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Modulation of Radiation Responses by Pre-exposure to Irradiated Cell
Conditioned Medium

Paula Maguire,a,1 Carmel Mothersill,a,b,2 Brendan McClean,b Colin Seymoura,b,2 and Fiona M. Lynga

a Radiation and Environmental Science Centre, Dublin Institute of Technology, Dublin 8, Ireland; and b St. Luke’s Hospital, Rathgar,
Dublin 6, Ireland

Maguire, P., Mothersill, C., McClean, B., Seymour, C. and
Lyng, F. M. Modulation of Radiation Responses by Pre-ex-
posure to Irradiated Cell Conditioned Medium. Radiat. Res.
167, 000–000 (2007).

The aim of this study was to investigate whether exposure
of HPV-G cells to irradiated cell conditioned medium (ICCM)
could induce an adaptive response if the cells were subse-
quently challenged with a higher ICCM dose. Clonogenic sur-
vival and major steps in the cascade leading to apoptosis, such
as calcium influx and loss of mitochondrial membrane poten-
tial, were examined to determine whether these events could
be modified by giving a priming dose of ICCM before the
challenge dose. Clonogenic survival data indicated an ICCM-
induced adaptive response in HPV-G cells ‘‘primed’’ with 5
mGy or 0.5 Gy ICCM for 24 h and then exposed to 0.5 Gy
or 5 Gy ICCM. Reactive oxygen species (ROS) were found to
be involved in the bystander-induced cell death. Calcium flux-
es varied in magnitude across the exposed cell population, and
a significant number of the primed HPV-G cells did not re-
spond to the challenge ICCM dose. No significant loss of mi-
tochondrial membrane potential was observed when HPV-G
cells were exposed to 0.5 Gy ICCM for 24 h followed by ex-
posure to 5 Gy ICCM for 6 h. Exposure of HPV-G cells to 5
mGy ICCM for 24 h followed by exposure to 0.5 Gy ICCM
for 18 h caused a significant increase in mitochondrial mass
and a change in mitochondrial location, events associated with
the perpetuation of genomic instability. This study has shown
that a priming dose of ICCM has the ability to induce an
adaptive response in HPV-G cells subsequently exposed to a
challenge dose of ICCM. � 2007 by Radiation Research Society

INTRODUCTION

The adaptive response is defined as a ‘‘protective effect’’
after exposure of cells to a low ‘‘priming’’ dose of a stress
inducer (1). The first experiment on the induction of an

1 Address for correspondence: Radiation and Environmental Science
Centre, Focas Institute, DIT Kevin St., Dublin 8, Ireland; e-mail:
pmaguir@tcd.ie.

2 Present address: Medical Physics and Applied Radiation Sciences
Unit, McMaster University, 1280, W. Main Street, Hamilton, ON L8S
4K1, Canada.

adaptive response caused by exposure to ionizing radiation
was carried out in human lymphocytes that had incorpo-
rated tritiated thymidine (2). It was found that approxi-
mately half as many chromosome aberrations were induced
in irradiated cells that had first been exposed to a low prim-
ing dose compared to those that had not been pre-exposed.
This led to the finding that pretreatment of lymphocytes to
a dose of the order of centigrays of X rays could cause the
cells to have a less severe response to a higher dose (3).
Adaptive responses have also been reported in C3H
10T1/2 cells pretreated with low-dose � radiation followed
by a challenge dose (4, 5). Mitchel et al. (6) showed that
pre-exposure to a chronic 10-cGy dose followed by a chal-
lenge chronic dose of 1 Gy 24 h later could increase the
latent period for development of acute myeloid leukemia in
CBA/H mice.

