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This report is intended to serve as a review of the implications for food safety of the application of

nanotechnology in food production and processing as they relate to Ireland. The report does not

purport to be comprehensive or to be a legal interpretation or to constitute legal or other

professional advice.Advances in scientific knowledge and changes in legislation can be expected in the

future that will necessitate the updating of this report.

Literature and research cited in the report are valid, to the best knowledge of the authors, at the time

of publication. Reference in this report to any trade names, commercial products, process, service,

manufacturer, organisation or company does not constitute its endorsement or recommendation by

the Food Safety Authority of Ireland (FSAI). Examples contained in this report are not exhaustive and

are intended for illustration purposes only.The FSAI is not responsible for the contents of any website

referenced in this report. Unless otherwise stated, the definitions and terminology used in this report

relate to this report only.

DISCLAIMER
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The application of nanotechnology in the food and feed industry offers many potential benefits for

both consumers and manufacturers.The ultrafine dimensions of nanoparticles, and consequently their

very large surface area, enable them to function more effectively than conventional macro-scale

structures in many applications. Nanotechnology is however a relatively new area of science and the

benefits and risks associated with its use in the food and feed industry are not fully understood at this

time.This brings with it new challenges in ensuring the safety of food and feed that has been produced

with the aid of nanotechnology.

This report provides an overview of current and potential applications of nanotechnology in the food

industry, which may equally be applied in the feed industry. The possible risks of nanotechnology,

together with the adequacy of the existing EU regulatory framework in the control of any potential

risks, are also examined with a view to determining what further legislative measures, if any, may be

necessary to safeguard food safety.

This report notes that nanoparticles are already naturally present in food, given that many food and

feed ingredients are comprised of endogenous proteins, carbohydrates and fats with sizes extending

from large biopolymers (macromolecules) down to the nanoscale.The applications of nanotechnology

in food production reviewed in this report must therefore be viewed in the context of this

background exposure to natural nanoparticles in the diet.

There is currently no known use of nanoparticles in food on the Irish market, although such foods are

known to be available on the global market, mainly through internet trading.This report demonstrates,

however, that nanotechnology has the potential to have a major impact on food innovation over the

coming decades.The application of nanotechnology to enhance the stability and texture of food and

to develop “intelligent” food contact materials, including packaging, is currently of considerable

interest to the food technology sector.The controlled release of nano-encapsulated food ingredients

or nutrients is likely to be a primary focus in the longer term as the technology evolves.

There are some knowledge gaps regarding the potential for nanoparticles present in food and feed to

enter parts of the body hitherto inaccessible to their conventional counterparts. Evidence is

accumulating that engineered nanoparticles can cross natural barriers within the body, although the

health implications of this, if any, are as yet unclear and have to be put in context with the background

exposure to nanoparticles found naturally in food.There is an urgent need to develop predictive and

validated toxicological tests that can be used to screen for potential hazards, and also to develop new

methodology for the measurement of nanoparticles in biological matrices, in order to assess human

exposure. Nanoscale proteins, carbohydrates and fats are unlikely to be a source of toxicity in their

own right. However, little is known about possible interactions of such nanoparticles with other food

components, the integrity of the nanoparticles following passage through the digestive system or how

they are absorbed, distributed and excreted (cleared) from the body.

EXECUTIVE SUMMARY
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Although the basic principles of the conventional risk assessment model can be applied to nano-

based food, in practice, gaps in the knowledge base make it difficult to carry out a meaningful risk

assessment. Until such time as these knowledge gaps are filled and there is international agreement

on the approaches to assessing the risks, each application of nanotechnology in food production, and

the wider implications of nanotechnology for the food chain, will need to be assessed on a case by

case basis. Hence, risk management approaches to foods resulting from nanotechnology will, because

of necessity, be precautionary.

The existing EU legislative food safety framework does not contain specific provisions on

nanomaterials. However, uses of nanotechnology in food are considered to fall within the scope of

general food law, in that the food sector is obliged to only place safe food on the market, or are subject

to specific approval processes such as those for food additives, food contact materials, novel foods,

pesticide and biocide approval systems. Specific controls on the use of nanotechnology in food

production are being incorporated in pending EU legislation that will see the European Food Safety

Authority (EFSA) being responsible for the safety assessment of nanoscale additives and ingredients.

An important principle highlighted in this report is that the food business operator is primarily

responsible for ensuring the safety of food. However, it is acknowledged that the assessment of

possible risks and likely exposure patterns of nanofoods is not clear cut, given that current

methodologies may be inadequate in identifying hazards and evaluating risks associated with the

specific properties of nanoscale substances.

Reflecting the deficiencies in the available information on the current applications of nanotechnology

in the agrifood sector and also the information needed to carry out a meaningful risk assessment; this

report contains a number of recommendations, including the following:

• food business operators should conduct risk assessments on all foods involving introduction

of new nanoparticles into foods and packaging or manipulation of the size distribution of

natural food molecules in food matrices, in order to meet their legal obligations to produce

safe food

• legal provisions should be considered at EU level to ensure that food and feed should be re-

evaluated in terms of safety whenever the properties are changed/re-engineered to the

nanoscale

• the FSAI should promote the establishment of a publicly available inventory of

nanotechnology-based food products and food contact materials, both at European

Community level and specifically available on the Irish market 
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• urgent consideration should be given to whether additional controls are required on the

disposal and/or recycling of nanoparticle-containing food contact and other materials

• food surveillance programmes should include investigation of the potential for nanoparticles,

particularly inorganic molecules such as titanium dioxide and clay particles used in packaging,

to migrate into foods and also to be recycled in the environment and enter the food chain

indirectly.

In addition, in order to protect and inform consumers, the report proposes that food or food

packaging in contact with food and incorporating nanoparticles should be labelled, and that the FSAI

should keep Irish industry informed of developments concerning the applications of nanotechnology

in food and the legal requirements governing such uses.The report also recommends that the FSAI

should keep under review advances in the science of nanotechnology, risk assessment approaches and

the legal framework governing the application of nanotechnology in food.

Finally, the report stresses that appropriately funded research should urgently be undertaken to

increase the reliability of the assessment of possible risks of nanotechnology in food, including on

issues such as the fate and behaviour of nanoparticles within the human body and animals; their

potential toxicity; methods for the safe and effective disposal of used or waste nanoparticles; the

stability/lability of nanoparticles in various foods and their potential interactions with other food

components.

Keywords: Nanoparticles, nanomaterials, nanotechnology, food, nanofood, nanotoxicology
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1.1 Background
The last decade has seen an explosion of interest in the applications of nanotechnology in a wide

range of areas including food production.The commercial application of nanotechnology is however

currently much more advanced in areas other than food, such as materials science, electronics and

medicine. Many possible food applications are at a research stage in academia and industry, but at

present, the full potential for such products has not been realised. Only a small number of products

have actually been commercialised, mainly in countries outside the EU, the US being the leader in

innovation in this field, followed by Japan and China. A recent report identified a wide range of

applications in food and food technology, and suggested that the value of the worldwide

nanotechology food market may total $20.4 billion (€19.4 billion) by 2010 and $1 trillion (€740bn)

by 2013 (Kaiser, 2007).

The principal areas in the food sector where nanotechnology has potential for use are in

encapsulation and emulsion formation, in food contact materials and sensor development, and some

applications of the technology are close to utilisation. For instance, in 2007, the European Food Safety

Authority (EFSA) published an opinion on the safety of a nanoscale silicon dioxide coating (less than

100 nanometre), to be used in plastic packaging behind an inner layer of polyethylene terephthalate

(PET) plastic to provide gas barrier properties (EFSA, 2007). In addition, a safety evaluation for a

titanium nitride-based nanoparticle to be used as a food contact material additive is currently being

undertaken by EFSA. Other possible applications are explored in more detail in Chapter 2 of this

report.

Application of nanotechnology in the agrifood sector, and more generally, offers potentially huge

benefits for both consumers and manufacturers in a wide range of applications, and research in the

area is attracting increasing investment from Governments and industry worldwide. Many of these

benefits result from the ultrafine dimensions of nanoparticles, which enable them to reach new

locations in the body, or from their very large surface area which enables them to function more

effectively than larger scale materials, an example being the use of nanosilver as an antimicrobial agent

in food contact materials.

While it is recognised that emerging nanotechnology applications are likely to bring significant

benefits, it is also recognised that nanomaterials may present different hazards from those of the same

material in a micro or macro form. There is concern that not enough is known about the

toxicological/physiological and environmental effects of such materials, and that current risk

assessment methodology may not be adequate to identify the risks for man and the environment,

including animal health.This is discussed in more detail in Chapter 4 of this report.

1. INTRODUCTION
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Judging by the public response to genetically modified (GM) technology in both food and animal feed,

the use of nanotechnology in food production is likely to be one of the more contentious areas of

application, and the safety of consumers exposed to nanoparticles through food must be assured. In a

recent survey of 1,000 German consumers commissioned by the Federal Institute for Risk Assessment

(BfR, 2008), although 66% of respondents believed that the overall benefits of nanotechnology

outweigh the risks and only 9% considered that the reverse was true, the majority of respondents

were against the use of nanotechnology in food. Only 4% considered that the benefits of application

of nanotechology in food outweighed the risks, while 84% did not want enhancement of the

appearance of food by the use of nanoparticles.A UK consumer organisation conducted a survey of

public perception of nanotechnology in a “Citizen’s Panel” of seven men and seven women, over a

period of three days. They found that overall consumers were positive about the benefits of

nanotechnology, but opinions differed in relation to the application in food production and

manufacturing (Which?, 2008).The UK consumer group surveyed considered that the tightest controls

were required with regard to applications of nanotechnology in medicine and food, as these are areas

where nanoparticles may be ingested, and were more positive about the potential for

nanotechnologies in food packaging. A survey of Swiss consumers has indicated that consumers are

more concerned about food produced by application of nanotechnology than about food packaging

containing nanoparticles (Siegrist et al., 2008) 

A number of expert bodies have already issued opinions on issues related to applications of

nanotechnology and its safety, including the European Commission’s Scientific Committee on

Emerging and Newly Identified Health Risks (SCENIHR) (SCENIHR, 2006, 2007), the EU Scientific

Committee on Consumer Products (SCCP) (SCCP, 2007), the US Food and Drug Administration (US

FDA) (FDA, 2007), the UK Committees on Toxicity, Mutagenicity and Carcinogenicity of Chemicals in

Food, Consumer Products and the Environment (COT, COM, COC) (COT, 2005), the UK Royal

Society and Royal Academy of Engineering (Royal Society and Royal Academy of Engineering, 2004),

the German Federal Institute for Risk Assessment (BfR, 2007), the Dutch Institute of Food Safety,

Wageningen UR (RIKILT) and National Institute of Public Health and the Environment; Center for

substances and integrated risk assessment (RIVM) (Bouwmeester et al., 2007) and the US National

Institute of Occupational Health (NIOSH) (NIOSH, 2007). An EFSA opinion on the risks of

nanoparticles in food is expected in 2008 and food safety agencies throughout the world are currently

assessing the issue.

In April 2007, the Food Safety Authority of Ireland’s (FSAI) Scientific Committee discussed the national

need for a scientific assessment of the relevance/implications of the application of nanotechnology in

food production and processing for food safety.An expert working group (Appendix 1) was convened

in June 2007 to further consider the issues, with the aim of developing a position on nanotechnology

in relation to food safety and risks to the Irish consumer.
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1.2 Terms of Reference
The Terms of Reference for the Scientific Advisory Working Group on Nanotechnology were as

follows:

• advise on the main applications of nanotechnology foreseen in food and animal feed

• advise on the adequacy of current risk assessment paradigms/methodology for the

identification, assessment and control of any potential risks arising from the use of

nanotechnologies in the agrifood sector or the presence of nanoparticles in food

• identify gaps in the regulatory framework and information needed to carry out an assessment

of risk of nanoparticles in the food chain 

• advise on approaches to fill such gaps

• advise the FSAI on the development of a national position on nanotechnology in relation to

food safety and risks to the Irish consumer

• support the FSAI in the drafting of a report to reflect these issues, for the approval of the

Scientific Committee.

1.3 Scope of the Report 
The Terms of Reference apply primarily to the application of nanotechnology in food production and

processing and the implications for the safety of food, the term “food” being defined in accordance

with Regulation (EC) No 178/2002 on general food law (EC, 2002), as follows:

“Food or foodstuff1 means any substance or product, whether processed, partially processed or

unprocessed, intended to be, or reasonably expected to be ingested by humans. For the purpose of this

report, drinking water is included under the definition of food.”

The presence of nanoparticles in the food chain as a result of environmental contamination and

accidental or deliberate inclusion of nanomaterials in animal feed may be an additional, indirect route

of human exposure via food, in addition to the direct use of nanomaterials in the production and/or

processing of food for humans. Accordingly, this report has also briefly considered the use of

nanotechnology in the production of feed for food-producing animals and also potential pathways of

nanoparticles from the environment into food.

Consideration of direct human exposure via the environment, other than the food chain, and via

occupational exposure is outside the scope of the report.

1 Food includes drink, chewing gum and any substance, including water, intentionally incorporated into the food during its
manufacture, preparation or treatment. It includes water after the point of compliance as defined in Article 6 of Directive
98/83/EC and without prejudice to the requirements of Directives 80/778/EEC and 98/83/EC.
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1.4 Definitions of Nanotechnology Applied in this Report
The term ‘nanotechnology’ was first applied in 1974 by Norio Taniguchi (Taniguchi, 1974) and was used

to describe production technology at ultrafine dimensions, hence the use of the Greek word ‘nano’ -

meaning dwarf. Nanotechnology has now evolved into a multidisciplinary research sector with a

rapidly expanding industrial element. Likewise, the terminology has also evolved and grown to reflect

the diversity of this area of science and technology with numerous broad definitions of

nanotechnology emerging from a variety of professional, national and international bodies.

The International Standards Organization (ISO) recognised that there is a need to standardise

terminology and provide a common language for scientific, technical, commercial and regulatory

purposes.The ISO/TC229 Technical Committee on Nanotechnologies established a working group to

advise on this specific issue and, although work is still ongoing, the following general definition for

nanotechnology has emerged from the group:

‘Understanding and control of matter and processes at the nanoscale, typically, but not exclusively,

below 100 nanometres in one or more dimensions where the onset of size-dependent phenomena usually

enables novel applications, where one nanometre is one thousand millionth of a metre.’

(ISO/TC 229, 2008).

This definition is non-specific and can be applied across the entire nanotechnology community from

academia to industry. It has therefore been adopted in this report as a basic definition of

nanotechnology in the absence, at the time of writing, of any internationally agreed definition.

However, it is important to note that the definition makes no reference to the synthesis or use of

engineered nanomaterials in food or feed products. For the purpose of clarity throughout the report,

it should be taken that an engineered nanomaterial is any material which has been intentionally

synthesised or incidentally produced to exploit novel functional properties exhibited on the nanoscale

(i.e. typically, but not exclusively, below 100 nanometres in one or more dimensions as specified by the

ISO definition).

In contrast, the generic term of 'nano-object' as defined by the EU Commission recommendation of

07/02/2008 on a code of conduct for responsible nanosciences and nanotechnologies research (EC,

2008) will include all nanomaterials, nanostructured materials, nanoparticles and their aggregation at

the nanoscale, nano-systems, and nanoproducts.
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2.1 Introduction
Given that most food systems are comprised of biopolymers with a range of particle sizes including

some with nanoscale dimensions, nanotechnology is not a novel concept in food science.The specific

applications of the technology are however rapidly increasing and are expected to have a major impact

on food innovation over the coming decades.A number of reviews which describe the application of

nanotechnology in the food sector have been published, e.g. Chen et al., 2006a; Chaudhry, 2008; ETC

group, 2004; Miller and Senjen, 2008; Morris, 2005; Morris, 2006.This chapter identifies the key areas

where applications of nanotechnology are being researched or have already been introduced in the

agrifood sector.

A wide range of applications are foreseen in the agrifood sector, including nanosensors, tracking

devices, targeted delivery of specific components, food safety applications, new product development,

precision processing and smart packaging. The potential applications of nanotechnology range from

modifications of the natural (organic) protein, carbohydrate and fat molecules that form part of the

normal diet, to achieve added or altered functionality, to the use of inorganic nanoparticulate materials

in food packaging and food ingredients including food additives.The predominant food-related use of

nanoscience in the short term is in food contact materials including packaging, while in the longer

term nanoscale food research appears to be focused on controlled release of nanoscale-encapsulated

food ingredients or nutrients. The use of nanoscale technologies for alteration of food stability and

texture is also of particular interest.

Engineered organic nanomaterials (primarily nanoparticulate forms of natural food components) are

likely to be the predominant area of interest in the agrifood sector. Many applications of

nanotechnology currently under research involve modification of the normal structure and assembly

of natural biopolymeric food components, e.g. modification of proteins or selected carbohydrates to

make them suitable as nanostabilisers of bioactive components. Protein-carbohydrate engineering

coupled with enzymatic functionalisation is being used to construct nanoscale structures which impart

new functionality in food.

Nanoparticles in food will be exposed to a range of storage and use conditions, and this is an aspect

that may need consideration in relation to assessment of the impact of nanotechnology in the agrifood

sector. For example, nanoparticles may be used in products that should be stored at low temperatures

and then heated for consumption.This may affect both the nanoparticle stability within the food, as

well as changing the properties of the biomolecules in the food, and potentially how these interact

with the nanoparticles.To date, there appears to be no literature dealing with this.

Figure 2.1 summarises the main areas where nanotechnology is currently used in food and where food

safety issues may arise.

