mitochondrial mass
that were independent of dose (Fig. 3B).

A significant increase in mitochondrial mass in HPV-G
cells was first observed 12 h after direct irradiation, reach-
ing maximal levels 24–96 h later (Fig. 4A). A significant
increase in mitochondrial mass in HPV-G cells was ob-
served 4 h after exposure to ICCM, reaching a maximal
level 12 to 24 h later that persisted at 96 h, although it was
lower than the maximal level reached after direct irradiation
(Fig. 4A).

In HPV-G cells 96 h after direct exposure to 0.5 Gy and
5 Gy, mitochondrial mass was significantly greater than that
of control cells. However, the most noticeable effect was
observed after exposure to 5 mGy, when mitochondrial
mass was approximately fourfold that of control cells (Fig.
4B). An increase in mitochondrial mass was also observed
96 h after exposure to ICCM-treated cells, although it was
not as pronounced as in HPV-G cells 96 h after 5 mGy
direct irradiation. Both exposure to various direct radiation
doses and ICCM resulted in an increase in mitochondrial
mass 96 h after exposure, with the greatest increase ob-
served at the lowest dose (Fig. 4B).

DISCUSSION

A decrease in mitochondrial ATP production is often
compensated for by increasing glycolysis, as is seen in most
cancer cells, where OXPHOS is limited by hypoxic con-
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FIG. 1. CHO-K1 oxygen consumption rates in various respiratory states. Cells were treated with (panel A) 5 Gy
direct irradiation or (panel B) irradiated cell conditioned medium (ICCM) and were assessed 4–24 h later in a Clarke-
type oxygen electrode with additions of ADP and DNP inducing periods of state 3 and uncoupled respiration,
respectively. State 4 respiration was considered to be that period of respiration after all ADP present was consumed.
Control cell data recorded at 4, 12 and 24 h was pooled since no differences were found. Rates are expressed as
nMO/min per 106 cells. �Change from control value statistically significant at P � 0.05.

ditions (30), though cells in culture, even tumor cells, typ-
ically respire in an oxygen-rich environment. Polarographic
analysis was used to measure total cellular oxygen con-
sumption rates, which were confirmed to consist primarily
of OXPHOS-related oxygen consumption. To have first iso-
lated mitochondria from cells before polarographic analysis
would have necessitated the use of over 10 times the
amount of cultured cells used because mitochondrial iso-

lation from cells in culture is notoriously inefficient. Typ-
ical cellular oxygen consumption rates observed in this
study are comparable to those reported previously at 30�C
in a range of animal cell cultures (35) as well as HeLa cells
(36) and C2C12 mouse myoblasts (37).

Previous studies have suggested that radiation has little
effect on OXPHOS, and if a change was found it was due
to a secondary factor such as ROS (38, 39). In the present
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FIG. 2. HPV-G oxygen consumption rates in various respiratory states. Cells were treated with (panel A) 5 Gy
direct irradiation or (panel B) irradiated cell conditioned medium (ICCM) and assessed 4–24 h later in a Clarke-
type oxygen electrode with additions of ADP and DNP inducing periods of state 3 and uncoupled respiration,
respectively. State 4 respiration was considered that period of respiration after all ADP present was consumed.
Control cell data recorded at 4, 12 and 24 h were pooled since no differences were found. Rates were expressed as
nMO/min per 106 cells. �Change from control value statistically significant at P � 0.05.

study, we identified both radiation- and bystander factor-
induced loss of mitochondrial function by observing a re-
duction in oxygen consumption during state 3, and uncou-
pled respiration in CHO-K1 cells only. A notable obser-
vation was the loss of responsiveness to ADP but not DNP,
which would be consistent with a loss of ATP synthase
function and retention of the proton gradient across the in-
ner mitochondrial membrane. The loss of mitochondrial

function in CHO-K1 cells 4 h after exposure to both ICCM
and direct radiation appeared to be transient at first. If this
observation is considered in the context of the mitochon-
drial mass results, then what is more likely is that cells 12
and 24 h after exposure contained increased amounts of
functionally deficient mitochondria that were sufficient to
more than counterbalance this damage.

HPV-G cells showed no apparent loss of mitochondrial
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FIG. 3. Analysis of mitochondrial mass in CHO-K1 cells using MitoTracker Green. Cells were harvested (panel
A) 4, 12, 4 and 96 h after treatment with 5 Gy and 5 Gy ICCM and (panel B) 96 h after treatment with 5 mGy,
0.5 Gy and 5 Gy. �Change from control value statistically significant at P � 0.05.

function after exposure to either direct radiation or ICCM.
Similarly, no pronounced loss of responsiveness to ADP
was observed, unlike CHO-K1 cells. An increase in cellular
oxygen consumption was observed in these cells during
uncoupled respiration after ICCM exposure only; when
considered in the context of the mitochondrial mass data,
this would suggest that these cells did contain dysfunctional
mitochondria, but the loss in oxygen consumption per mi-
tochondrion was therefore more than compensated for at a
cellular level.

Loss of function of components of the electron chain
must reach a certain threshold level before the overall path-
way is affected. Davey and Clarke (40) found that up to
72% of complex I activity could be lost before any effect
is manifest in the overall flux through the pathway. There-
fore, damage to one or more of the enzymes of OXPHOS
is likely to have been substantial to induce the loss of ox-
ygen consumption observed in this study. Rossignol et al.
(30, 41) also found that threshold levels are tissue specific,
with lower thresholds in tissues with higher energy de-
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FIG. 4. Analysis of mitochondrial mass in HPV-G cells using MitoTracker Green. Cells were harvested (panel
A) 4, 12, 4 and 96 h after treatment with 5 Gy and 5 Gy ICCM and (panel B) 96 h after treatment with 5 mGy,
0.5 Gy and 5 Gy. �Change from control value statistically significant at P � 0.05.

mands; thus tissues such as muscle and nerve will typically
have the lowest threshold levels.