Certain characteristics have emerged from studies of the
adaptive response. A variable interval is needed to induce
an adaptive response. This has been observed to be 4 to 6
h, continuing in some cases for up to 20 h (7) or even 40
days (8). Radiation can interact with other stress inducers
such as chemical agents to induce an adaptive response (9).
Adaptive responses can be inhibited by the presence of poly
(ADP-ribose) polymerase inhibitors, protein or RNA inhib-
itors and protein kinase C inhibitors (10). It has been ob-
served that new proteins are synthesized after exposure to
a low priming dose (11). It has been postulated that if the
priming dose is low enough to cause damage, but not ex-
tensive cellular damage, and enough time is given for the
cells to respond, an efficient repair system could be in-
duced. This occurs through the induction of protein syn-
thesis consequent to the activation of specific genes. If suf-
ficient time for protein synthesis is not allowed, then the
protein machinery necessary for repair will not be activat-
ed. Ikushima et al. (12) observed that the rate of rejoining
of DNA double-strand breaks was higher in cells primed
with a low dose compared to those receiving no priming
dose.

The bystander effect has been defined by Mothersill and
Seymour (13) to be the detection of a response in unirra-
diated cells that can reasonably be assumed to have oc-
curred as a result of exposure of other cells to radiation.
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FIG. 1. Flow chart showing the experimental procedures for primed samples.

The bystander signal molecule(s) is known to cause sister
chromatid exchanges (14), chromosomal aberrations (15),
changes in protein expression (16), genomic instability
(17), and initiation of apoptosis and loss of mitochondrial
membrane potential (18). The data suggest that the bystand-
er effect saturates at low doses and is the dominant effect
of low-dose radiation (19, 20).

Sawant et al. (21) reported that a priming dose of 2 cGy
� rays delivered 6 h before microbeam irradiation cancelled
out half of the observed bystander-induced cell death. A
subsequent study (22) showed that a low dose of X rays
delivered 4 h before microbeam irradiation significantly de-
creased bystander mutagenesis. In addition, it has been
shown that bystander signals produced by irradiated cells
can protect against a direct dose of ionizing radiation (23).
A recent paper by Mitchell et al. (24) reported a 95% de-
crease in cell killing when C3H 10T1/2 cells were pretreat-
ed with 2 cGy of � particles 24 h before exposure to 0.5
Gy �-particle radiation. This study also reported that treat-
ment with medium from cells exposed to 2 cGy X rays can
induce a ‘‘bystander adaptive response’’ in C3H 10T1/2
cells against a higher dose of direct radiation (4 Gy X rays).
Iyer and Lehnert (25) reported that when normal human
lung fibroblasts (HFL-1) were irradiated with 1 cGy of �
rays and the supernatants were transferred to unirradiated
HFL-1 cells, a bystander adaptive response was observed
against 2 or 4 Gy of X rays. This shows that medium from
irradiated cells, which contains the currently unknown cy-
totoxic bystander factor(s), can induce an adaptive response
against a subsequent direct dose.

The aim of this study was to investigate whether a prim-
ing dose of irradiated cell conditioned medium (ICCM)
could induce an adaptive response against a subsequent
challenge dose of ICCM. Clonogenic survival and markers
of apoptosis studied previously in our laboratory for single
ICCM exposures were investigated to determine whether
these end points could be modified by giving a low priming
dose of ICCM before the challenge ICCM dose (18, 26).
N-Acetylcysteine (NAC), a reactive oxygen species (ROS)
inhibitor, was added to the ICCM during the ‘‘priming’’
phase to assess the role of ROS in the adaptive response.

MATERIALS AND METHODS

Cell Culture

Human keratinocytes immortalized with the HPV virus were originally
obtained as a kind gift from Dr. J. Di Paolo, NIH, Bethesda, MD (27).
HPV-G cells were cultured in Dulbecco’s MEM:F12 medium (1:1) (Sig-
ma, Dorset, UK) containing 10% fetal calf serum (Gibco, Irvine, UK)
1000 IU 1% penicillin-streptomycin solution (Gibco), 2 mM L-glutamine
(Gibco), and 1 �g/ml hydrocortisone (Sigma) Cells were maintained in
an incubator at 37�C with 95% humidity and 95% air/5% CO2. Subculture
was routinely performed when cells were 80–100% confluent using a
1:1 solution of 0.25% trypsin and 1 mM versene at 37�C.