2. CURRENT AND POTENTIAL APPLICATIONS 
OF NANOTECHNOLOGY IN THE FOOD CHAIN
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Figure 2.1 Applications of Nanotechnology in Food

2.2 Current Applications of Nanotechnology in Foods and Food Contact
Materials

Some of the benefits of nanoscience have already been seen in the agrifood sector2, others are still at

the research and concept stage.They include the following global applications:

1) sensory improvements (flavour/colour enhancement, texture modification) 

2) increased absorption and targeted delivery of nutrients and bioactive compounds 

3) stabilisation of active ingredients such as nutraceuticals in food matrices 

4) packaging and product innovation to extend shelf-life 

5) sensors to improve food safety

6) antimicrobials to kill pathogenic bacteria in food.

Nanotechnology-based materials of relevance to food and food contact materials include

nanoparticles, nanofibres/fibrils, nanoemulsions/dispersions and nanoclays, as summarised in Table 2.2.

Each category is explained in more detail below.

Food/Beverage
(Consumer; Medical; Research)

Technologies
(Nanoemulsions; Nanodispersions;
Nanoencapsulation; Self assembly)

Nanotechnology
and

Food Safety

Packaging
(Smart packaging; Nanolaminates;

antimicrobial)

Processing
(Reaction kinetics;Thermal,

separation &
Dehydration technologies)

Stability/Shelf-life
(Nanotracers;

Nanosensors/Biosensers)

Ingredients
(Nanoparticles; Nanostuctured

biopolymers; Nanopowders;
Nanocapsules)

2 It should be noted that the applications listed reflect international use, and there is no clear picture of which, if any, of these
applications relate to food available on the European or Irish markets.
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Table 2.2 provides a non-exhaustive list of examples of products currently on the international market,

resulting from the applications of nanotechnology in food.

Table 2.1  Classification of Nanomaterials with Application in Food and Food
Preparation 

Category Example Materials Example Application 

1. Nanoparticles
Inorganic Iron Food supplement

Silver Food supplements, antimicrobial agent
- used in food contact surfaces
(cutlery, storage containers, fridges and
worktops)

Iridium Food supplement

Platinuim Food supplement

Zinc Food supplement/colourant

Organic Liposomes Encapsulation and targeted delivery of
food components

Protein Re-micellised calcium caseinate from
dairy protein. Increased functionality
(gelation, heat stability and other
properties)

Polymeric Non-degradable: polystyrene
Biodegradable: PGLA, gelatin, collagen

2. Nanofibres*/fibrils
Globular proteins Thermal stability, increased shelf-life.

Formation of transparent gel network
for use as thickening agent 

3. Nanoemulsions/
dispersions
Emulsions Oil in water Stabilisation of biologically active

ingredients; delivery of active
compounds; extended shelf-life;
flavour release; low fat products

Dispersions Calcium Carbonate Increased solubility of calcium
carbonate – can be used at higher
addition levels

4. Nanoclays
Clay composites Used in packaging materials to extend

shelf-life, durability, and thermal
properties (includes nano-laminates)

* Nanofibres are not currently used in the marketplace but are being researched extensively.
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2.2.1 Nanoparticles 
Nanoparticles can be categorised into different types based on their ability to carry different

ingredients and react to different environmental conditions. For the purposes of this review they can

be divided into two broad categories, inorganic and organic, based on the chemical characteristics of

the nanoparticle. Nanoparticles already reported to be incorporated into foods (although not on

specifically on the EU market) include those engineered to provide encapsulation systems, e.g.

micelles, liposomes, for delivery of food ingredients, and those tailored for use in food packaging such

as biosensors, identification markers, shelf-life extenders and antimicrobials.

2.2.1.1  Inorganic nanoparticles

Many inorganic ingredients manufactured at the nanoscale are variations of additives already approved

for use in food, e.g. titanium dioxide, a food colorant, can be used as a UV protection barrier in food

packaging when used as a nanoparticle (Note: titanium dioxide loses its ability to act as a food colorant

in the nano form because it is transparent). New storage containers/utensils (food contact materials)

based on embedded inorganic nanoparticles have been designed for preservation of prepared foods.

The most common application is the use of nanoparticles of silver (Table 2.2) as an antimicrobial.

Applications for nanosilver include use in fridge panels, storage boxes, packaging lines and other

surfaces which come into contact with food during manufacture. Nanosilver particles have also been

added to non-food contact areas such as floor tiles to reduce the bacterial load in the surrounding

manufacturing environment. Food storage bins are being produced with silver nanoparticles

embedded in the plastic, killing bacteria from any food that was previously stored in the bins and

minimising health risks.

Inorganic nanoceramic, solid pellet nanoparticles, have been added to oil cooking systems (Table 2.2)

in restaurants in the USA to extend the life of chip oil while giving a crisper food.The technology is

based on the ability of the nanoceramic particles to act as a catalyst, limiting thermal polymerisation

process in the oil resulting in a crisper deep-fried food and longer shelf-life for the oil.

2.2.1.2  Organic nanoparticles

Organic nanoparticles (sometimes referred to as nanocapsules when used as vehicles for delivery of,

e.g. essential nutrients or pharmaceuticals) are likely to be used to enhance the nutrient value of food

systems through improvement or alteration of food functionality. Nanoparticles have been designed

to deliver vitamins or other nutrients in food and beverages without affecting the taste or appearance.

These nanoparticles encapsulate the nutrients and carry them via the gastrointestinal tract (GIT) into

the bloodstream, increasing their bioavailability.
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Micelles are organic nanoparticulates that can be assembled by the thermodynamically driven process

known as self–assembly. Micelles made in this way have the ability to encapsulate non-polar molecules

such as lipids, flavours, antimicrobials, antioxidants and vitamins (Chen, 2006). Compounds that are

normally insoluble or only sparingly soluble in water can be made water soluble, extending their use

in foods and potentially changing their bioavailability once ingested. For example, one company has

developed a micelle-based technology (Table 2.2) which combines two active substances, coenzyme

Q10 (CoQ10) for fat reduction and alpha-lipoic acid for satiety into a single nanocarrier (micelles of

average 30nm diameter).The application is targeted at the weight management market.

Another example is a liquid droplet technology named ‘Nano-sized Self-assembled Liquid Structures

(NSLS)’, which encapsulates and releases particles in cells. The micellar particles are used to

encapsulate nutraceuticals (lycopene, beta-carotene, lutein, phytosterols, CoQ10, docosahexaenoic

acid/eicosapentaenoic acid (DHA/EPA) and other compounds) into 30nm diameter self-assembled

spheres. The micelles are essentially made from lipid molecules and have a unique hydrophobic

interior.The NSLS particles are reported to act as vehicles for compounds to be absorbed into the

bloodstream from the gut more readily, increasing their bioavailability.The technology has already been

adopted and marketed by an American company to deliver an oil-based product (Table 2.2), which it

claims can reduce cholesterol intake into the body by 14%, by competing for bile solubilisation.

Casein micelles (particles with diameters in the range 60 – 300nm) in fresh skim milk can be

reassembled from acid casein in the presence of calcium phosphate (Mounsey et al., 2005). Re-

micellisation of casein in this way confers different functionality on the protein while maintaining the

ability of the milk to form gels on the addition of the enzyme chymosin, commonly used in cheese

making.

Liposomes are another example of micelles and can be used to encapsulate both water and lipid

soluble compounds (Taylor et al., 2005).The dissolution of fat-soluble nutrients in water-based drinks

is one of the key applications of liposomes.Table 2.2 provides an example of one such encapsulating

vehicle that can be used to encapsulate nutraceuticals for oral delivery. Examples of current research

into the use of liposome technology in food is the encapsulation of enzymes, lactic acid bacteria

extracts and/or antimicrobials for accelerated cheese ripening. Liposomes can be produced to

differing sizes (10 – 500nm) and engineered to have different stability and/or surface charge under

different environmental conditions. Development work utilising this technology is already ongoing in

Ireland at Moorepark Food Research Centre, using liposomes as agents to accelerate cheese ripening.

Liposome technology can be used potentially to target specific sites within a food product for

enzymatic degradation.
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2.2.2 Nanofibrils/Nanotubes
Recent research has demonstrated that many globular food proteins, including the whey proteins

(alpha-lactalbumin, beta-lactoglobulin) and bovine serum albumin, can self-assemble into fibrils (“nano-

fibrils”) at high temperature and low pH. Nano-fibrils typically have a diameter of ~ 5nm and lengths

of up to 15µm. Under appropriate conditions, alpha-lactalbumin can be partially hydrolysed by

protease enzymes from Bacillus licheneiformis (Graveland-Bikker and de Kruif, 2006). When this

partially hydrolysed protein is exposed to calcium ions, the formation of linear nanotubes is triggered.

Alpha lactalbumin nanotubes have good thermal stability and can be subjected to dehydration

processes such as freeze-drying for prolonged storage.The transparent gel network formed by these

nanofibrils may have many uses in the agrifood sector as a thickening agent. At the time of publication

of this report, the nanotubes described here have been the subject of research, but are not currently

used in food.

Table 2.2  Applications of Nanotechnology in Food – Examples of Products
Currently on the Market (non-exhaustive list)

Product Example Nanomaterial or Application Area
Technology Used

MesoSilver

MesoGold

MesoCopper

MesoPlatinum

MesoPalladium

MesoIridium

MesoTitanium

MesoZinc 

Colloidal Silver
Cream

Colloidal Silver
Liquid

Nano Silver
dispersion

Synthetic Lycopene

OilFresh

Nanoparticles of silver
or gold

Copper

Platinum

Palladium

Iridium

Titanium

Zinc

Nanosilver

Nanoparticles of
lycopene

Zeolite 

Food supplements

Silver nanoparticles have been incorporated
into different products from bandages to
refrigerators for suppressing the spread of
bacteria and other microbes (Nanosilver,
2004)

Nutraceutical

OilFresh is a device to keep frying oil fresh.
OilFresh uses zeolite, a mineral, in the form
of beads with an average diameter of 20
nanometers across, coated with an
undisclosed material 
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Table 2.2  Continued

Product Example Nanomaterial or Application Area
Technology Used

Aerosil

Titanium dioxide

Silicon dioxide

Silver

MultiSal™

Fabuless™

Nutralease

Canola Active Oil

Nanocalcium 
and Magnesium

Nanoceuticals Slim
Shake Chocolate

Durethan

Imperm

NovaSOL

Encapsome™

Silica Nanoparticles 

Nanoparticles

Nanoparticles

Emulsion

Nanoparticles

Nanoparticles

Nanoclusters

Nanoclay

Nanocomposites 
of nylon

Miceller organic
nanocapsules

liposomes (Micellar)

Used to increase flowability of powdered
ingredients

Packaging materials containing nanoparticles
of titanium dioxide, silicon dioxide or silver,
which increase shelf-life of food by modifying
mechanical and heat resistance properties,
and developing antimicrobial and antifungal
surfaces

Delivery system for active ingredients 
(water and fat soluble)

A nanoemulsion that delays digestion until
lower regions of the small intestine,
stimulating satiety and reduce food intake

Enhances the solubilisation and bioavailability
of nutrients

Canola oil fortified with free phytosterols to
reduce cholesterol levels

Mineral supplement with increased
bioavailability

Slimming drink using nanoclusters to
enhance flavour without the need for added
sugar 

Transparent plastic film (called Durethan)
containing nanoparticles of clay to block
oxygen, carbon dioxide and moisture from
reaching the food

Nanocomposites embedded in plastic beer
bottles that give a six month shelf-life to
beer

Delivery system for hydrophobic substances

Nanoparticles capable of carrying both
water-soluble and oil- or fat-soluble
compounds within a single particle
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2.2.3 Nanoemulsions
Nanoemulsions are emulsions which are thermodynamically stable compared to conventional

emulsions under a range of different conditions.This is due to their small size (typically 50 to 500nm

compared to 1200nm) and monodispersivity. They can be diluted with water without changing the

droplet size distribution. The type of surfactant used to formulate a nanoemulsion is critical to the

stability of the final emulsion. Preparations of nano-emulsions can be used to encapsulate functional

food components at oil/water interfaces, or throughout the continuous phase of the system (Weiss

et al., 2006).

The applications of nanoemulsions include:

• delivery of active compounds in the body

• stabilisation of biologically active ingredients

• extended shelf-life due to increased stability

• increased viscosity at lower concentrations of oil phase.

Research has shown that stabilised mono-dispersed oil-in-water (O/W) or water-in-oil (W/O)

nanoemulsion systems can be used for controlled release of nutraceutical and other bioactive

components in food (Weiss et al., 2006).The technology has been combined with advanced processing

technologies to develop novel microencapsulated products that allow controlled release of food

bioactives in the gastrointestinal tract. These products may be either ready-to-drink or powdered

formulations fortified with functional ingredients from a wide range of sources. Process technologies

such as ultra high pressure homogenisation and micro-fluidisation have been used to create stable

mono-dispersed O/W or W/O nanoemulsions for the uses described.

The physical properties of nanoemulsions such as rheological and microstructural properties, phase-

separation behaviour and stability in food products is significantly different to those found in emulsions

manufactured using standard emulsification techniques. Incorporation of plant-derived nutraceuticals,

e.g. plant sterols, lycopene, limonenes, CoQ10, and protein-based bioactives into the oil phase (O/W

emulsions) or water phase (W/O emulsions) has already been successfully carried out using this

technology. One food company has produced a nanoemulsion (Table 2.2) which is not digested until

it passes to the lower regions of the small intestine where it stimulates satiety signals in the brain to

tell the body that food intake can be reduced. Because of their small particle size, nanoemulsions may

be used in the future in the development of low fat products due to the viscosity that is imparted at

low oil droplet concentrations.

Nanodispersions created by high pressure homogenisation and microfluidisation techniques have been

used to reduce the size of inorganic matter to a size which can be dispersed in aqueous solutions.The

technology can be used to create injectable versions of inorganic materials which can subsequently be

used in medical applications. Nanodispersions can remain in a stable suspension for a longer period

than larger particle based dispersions.
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2.2.4 Nanoclays
Nanoclays are used to provide an impermeable barrier to gases such as oxygen or carbon dioxide in

plastic bottles, cartons and packaging films. Many products containing nanoclays already exist in the

market place. For example, one chemical company produces a transparent plastic film which contains

nanoparticles of clay (Table 2.2).The nanoclay particles are dispersed throughout the plastic and are

able to block oxygen, carbon dioxide and moisture from reaching fresh meats or other foods. The

nanoclay also enables the plastic to be made thinner, lighter, stronger and more heat resistant. Similarly,

there is a US patent for nanoscale films that have been used as coatings. The coatings, made from

oxides of silicon or titanium, are anitmicrobial and can increase the life of many manufactured foods,

even after they are opened.

2.3 Research Trends in Nanotechnology and Food
2.3.1 Food contact materials including packaging
Applications of nanotechnology under research for use in packaging include: gas/UV barriers, foils

(mechanically and temperature reinforced), nanoclays, nanoparticles, nanopolymers, composites,

nanocavities and strings. These and similar technologies can provide packaging solutions with

functional properties of benefit to the consumer and/or the manufacturer. Promising developments

have also been made in the area of antimicrobial, breathable and multifunctional packaging. Packaging

which can release nanoscale antimicrobials, antioxidants and/or flavours to increase shelf-life and

sensory characteristics have already been developed (LaCoste et al., 2005).

Nanosensors are being developed for the purpose of detecting chemical contaminants, viruses or

pathogenic bacteria in food systems. Examples of nanosensors include particles, engineered at the

nano scale, to attach to pathogens or other contaminants which are then selectively identified by

fluorescence or magnetic devices. The advantage of these systems is the ability to identify a wide

spectrum of pathogenic organisms using just one sensor.

Currently, the research on nanosensors is focused in two areas, 1) the development of easy to use

rapid biosensors for the diagnostic detection of pathogens/contaminants in the foods (including

medical foods) and their surrounding environment and 2) the incorporation of nanosenors into food

packaging materials for tracking, safety and biosecurity purposes.An example of the latter is triggered

colour changes on the surface of a packaging materials to indicate food spoilage. Extreme condition

packaging, nanocoding of plastics and paper materials for identification purposes, monitoring tagging,

trade mark and fraud protection, will improve supply chain efficiency. Research on such technology is

likely to continue as the need to maintain food quality during transportation increases.
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2.3.2 Targeted delivery systems
One of the many benefits of nanotechnology is the ability to alter or enhance the release of molecules

from food matrices. Increased bioavailability through delivery of nutraceuticals, bioactive, and inorganic

materials promises to be one of the major applications of nanotechnology in the agrifood sector. In a

recent report by the RIKILT Institute of Food Safety, Wageningen UR and the National Institute of

Public Health and the Environment; Center for Substances and Integrated Risk Assessment in the

Netherlands (Bouuwmeester et al., 2007), the types of nanoparticles used as delivery systems have

been classified as shown in Figure 2.2

Figure 2.2  Classification of Nanoparticle Delivery Systems
(adapted from Bouuwmeester et al., 2007)

Encapsulated
Nanoparticles

Lipid-based
capsules

Polymer-based
capsules

Natural polymers
(e.g. albumin, collagen

alginates, gelatine, chitosan)

Synthetic polymers
(e.g. PLA, PLGA, PCL)

Nanoliposomes

Archaeosomes

Nanocochleates

Micelles

Nanospheres

Nanocapsules

Polymersomes

Micelles
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Research continues in this area and for example a system designed to release ingredients

consecutively has recently been developed. The manufacturers claim that the product (Table 2.2)

enhances the stability and bioavailability of nutrients and other ingredients by controlling their release

characteristics and prolonging their residence time in the oral cavity. The technology can be used to

prolong the sensation of flavour in the mouth.