In this study, an increase in mitochondrial mass in CHO-
K1 cells with time after both direct irradiation and ICCM
exposure was observed, with levels peaking 24–96 h later
at comparable levels in both directly irradiated and ICCM-
treated CHO-K1 cells. It must be noted that mitochondrial
mass measurements, as determined in this study, are de-
pendent on the absence of both pronounced irregular cell
size formation and pronounced variation in thiol residue

availability. Mitochondrial mass was also observed to in-
crease in a dose-dependent manner after direct irradiation
although it was independent of ICCM dose. The trends in
mitochondrial mass increase observed in HPV-G cells were
not similar to those seen in CHO-K1 cells. Mitochondrial
mass peaked at 12–24 h after exposure, with increases after
ICCM exposure being significantly less than after direct
irradiation. Indeed, mitochondrial mass was observed to in-
crease in an inverse dose-dependent manner, with the re-
markable observation of a fourfold increase in mitochon-
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drial mass after 5 mGy direct irradiation, an increase three-
fold higher than that observed in cells after either 0.5 Gy
or 5 Gy. This compares favorably with Murphy et al. (29),
who reported that HPV-G cell mtDNA was most sensitive
to the lower direct �-radiation dose when examined 96 h
after exposure to either 5 mGy, 0.5 Gy or 5 Gy for the
induction of the mtDNA4881 deletion. Maguire et al. (42)
observed a similar increase in HPV-G cell mitochondrial
mass after exposure to ICCM that was dependent on dose
and suggested that the expression of BCL2 was linked to
a loss of mitochondrial proliferation. There appears to be a
threshold of insult to the mitochondria above and below
which not only the amplitude of response but also the na-
ture of the response is different.

This increase in the rate of mitochondrial proliferation is
a probably a cellular response mechanism to counteract the
loss of mitochondrial function and recover ATP synthesis
capacity. However, this is undoubtedly a short-term gain,
because in the long term, more mitochondria not only are
a strain on the cell because of the resources needed to sus-
tain this accelerated proliferation but also are likely to pro-
vide for a substantial increase in free radicals originating
from these misfiring mitochondria. A self-perpetuating cy-
cle may result because an increase in ROS is a reported
stimulus of mitochondrial proliferation (19, 22, 25). CHO-
K1 cells appear more radiosensitive than HPV-G cells in
the context of mitochondrial damage, but the amplitude of
the HPV-G cell response is greater than that seen in CHO-
K1 cells in the context of the cellular response of increasing
mitochondrial mass. It has also been reported previously
that the bystander effect is more pronounced in irradiated
HPV-G cells than in irradiated CHO-K1 cells (43), an ob-
servation that would concur with the finding in this study
that the maximal CHO-K1 mitochondrial mass after expo-
sure to 5 Gy ICCM was comparable to that after 5 Gy direct
irradiation, whereas the maximal HPV-G mitochondrial
mass after 5 Gy ICCM was lower than after 5 Gy direct
irradiation. The nonuniform sensitivity of the mitochondrial
populations of the two cell types to ICCM must also be
considered in the context of the previous finding that the
energetic status of mitochondria, namely their capacity for
ATP synthesis, has been observed to be a potentially critical
factor in the bystander effect (31). With this in mind, it is
notable that irradiated HPV-G cells showed increased ox-
ygen consumption when ADP was added, whereas irradi-
ated CHO-K1 cells showed no increase when ADP was
added. This would indicate a loss of ATP synthase activity
(and not a complete loss of membrane potential since ox-
ygen consumption increased in the presence of DNP, which
would dissipate any mitochondrial membrane potential). It
is therefore likely that this retention of ATP synthase activ-
ity in HPV-G cells and not CHO-K1 cells is a contributory
factor in HPV-G cells demonstrating a more pronounced
bystander effect than CHO-K1 cells.

When the polarographic data in cells exposed to direct
radiation are considered in the context of previous clono-

genic analysis of these cell types exposed to 5 Gy direct �
radiation, where cell death was equal in both HPV-G and
CHO-K1 cells (43), no direct correlations may be drawn,
suggesting that the radiosensitivity of cells may not nec-
essarily be indicative of the radiosensitivity of the mito-
chondria contained therein.

In conclusion, the results in this study highlight a non-
uniform sensitivity to direct radiation and ICCM damage
in the mitochondrial populations of the two cell types ex-
amined. In general, the effects of direct radiation and ICCM
on mitochondria were relatively comparable. A striking re-
sult was the immediacy with which mitochondrial dysfunc-
tion occurred (as soon as 4 h after exposure), and also the
observation that no dose that we examined was too low to
induce an increase in mitochondrial mass in either cell type.
This increase in mitochondrial replication rate may simply
serve to accelerate the increase in the frequency of deficient
mitochondria in the overall mitochondrial population. This
has grave implications for the distal progeny of cells that
survive irradiation, because the mitochondrial genome has
the ability to carry significant heterogeneity without loss of
function, although a threshold will ultimately be reached,
beyond which the fate of these cells is uncertain. Further
study of the distal progeny is therefore warranted in future
studies.
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