Irradiation

Cells were irradiated in T-25 flasks (Nunc, Uden, Denmark) containing
5 ml of culture medium at room temperature using a cobalt-60 teletherapy
source at St. Luke’s Hospital. Control flasks were sham-irradiated. The
dose rate during the experiments was approximately 1.8 Gy/min. For the
0.5- and 5-Gy doses, the source-to-flask distance was 80 cm. For the
5-mGy dose, an extended source-to-flask distance of 170 cm was used.
The time required to deliver the 5-mGy dose was around 0.013 min.
TLDs were used to confirm that the appropriate dose was delivered. Once
irradiated, the cells were immediately returned to the incubator.

Harvesting of ICCM

Donor flasks containing approximately 2 � 105 cells were irradiated
or sham-irradiated 6 h after plating. Medium from irradiated and unir-
radiated cells was poured off donor flasks 1 h after irradiation and filtered
through a 0.22-�m filter to ensure that no cells or other debris were still
present in the medium. This filtrate was stored at �80�C in aliquots and
thawed when required.

Experimental Procedure

Single radiation/ICCM exposures. Control cells were either sham-ir-
radiated or exposed to unirradiated cell conditioned medium (0 Gy
ICCM). Treated cells were either directly irradiated or exposed to ICCM
at doses of 0.5 and 5 Gy.

Primed samples (direct radiation). Control cells were sham-irradiated
followed by a further sham irradiation 24 h later (Fig. 1). Treated cells
were irradiated to priming doses of 5 mGy or 0.5 Gy followed by a
challenge dose of 0.5 Gy or 5 Gy 24 h later (Fig. 1).

Primed samples (ICCM). Control cells were exposed to 0 Gy ICCM
for 24 h. The medium was then removed and the cells were exposed to
a further 0-Gy ICCM dose (Fig. 1). Treated cells were exposed to 5 mGy
or 0.5 Gy ICCM for 24 h, the medium was then removed and the cells
were exposed to a further 0.5- or 5-Gy ICCM dose (Fig. 1).
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Clonogenic Assay

Four hundred HPV-G cells were plated in 4 ml of medium in T-25
flasks (Nunc) for survival assays using the clonogenic assay technique of
Puck and Marcus (28). These cells either were directly irradiated with 5
mGy, 0.5 Gy or 5 Gy or received 3 ml of ICCM harvested from cells
irradiated with 0 Gy, 5 mGy, 0.5 Gy or 5 Gy as described previously.
Cells were left for 24 h at 37�C. This medium was then removed and
replaced with a higher dose of ICCM or with control medium. Cells were
then left for 7 days in an incubator at 37�C. The cells were then stained
with carbol fuschin (BDH, Poole, UK) and the colonies were counted.

Corrections for multiplicity were not performed since previous work
showed that cellular multiplicity does not affect the plating efficiency of
these cells because they do not show independent survival (29, 30).

Inhibition of Reactive Oxygen Species

HPV-G cells were incubated with 0.5 Gy ICCM containing 0.5 mM
N-acetylcysteine (NAC) (Sigma) for 24 h. This medium was then re-
moved and replaced with a higher dose of ICCM. The clonogenic survival
assay was carried out as described above.

Measurement of Calcium Flux

Intracellular calcium levels were measured using two calcium-sensitive
dyes, Fluo-3 and Fura Red (Molecular Probes, Leiden, Netherlands).
Fluo-3 increases in intensity upon binding to calcium. Fura Red decreases
in intensity upon binding to calcium. The ratio of Fluo 3 to Fura Red
gives a good indication of intracellular calcium levels (31). HPV-G cells
were seeded at high concentrations (approximately 2 � 105 cells) on glass
cover slips (diameter 24 mm) and incubated in normal culture medium
until the cells had attached. This medium was then removed and replaced
with 0.5 Gy ICCM for 24 h at 37�C. Controls were exposed to 0 Gy
ICCM. The HPV-G cells were then washed twice in a Ca2�/Mg2� buffer
(130 mM NaCl, 5 mM KCl, 1 mM Na2HO4, 1 mM MgCl2 and 1 mM
CaCl2). The cells were then loaded with 3 �M Fluo-3 and 3 �M Fura
Red for 1 h at 37�C. The dyes were then removed and washed twice in
Ca2�/Mg2� buffer. The cover slips were then inserted into custom-de-
signed petri dishes, which allowed imaging through the glass cover slip
in the base of the dish. The cells were then exposed to 5 Gy ICCM after
a baseline calcium level was established. Using a Zeiss LSM 510 confocal
microscope, Fluo 3 and Fura Red were excited at 488 nm and fluores-
cence was recorded simultaneously at 525 nm and 660 nm. Ratio images
were recorded every 2 s for 5 min. Ratio values were determined for
each individual cell using Zeiss LSM software.