Research is also underway to explore the use of nanoparticles in so-called interactive foods.This may

give consumers the ability to modify the characteristics of the food depending on their own nutritional

or organoleptic requirements, by controlling the release of ‘nanocapsules’ containing flavour/colour

modifiers and/or added nutritional elements, e.g. vitamins, which remain dormant in the food until

triggered by the consumer or retailer. Nanocapsules have been developed whose walls burst at

different microwave oven frequencies so the consumer can create new tastes or even colours.

2.4 Applications of Nanotechnology in Agriculture
As indicated in Chapter 1, the presence of nanoparticles in food as a result of accidental or deliberate

inclusion of nanomaterials in animal feed or as a result of environmental contamination, may be an

important route of human exposure.The current and potential applications of nanotechnology in the

food industry may equally be applied in the feed industry and some potential applications are briefly

outlined below.

2.4.1 Animal feed
In the short to medium term it is generally thought unlikely that nanotechnology will be used to a

significant extent in the development of animal feed ingredients, due to cost implications.What is more

likely is that nanotechnology products may enter animal feed through waste food or environmental

sources and possibly as additives following on from developments in the veterinary or human

medicines area. In these cases, the consequences of use of nanotechnology should already have been

comprehensively evaluated in the original use.

2.4.2 Other farm applications 
Farm applications of nanotechnology include more efficient and safe systems for the application of

pesticides, herbicides, and fertilisers, by better control of where and when they are released. An

example of this is provided by an environmentally friendly pesticide that incorporates nanomaterial as

a release mechanism for pest control agents and works only when inside the host. Nanomaterials in

the late stages of development include products that can detect and neutralise animal pathogens in

livestock before derived food products reach the consumer. Nanotechnology applications in

controlled environment agriculture include "smart" pesticide delivery, control of crops, animal health,

control of microbial and chemical contamination and complete plant health monitoring.
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Nanotechnology can also be used in agriculture to develop new tools for the treatment of diseases,

rapid disease detection, enhancing the ability of plants to absorb nutrients and other essential factors.

Smart sensors and smart delivery systems similar to the technology described above for food can be

useful to the agricultural industry to combat viruses and other crop pathogens. In the near future,

nanostructured catalysts will be available which will increase the efficiency of pesticides and

herbicides, allowing lower doses to be used. Nanotechnology may also protect the environment

indirectly through the use of alternative (renewable) energy supplies, and filters or catalysts to reduce

pollution and clean-up existing pollutants.

2.5 Nanotechnology and Water Purification
Nanotechnology can be used in water purification. A US company has developed 2nm diameter

aluminium oxide nanofibres as a water filtration aid, while a product containing lanthanum

nanoparticles can absorb phosphates from aqueous environments. Research at the Centre for

Biological and Environmental Nanotechnology (CBEN) has shown that nanoscale iron oxide particles

are extremely effective at binding and removing arsenic from groundwater.

2.6 Conclusion on Current Applications of Nanotechnology in Food
Many examples of nanoparticles with targeted release capabilities and functionalised packaging, with

potential uses in the agrifood sector, have been identified in the marketplace. Of these, probably the

most widespread actual or potential use is incorporation of nanoparticles into food packaging and

food contact surfaces. Nanosized particles of titanium dioxide, silver and clay are being used in

packaging and other food contact materials and the potential of these particles to migrate into foods

should be investigated.

The report identifies that currently there is no known direct use of complex organic nanoparticles

such as carbon nanotubes in foods. Furthermore, nanomaterials present in foods that are currently

available on the market, mostly through internet trading, are mainly in the form of nanoscale

encapsulated functional ingredients.

The potential benefits of using nanotechnology in food include the ability to monitor the quality of

food, and its surrounding environment, through the use of nanosensors.Antimicrobial biosensors and

controlled release technology may provide new approaches to food safety in the future. New textures

and flavours may be realised with “release on demand” functionality. It is the responsibility of the

manufacturer to ensure that products utilising nanotechnology in food or food contact surfaces

comply with applicable legal and regulatory requirements (see Chapter 5), while Governments and the

scientific community must provide reliable mechanisms for regulating the use of nanotechnology in

food.
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3.1 Introduction 
Nanoparticles encompass the full range of traditional material classes, including all forms of metals,

polymers, ceramics and biomaterials. The development of ever-smaller particles presents major

challenges, mainly because of difficulties in characterising the reliability, comparability and

reproducibility of materials on this scale. In response to these difficulties, a new and emerging

subdiscipline of metrology has begun to evolve. Nanometrology, as it has become known, is defined as

the ability to conduct measurements at sub-100nm dimensions and to fully characterise the nature of

these novel materials.

3.1.1 Nanometrology
Without reliable methods of measurement, it is impossible to determine human or animal exposure

via food or feed (see Chapter 4.4). Of specific importance therefore in relation to the food and feed

sector and to any potential regulatory framework is the determination of the physiochemical

properties of nanoparticles and their measurement in food. Such properties include:

• particle size 

• particle distribution

• surface area

• surface charge and topography

• composition and purity

• hydrophobicity and solubility

• chemical reactivity and bioactivity

• dispersion/aggregation state.

Particularly important among these properties are particle size and distribution, surface area and

aggregation state. Normally, nanoparticle samples contain a range of particles, both larger and smaller

than the mean or median value, which is often the figure actually quoted as the particle size. Figure

3.1 shows how the particle size may be distributed around the mean or median value in a Gaussian

distribution.As the particle size decreases, more molecules are present at the surface giving rise to a

larger surface to volume ratio or larger surface area for chemical interaction.

3. CHARACTERISATION OF NANOPARTICLES
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Figure 3.1  Typical Particle Size Distribution Curve for Silver (Ag) Nano-
powder Dispersed in Triton X100.The Silver Nano-powder is sold as having 
a Particle Size of <100nm.The Curve was Obtained using a Malvern
Instruments Zetasizer Nano
(courtesy of Dr G. Chambers, School of Physics, Dublin Institute of Technology)

Figure 3.2 shows a schematic of how the surface area changes as the particles become smaller.

Figure 3.2  Schematic of how the Surface Area Changes as the Particles
Become Smaller
(courtesy of Dr G. Chambers, School of Physics, Dublin Institute of Technology)
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The tendency of nanoparticles to aggregate, often as a result of the drying stage during the synthesis

process, is of particular importance to the characterisation of nanoparticles, as already indicated and

as shown in Figure 3.3. Aggregation is the process whereby small molecules or particles can come

together to form a secondary larger particle or cluster which is held together by one or more

molecular interactions such as Van der Waals forces or hydrogen bonds. This has considerable

implications for determination of the size and surface area of the nanoparticles, as well as for

determination of exposure.

Figure 3.3  Schematic of the Process of Aggregation of Primary Nanoparticles
to Form Larger Aggregated Particles 
(courtesy of Dr G. Chambers, School of Physics, Dublin Institute of Technology)

Primary Particle Partially Aggregated Aggregated

The perceived diameter increases with high degree of aggregation

Surface area decreases with increased aggregation
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distribution or changes in the
local environment can increase
the degree of interaction

As the degree of interaction
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interactions.
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Many characterisation techniques exist which can estimate or measure these properties. The

reliability, precision and accuracy of these techniques on the nanoscale are however often called into

question. In addition, environmental fluctuations, operator variation, and the lack of traceable

standards are further difficulties facing nanometrology and regulatory bodies.There is an urgent need

to establish calibration standards and protocols for the characterisation of nanoparticles. The ISO

TC229 Technical Committee on Nanotechnologies was established in 2005 to address these issues

and work is ongoing.

Most material characterisation techniques focus on the pristine particle (as-synthesised) in powder

form, following purification and/or drying. However, many applications of nanoparticles in food involve

complex environments, which can change the particle size, the aggregation behaviour, the dispersion

state, and several of the physical properties.Thus, a complete characterisation of the powder form may

not be relevant in terms of the nature of the particle as found in food.

Another aspect to be considered is the characterisation of the nanoparticles under a range of relevant

biological conditions, such as in complex food products, where they can interact with proteins, lipids,

sugars or other biomolecules. This may have consequences for the surface composition of the

nanoparticles and their aggregation behaviour, as the adsorbed proteins and biomolecules may have

different hydrophobicity, charge and charge distribution than the as-synthesised nanoparticles. The

adsorbed proteins and other biomolecules confer a “biological identity” (the biomolecule corona;

Lynch, 2006; Lynch 2007) to the nanoparticles, as it is these adsorbed molecules that are responsible

for the primary interaction with living systems.Additionally, the nanoparticles can alter the functioning

of the adsorbed biological molecules, e.g. enzyme activity, degradation and other properties, making

them more or less active than the unbound form (Palocci et al. 2007).A further set of characterisation

tests need to be performed on nanoparticles in biological matrices including food.3 The rest of this

chapter provides an overview of characterisation techniques for as-synthesised nanoparticles, i.e.

before interaction with biological molecules, and for nanoparticle-biomolecule complexes. It also

highlights the problems associated with the actual measurement of nanoparticles in biological matrices

such as food and body tissues.

3.2 Physical Characterisation Techniques and Issues
The techniques and instrumentation currently used for the physical and chemical characterisation of

nanoparticles, the majority of which could be adapted for use in food and feed, are summarised in

Appendix II, together with the properties of the nanomaterial that they are designed to measure. It

should be noted that the information provided in Appendix II does not represent a definitive list of

characterisation techniques and the instruments listed often require adaptation for nanoparticle

characterisation and specialist training. As a result, these instruments can often be expensive and

difficult for companies to justify economically.

3 Many of these issues are also relevant for nanomedicine, although here the point of first contact with biological material is
different, often being the blood stream. However, similar approaches to determining the biological identity of the particles can
be envisaged.
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Particular care must be taken when measuring aspects such as particle size and surface area as

nanoparticles are often highly aggregated and have very large particle size distributions, a fact that is

often overlooked or ignored when characterising nanoparticles.The sizes recorded are often only a

small fraction of the sample, rather than a true representation of the sample composition.A range of

techniques is commonly used to disperse nanoparticles, such as ultrasound sonication, dispersing

agents (common in food, e.g. emulsifiers), and milling. Even following these procedures, the dispersions

are often very polydisperse, and the surface may have changed, due to exposure of “fresh” surface due

to the breaking up of clusters.An important issue is to distinguish between the primary particle size,

which is typically on the nanoscale, and the cluster size due to aggregation, which may be either

nanoscale or micron scale (Figure 3.3).

3.3 Characterisation of Nanoparticles in Biological Matrices 
In considering the characterisation of nanoparticles in a biological environment, both the effect of this

environment on the nanoparticles and conversely, the effect of the nanoparticles on the environment

must be explored. Engineered nanoparticles, with their very large surface areas, adsorb biomolecules

to their surface immediately upon contact with natural substances (in the case of this report, food

and/or biological material in the mouth and digestive system) to form a biomolecule corona (Lynch,

2006; Lynch, 2007). These biomolecules include proteins, lipids and sugars, and it is these adsorbed

biomolecules that confer the biological identity of the nanoparticles, and determine how they interact

with living systems.

Many of the biophysical and biological techniques available to determine protein conformation and

activity can be applied to the characterisation of the nanoparticle-biomolecule complex (Lynch, 2006).

A list of techniques currently being used is presented in Appendix III, many of which could be applied

to/by the agrifood sector.Again, it should be noted that these tables are by no means a definitive list

of characterisation techniques and the instruments listed often require adaptation for nanoparticle

characterisation and specialist training.

The adsorption of biomolecules to the surface of engineered nanoparticles can affect their stability

and dispersion, and it is important to also characterise the dispersion properties of nanoparticles in

the relevant biological environment, e.g. in food. Many of the techniques listed in Appendix II can be

applied to the characterisation of the dispersion stability of the nanoparticle-biomolecule complex.
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An additional aspect of the adsorption of biomolecules to the surface of nanoparticles is the effect on

the conformation of proteins such as enzymes, and also on their function, stability, activity and

aggregation state, among other properties. There are a number of examples of enhanced enzyme

stability and function following adsorption to nanoparticles, for example, the lifetime of the enzymes

trypsin and peroxidase was shown to increase dramatically, from a few hours to weeks, by attaching

them to magnetic iron nanoparticles (Sharma, 2007). This ability to enhance protein stability by

interfacing them with nanomaterials may impact numerous biological processes such as digestion,

metabolism and nutrient uptake. These effects of nanoparticles need to be characterised and

measured, as discussed further in Chapter 4 (Section 4.2.2.3) of this report. Measurements of

enzymatic activity in the presence of nanoparticles should be studied as a priority, and many of the

techniques listed in Appendix III may be valuable for this purpose.

3.4 Measurement of Nanoparticles in Food and other Biological Matrices
The preceding paragraphs have shown that a wide range of physical and chemical techniques are

available to characterise nanoparticles, both in the as-synthesised form and as nanoparticle-

biomolecule complexes such as would occur in food matrices and upon ingestion. While these

techniques may be applied to carry out measurements of nanoparticles in the pure form, the

measurement and quantitation of nanoparticles in food, biological tissues and other biological matrices

presents considerable challenges, since suitable equipment and measurement strategies are not yet

available (SCENHIR, 2006, 2007).

Many food products also contain considerable amounts of naturally occurring nanoparticles, such as

proteins, silica or traces of titanium dioxide, which makes detection of added nanoparticles difficult,

as it rules out techniques such as elemental mapping where there are already significant background

levels. Techniques such as elemental mapping can only be applied to nanoparticles such as gold and

silver, which are not naturally present in foods or food packaging materials.

Measurement of particle mass of nanoparticles in the pristine form (as synthesised), is relatively

straightforward, while measurement of the surface area of a given mass of nanoparticles is more

difficult, as many of the current techniques do not distinguish fully between porosity and surface area,

e.g. nitrogen adsorption.An additional complication is, as already discussed, the very ready aggregation

of nanoparticles that occurs in biological media, resulting in larger particles, or even a gradual increase

with size as a function of time. Such aggregation makes it almost impossible to measure either particle

number or surface area in biological matrices. These technical difficulties in the measurement of

nanoparticles make it correspondingly difficult to measure the actual exposure in in vitro and in vivo

toxicological studies or in exposed humans for risk assessment purposes, as discussed further in

Chapter 4.
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3.5 Conclusions on the Problems Associated with Measurement and 
Characterisation of Nanoparticles

The characterisation of nanoparticles requires considerable care and there are many difficulties and

uncertainties, in particular with respect to particle aggregation, size, purity, and batch variations.The

characterisation is further complicated by the incorporation of nanoparticles into biological matrices.

This alters their properties and requires further characterisation beyond that of the pristine

nanoparticle. The adsorption of biomolecules to nanoparticle surfaces may have particular

consequences for nanoparticles in food. For example, absorbed enzymes may have enhanced or

reduced activity, resulting in altered efficiency of digestion and altered nutritional value of foods.

It is particularly important to distinguish between nanoparticles and nanoparticulate aggregates.

Nanoparticles that have been dried during the synthesis process are typically irreversibly aggregated,

and as such have dimensions on the micron scale. If the nanoparticles remain in suspension, upon

contact with biological fluids, their surface properties may be altered by adsorption of proteins and

other biomolecules, resulting in altered stability and aggregation. Nanoparticles need to be

characterised under the conditions in which they will be utilised.

While many methods exist to characterise as-synthesised nanoparticles, such as electron microscopy

and scattering methods, new methodologies are required urgently to characterise nanoparticles in situ

in food matrices and food contact materials. At present, it is not possible to distinguish between

background levels of nanoparticles and purposely added nanoparticles such as silica dioxide and

titanium dioxide. Nevertheless, the nanometrology area is rapidly developing, with a concerted effort

to develop standards and standard procedures for the characterisation of nanoparticles and

nanoparticle-based systems.
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4.1 Introduction
Typically, risk assessment consists of four components: hazard identification, hazard characterisation,

exposure assessment, and risk characterisation, as illustrated in Figure 4.1.All four of these stages are

essential to the process of risk assessment.A substance may be extremely hazardous, but have a small

exposure potential, and the risk may be small,whereas something that is of limited hazard but to which

exposure is high and/or over long periods may present a much greater risk. It is essential to

characterise both the nature of the hazard and the exposure.

Risks must be considered in the early stages of any new technology.The assessment of the potential

risks of nanotechnology to consumers using the conventional risk assessment model has already been

the subject of a number of expert reports, e.g. SCENIHR, 2006, 2007; SCCP, 2007; FDA, 2007; COT,

2005; BfR, 2007; Bouwmeester et al., 2007.The FSAI’s Scientific Committee has applied the framework

to the use of nanotechnology in the agrifood sector, as outlined in the following sections of this

chapter.The report focuses on risk assessment of nanoparticles following exposure via the oral route

of exposure since this is the relevant route in assessing the safety of nanotechnology in food. In

addition, the report has attempted to identify the limitations in traditional approaches to exposure

assessment and hazard characterisation of chemical risks when they are applied to nanotechnology,

and to suggest areas where research may be needed.

Figure 4.1  The Risk Assessment Model

4. RISK ASSESSMENT OF NANOPARTICLES 
IN THE FOOD CHAIN
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As discussed in Chapter 2 there are many applications of nanotechnology in the food and animal feed

industry that are either already in use or are subject to active research programmes. Prior to the

incorporation of nanomaterials into new and existing food and feed applications, their potential

toxicity and biological compatibility need to be investigated and the potential hazards should be

identified before their use becomes widespread (Smart et al., 2006). With an increasing number of

consumer and industrial products containing engineered nanoparticles, the risk of human exposure

increases and these materials may become a threat to human health and the environment

(Oberdörster et al., 2005).