Measurement of Mitochondrial Membrane Potential

Mitochondrial membrane potential was measured using a green fluo-
rescent dye, Rhodamine 123 (Molecular Probes), which accumulates in
active mitochondria with high mitochondrial membrane potential (32).
HPV-G cells were seeded at high concentrations (approximately 2 � 105

cells) on glass cover slips (diameter 24 mm) and incubated in normal
culture medium until the cells had attached. This medium was then re-
moved and replaced with 0.5 Gy ICCM for 24 h at 37�C. The 0.5 Gy
ICCM was then removed, and HPV-G cells were exposed to 5 Gy ICCM
for 6 h at 37�C. The 5 Gy ICCM was then removed, and the cells were
washed with a Ca2�/Mg2� buffer (130 mM NaCl, 5 mM KCl, 1 mM
Na2HO4, 1 mM MgCl2 and 1 mM CaCl2). The HPV-G cells were then
loaded with 5 �M Rhodamine 123 for 30 min at 37�C. The dye was then
removed, the cells were washed in Ca2�/Mg2� buffer twice, and the cover
slips were inserted into custom-designed petri dishes, which allowed im-
aging through the glass cover slip in the base of the dish. Using a Zeiss
LSM confocal microscope, the HPV-G cells were excited at 488 nm and
fluorescence emission was recorded at 525 nm. Three fields of view were
recorded for each sample and repeated as three independent experiments.
The intensity of green fluorescence was measured for each cell using

Zeiss LSM software. Control fluorescence was set to 100%. All fluores-
cence was normalized to the control.

Measurement of Mitochondrial Mass per Cell

Mitochondrial mass was measured using a fluorescent dye, Mito-
Tracker Green FM (Molecular Probes), which accumulates in the mito-
chondrial matrix, where it covalently binds to mitochondrial proteins by
reacting with free thiol groups of cysteine residues. An increase in green
fluorescence clearly identifies an increase in mitochondrial mass (33).
HPV-G cells were seeded at high concentrations (approximately 2 � 105

cells) on glass cover slips (diameter 24 mm) and incubated in normal
culture medium for 3 h until the cells had attached. This medium was
then removed. The cells were incubated at 37�C with 5 mGy ICCM for
24 h. This medium was then removed, and cells were exposed to 0.5 Gy
ICCM for 18 h. The ICCM was then removed, and the cells were washed
in Ca2�/Mg2� buffer (130 mM NaCl, 5 mM KCl, 1 mM Na2HPO4, 1 mM
MgCl2 and 1 mM CaCl2). Cells were loaded with Mito Tracker Green
FM (150 nM) made up in Ca2�/Mg2� buffer for 20 min at 37�C and
subsequently washed twice in buffer. The cover slips were then inserted
into custom-designed petri dishes, which allowed imaging through the
glass cover slip in the base of the dish. Using a Zeiss LSM 510 confocal
microscope, Mito Tracker Green FM was excited at 488 nm and fluores-
cence emission was recorded at 525 nm. Three fields of view were re-
corded for each dish. Three independent experimental runs were carried
out. The intensity of green fluorescence was measured using Zeiss LSM
software. The mean fluorescence was divided by the number of cells in
the field of view. An increase in fluorescence intensity indicated an in-
crease in mitochondrial mass per cell (33). Control fluorescence was set
to 100%, and all data were normalized to the control.