4.2 Hazard Identification
As indicated in Chapter 2, the potential applications of nanotechnology in the agrifood sector range

from modifications of the natural (organic) protein, carbohydrate and fat molecules that form part of

the normal diet, to achieve added or altered functionality, to the use of inorganic nanoparticulate

materials in food packaging and food ingredients including food additives.The molecular nature of a

nanoparticle, e.g. inorganic or organic, and whether the molecule is naturally found in the body or not)

are key determinants of the potential hazards of the material, in addition to its physicochemical

characteristics such as shape, solubility, charge and chemical functionality. Properties such as particle

size and size distribution, agglomeration state, mass, chemical composition, surface properties, crystal

structure, surface area, surface charge and porosity may all be important for understanding the toxic

effects of nanomaterials (Maynard et al., 2006).As will be illustrated in the following paragraphs, these

characteristics influence how readily nanoparticles will be absorbed from the gastrointestinal tract

(GIT) and how rapidly they will be cleared from the body, in addition to influencing their toxicity.

In considering the hazard profile of a particular material in nano form, it can normally be assumed that

it will have similar hazards to the same material in a micro or macro form. If the corresponding micro

or macro material has an innocuous toxicological profile due to biological inertness and

biodegradability, the nanomaterial may similarly be predicted to be of low hazard. For example, it can

be argued that organic nanoparticles derived from substances occurring naturally in the body, such as

proteins and carbohydrates, are likely to be of low hazard, although the increased bioavailability of the

nano forms may have significant consequences in the body.The potential for increased allergenicity of

these macromolecules via alterations in protein or carbohydrate structure may also be of concern.

Essential nutrients may be rendered more bioavailable through the use of nanotechnology, with

consequent implications for Safe Upper Levels (SULs) and Recommended Daily Allowances (RDAs),

as discussed later in this report.
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On the other hand, inherently toxic materials such as particulate metal compounds (inorganic) 

can be anticipated to show similar or greater toxicity if produced in a nano form from which they can

solubilise (see section 4.2.1 on bioavailability and toxicokinetics). A body of evidence built up 

in in silico and/or in vitro models supports this premise and additionally indicates that many

nanoparticles show greater reactivity in such models (Meng et al., 2007; Papageorgiou et al., 2007; Singh

et al., 2007). In contrast, some studies have suggested that the nanoform may be less toxic than the

macroform. It has been reported, for example that selenium nanoparticles are less toxic to rats than

selenite or high-selenium proteins (Jia, 2005).

The same physical and chemical properties that make nanomaterials potentially useful for commercial

applications may be associated with potentially harmful effects on cells and tissues. Their increased

reactivity and their potential for unrestricted mobility make them appealing for delivery of boactive

molecules into poorly accessible compartments of the body such as the brain. There is however,

limited information available on the uptake, distribution and toxicity of nanoparticles (see Section 4.2.1

below), and it is recognised that nanoparticles can be toxic even if the bulk material is not due to

differences in bioavailability and reactivity (Owen, 2005).

The chemical reactivity of the surface area, including surface components, e.g. transition metals,

coatings, and the inherent toxicity of the chemical in question are particularly important. Properties

such as physical dimensions, surface charge and other factors determine whether a particle is able to

penetrate an organ or cell and if removal by phagocytes is possible. Nanoparticles on the same scale

as cellular components and larger proteins might evade the natural defences of the body. Together

with the solubility, this influences the retention time of particles.The longer a particle stays in contact

with cellular membranes, the greater the probability of a toxic reaction and damage (Royal Society,

2004; Smart et al., 2006).

In addition, as previously indicated in Chapter 3, immediately upon contact with natural substances,

e.g. biopolymers found in food, biological membranes such as those of the mouth and digestive system,

engineered nanoparticles will adsorb biomolecules including proteins, lipids and sugars to their

surface. It is these adsorbed biomolecules, referred to as the biomolecule corona (Lynch, 2006, 2007),

that confer the biological identity and potentially the toxicity of the nanoparticles, and determine how

they interact with living systems.The large surface area of nanoparticles allows a greater contact area

with cellular membranes as well as greater capacity for absorption and transport of toxic substances.

Assessment of the effects of nanoparticles on food components and their bioavailability therefore

needs to be considered. For example, binding of nutrients to nanoparticles could result in their

digestion being altered, or result in altered absorption into the body. At present, methods to

determine altered digestion in vitro could be applied, using approaches such as limited proteolysis, but

such research has yet to be reported in the scientific literature, and as such represents a knowledge

gap.
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4.2.1 The toxicokinetics of nanoparticles 
(Absorption/bioavailability, distribution, metabolism, excretion (ADME))

Section 4.2 on hazard identification has suggested that substances/materials in nanoparticulate form

may be as hazardous or more hazardous than the same substance/material in the micro or macro

form.The likelihood that this hazard will actually present a risk to human health and the environment

depends on (a) the potential for toxicity following exposure (see section 4.2.2) and (b) the potential

for exposure (see section 4.4). The toxicity of any substance is influenced by a number of factors

including its bioavailability, namely the amount of the substance absorbed by the body from the site of

first exposure, e.g. the lungs or the GIT. A key characteristic of nanoparticles, particularly insoluble

nanoparticulates, is that on a mass basis their bioavailability can be predicted to be higher than that of

the equivalent micro or macro form.This has been confirmed in a number of experimental studies

(Hecq et al., 2006; Kotyla et al., 2008).

To date, studies on exposure, absorption and bioavailability have focused on the inhalation and dermal

routes, and little is known about the toxicokinetic processes following oral exposure, particularly in

relation to ingestion of nanomaterials contained in food. Interest in the inhalation route of exposure

in part reflects the importance of this route in the occupational situation and the concern that

workers in the nanotechnology industries could be exposed to new hazards presenting long-term

risks to their health, leading to the suggestion that certain nanoparticulate materials could be as toxic

as asbestos (Poland et al., 2008). Studies have shown the importance of particle solubility, charge and

size in determining deposition and fate in the lung, as would be predicted (Kreyling et al., 2002, 2004;

Frampton et al., 2004, Oberdörster et al., 2005). Similar principles apply when considering exposure to

and uptake of nanomaterials by the dermal route. Nanotechnology may have particularly important

applications in the development of innovative cosmetics (SCCP, 2007) and uptake of nanomaterials via

the dermal route has been demonstrated (Ryman–Rasmussen, 2006; Xin-Rui et al., 2006, as reported

in SCCP, 2007).

The primary route of relevance to food safety is however the oral route, and discussion of the

toxicokinetics of nanoparticles in this report has therefore been largely limited to the oral route.

4.2.1.1 Absorption/uptake of nanoparticles from the gastrointestinal tract 

Little information is currently available concerning the uptake of nanoparticles from the intestinal tract

following oral exposure. Uptake occurs variously by passive diffusion across the mucosal cells, via

active transport mechanisms and intercellularly (O'Hagan, 1996). Nanoparticles can enter the GIT in

many ways, such as ingestion directly from food and water and from administration of therapeutic

nano-drugs. Inhaled nanoparticles can also be swallowed and enter the GIT following clearance from

the respiratory tract (Hoet et al., 2004). Particle uptake in the GIT depends on diffusion and

accessibility through mucus and contact with the cells of the GIT. The smaller the particle diameter,

the faster is the diffusion through GIT mucus to reach the cells of the intestinal lining, followed by

uptake through the GIT barrier to reach the blood.



Organic nanoparticles such as casein micelles are likely to behave similarly to their micro or macro

equivalents and can be predicted to be readily absorbed and highly bioavailable. One aspect that is to

date largely unresearched is whether higher molecular weight organic nanoparticles such as proteins,

fats or carbohydrates will be broken down to lower molecular weight entities in the GIT in the same

way as the native molecules, or whether they will be taken up intact. Insulin encapsulated in vitamin

B12-dextran nanoparticles has recently been shown to be taken up from the GIT without degradation

(Chalasani et al., 2007).

The intestinal uptake of inorganic, insoluble nanoparticles such as titanium dioxide and gold particles,

and also of insoluble polymers such as latex, has been described in several publications, e.g. Jani et al.,

1990; Florence, 2001; Hillyer and Albrecht, 2001; Hoet, 2004). On a mass basis, it can be predicted that

these insoluble nanoparticles will be more readily taken up across the intestinal barrier and hence be

more immediately bioavailable than their micro or macro equivalents. Uptake is largely determined by

particle solubility, charge and size (Jani et al., 1989, 1990, O'Hagan, 1996). Table 4.1 provides an

overview of a number of experimental studies that have demonstrated uptake of nanoparticles across

the GIT following oral administration.

Table 4.1  Uptake of Nanoparticles across the GIT following Oral Administration

Particle Type Particle Size Translocation/Distribution Reference

Titanium
dioxide

Gold

Polystyrene

C60 fullerenes

Nano Copper

Cationic
PAMAM 
dendrimers 

25 and
80nm

4, 10, 28,
and 58nm
given in
drinking
water

50nm
100nm
300nm
1000nm
3000nm

Not
available

23.5nm

Not
available

Böckmann et
al. 2000; Jani
et al. 1994

Hillyer and
Albrecht,
2001

Jani et al.
1990

Yamago et al.
1995

Chen et al.,
2007

Roberts et
al. 1996

uptake into the blood and movement 
to the liver

4nm particles were widely distributed to 
lung, heart, kidney, spleen and liver, with 
lower levels being found in blood and brain.
Levels of 10nm particles in these organs 
were generally 2-4 times lower than for 
the 4nm particles, while levels for the 
28nm particles were approximately 10 
times lower.There was little evidence 
of uptake of the 58nm particles

34% of 50nm particles and 26% of 100nm
particles were absorbed. Of the absorbed
particles 7% of the 50 nm and 4% of the 
100nm were found in liver, spleen, blood,
bone marrow. Particles greater than 
300nm did not enter the bloodstream

73-80% of oral dose found in liver

severe toxicological effects in liver,
kidney, and blood

three animals died after single oral
administration. Liver toxicity was observed after
multiple dosing (once a week for 10 weeks)
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Uptake of inert particles has been shown to occur trans-cellularly through the intestinal lining and
to a lesser extent between epithelial cells (Aprahamian et al., 1987; Hussain and Florence, 1997,
Hussain et al., 1998, 2001; Florence and Hussain, 2001).

4.2.1.2 Distribution, metabolism and excretion of nanoparticles following absorption from the

gastrointestinal tract 

To date, relatively few studies have investigated the uptake and disposition of nanomaterials by the

GIT, and most have shown that, dependent on size, nanoparticles either pass through the GIT without

uptake into the body and are eliminated rapidly (Oberdörster et al., 2005), or they cross the lining of

the GIT and enter the blood stream, from whence they relocate to other organs. Following uptake by

the GIT, gold nanoparticles of less than 50nm translocated to the blood stream and distributed all over

the body (Table 4.1; Jani et al., 1990). A recent study demonstrated that tissue distribution of gold

nanoparticles after intravenous (IV) administration was size dependent with the smallest (10nm)

particles showing widespread organ distribution (De Jong et al., 2008). As with absorption, the

distribution, breakdown and excretion of nanoparticles in the body will be dependent on

physicochemical characteristics such as solubility, charge and size.

Distribution/translocation of nanoparticles to body organs is expected to mirror that of their micro

or macro equivalents, with small water-soluble or fat soluble organic nanomaterials such as lipid

nanoparticles being widely distributed throughout the body. It can be anticipated that distribution and

breakdown of such nanoparticles into constituent molecules occurs rapidly and efficiently, with

subsequent clearance from the body. It is emphasised, however, that this supposition is based on

theoretical considerations and there is no experimental evidence to support this.A further area about

which little is known is the possibility of changes in physicochemical properties in moving to the

nanoscale, e.g. fat-soluble vitamins may become water-soluble either directly or by use of nano-

carriers, and vice versa.This, in turn, will lead to changes in the toxicokinetic profile of the vitamin or

other biologically-active molecule and potential cascade effects on cellular homeostasis.

These anticipated changes in bioavailability of biologically-active endogenous molecules, such as

vitamins and hormones, on moving to the nanoscale needs further investigation before the technology

is more widely introduced, as they have profound implications for concepts such as Safe Upper Level

(SUL) and Recommended Daily Allowance (RDA) for vitamins. The same applies to the Acceptable

Daily Intake (ADI) established for food additives and other food chemicals potentially found in food.
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Insoluble nanoparticles (primarily inorganic, but also including man-made polymeric materials such as

polystyrene and carbon-based nanoparticles such as fullerenes) can be predicted to have a more

restricted distribution. Following uptake from the GIT, nanoparticles can translocate via the lymph

system to the liver and spleen, as demonstrated for polystyrene nanoparticles of 100nm or less (Jani

et al., 1989, 1990). Smaller particles that are capable of being taken up by the villus epithelium (Jani,

1990, Hillery, 1994) may directly enter the bloodstream, and are then predominantly scavenged by the

liver and the spleen. A particular concern regarding the safety of nanoparticles is the possibility for

these small particles to evade the protective blood-brain barrier and enter the brain.This property

may be desirable and exploited in the case of delivery of therapeutic agents, but has significant health

implications in the case of insoluble nanoparticles such as polymers and metal compounds that would

not normally reach the brain in their micro or macro forms, as this may result in damage to this

vulnerable organ.

Insoluble but ultimately biodegradable polymeric nanoparticles such as chitosan, poly(lactide-co-

glycolide) (PLGA), gelatine and modified dextran are being explored as oral drug delivery systems and

potentially as delivery systems for food components.These materials will ultimately be broken down

into their constituent molecules and excreted, at a rate dependent on their physicochemical

characteristics. Relative persistence in the body, together with their potential for ultimate total

breakdown can be exploited to provide a slow release system, both for delivery of drugs and food

components.

In contrast, inorganic materials and non-biodegradable polymers such as titanium dioxide and

polystyrene will not be broken down. If these nanoparticles are bioavailable to any extent/are taken

up from the gastrointestinal system, there is the potential for accumulation in the reticuloendothelial

system of the liver and spleen and also, theoretically, translocation to other organs including the brain.

In addition, the potential for local toxicity in the GIT of non-bioavailable, non-biodegradable, orally-

ingested material must be considered.

4.2.2 Toxicity of nanoparticles 
4.2.2.1 Toxicity of nanoparticles in vitro and underlying mechanisms 

Much of the current knowledge concerning the potential toxicity of nanoparticles (nanotoxicology)

has been obtained from in vitro or in silico test systems and is suggestive of a common mechanism

underlying the toxicity of many nanoparticles.This may involve, in a three step process, generation of

reactive oxygen species (ROS) (Xia et al., 2006; Duffin, 2007), stimulation of an inflammatory response

and cytotoxicity (Brown et al., 2007; Foucaud et al., 2007). Xia et al., 2006 have suggested that

measurement of ROS generation and oxidative stress provides a valid test system to compare

nanoparticle toxicity. Although not all materials have electronic configurations or surface properties

to allow spontaneous ROS generation, particle interactions with cellular components are capable of

generating oxidative stress.
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These changes are typically also produced by micro particles and fibres, both inorganic and organic

(Bernstein et al., 2005; Cardinali et al., 2006; Donaldson and Tran, 2002). Historically, much of the

nanotoxicology data have originated from data on air pollution particles (Frampton et al., 2004,

Oberdörster et al., 2005). These particles have been studied both in vitro and in vivo, and have been

clearly demonstrated to be involved in human disease processes (Augur et al., 2006; Bai et al., 2006,

Donaldson et al., 2004; Pope et al., 2002).

In vitro studies with different types of nanoparticles (metal/metal oxide, titanium dioxide, carbon

nanotubes and silica) on various cell lines (lung and liver) have demonstrated oxidative stress-related

inflammatory reactions.The authors have postulated that this response is driven by the specific surface

area of the nanoparticle and/or its chemical composition (Ghio, 1999; Hussain et al., 2005; Lin et al.,

2006; Pulskamp et al., 2007; Singh et al., 2007).Typically, the biological activity of particles increases as

the particle size decreases. Smaller particles occupy less volume resulting in a large number of

particles with a greater surface area per unit mass and increased potential for biological interaction

(Oberdörster et al., 2005).

More recently, much of the fundamental data on model nanoparticles have been generated on non-

biodegradable, non- deformable spheres such as polystyrene and latex or, more recently, the carbon-

based nanomaterials such as fullerenes and carbon nanotubes (CNT). It should be noted however that

these materials do not reflect the typical profile for nanoparticles to be used in food industry

applications, as outlined in Chapter 2.

4.2.2.2 Toxicity of nanoparticles in vivo

Much of the data on particle toxicity have originated from studies on air pollution (Peters and Pope,

2002; Frampton et al., 2004; Oberdörster et al., 2005).The particles generated in air pollution episodes,

which include both micro- and nanoparticles, have been demonstrated to produce disease in animal

models exposed via inhalation, in addition to human disease. In relation to more recently characterised

nanoparticles, CNT have probably been the most extensively investigated and much of the in vivo

toxicity data in the literature relates to them (Huczko et al., 2001; Lam et al., 2004;Warheit et al., 2004;

Shvedova et al., 2005). Nearly all in vivo studies on CNT have found histological evidence of

inflammation and granuloma formation in rodent lungs. It should be noted however, that in the

majority of these in vivo experiments, intratracheal administration of a single dose was directly

introduced to the trachea or pharynx of anaesthetised animals resulting in a less realistic exposure

scenario than natural inhalation. In addition it is well recognised that toxicity of CNT is hampered by

their tendency to aggregate, and the observed results might be related to overload conditions.
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Inhalation of ultrafine particles has been linked to thrombotic (blood clotting) effects. Radomski et al.

have demonstrated that mixed carbon nanoparticles and nanotubes (both MWCNT and SWCNT),

were able to induce platelet aggregation in vitro and, in addition to accelerate the rate of vascular

thrombosis in the rat carotid artery (Radomski et al., 2005). Carbon nanotubes have also been shown

to activate the human complement system via both classical and alternative pathways (Salvador-

Morales et al., 2006). Recently, however, PLGA nanoparticles conjugated with alendronate were shown

to have an acceptable degree of haemocompatibility following IV administration, suggesting that this

material may hold promise as an IV drug delivery tool (Cenni et al., 2008).

There are few in vivo studies involving routes of administration other than inhalation, and those that

have been reported mainly involve the dermal and IV routes of administration, reflecting the potential

promise of nanotechnology in cosmetic and drug delivery applications. The studies that do exist in

relation to uptake of nanoparticles via the digestive tract are generally on polymer-based soft

(biodegradable) micro- and nanoparticles designed for therapeutic applications such as drug delivery.

However, the same general principles that influence the potential toxicity of such ploymers, such as

particle size, particle shape, and particle surface (including the biomolecules adsorbed to the surface)

will also apply to inorganic and engineered nanoparticles.

Experimental studies involving oral exposure to nanoparticles have been conducted using copper

nanoparticles (Chen et al., 2006b; Chen et al., 2007) gold nanoparticles (Hillyer, 2001), PMMA

nanoparticles (Araujo, 1999) and chitosan nanoparticles (Loretz, 2007). The distribution of copper

nanoparticles in different organs of mice after a single dose oral exposure suggested that the main

target organs are kidney, blood and, in particular, liver (Chen et al., 2007).A comparison of the toxicity

of copper nanoparticles (23.5nm), micro-copper particles (17µm) and cupric ions (CuCl2·2H2O) to

mice exposed via oral gavage resulted in the classification of nano and ionic copper particles as class

3 (moderately toxic), and micro-copper as class 5 (practically non-toxic) on the Hodge and Sterner

Scale (Chen et al. 2006b). Copper nanoparticles induced severe toxicological effects and organ toxicity

in kidney, liver and spleen of experimental mice, but micro-copper particles did not, on a mass basis.

Reflecting the results of the in vitro studies, an inflammatory response to nanoparticles has frequently

been observed in vivo, related to the tendency of nanoparticles to induce ROS (Xia et al., 2006; Duffin,

2007) which is a key step in the induction of an inflammatory response. Experimental studies have

shown that the extent of inflammation in vivo is a function of the surface area dose instilled (not of

the mass dose instilled). Low-toxicity nanoparticles including inert polymeric materials such as

polystyrene nevertheless have a high surface area, and are relatively inflammogenic.These approaches

present the possibility of measuring the potential toxicity of nanoparticles based on the inflammatory

response of a given instilled surface area dose (Duffin, 2007).
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On the other hand, there are also cases reported of nanoparticles having anti-inflammatory

properties, such as certain cerium oxide nanoparticles (Tsai, 2007) and silver nanoparticles (Bhol and

Schechter, 2007). Nanocrystalline silver (NPI 32101) has been demonstrated to have antimicrobial and

anti-inflammatory properties and was found to reduce colonic inflammation following oral

administration in a rat model of ulcerative colitis, suggesting that nanosilver may have therapeutic

potential for treatment of this condition (Bhol and Schechter, 2007). It would appear that no generic

assumptions can be made regarding the toxicity of nanoparticles.

In considering the effects reported in the paragraphs above, indicating an enhanced toxic potential of

nanoparticles compared with macroforms of the same material, it should be recognised that these

data on nanoparticles identified in air pollution and derived from experimental studies on CNT

nanoparticles and those derived from metals, metal oxides and polymeric materials, while providing

valuable information on the potential toxicity of nanoparticles and mechanisms of toxicity, are less

relevant for identifying the potential hazards of organic nanoparticles such as proteins and lipids.The

latter are the primary applications of nanotechnology in food, as outlined in Chapter 2, and many/the

majority are derived from endogenous compounds occurring naturally in the body.

4.2.2.3 Novel potential toxicities of nanoparticles and issues specific to food and digestion

One of the major uses of nanoparticles in food is likely to be nanoscale protein assemblies formed

from re-engineered proteins, e.g. use of protein fibrils as texture modifiers or structural elements in

foods (Graveland-Bikker and de Kruif, 2006). As already discussed, the common perception is that

these are natural as opposed to engineered nanoparticles and not likely to be a source of toxicity.

There is however emerging evidence that anomalous protein assemblies can themselves be a source

of toxicity, and/or could induce other proteins to aggregate/fibrillate. Preliminary evidence indicates a

potential role for nanoscale surfaces in modulating the rate of protein fibrillation (Linse, 2007), which

in turn indicates a need for further research into the effects of nanoparticulates on protein assembly

and aggregation. It should be emphasised that these studies were in solution, under non-physiological

pH conditions, and with single protein solutions, which do not represent the physiological conditions,

but rather are the standard conditions to study the mechanisms of protein fibrillation.The fact that

the large surface area presented by nanoparticles can modulate the fate of fibrillation of proteins

offers both huge potential for the modulation of food properties and textures, but may also raise

questions as to whether nanoparticles in food could inadvertently induce protein fibrillation in the

food (altering its properties) or following adsorption in the body. This is a question that requires

further research.

Interaction of nanoparticles with components of food is another aspect that may need consideration

and about which little is currently known. It is well recognised that the toxicity of many chemicals in

the diet is markedly influenced by the food matrix, and that the toxicity profile predicted from in vitro

tests or certain in vivo studies in animals will not necessarily be manifest when the same chemical is

administered in the diet.The same is likely to be true of nanoparticles in the diet.
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Additionally, possible change in the nanoparticles following passage through the digestive system,

absorption, distribution and clearance from the body must be taken into consideration. Depending on

the nature of the biomolecule corona (described in Section 4.2 as the proteins, lipids and other

biomolecules which adsorb to nanoparticle surfaces immediately upon contact, thereby coating the

nanoparticles and conferring a “biological identity” to the nanoparticles) and potential for enzymatic

digestion, the behaviour of the nanoparticles may alter, and there is the potential for novel toxicities

not anticipated from the properties of the non-coated nanoparticles or the adsorbed biological

material. Much can be learned about the potential biological impacts of nanoparticles from the nature

of their biomolecule corona, and a useful topic for further research would be the recovery of

nanoparticles from the digestive system and characterisation of their corona using the techniques

summarised in Appendices II and III.

Finally, an issue to be considered in relation to nanoparticles in food is the potential role of

nanoparticles in inflammatory digestive diseases. For example, Inflammatory Bowel Disease (IBD) is a

chronic disorder characterised by recurrent and serious inflammation of the GIT (Zhong, 2008).There

have already been reports that microparticulates may play a role in Crohn’s disease (Lomer, 2002),

making a potential role for nanoparticles likely. A recent study has shown evidence of micro- and

nanoparticulates (in the form of inorganic, non-biodegradable pollutants, i.e. micro- and nano-debris)

in 18 samples of colon tissues affected by cancer and Crohn's disease (Gatti, 2007). Vulnerable

members of the population may include those with pre-existing digestive disorders, which may

potentially be impacted by the presence of nanoparticles, although on the other hand nanoparticles

offer many potential routes to therapies for these same diseases.

4.3 Hazard Characterisation 
The hazard characterisation step in risk assessment involves assessment of the toxicity of a particular

agent, e.g. a nanoparticle, the nature of that toxicity and the information available on the dose:response

relationship. Section 4.2 has provided an overview of the potential toxicities of nanoparticles,

particularly of insoluble inorganic and non-biodegradable materials (which are however unlikely to be

of major relevance in terms of applications of nanotechnology in food). Determination of the

dose:response relationship for the potential toxicities induced by nanoparticles is however extremely

difficult at the current time, due to the problems associated with measurement of dose in either in

vitro or in vivo toxicological studies, as discussed in the following Section 4.4 on exposure.The hazard

characterisation step is therefore hampered by gaps in the knowledge base, and modification of the

traditional risk assessment model in this area may be necessary in carrying out risk assessments of

nanoparticles, particularly in in vivo studies.
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4.4 Exposure to Nanoparticles
4.4.1 Routes of exposure 
As illustrated in Figure 4.2, there are various exposure routes for engineered and natural

nanoparticles.The majority of the available data on exposure to nanoparticles relate to the inhalation

route (via occupational and environmental exposure and potentially via new drug delivery systems

involving nanotechnology) and the dermal route (occupationally, via cosmetics and skin care products).

Nanoparticles may additionally be injected into the body for therapeutic purposes.While the primary

focus of this report is on the oral route of exposure, via food, it is useful to summarise the state of

knowledge regarding inhalation and dermal exposure.

Figure 4.2  Possible Exposure Routes for Nanoparticles 

SKIN ENVIRONMENTAL

WATER AIR

FOOD
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In relation to inhalation exposure, nanoparticles may be inhaled in significant amounts via

environmental exposure (due to air pollution) or in workplaces during manufacture of nanomaterials.

Nanoparticles have been demonstrated to enter the body more readily than larger particles (Borm

and Kreyling, 2004). Particles of 100nm or less have the potential to be inhaled following their

suspension in air as a result of air pollution and during manufacture, distribution, use and disposal of

nanomaterials.Those in the range of 20-100nm will lodge primarily in the upper airways, while those

in the range of 10-20nm and below will enter the lung alveoli from where they may be translocated

to other sites in the body, depending on their physical and chemical characteristics including solubility.

They may interact with alveolar macrophages, resulting in clearance (removal by the immune system),

or they can enter the lung interstitum where they may make contact with fibroblasts, endothelial cells

and/or cells of the immune system (Oberdörster et al., 2005).A build up in the lung may occur, due to

macrophage toxicity and decreased clearance, with resultant inflammatory change and other lung

toxicity (Oberdörster et al., 2005).

The skin represents a major route of exposure to nanoparticles contained in cosmetics and skin care

products. Occupational and environmental exposure to nanoparticles may also occur, particularly

during manufacture of nanoproducts.The EU Scientific Committee on Consumer Products (SCCP), in

their scientific opinion (SCCP, 2007), state that “there is evidence of some skin penetration into viable

tissues (mainly into the stratum spinosum in the epidermal layer, but eventually also into the dermis) for very

small particles (less than 10nm), such as functionalised fullerenes and quantum dots, but that when using

accepted skin penetration protocols (intact skin), there is no conclusive evidence for skin penetration into viable

tissue for particles of about 20nm and larger primary particle size ….. Nanoparticles of 20nm and above

penetrate deeply into hair follicles, but no penetration into viable tissue has yet been observed.” Zinc and

titanium oxide particles, as used in cosmetics have already been shown to penetrate the stratum

corneum of rabbit skin (Lansdown and Taylor, 1997) and highest absorption has been shown to occur

from water and oily vehicles (Monteiro-Riviere et al., 2005).

4.4.1.1 The oral route of exposure

Oral exposure to nanoparticles can result from ingestion of nanoparticles in food (either as additives

or as re-engineered protein or lipid clusters, for example), or from food contact materials including

packaging where nanoparticles are proposed to have many uses (see Chapter 2). More indirect

exposure can arise from ingestion of food from animals such as fish and shellfish (i.e., molluscs and

crustaceans), that have taken up nanoparticulate matter, as part of the human diet. For example,

surface sediment- and filter-feeding molluscs are prime candidates for uptake of manufactured

nanoparticles from environmental releases, since the molluscs are already known to accumulate

suspended particle- and sediment-associated conventional pollutants (Galloway et al., 2002 and

Livingstone, 2001). It should also be noted that the specific use of nanotechnology in animal feed

production could potentially result in exposure of humans consuming animal-based products as part

of their diet. However, as already discussed in Chapter 2, there are currently no known applications

of nanotechnology in the animal feed industry, and consequently, human exposure via this route is

considered to be minimal at this time.
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Little is known to date about actual exposure to engineered nanoparticles from food (or other routes),

and even less is known about the likely future exposures. This is in part because measurement

techniques do not allow quantification of nanoparticles, either naturally present or added, in food as

described in Chapter 3. Also, as already discussed in Section 3.4, many food products contain

considerable amounts of anthropogenic (naturally occurring) nanoparticles, such as silica (or even

traces of titanium dioxide), which will make estimation of exposure to deliberately added nanoparticles

difficult.There are some data relating to exposure to microparticulates in food (i.e. particles in the size

range 200nm to 2000nm, which are usually considered as being too large to enter into individual cells).

Lomer et al. estimated that 1012–1014 non-biological, e.g. engineered, particles are ingested per

individual daily from the typical Western diet with an estimated uptake into the body of 0·1–1% (i.e.

109–1012 particles/d) (Lomer et al., 2002). These particles are mainly titanium dioxide (TiO2) and

particulate silicates (including aluminosilicates).The particles are naturally occurring as soil particles but

also are added to food, pharmaceuticals and toothpaste as microparticles (defined as 0·1µm < diameter

< 3µm). In practice, the microparticles observed in the intestinal mucosa are almost always <1µm

diameter.

4.4.2 Measurement of exposure to nanoparticles and derivation of a dose metric
Conventionally, measurement of exposure and consequently dose4 in toxicological studies or

estimation of human exposure via the diet and/or the environment is based on mass concentration,

i.e. exposure to a chemical at a level of mg/kg of food or parts per million (ppm) in air.The use of mass

concentration data alone for the estimation of the dose in toxicological studies with nanoparticles or

in humans following exposure to nanoparticles is regarded as inappropriate, and the number

concentration and/or surface area need to be taken into account (SCENHIR, 2007).This is due to the

fact that, as shown in Table 4.2 and Figure 4.3, these smaller particles occupy less volume, resulting in

a large number of particles with a greater surface area per unit mass and increased potential for

biological interaction (Oberdörster et al., 2005).

Table 4.2  Particle Size and Surface Area (after SCCP, 2007)

4 Estimation of dose is derived by measurement of the level of a “chemical” in food or the environmental milieu (air, water)
followed by an estimate of the amount of food or water consumed or air inhaled over a specified time in order to derive the
actual mass amount of chemical entering the body (the intake).

Particle Diameter (nm) Number of Particles per Total Particle Surface 
Gram of Material Area cm2/gram

1000 1.9 x 1012 60,000

100 1.9 x 1015 600,000

10 1.9 x 1018 6,000,000
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Figure 4.3  Illustration of the Small Mass: Large Surface Area Paradigm

Table 4.2 (after SCCP, 2007) shows that 1 gram of material composed of 10nm particles contains 1

million times more particles than the same material composed of 1,000nm (1µm) particles and the

surface area is 100 times greater. Since the toxicity of nanoparticles, particularly inorganic engineered

particles and carbon nanoparticles, appears to be primarily due to surface reactivity, obviously the

larger the surface area per unit mass, the more potential there will be for toxicity.

Measurement of particle mass is relatively straightforward and, as outlined in Chapter 3, there is a wide

range of physical and chemical characterisation techniques that can be employed to measure

nanoparticles, most of these being suitable only for the “as-synthesised” particle in powder form. It has

already been noted however that routine measurements of free nanoparticles in biological media, in order

to assess exposure and hence dose, is more difficult since suitable equipment is not yet available

(SCENHIR, 2006, 2007).Also, concentrations are often below the limits of detection for instrumentation

such as UV, or there is no parameter that can easily be measured, e.g. fluorescence. In some cases, e.g.

metallic species such as silver, there is elution of a chemical species from the nanoparticles that enables

detection, but this is not always the case. Characterisation of the relationship between exposure to

nanoparticles and biological response may be achieved by labelling of the nanoparticles with a fluorescent

dye followed by image analysis (Yan et al., 2007). Using this approach, it has been shown that silica

nanoparticles are rapidly taken up by a range of different cells (Figure 4.4) and estimates of uptake can be

made (Yan et al., 2007, Lynch, 2008, personal communication).
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Figure 4.4  Confocal Microscopy Image of Lung Epithelial Cells Showing
Significant Nanoparticle Uptake Following Exposure for 24 Hours to
Fluorescently Labelled 30nm Silica Dioxide Nanoparticles (red). Individual Cell
Nuclei are Stained Blue
(Courtesy of Dr I. Lynch, Department of Chemistry, University College, Dublin)

Measurement of the surface area of a given mass of nanoparticles is also difficult, as many of the

current techniques, e.g. nitrogen adsorption, do not distinguish fully between porosity and surface

area.An additional complication is the very ready aggregation of nanoparticles that occurs in biological

media, resulting in larger particles, or even a gradual increase with size as a function of time. Such

aggregation makes it almost impossible to measure either particle number or surface area and to

estimate the actual exposure dose in in vitro and in vivo toxicological studies or in exposed humans.

While the most meaningful dose metric for use in assessing the risk of nanoparticles is probably (in

many cases) surface area and/or particle number, in practice it is recognised that these are extremely

difficult to measure on a routine basis. New approaches need to be developed to their identification

and measurement or, alternatively, nanoparticles need to be specially adapted for specific studies (such

as the fluorescently labelled silica particles used in the studies reported above). This is one of the

major problems facing the scientific community in assessing the potential risks of nanoparticles.

Additionally, effects on nanoparticle aggregation and/or release from the food matrix during digestion

need to be considered, and there are no approaches to address these at present.

It should also be noted, as previously reported by the EU Scientific Committee on Consumer

Products (SCCP, 2007), that there are also research reports in which the relationship between size,

surface area and toxicity is not consistent and it is not always possible to predict effects on the basis

of size or surface area alone (Warheit et al., 2007;Yin et al., 2005).
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4.5 Risk Characterisation 
Risk characterisation as part of the traditional risk assessment model involves a review of the

identified hazards or toxicities, the dose or exposure level at which toxicity is or is not seen and a

comparison of this level with the estimates of human (or environmental) exposure resulting from the

exposure assessment.