Distribution of Mitochondria

Mito Tracker Green FM was used to stain the mitochondria in
HPV-G cells as described above. Z-stacks were recorded using the Zeiss
LSM 510 confocal microscope to confirm the location of mitochondria
in the cell. The location of the mitochondria in the cell was scored as
either being located diffusely in the cytoplasm or as being in a perinuclear
location around the nucleus. Five hundred cells were scored for each of
three independent experimental runs. The slides were coded and scored
blind. The percentage of cells with either cytoplasmic distribution or peri-
nuclear distribution was calculated.

Statistics

Data are reported as means 	 standard errors of three independent
experiments performed in triplicate. Significance was determined by a
Student’s unpaired t test, and the differences were considered significant
if P � 0.05.

RESULTS

HPV-G cells primed with either a 5-mGy or a 0.5-Gy
direct dose before a challenge dose of either 0.5 Gy or 5
Gy showed a significant increase in survival compared to
those cells that received a 0.5- or 5-Gy direct dose only,
indicating an adaptive response (Table 1). Exposure of
HPV-G cells to either 5 mGy or 0.5 Gy ICCM as a priming
dose followed by a challenge dose of 0.5 or 5 Gy ICCM
resulted in an increase in survival compared to those cells
exposed to 0.5 or 5 Gy ICCM only, again indicating an
adaptive response (Table 1).

To determine the role of ROS, HPV-G cells were pre-
treated with 5 mGy or 0.5 Gy ICCM containing NAC in
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TABLE 1
Clonogenic Survival of HPV-G Cells

Dose Direct radiation ICCM

0Gy 100 (33 	 1.1) 100 (31 	 2)
0.5 Gy 74 	 3%* 68 	 2%*
5 Gy 15 	 2%* 66 	 3%*
0 Gy � 0 Gy 100 (32 	 1) 100 (33 	 1)
5 mGy � 1 Gy 101 	 2%* 79 	 6%*
1 Gy � 5 Gy 53% 	 6* 80 	 26%*

Notes. Actual plating efficiencies for controls are shown in parentheses.
* P 
 0.05. For single exposures, the irradiated samples were tested
against the unirradiated samples. The primed exposures were tested
against the unprimed exposures.

TABLE 2
Clonogenic Survival of HPV-G Cells Primed with

ICCM Containing NAC for 24 h Followed by
Exposure to ICCM for 7 Days

Dose Survival

(0 Gy ICCM � NAC) � 0 Gy ICCM 100 	 5%
(5 mGy ICCM � NAC) � 1 Gy ICCM 102 	 5%
(0.5 Gy ICCM � NAC) � 5 Gy ICCM 115 	 9%

FIG. 2. Real-time fluorescence confocal images showing intracellular calcium levels in HPV-G cells exposed to a priming dose of 0.5 Gy ICCM
for 24 h followed by 5 Gy ICCM over 120 s.

the priming phase only and then exposed to a challenge
dose of 0.5 or 5 Gy ICCM. No significant reduction in
survival was observed, indicating that NAC can prevent
bystander-induced cell death (Table 2).

Rapid calcium fluxes were observed in HPV-G cells pre-

treated with 5 mGy or 0.5 Gy ICCM and then exposed to
0.5 or 5 Gy ICCM. Figure 2 shows the characteristic cal-
cium flux. This calcium increase lasts approximately 140 s,
with calcium levels in all responding cells returning to
baseline levels. No calcium fluxes were observed in the
control sample, which received 0 Gy ICCM for 24 h fol-
lowed by 0 Gy ICCM. Four characteristic patterns of re-
sponse were observed in the primed samples; 21% of the
exposed population did not respond to the 5-Gy ICCM
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FIG. 3. Magnitude of the varying calcium fluxes induced in HPV-G cells when exposed to 0.5 Gy ICCM for 24 h and then to 5 Gy ICCM. An
increase in the ratio of Fluo 3 to Fura Red is indicative of an increase in calcium levels.