A summary of what is currently known regarding the hazards posed by nanoparticles has been

provided in section 4.2 of this chapter. Several of the risk assessment challenges posed by

nanoparticles have been highlighted, including their large surface area, their potential to induce

oxidative stress, their interactions with biomolecules such as proteins and DNA. Although in vitro

studies with a range of particles, in particular inorganic and other non-biodegradable particles have

shown that particles can be inherently toxic, few in vivo studies have been carried out, particularly using

the oral route of administration, to confirm that the potential in vitro toxicity is manifest in vivo. Based

on theoretical considerations, it is probably unlikely that the toxicity seen in in vitro cell systems will

be expressed in vivo in humans or experimental animals, due primarily to the lack of bioavailability of

many potentially toxic (inorganic) nanoparticles.These in vitro studies are also considered to have little

relevance for the risk assessment of the organic nanoparticles that are the major focus of research

into applications of nanotechnology in the agrifood sector.

Several models have been investigated for the identification of the hazard profile of nanoparticles, such

as the ROS model (Xia et al., 2007), the biomolecule corona model (Lynch, 2007) or the surface area

model (Duffin, 2007). More data are needed, especially in relation to characterisation of the risk posed

by nanoparticles in food.There are a range of additional factors that need to be considered in relation

to nanoparticles in food that would not be detected using classical toxicity tests, since the latter

measure very specific endpoints that may not be the only ones of relevance.

The specific hazard issues relating to food include (i) the increased bioavailability of nanoparticles

compared with the macroforms of the same material; (ii) the potential role of nanoparticle-induced

ROS in inflammatory digestive diseases such as IBS and Crohn’s disease (for which there are classical

tests which are also applicable to nanoparticles); (ii) the potential effects of nanoparticles on protein

and enzyme stability and functionality whereby the metabolic processes may be disrupted, and/or

nutrient bioavailability may be altered; (iii) the potential effects of storage, heating/and ageing on

nanoparticle-biomolecule complexes in food, and perhaps others as yet unrecognised.

There is limited knowledge concerning the bioavailability and toxicokinetics of nanoparticles following

exposure via the diet or the oral route.The size, shape and composition of particles will have a major

effect on their bioavailablity and toxicokinetics, as will their surface modification by, for example,

adsorption of proteins and other endogenous molecules, their surface charge, aggregation and rate of

dissolution or degradation.
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The exposure considerations outlined in 4.4 have shown that there are many gaps in knowledge

regarding exposure to nanoparticles via the food chain.The exposure metric is of major importance

in assessing the dose of nanoparticles producing toxicity (hazard characterisation) and hence the risk

of nanoparticles in the body as well as the environment, and to date there is no clear consensus on

how exposure to nanoparticles should be measured.

In relation to the possible risks of nanoparticles in food and feed, many food and feed ingredients are

comprised of biopolymers, e.g. proteins, carbohydrates and fats with sizes extending down to the

nanoscale. Consumers are therefore already exposed to natural nanoparticles in their diet, without

any recognised adverse effect. It can be generally assumed that natural ingredients/substances in the

human or animal diet such as lipids and proteins that have been produced either partially or wholly

by nanotechnology will be processed normally and catabolised in the body. These natural

ingredients/substances are unlikely to present a risk to health, even when the proportion of

nanoparticulate material in the diet is increased by nanoengineering production methods.

The nanoforms of natural ingredients/substances may however show increased bioavailability or be

able to penetrate to parts of the body normally inaccessible to the macro form. Increased

bioavailability of essential nutrients such as minerals and vitamins or the transformation of a normally

lipid-soluble molecule to a water-soluble form via nanoengineering may have profound effects for

cellular biochemistry and consequent perturbations of physiological processes.Anticipated changes in

bioavailability of biologically-active endogenous molecules such as vitamins and hormones on moving

to the nanoscale needs further investigation before the technology is more widely introduced, as they

have profound implications for concepts such as Safe Upper Level (SUL) and Recommended Daily

Allowance (RDA) for vitamins.The same applies to the Acceptable Daily Intake (ADI) established for

food additives and other food chemicals potentially found in food.

The lack of knowledge regarding the effect on pharmacokinetics and bioavailability of changes in the

physicochemical properties of normally inert and non-biodegradable materials such as inorganic

particles, e.g. titanium dioxide, and biological polymers in moving to the nanoscale is of particular

concern, since this will inevitably lead to changes in how they are handled in the body, with potential

cascade effects on cellular homeostasis. From studies conducted to date on the oral uptake and

distribution of such materials, it appears that their physicochemical properties including apparent

insolubility does not guarantee non-absorption of the nanoparticles from the gut.A range of studies

on uptake of nanoparticles from the GIT have demonstrated increased bioavailability of such

materials, but similar research does not appear to have been carried out to date for such particles in

a food matrix. Biopersistence of essentially insoluble nanoparticles following repeated/long term

exposure can be anticipated.
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Conclusion on risk assessment on nanoparticles in the food chain
In considering the possible risks of nanotechnology in the agrifood actor, it must be recognised that

the presence of nanoparticles in food is not a new phenomenon. People have always been exposed to

very fine particles in their diet, without harmful effects, since many food and feed ingredients are

comprised of proteins, carbohydrates and fats with sizes extending from large biopolymers

(macromolecules) down to the nanoscale. Even when food is consumed predominantly as

macromolecules, the natural digestive processes of the body reduce these to the nanoscale in order

to utilise the energy contained in the molecules for the maintenance of physiological processes.

There are however gaps in knowledge regarding the bioavailability of nanoparticles via the oral route,

their handling by the body, the methods that can be used to assess their toxicity and, in particular, the

metrics that can be used to assess exposure. It is therefore difficult at this time to arrive at a fully

informed assessment of the risk from nanoparticles in the food chain.Although the basic principles of

the existing risk assessment model can be applied to nano-based food and feed, current methods for

assessment of toxicity and quantification of exposure require some modification before they can be

applied with confidence for the assessment of nanotechnology in food.

A specific risk assessment for silver nanoparticles, which are finding increasing use as anti-microbial

agents, applying the traditional risk assessment model, has recently been published (Blaser, 2008).An

overview of this risk assessment, which focuses on silver released into the environment from

nanoparticles embedded in a polymer, is presented in Appendix IV of this report. Although this

assessment is not specifically relevant to the assessment of nanotechnology in food, it is nevertheless

of interest, since it does demonstrate that the basic risk assessment model can be applied to

nanoparticles in the same way as other hazards.
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5.1 Introduction
It is recognised that the application of nanotechnology may present new challenges in terms of safety,

regulatory and ethical considerations, while offering many potential benefits to manufacturers and

consumers (Chau et al. 2007).

In terms of current regulatory approaches in the European Union, it is generally considered that

potential uses of nanotechnologies in the food and feed area will be covered by the existing regulatory

framework, either by the principles of the general food law (EC 178/2002) or by specific approval

processes. Major gaps in existing regulations were not identified in a review undertaken by the UK

Food Standards Agency (FSA, 2006), but there is uncertainty in some areas as to whether a number

of specific applications of nanotechnologies would be picked up consistently, for example the

introduction of nanoscale preparations of existing food ingredients, or currently approved food

additives. As food and feed regulations are harmonised at EU level, any action to address such

uncertainties would need to be taken forward by the European Commission. A review recently

completed by the Commission has indicated that the existing EU legislation is broadly adequate to

cover potential risks of nanotechnology-based products, although in some areas, specific supporting

instruments (guidelines, test protocols, standards) may need to be developed and some provisions

clarified or adapted, in order to ensure the full effectiveness of the existing legislation in practice (EC,

2008).

Approval processes are in place for a large number of food ingredients and agents used in food and

feed manufacture and processing, including novel foods and novel food processes, food additives and

flavourings and food packaging materials.These agents must meet the requirements of the approval

system before being permitted for use, and it is anticipated that the majority of nanomaterials in food

will fall into this category. The following sections briefly outline the current applicable regulatory

framework.

5.2 Provisions of the General Food Law
Under general food law, “unsafe food” (as defined in Article 14, Reg. (EC) 178 of 2002) cannot be

placed on the market.

This requirement has been enacted in Ireland by three Statutory Instruments. S.I. No. 747 of 2007

European Communities (General Food Law) Regulations, 2007 covers retail food business

establishments and those processing food of non-animal origin. S.I. No. 910 of 2005 European

Communities (food and feed hygiene) Regulations, 2005 as amended by S.I. No. 387 of 2006, covers

food business establishments requiring approval engaged in the handling and processing of products

of animal origin and S.I. No. 335 of 2006 European Communities (Hygiene of Fishery Products and

Fish Feed) Regulations, 2006 covers food business establishments requiring approval and engaged in

the handling and processing of fish and shellfish.

5. LEGISLATION
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Similar provisions are applicable to packaging materials and requirements are laid down in Regulation

(EC) 1935/2004 which is enacted in Irish food law by the European Communities (Plastics and other

materials) (Contact with food) Regulations, 2007 (S.I. No. 587 of 2007).

The general hygiene provisions which apply to most food business operations are the European

Communities (Hygiene of Foodstuffs) Regulations, 2006 S.I. No. 369 of 2006 and, in the case of feed

business operators, the European Communities (Food and Feed Hygiene) Regulations, 2005 S.I. No.

910 of 2005. Under these regulations, there is a general obligation on food and feed business to carry

out their activities in accordance with HACCP principles.These include identifying the points in those

operations where food hazards may occur, and identifying and implementing effective measures to

control the hazards at these critical points.These obligations will apply to the use of nanoparticles in

food production and processing as they do to any other hazard identified in the food chain. It is

recognised however, that there is a need for risk managers, including food business operators, to be

made more aware of their responsibilities under food law in relation to the specific applications of

nanotechnology in the food and feed industries, and the difficulties that may be involved.

5.3 Novel Foods and Processes
Foods produced by the application of nanotechnology and/or containing nano-ingredients may be

considered as “novel foods”, falling within the scope of the novel food legislation and hence requiring

prior approval before placing on the market.The Novel Food Regulation (EC) No 258/97 applies to

foods or food ingredients that have not been consumed to a significant degree within the EU before

15 May 1997. In addition, Article 1. 2.(f) brings into the scope of this Regulation food and food

ingredients to which a new process has been applied that gives rise to significant changes in

composition or structure that in turn affect the nutritional value, metabolism or level of undesirable

substances. The FSAI is the competent authority for the enforcement of novel food legislation in

Ireland.

The review of the Novel Food Regulation is ongoing and in the proposed replacement legislation,

nanotechnology is specifically mentioned as an example of one of a number of emerging food

production processes that may require novel food authorisation prior to marketing. On February 6th,

2008, the Finnish customs authorities became the first in the EU to reject the import of a food

supplement on the basis that it breached the Novel Food Regulation. The product “Lypo-sphericTM

Vitamin C” from the USA was claimed, on the packaging, to provide increased bioavailability of vitamin

C due its encapsulation in liposomal nano-spheres.The Finnish authorities declared it a novel process

and, therefore, the product as a novel food as yet unauthorised in the EU.
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The novel food authorisation process requires that a safety assessment is carried out by a Member

State which is then reviewed by all other Member States.Where even one Member State objects to

the marketing of the novel food, an additional assessment is requested from EFSA prior to the

Commission drafting a Decision to authorise or reject the product.The safety assessment addresses

composition, nutritional value, intake, toxicology and allergenicity among other issues.While particle

size per se is not a criterion that could be used to determine the novelty of a food or food ingredient,

any effect on the composition, nutritional value, metabolism and intended use of a product could bring

particle size into consideration.

Where there is disagreement, Article 1.3 makes it possible for the Commission, in association with

the Standing Committee for the Food Chain and Animal Health (SCFCAH), to decide whether a food

or ingredient falls within the scope of the Novel Food Regulation.

Where new evidence comes to light, calling into question the safety of an authorised novel food, a

Member State may temporarily suspend its marketing and notify the Commission and other Member

States. The Commission will subsequently examine the veracity of the concerns and decide, in

association with Member States, the measures to be taken, if any.

In the event that a nano-ingredient falls outside the scope of the Novel Food Regulation, the general

safety articles of the EU Food Law Regulation (178/2002) would apply, which require that food placed

on the market is safe.

5.4 Food and Feed Additives
The use of food and feed additives in the EU is controlled by European Parliament and Council

legislation, which sets out lists of permitted additives, the foods in which they can be used, and

maximum levels of use. All permitted additives have been assessed for safety by the independent

Scientific Committees that advise the European Commission, a role now performed by EFSA. In

addition, each additive must comply with specific purity criteria laid down in corresponding European

Commission Directives. The criteria dictate the chemical structure and purity of each additive.

However, minimum particle size is only specified in the case of microcrystalline cellulose (E460 (i)),

while the specification for carrageenan (E407) limits the molecular weight distribution (which may

indirectly limit particle size).

As only the specifications for two additives limit the size of particles, it could be argued that in

principle there are potential gaps in the legislation with respect to the use of food additives in

nano-form. However, individual specifications may be amended at SCFCAH. Therefore, action

could be taken relatively quickly if it is deemed necessary that amendments were required to

address the issue of particle size, whether as a result of an assessment undertaken by EFSA, or

on the basis of information supplied by, or a request from, a Member State.
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Positive lists control the use of miscellaneous food additives, colours, sweeteners and smoke

flavourings in EU Member States.Any new nanomaterials would need to undergo safety assessments

by EFSA before they can be included on the relevant positive list and so be permitted to be used in

foods. For the majority of additives, specifications have also been elaborated for the material as used,

however as noted above, these currently only specify minimum particle size for two additives.

During recent negotiations in Brussels on the package of proposals to replace and update the current

legislation on food additives, flavours and enzymes it has been agreed that an additive should require

re-evaluation or re-approval if it is prepared in a form that is different from that originally assessed

and approved.A change in particle size (i.e. preparation in “nano” form) is given as an example of such

a difference. It is anticipated that these new Regulations will be adopted by the end of 2008 and will

come into force in all Member States shortly afterwards.

5.5 Food Contact Materials
This is the area where commercial applications of nanotechnology seem to be the most advanced, as

evidenced by the fact that EFSA has already published an opinion on the safety of a nanoscale silicon

dioxide coating (less than 100nm), to be used in plastic packaging behind an inner layer of PET plastic

to provide gas barrier properties (EFSA, 2007). In addition, a safety evaluation for a titanium nitride-

based nanoparticle to be used as a food contact material additive is currently being undertaken by

EFSA. Current controls in the area stem mainly from Regulation (EC) 1935/2004 on materials and

articles in contact with food, and those that might reasonably be expected to transfer their

constituents to food. It is considered that this legislation is sufficiently wide-ranging to regulate the

migration of nanoparticles into food from food contact materials.

Alternatively, where the nanoscale component might be intended to migrate into the food as part of

an ‘active’ packaging system, it must only do so to improve the shelf-life or to maintain or improve the

condition of the food. However, any change to the food must comply with EC provisions applicable to

food, and the packaging must be labelled as ‘active’.

Some materials and articles are subject to additional, specific measures, such as plastics,

ceramics and regenerated cellulose film, and different specific requirements may apply to

nanomaterials incorporated into these materials.

Whilst current legislation appears to be wide-ranging enough to cover products derived from

nanotechnology in general terms, it does not specifically differentiate between conventional chemicals

and those produced using nanotechnology. Draft proposals are currently being discussed that could

regulate, should the need arise, particular materials, such as those derived from nanotechnology, that

are not specifically covered by existing legislation.



F O O D S A F E T Y A U T H O R I T Y O F I R E L A N D

51

A further potential solution would be for the Commission to amend Annex I of European Regulation

(EC) 1935/2004 to require that all nanomaterials are subject to risk assessment.This would bring all

such substances within scope of the Regulation, regardless of the material into which they are

incorporated. This would also apply to those materials and articles not already covered by specific

measures already in place.

In addition to the above mentioned controls, urgent consideration needs to be given to the

control/fate of nanoparticles that are present in food contact materials intended to be recycled for

further food use.A Commission Regulation on recycled food contact materials (Reg. No. 282/2008)

has recently been adopted, which requires the authorisation of recycling processes following a risk

assessment by EFSA. Nano-particle-containing food contact material would fall under the scope of this

Regulation.
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The presence of nanoparticles in food is not a new phenomenon. People have always been exposed

to very fine particles in their diet, without harmful effects, since many food and feed ingredients are

comprised of proteins, carbohydrates and fats with sizes extending from large biopolymers

(macromolecules) down to the nanoscale. Even when food is consumed predominantly as

macromolecules, the natural digestive processes of the body will reduce these to the nanoscale in

order to utilise the energy contained in the molecules for the maintenance of physiological processes.

The applications of nanotechnology in food production reviewed in this report must therefore be

viewed against this background exposure to natural nanoparticles in the diet.

The potential applications of nanotechnology range from modifications of the organic (protein,

carbohydrate and fat) molecules that form part of the normal diet, to achieve added or altered

functionality, to the use of inorganic nanoparticulate materials in food packaging or as food ingredients,

including food additives. Nanotechnology is a new area of science and the advantages and limitations

of its use in the agrifood sector are not fully understood at this time.This brings with it new challenges

for food and feed safety due to the diversity of the technology behind nano-enhanced food products

in the market place.This report has sought to explore the applications of nanotechnology in the food

and feed industry, to characterise the current state of knowledge on the possible risks of nanoparticles

in food and to examine the existing regulatory framework on food safety in relation to its adequacy

to protect the health of consumers from such possible risks.

The report has identified that there are many potential applications of nanotechnology in the food and

feed industry. These range from minor modifications of natural food ingredients to enhance taste,

palatability and other properties, to more major modifications that may result in altered handling of

such ingredients in the body, including increased bioavailability of essential nutrients. Applications of

nanotechnology in agriculture such as pesticides and water purification may also impact on food

indirectly through residual presence in plant materials and water. It has been suggested that the

distinction between nanotechnology and non-nanotechnology in the food and feed industry should be

determined by whether the particular ingredient is man-made, i.e. "man-made components modified

at a molecular or super-molecular level", or natural.

Organic nanomaterials (nanoparticles of natural food ingredients), whether physically or chemically

constructed, are likely to be one of the main areas of interest in the agrifood sector in respect of

incorporation of nanotechnology into foods.The predominant food-related area for short term future

exploitability of nanoscience is food packaging, while, in the longer term, nanoscale research in foods

appears to be focused on ‘programmable’ release of organic nanoscale encapsulated food ingredients

or nutrients.The use of nanoscale technologies for alteration of food stability and texture is also of

current interest.

6. DISCUSSION
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This report has identified that currently there appears to be no direct use of complex inorganic

nanoparticles such as carbon nanotubes in foods. Simple inorganic molecules like titanium dioxide and

clay particles are being used in packaging and may have potential to migrate into foods. Nanomaterials

are present in foods that are currently available on the market, mostly through internet trading, mainly

in the form of simple nanoscale encapsulated functional ingredients.

The assessment of the borderline between nanotechnological manipulation of food and feed or

conventional food engineering will present considerable difficulties. An example is enzymatic

functionalisation, whereby an enzyme is used to modify a food structure to give it a new attribute.This

cannot be considered to be new technology, however, if the food structure presented for modification

is a nanoparticle encapsulating a non-organic compound, then this application will fall under the

definition of nanotechnological manipulation.There is a need for a clear and widely accepted definition

of nanotechnology that differentiates between the use of nanoscale technologies in food and feed

production and the actual inclusion of nanoparticles in food. It will be essential to establish systems

for the identification, categorisation and assessment of food and feed which is based on or has come

into contact with nanotechnology-based technologies.

A further aspect that may need consideration in relation to applications of nanotechnology in the

agrifood sector is the fact that nanoparticles in food will be exposed to a range of storage and use

conditions. For example, they could be used in products that are stored at low temperatures and then

heated for consumption.This may affect the nanoparticle stability within the food and also change the

properties of the biomolecules in the food, and potentially how these interact with the nanoparticles.

To date there is no literature dealing with this.

In relation to the possible risks of nanoparticles in food and feed, such particles are still largely an

unknown quantity in terms of how they will behave in the body.As already indicated, many food and

feed ingredients are comprised of biopolymers, e.g. proteins, carbohydrates and fats with sizes

extending down to the nanoscale. Consumers are therefore already exposed to natural nanoparticles

in their diet, without any recognised adverse effect.

There is limited knowledge concerning the bioavailablity and toxicokinetics of nanoparticles, following

exposure via the diet or the oral route.The size, shape and composition of particles will have a major

effect on their bioavailablity and toxicokinetics, as will their surface modification, e.g. by adsorption of

proteins and other endogenous molecules, their surface charge, aggregation and rate of dissolution or

degradation.
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While it can be generally assumed that natural ingredients/substances (such as lipids and proteins) in

the human or animal diet that have been produced either partially or wholly by nanotechnology will

be processed normally and catabolised in the body, the nanoforms may show increased bioavailability

or be able to penetrate to parts of the body that are normally inaccessible to the macro form.

Increased bioavailability of essential nutrients such as minerals and vitamins or the transformation of

a normally lipid-soluble molecule to a water-soluble form via nanoengineering may have profound

effects for cellular biochemistry and consequent perturbations of physiological processes. It may not

be appropriate to compare intake of such modified nutrients with existing safety- and health-based

threshold values that have been developed based on the natural form of nutrients and their natural

bioavailabilities.

The lack of knowledge regarding the effect on pharmacokinetics and bioavailability of changes in the

physicochemical properties of normally inert and non-biodegradable materials such as inorganic

particles, e.g. titanium dioxide, and biological polymers in moving to the nanoscale is of particular

concern since this will inevitably lead to changes in how they are handled in the body, with potential

cascade effects on cellular homeostasis. From studies conducted to date on the oral uptake and

distribution of such materials, it appears that their physicochemical properties including apparent

insolubility do not guarantee non-absorption of the nanoparticles from the gut.A range of studies on

uptake of nanoparticles from the GIT have demonstrated increased bioavailability of such materials,

but similar research does not appear to have been carried out to date for such particles in a food

matrix. Biopersistence of essentially insoluble nanoparticles following repeated/long term exposure

can be anticipated.

There is also limited knowledge concerning the intrinsic toxicity of nanoparticles.While a range of in

vitro screening tests designed to predict the toxicity of nanoparticles have been developed, few in vivo

studies in animals have been carried out, particularly via the oral route which is the only relevant route

for prediction of risks in food.There is an urgent need to develop predictive and validated tests that

can be used to screen for the potential hazards of nanoparticles. Nanoscale proteins formed from re-

engineered macromolecules are considered unlikely to be a source of toxicity but may form

anomalous protein assemblies or could induce other proteins to aggregate or fibrillate.This requires

further investigation.

Little is known about interactions of nanoparticles with components of food and potential effects on

toxicity, nor about the influence of possible changes in the nanoparticles following passage through the

digestive system, absorption, distribution and clearance from the body. The aggregation of

nanoparticles that has been observed under laboratory conditions, and which causes major problems

in the characterisation of the size and surface area of the particles, is as likely or more likely to occur

when nanoparticles are incorporated in a food matrix, food packaging or other applications.This has

profound implications when it comes to determining likely exposure via food and/or predicting

potential toxicity, based on extrapolation from in vitro tests or in vivo tests using routes other than

dietary exposure.
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The dose metric is of major importance in assessing the risk of nanoparticles in the body as well as

the environment.The use of mass concentration data alone for the expression of dose in toxicology

testing is insufficient, and the number concentration and/or surface area needs to be taken into

account, as well as the aggregation state as discussed above. There is a wide range of physical and

chemical characterisation techniques that can be employed to measure nanoparticles and the advent

of such techniques has accelerated research and advancement of applied nanotechnology. Equipment

that enables routine measurements in various media for representative exposure to free nanoparticles

is however not yet available.While the most meaningful dose metric for use in assessing the risk of

nanoparticles is probably (in many cases) surface area and/or particle number, in practice it is

recognised that this is extremely difficult on a routine basis. This is one of the problems facing the

scientific community in assessing the potential risks of nanoparticles.

This report has identified that, although the basic principles of the existing risk assessment model

can be applied to nano-based food and feed, in practice there are some gaps in knowledge regarding

the bioavailability of nanoparticles via the oral route, their handling by the body, the methods that

can be used to assess their toxicity and in particular the metrics that can be used to assess exposure.

At this point in time it may not be possible to produce a meaningful risk characterisation and

therefore such exercises are more focused at highlighting the possible issues and the areas that

require more research. Current methods for assessment of toxicological issues and quantifying

exposure require some modification before they can be used for nanoparticles. Until such time as

there is further knowledge concerning the many applications of nanotechnology and broad

international agreement concerning the approaches to be used in assessing the risks, each application

of nanotechnology in food and feed production and the wider implications of nanotechnology for the

food chain will need to be assessed on a case-by-case basis. As a consequence, risk management

approaches to foods resulting from nanotechnology will necessarily be precautionary.

In terms of the existing legal framework, current legislation does not contain specific provisions

on nanomaterials. The potential uses of nanotechnology in the food and feed area are however

covered either by the principles of general food law or by specific approval processes such as

those for food additives, food contact materials, novel foods, pesticide and biocide approval

systems. Indeed, specific controls on the use of nanotechnology in the production of food additives

are expected to be adopted at EU level by the end of 2008.
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A key issue is whether assessment of the risk of nanotechnology-based food and feed should be

primarily the responsibility of the food business operator or whether there should be a requirement

for a regulatory evaluation and approval system.The many potential applications of nanotechnology in

the food, feed and other industries could have the potential to swamp current regulatory approval

systems.This report considers that it would be a failure of “duty of care” for food companies intending

to introduce nano-sized food ingredients and/or to change the natural balance of particulate size to

achieve a new functionality, not to conduct an assessment of potential risk of the technology, given

that it is a legal requirement for food business operators to only place safe food on the market and

that safety must be demonstrable. At present, the lack of data regarding the safety of some

nanoparticles in food would imply that a full risk assessment should be conducted.

Food ingredients produced by nanotechnology that are covered by specific approval processes at EU

level, such as food additives and food contact materials, will require a re-evaluation (by the European

Food Safety Authority, via the centralised application system), where there is an existing authorisation

for the non-nanoform, but where presentation in the nanoform is expected to alter the behaviour of

the ingredient in the human body, e.g. in terms of toxicity, or bioavailability.Where a novel food has

been produced via the application of nanotechnology, this will similarly be expected to be evaluated

for its possible risk to health before being placed on the market.The issue of what percentage of a

food (for instance, 5%, 10% or 50%?) should be at nanolevel for it to be defined as having been

produced by nanotechnology must also be taken into account. In relation to food ingredients that are

considered to be natural ingredients in the human or animal diet but which have been produced either

partially or wholly by nanotechnology, e.g. lipid micelles or emulsions, this report considers, as already

indicated, that the responsibility for ensuring safety for consumers rests primarily with the food

business operator, based on an assessment of the possible risks and likely exposure patterns.

It is recognised however that implementation of these principles will be difficult in many areas, as

current methodologies for identifying hazards and evaluating risks may not necessarily fully allow the

specific properties of nanoscale substances to be taken into account. Scientifically, valid new methods

for assessing the use of nanotechnology in food are needed.
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The FSAI Scientific Committee has considered the current state of knowledge regarding the

applications of nanotechnology in the food and feed industry, the possible risks of nanoparticles in

food and feed and the existing regulatory framework on food safety in relation to its adequacy to

protect the health of consumers.

In relation to current and future applications of nanotechnology in the food and feed industry, the

Committee concludes that:

• nanotechnology has the potential to have a major impact on food innovation over the coming

decades, with many new applications foreseen in the agrifood sector for the benefit of

consumers and the environment

• nanoparticulate forms of natural food ingredients are the predominant area of current interest

to the agrifood sector, in respect of incorporation of nanotechnology into foods

• in the area of food research, food contact materials, including packaging, are most likely to

receive the greatest attention in the short term, while ‘controlled’ release of nanoscale-

encapsulated food ingredients or nutrients may be the focus in the longer term.The use of

nanoscale technologies for alteration of food stability and texture is also of current interest

• although the primary focus in food nanotechnology will be on endogenous organic molecules,

e.g. proteins, lipids, carbohydrates, non-degradable inorganic nanoparticles such as titanium

dioxide and clay particles are likely to be used in packaging and other applications and may

have the potential to migrate into foods

• although the deliberate use of other engineered, non-biodegradable nanoparticles such as

carbon nanoparticles, e.g. fullerenes and carbon nanotubes, in foods has not been reported,

they may inadvertently enter the food chain 

• foods containing nanomaterials are available on the global market, mainly through internet

trading. Regulatory controls on such products for personal use are recognised to be deficient,

and FSAI and other food safety bodies in Europe do not have full enforcement powers in

relation to them

• nanosensors are being developed for the purpose of food surveillance, including traceability.

Current research is focused on the incorporation of nanosensors into food packaging

materials for tracking, safety and biosecurity purposes and on the development of rapid

biosensors for the diagnostic detection of pathogens/contaminants in foods and their

surrounding environment.

7. CONCLUSIONS AND RECOMMENDATIONS
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In relation to the assessment of possible risks of nanoparticles in food and feed, the Committee

considers that a number of difficulties and gaps exist which hamper the application of current risk

assessment methodologies to the use of nanotechnology in food and feed production.These include:

• the lack of robust methods for the characterisation and measurement of nanoparticles in

food, feed and other biological matrices

• consequent difficulties in assessing exposure to nanoparticles and in ensuring metrological

traceability

• deficiencies in the knowledge base regarding the bioavailability and possible toxicity of

nanoparticles, and their behaviour at the cellular level

• an absence of standardised protocols for the assessment of the toxicological profiles of

nanoparticles in vitro and in vivo.

Some modification of current risk assessment approaches and methodology is therefore necessary, in

order to provide more informative characterisations of risk, although the basic model of hazard

identification, hazard characterisation, exposure assessment and risk characterisation would appear to

be adequate and applicable to nanotechnology.

In particular, the Committee considers that potential increases in the bioavailability of essential

nutrients resulting from the application of nanotechnology will require a reassessment of the

applicability of traditional threshold values developed for safety and health purposes.

The Committee also recognises that little is known concerning the potential for nanoparticles to

migrate into the environment following disposal and/or recycling of articles such as food contact and

other nanoparticle-containing materials. Nanoparticles released in this way may enter the food chain,

with consequent unrecognised exposure of consumers. In addition, nanoparticles may migrate into

foods from recycled packaging produced from material that contains nanoparticles.

The Committee concludes therefore that, until these issues are addressed and a standardised

approach is developed for the assessment of the possible risks of nanoparticles in food and feed, at

the level of the European Community and internationally, each application of nanotechnology in food

and feed production and the wider implications of nanotechnology for the food chain will need to be

assessed on a case-by-case basis.

On risk management measures, including the legal framework for ensuring food and feed safety, the

Committee considers that although current legislation does not contain specific provisions on

nanomaterials, potential uses of nanotechnologies in the food and feed area are broadly covered either

by the principles of the general food law or by specific approval processes such as those for food

additives, food contact materials and novel foods. Opportunities for strengthening the European

Community legislation have however been identified in this and other reports.
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The Committee also considers that, within this legal framework, it is the primary responsibility of food

business operators to assess the possible risks and take all necessary steps to ensure that food is safe

and healthy when applying nanotechnology in food or feed production, whether this involves

introduction of new nanoparticles into foods and packaging or merely manipulation of the size

distribution of natural food molecules in food matrices.

In relation to communication of information regarding the application of nanotechnology in food and

feed, the Committee identifies a need for risk managers, including food business operators, to be made

more aware of their responsibilities under food law in relation to the specific applications of

nanotechnology in the food and feed industries, and the difficulties that may be involved. The

Committee also recognises the importance of keeping consumers and the general public fully

informed regarding the applications of nanotechnology in food.

The FSAI Scientific Committee therefore recommends that:

• when applying nanotechnology in food or feed production, food business operators should

assess the possible risks and take all necessary steps to ensure that food is safe

• the FSAI should communicate with and advise food business operators in relation to their

responsibility to conduct risk assessments on all foods utilising nanotechnology

• to this end, FSAI should keep under review advances in the science of nanotechnology, risk

assessment approaches and the legal framework governing the application of nanotechnology

in food and feed

• the FSAI should promote the establishment of a publicly-accessible inventory of

nanotechnology-based food products and food contact materials, available both at European

Community level and specifically on the Irish market 

• where nanoparticles are incorporated in food or food packaging, EC labelling provisions

should require that such products are labelled to provide this information 

• legal provisions should be considered at EC level to ensure that food and feed ingredients

produced via the application of nanotechnology are specifically controlled to ensure that

where the properties are changed/re-engineered to the nanoscale, they should be re-evaluated

in terms of safety 

• urgent consideration should be given to whether additional controls are required on the

disposal and/or recycling of nanoparticle-containing food contact and other materials

• food surveillance programmes should include investigation of the potential for nanoparticles,

particularly inorganic molecules such as titanium dioxide and clay particles used in packaging,

to migrate into foods and also to be recycled in the environment and enter the food chain

indirectly.
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The Committee also recommends that research at national level, with application of targeted funding,

should urgently be undertaken to increase the reliability of the risk assessment of nanotechnology in

food, including on the following issues:

• the feasibility of establishing an inventory of food and feed products and packaging involving

the application of nanotechnology on the market in Ireland

• development of methods to ensure traceability of nanoparticles in the food chain and

procedures for the characterisation and measurement of nanoparticles in food

• methods for the safe and effective disposal of used, unused or waste nanoparticles 

• the bioavailability and fate of nanoparticles within the human body and animals 

• development of methods to investigate the potential toxicity of nanoparticles in vitro and in

vivo and the underlying mechanisms of nanoparticle toxicity

• the stability/lability of nanoparticles in various foods and their potential interactions with food

components.