TABLE 3
Percentage Fluorescence Levels as Indicated by JC-1

in HPV-G Cells Exposed to Various Doses of
Radiation or ICCM

Dose Fluorescence

0 Gy 100 	 1%
1 Gy 85 	 1%*
5 Gy 89 	 1%*
0 Gy ICCM � 0 Gy ICCM 100 	 9%
1 Gy ICCM � 5 Gy ICCM 91 	 9%

Notes. A decrease in cellular fluorescence is indicative of a loss of
mitochondrial membrane potential. * P 
 0.05.

TABLE 4
Percentage Fluorescence Levels and Percentage

Cells with Mitochondria in Perinuclear Location as
Indicated by Mito Tracker Green FM in HPV-G

Cells after Exposure to Various Doses of Radiation
or ICCM

Dose Fluorescence
Cells with mitochondria
in perinuclear location

0 Gy 100 	 11.8% 7 	 1%
5 mGy 128 	 29%* 38 	 3%*
1 Gy 178 	 18% 9 	 2%
0 Gy ICCM � 0 Gy ICCM 100 	 22% 12 	 4%
5 mGy ICCM � 1 Gy ICCM 363 	 9% 63 	 7%*

Notes. An increase in cellular fluorescence is indicative of an increase
in mitochondrial mass. * P 
 0.05.

dose, and these nonresponding cells were located together
in clusters; 25% of cells increased from a baseline ratio
value of 0.5 to 0.8, 45% of cells increased from a baseline
ratio value of 0.5 to 1, and 9% of cells increased from a
baseline ratio value of 0.5 to 1.2 (Fig. 3). An interesting
observation was that regardless of the magnitude of the
calcium flux, the lag time needed for the response to occur,
the time taken for the calcium to peak, and the time taken
for the calcium levels to return to baseline values were
more or less the same in all cases.

Exposure of HPV-G cells to a single ICCM dose resulted
in a significant reduction in mitochondrial membrane po-
tential after 6 h (Table 3). Pretreatment of HPV-G cells with
0.5 Gy ICCM for 24 h followed by an exposure to 5 Gy

ICCM for 6 h resulted in a small but nonsignificant reduc-
tion in mitochondrial membrane potential compared to the 0
Gy ICCM control, indicating an adaptive response (Table 3).

Exposure of HPV-G cells to 5 mGy and 0.5 Gy ICCM
but not 5 Gy ICCM for 18 h resulted in an increase in
mitochondrial mass and a change in mitochondrial distri-
bution from a diffuse location in the cytoplasm (as ob-
served in the control) to a perinuclear location (Table 4).
Pretreatment of HPV-G cells with 5 mGy ICCM for 24 h
followed by exposure to 0.5 Gy ICCM for 18 h also caused
a significant increase in mitochondrial mass and a change
in the location of the mitochondria (Table 4).
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DISCUSSION

The results show that exposure of HPV-G cells to a low
priming dose of ICCM or direct radiation resulted in mod-
ulation of radiation-induced responses, suggesting an adap-
tive response.

Clonogenic survival results indicated a significant reduc-
tion in the amount of cell killing by the second dose for
both the irradiated and ICCM-treated samples. This implies
the presence of both a radiation-induced adaptive response
and an ICCM-induced adaptive response. Radiation-in-
duced adaptive responses are commonly reported in the lit-
erature (1, 2). However, there are few reports of an ICCM-
induced adaptive response against a direct dose (23–25).
The magnitude of the observed ‘‘ICCM adaptive response’’
was 10–15% sparing of cell survival. Mitchell et al. (24)
and Iyer and Lehnert (25) reported ‘‘bystander-induced
adaptive responses’’ induced by a priming treatment of su-
pernatant from cells irradiated at doses of the order of cen-
tigrays. This work shows that ICCM derived from cells
irradiated with 5 mGy can induce bystander adaptive re-
sponses against a further challenge dose of ICCM. No sig-
nificant loss of clonogenic survival in HPV-G cells was
observed when cells were incubated with ICCM containing
NAC in the priming phase for 24 h followed by ICCM only.
NAC, a thiol-containing antioxidant, has been shown to
protect cells against damage caused by ROS, although the
exact ROS involved is currently unknown (34). Data from
our laboratory have shown that bystander-induced cell
death can be blocked in HPV-G cells incubated in ICCM
containing NAC (35). Iyer and Lehnert (25) suggest that
bystander-induced adaptive responses could be due to in-
creased levels of AP DNA endonucleases (APE), induced
as a result of an increase in sublethal levels of ROS. Lyng
et al. (18) reported an increase in ROS after exposure of
HPV-G cells to ICCM. Therefore, cells displaying bystand-
er adaptive responses may be more efficient at repairing at
least some forms of DNA damage caused by ROS.