Finally, recognising the importance of a coordinated national approach between Government

departments and national agencies on the evaluation of the impact of nanotechology, the Committee

recommends that the FSAI should initiate contacts with other such bodies, to inform them of the

FSAI’s work in this area and to ascertain whether similar initiatives are ongoing elsewhere.The FSAI

should also keep Irish industry informed of developments concerning the applications of

nanotechnology in food and the legal requirements governing such uses.
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ADME Absorption/bioavailability, Distribution, Metabolism, Excretion 

AFM Atomic Force Microscopy

CBEN Centre for Biological and Environmental Nanotechnology 

CDS Circular Dichroism Spectroscopy 

CFM Chemical Force Microscopy 

CNT Carbon Nanotubes

COC Committee on Carcinogenicity of Chemicals in Food Consumer Products and the

Environment (UK)

COM Committee on Mutagenicity of Chemicals in Food Consumer Products and the 

Environment (UK)

CoQ10 Coenzyme Q10

COT Committee on Toxicity of Chemicals in Food Consumer Products and the

Environment (UK)

DEP Diesel Exhaust Particles

DHA Docosahexaenoic Acid

DLS Dynamic Light Scattering 

DSC Differential Scanning Calorimetry

EDXS Energy Dispersive X-ray Spectroscopy 

EELS Electron Energy Loss Spectroscopy

EFSA European Food Safety Authority

EPA Eicosapentaenoic Acid 

EPR Electron Paramagnetic Resonance 

ESA Electroacoustic Sonic Amplitude

ESR Electron Spin Resonance 

FRET Fluorescence Resonance Energy Transfer 

FFF Field Flow Fractionation

FSAI Food Safety Authority of Ireland

FTIR Fourier Transform Infrared Spectroscopy

GIT Gastrointestinal Tract

GM Genetically Modified

HEK Human Epidermal Keratinocytes

IBD Inflammatory Bowel Disease

ICP-MS Inductively Coupled Plasma Mass Spectrometry

ITC Isothermal Titration Calorimetry

LEED Low Energy Electron Diffraction

MALDI Matrix-Assisted Laser Desorption Ionization

MFM Magnetic Force Microscopy

MMP-9 Matrix Metalloproteinase 9

MWCNT Multi-Wall Carbon Nanotubes

NIOSH National Institute of Occupational Health (USA)

APPENDIX I: ABBREVIATIONS
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NLC Nanostructured Lipid Carriers

NMR Nuclear Magnetic Resonance Spectroscopy

NPs Nanoparticles

NSLS Nano-sized Self-assembled Liquid Structures

O/W Oil-in-Water

PM10 Particles of 10 micrometres or less

PP Peyer’s Patches

QD Quantum Dots

USFDA US Food and Drug Administration

IL Interleukin

ISO The International Standards Organization

IV Intravenous

PCS Photon Correlation Spectroscopy

PET Polyethylene Terephthalate

PLGA Polylactide-co-Glycolide

PMMA Polymethyl Methacrylate

RFID Radio Frequency Identification

ROS Reactive Oxygen Species

RT-PCR Real-Time Polymerase Chain Reaction

SANS Small Angle Neutron Scattering

SAXS Small Angle X-Ray Scattering

SC Stratum Corneum

SCFCAH Standing Committee for the Food Chain and Animal Health

SCCP Scientific Committee on Consumer Products

SCENIHR Scientific Committee on Emerging and Newly Identified Health Risks

SEM Scanning Electron Microscopy

SERS Surface Enhanced Raman Spectroscopy

SLN Solid Lipid Nanoparticles

SMS Single Molecule Spectroscopy

SNOM Scanning Near Field Optical Microscopy

STM Scanning Tunnelling Microscopy

TEM Transmission Electron Microscopy

TiO2 Titanium dioxide

TIRF Total Internal Reflectance Fluorescence

TNF alpha Tumour Necrosis Factor alpha

ToF-MS Time-of-Flight Mass Spectrometry

W/O Water-in-Oil

XPS X-ray Photo electron Spectroscopy

XRA X-Ray Absorption

XRD X-Ray Diffraction 
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ADI
The amount of a substance present in food that

can be consumed daily for an entire lifespan

without appreciable risk.

Aggregate 
Larger particles formed through agglomeration

or aggregation of primary particles (the smallest

identifiable subdivision in a particulate system), in

which the various components are not easily

broken apart.

Agrifood Sector 
A term describing industries involved in the mass

production, processing, and inspection of food

and animal feed products made from agricultural

commodities

Antioxidant
A chemical which slows or prevents oxidation

(the reaction of substances and/or cell

components with oxygen in a process that can

lead to their breakdown). Oxidative stress can

damage cells.

Bioavailability
The amount of a substance/material absorbed by

the body from the site of first exposure, e.g. the

gastrointestinal tract, to reach the systemic blood

circulation and the rest of the body.

Biocide
A substance used mainly as an anti-microbial

agent.

Biomolecule
A chemical compound found in living organisms

and which is composed predominantly of carbon,

hydrogen, oxygen, nitrogen, sulphur and

phosphorus.

Biopolymer
Any polymer (a long repeating chain of atoms)

found in nature. Examples include starch, proteins

and DNA.

Biosensor
A sensor that incorporates a biologically active

interface, e.g. DNA, protein etc.

Carbon Nanotubes
nanoparticles consisting of one or several

graphene sheets rolled up to form a single- or

multi-walled tube.

Chemical Reactivity and Bioactivity
The chemical reactivity and bioactivity of a

nanoparticle that affects the particle stability and

dispersion properties as well as the particle’s

mobility in biological systems.

Colloid
a substance consisting of particles not exceeding

1µm dispersed in a fluid.

Crohn’s Disease
A chronic inflammation of the gastrointestinal

tract that can lead to cancer.

Dispersion/Aggregation State 
(see also “aggregate”)
The tendency of suspensions of nanoparticles to

aggregate, the process where small molecules or

particles can come together to form a secondary

larger particle or cluster.

Dose
The quantity of nanomaterial absorbed and/or

internalised into the cell.

APPENDIX II: GLOSSARY 
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Emulsion
A suspension of small globules of one liquid

within a second liquid.

Endogenous
A substance, e.g. protein, carbohydrate, lipid, that

originates from within an organism, tissue, or cell.

Encapsulation
A process in which particles or droplets are

coated to create capsules.

Engineered Nanoparticle
A material purposely synthesised or

unintentionally produced and having novel

functional properties exhibited on the nanoscale.

Fullerene (‘buckyball’)
A closed cage pure carbon molecule. The

smallest stable fullerene is the

buckminsterfullerene or buckyball which is

composed of 60 atoms of carbon and has a shape

similar to a hollow soccer ball or a geodesic

dome.

Granuloma
A small mass or nodule of chronically inflamed

tissue that is usually associated with an

inflammatory process or injured tissue, for

example as seen in Crohn’s disease, sarcoidosis

etc.

Hydrophobicity and Solubility
A term describing the degree of wettability of

nanoparticles, a property crucial in assessing the

biological impacts of the particle.

In silico 
An experiment performed via computer

simulation

In vitro
An experiment performed in a test tube or

culture.

In vivo
An experiment performed in a living organism.

Liposome
An oily, microscopic-sized capsule designed to

package and deliver biological cargo, such as

drugs, to cells in the body.

Macrophage
A large immune cell that envelopes invading

pathogens and other foreign material.

Metrological Traceability
The property of a measurement which relates a

result to a stated metrological reference through

an unbroken chain of calibrations or

comparisons, each contributing to the stated

measurement uncertainty. The stated

metrological reference may be a measurement

procedure, or a physical standard.

Micelle
An aggregate of molecules, where in an aqueous

solution the hydrophilic (water loving) head

regions form a protective barrier around the oil

containing hydrophobic (water hating) tail

regions in the micelle centre.

Mucosa
The moist layer that lines the mouth and

gastrointestinal tract.
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Nano-composite
A material that is created by mixing nanoparticles

into a base material.

Nanometre (nm)
One thousand millionth of a metre.

Nano-objects
The generic term of 'nano-object' includes

nanoparticles and their aggregation at nanoscale,

nano-systems, nano-materials, nano-structured

materials and nano-products

Nanoparticle
An ultrafine particle with at least one dimension

between 1 – 100 nanometers (nm).

Nanoparticle Purity 
Nanoparticle samples may contain a range of

impurities such as solvent residues and catalyst

particles (which can also be on the nanoscale).

These impurities vary considerably from batch to

batch and as a result characterisation of the

impurities can be time consuming and difficult.

Nanotechnology
The control of matter and processes at the

nanoscale, typically, but not exclusively, below 100

nanometres in one or more dimensions where

the onset of size-dependent phenomena usually

enables novel applications.

Nanotubes
A molecule that resembles a cylinder with at

least one dimension on the nanoscale.

Nanowires
An extremely thin wire with a diameter on the

order of a few nanometers (nm) or less.

Non-degradable Particles
Persistent particles that the body is not able to

break down.

Oxidative Stress
An imbalance between the production of reactive

oxygen and a biological system’s ability to readily

detoxify the reactive intermediates or easily

repair the resulting damage.

Particle Size 
A property affecting the stability, chemical

reactivity, opacity, mobility, and strength of many

materials and determination.

Particle Size Distribution
The distribution or range of particle sizes found

in a given sample. Normally nanoparticle samples

contain a range of particles both larger and

smaller then the mean value, which is often

quoted as the particle size.

Pesticide
A pesticide is any chemical or biological agent

used for control of plant or animal pests.

Pesticides include insecticides, herbicides,

fungicides, nematocides and rodenticides.

PET
Polyethylene terephthalate. A thermoplastic

material used to manufacture plastic soft drink

containers and rigid containers.

Polymer
A substance made of many repeating chemical

units or molecules. The term polymer is often

used in connection with plastic, rubber, or

elastomer.
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Quantum Dot
A quantum dot is a particle of matter so small

that the addition or removal of an electron

changes its properties in some useful way, e.g. it

might glow under UV light.

RDA
Recommended daily (or dietary) allowance, the

quantity of a particular nutrient which should be

consumed daily in order to maintain good health.

Reactive oxygen species (ROS)
Molecules which are highly reactive due to the

presence of unpaired valence shell electrons,

includes oxygen ions, free radicals and peroxides.

Safe Upper Level (SUL)
The upper amount of any particular nutrient that

a person could safely take for a lifetime.

Sensor
[Nanoscale] chemical, biological or physical

sensory points or system used to detect and

convey information about a given environment,

e.g. temperature, pH, location, or the presence of

diseased tissue.

Solubility
A term describing whether nanoparticles

dissolve in water and biological fluids, a property

crucial in assessing the biological impacts of the

particle.

Submucosa
The layer of loose connective tissue that

supports the mucosa and joins it to the bulk of

underlying smooth muscle.

Surface Area 
The surface to volume ratio of a particle or other

body. As the size of a particle decreases more

molecules are present at the surface, giving rise

to a larger surface to volume ratio or larger

surface area for chemical interaction.

Surface Charge
The electric charge present at an interface, for

instance on the surface of a protein in water.The

surface charge influences adsorption process at

the particle’s surface.
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APPENDIX IV: PHYSICAL AND CHEMICAL TECHNIQUES 
FOR CHARACTERISING NANOPARTICLES

Technique Property to be Measured

Rheology Elasticity, viscosity, shear, strain 

Dynamic light scattering (DLS) photon Particle size, distribution, aggregation and

correlation spectroscopy (PCS) hydrodynamic radius, zeta potential

Size exclusion chromatography Molecular weight, hydrodynamic properties 

Absorption spectroscopy Electronic nature of material 

Fourier transform infrared Vibrational energies and composition chemical

spectroscopy – FTIR identification

Luminescence spectroscopy Defects and impurities in samples 

(electro- photo- etc.)

Cyclic voltammeter, potentiometric Kinetic, thermodynamic and electronic 

and electrochemical techniques parameters, surface charge

Confocal laser scanning microscopy Topography, depth profiling, fluorescent imaging 

N2 Gas adsorption BET surface area, pore size distribution 

Raman spectroscopy and surface Vibrational energies and composition 

enhanced raman (SERS) and chemical identification 

Atomic Force Microscopy – AFM Surface topography and chemistry,

(and associated techniques, Magnetic grain size, electronic properties

Force Microscopy MFM, Chemical 

Force Microscopy CFM etc.)

Transmission Electron Microscopy – TEM Morphology size shape crystallographic

structure 

Scanning Electron Microscopy – SEM Topography, morphology, size distribution

Scanning Tunnelling Microscopy – STM 3-D surface topography, size, shape, defects,

electronic structure.

Acoustic attenuation spectroscopy Particle size and distribution agglomeration 

Electroacoustic sonic amplitude – ESA Particle size charge and zeta potential

Doppler micro electrophoresis Particle size charge and zeta potential

Electro acoustic spectroscopy Particle size charge and zeta potential 
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Techniques potentially in used in food sector requiring minimal adaptation for nanoparticles 

Specialised techniques which should be made available to food sector as nanoparticle use

increases 

Highly specialised techniques with reduced relevance to food sector but which could have

occasional needs as nanoparticle use increases 

Technique Property to be Measured

Energy Dispersive Xray Spectroscopy – EDXS Elemental analysis 

Field flow fractionation (FFF) Composite size, molecular weight

hydrodynamic radius 

Nuclear magnetic resonance Identification of structure and ID 

spectroscopy – NMR

Small Angle Neutron and X-Ray Structural information 

Scattering (SANS / SAXS)

X-Ray diffraction (XRD) Crystallographic information 

X-Ray absorption (XRA) Structural information 

Inductively coupled plasma mass Composition and mass

spectrometry (ICP-MS)

Scanning Near Field Optical Chemical specificity, orientation information 

Microscopy – SNOM 

Single molecule spectroscopy – SMS Charge separation, excited states,

and fluorescence efficiencies

Ellipsometry Surface properties, density uniformity and

anisotropy

Electron paramagnetic resonance (EPR) Chemical state, spin orientation 

or electron spin resonance (ESR) determination of G factor, kinetics 

Auger spectroscopy Chemical analysis and composition of surfaces 

X-ray photo electron spectroscopy XPS Chemical analysis of surface 

Mössbauer Chemical structure, and magnetic properties 

Electron energy loss spectroscopy – EELS Chemical composition bonding in crystals 

and at interfaces 

Electron Diffraction Geometry of gaseous molecules

Low Energy Electron Diffraction – LEED Characterisation of surface structures
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APPENDIX V: BIOPHYSICAL AND BIOLOGICAL
TECHNIQUES FOR CHARACTERISING NANOPARTICLES 

IN BIOLOGICAL ENVIRONMENTS

Technique Property to be Measured

Circular dichroism spectroscopy (CD) Secondary and tertiary structure of adsorbed

proteins

Differential scanning calorimetry (DSC) Secondary structure of proteins, protein

stability

Isothermal Titration calorimetry (ITC) Binding isotherms, numbers of proteins bound

per particle

Fourier-transform Infra-red spectroscopy (FTIR) Secondary structure of proteins

Total Internal Reflectance Fluorescence (TIRF) Protein orientation and spreading at surfaces

Enzymatic Assays Catalytic activity of adsorbed proteins

Phage display Libraries Amino acid sequences of peptides with surface

affinities

1D and 2D gel electrophoresis Identification of adsorbed biomolecules

Ellipsometry Amount of bound protein and thickness of

protein layer

Confocal laser scanning microscopy Visualisation of nanoparticle interaction with

cells

Limited proteolysis Fragmentation patterns of proteins, accessible

cleavage sites in adsorbed proteins

Raman spectroscopy and surface Thickness and structural arrangement 

enhanced Raman (SERS) of adsorbed protein layer

Atomic Force Microscopy – AFM

(and associated techniques Magnetic Force Volume and height of adsorbed proteins.

Microscopy MFM, Chemical Force Nanoparticle-cell interactions?

Microscopy CFM etc.)

Immunofluorescence screening Antibody binding to proteins as indicator of

concentration of adsorbed proteins

Electron Microscopy – TEM/SEM Cellular localisation of nanoparticles

Ribonuclease protection assays mRNA transcripts in complex mixture –

cellular response to materials

Real-time polymerase chain reaction (RT-PCR) Gene expression changes – cellular response to

materials

Site-directed mutagenesis Identification of binding site by changing single

residue in protein
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Technique Property to be Measured

Matrix-assisted laser desorption ionization Identification of adsorbed proteins by 

(MALDI) time-of-flight mass spectrometry molecular mass

(ToF-MS)

Time-of-flight secondary ion mass Peptide segments presented at surface 

spectrometry (ToF-SI-MS) of adsorbed layer

Fluorescence Correlation Spectroscopy Dynamics of single molecules 

Quartz crystal microbalance

Nuclear magnetic resonance 

spectroscopy – NMR Identification of structure and ID 

Fluorescence Resonance Energy Transfer (FRET) Extension of proteins upon adsorption,

localisation of nanoparticles intra-cellularly

Small Angle Neutron and X-Ray 3D resolution of shape and arrangement 

Scattering (SANS / SAXS) of adsorbed proteins 

Surface Plasmon Resonance Amount of bound protein,

association/dissociation rates

Techniques potentially in used in food sector requiring minimal adaptation for nanoparticles 

Specialised techniques which should be made available to food sector as nanoparticle use

increases 

Highly specialised techniques with reduced relevance to food sector but which could have

occasional needs as nanoparticle use increases 
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Many of the uses of nanosilver involve embedding the particles into a polymer matrix, or applying it

as a coating, (Marini et al., 2007) meaning that the effects of nanosilver are not surface effects directly,

but rather indirect – the biocidal mechanism of silver-containing products results from a long term

release of silver ions (Ag+) by oxidation of metallic silver (Ag0) in contact with water (Kumar, 2005),

so processing it as nanosilver results in a more efficient release of the silver ions.

In the risk assessment by Blaser et al. the focus is on silver released from nanoparticles embedded in

the polymer with the assumption that only silver ions and not entire nanoparticles are released.The

risk assessment of nanosilver is presented in four stages. First, the system boundaries are defined, mass

flows of silver were quantified, and three emission scenarios were defined. Second, the behavior of

silver in natural freshwater is reviewed, and a mass balance model applied to calculate predicted

environmental concentrations (PECs) for freshwater and freshwater sediments. PECs are also

estimated for sewage treatment plants (STPs) and sewage sludge. The uncertainty of the results is

assessed and predicted concentrations compared to empirical data. Third, toxicity data for

environmentally relevant silver compounds are compiled and predicted no-effect concentrations

(PNECs) determined where possible.

The results of the risk assessment indicate that up to 15% of the total silver emitted into water in

Europe may be released from biocidal plastics and textiles in 2010. Considering that the market for

such products is expected to grow until 2015, it can be concluded that biocidal plastics and textiles

will account for a substantial share of total silver emissions in the future.

APPENDIX VI: RISK ASSESSMENT OF NANOSILVER
CONTAINED IN A POLYMER MATRIX AND POTENTIALLY

RELEASED INTO THE ENVIRONMENT
(Blaser et al. 2008)
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