When HPV-G cells were pretreated with 0.5 Gy ICCM
for 24 h and then exposed to 5 Gy ICCM, a significant
calcium flux was observed, an event associated with initi-
ation of the cascade leading to apoptosis (36). Lyng et al.
(18) showed that exposure to ICCM causes an increase in
intracellular calcium. From this work and the results in the
present paper, it is concluded that HPV-G cells have the
ability to produce repetitive calcium fluxes when exposed
to ICCM followed by ICCM, causing a secondary cascade
of cellular responses. Four types of calcium response were
observed, including three different magnitudes of increase
in calcium and a nonresponding population of cells. Only
9% of the exposed cells displayed a calcium increase of
the same magnitude as for a single ICCM exposure. Dol-
metsch et al. (37) reported that the amplitude and duration
of calcium signals in B lymphocytes controls differential
activation of transcription factors such as c-Jun N-terminal
kinase. The differential activation results from differences

in the Ca2� sensitivity and the kinetic pathway of the ob-
served calcium flux. The MAP kinase pathway has been
shown to be activated in bystander cells (38, 39). Therefore,
it can be postulated that the different amplitudes of calcium
responses observed may result in different levels of acti-
vation of transcription factors. When HPV-G cells were ex-
posed to 0.5 Gy ICCM for 24 h and then exposed to 5 Gy
ICCM, it was observed that approximately 21% of cells did
not respond to the 5 Gy ICCM. These cells maintained their
baseline level of calcium throughout the exposure and were
located together in clusters. Protective proteins, such as
BCL2, may have been activated in the nonresponding cells
that protect against the second ICCM dose. Apoptosis sup-
pressed by BCL2 has been correlated with the regulation
of nuclear and cytosolic calcium (40, 41). ICCM has been
observed to induce BCL2 expression in HPV-G cells (35).
Interestingly, the observed time for cells to respond, the
time it took for the responding cells to peak in magnitude,
and the time it took to return to the baseline calcium level
were the same in all cases. Since the uptake of extracellular
calcium is a regulated physiological process, this illustrates
that HPV-G cells have the ability to maintain and regulate
their extracellular calcium uptake for multiple exposures to
ICCM.

Exposure of HPV-G cells for 24 h to 0.5 Gy ICCM fol-
lowed by 5 Gy ICCM for 6 h resulted in a small but non-
significant loss of mitochondrial membrane potential. Lyng
et al. (18) reported a significant loss of mitochondrial mem-
brane potential after 6 h exposure to 0.5 Gy ICCM or 5 Gy
ICCM. The reason that the loss of mitochondrial membrane
potential found here was not significant is probably that
anti-apoptosis proteins such as BCL2 are already actively
expressed in the pre-exposed cells, as discussed above.

Exposure of HPV-G cells to 5 mGy ICCM for 24 h fol-
lowed by 0.5 Gy ICCM for 18 h induced a significant in-
crease in mitochondrial mass. A significant change in mi-
tochondrial location from a diffuse cytoplasmic location to
a dense perinuclear location was also observed. Maguire et
al. (35) reported an increase in mitochondrial mass and
change in mitochondrial location for ICCM doses �0.5 Gy
ICCM. Interestingly, the ICCM-induced adaptive response
eliminated the appearance of markers of apoptosis such as
mitochondrial membrane potential but not changes in mi-
tochondrial mass. An increase in mitochondrial mass has
been linked to genomic instability and mitochondrial bio-
genesis (42). It has been shown previously that although
cell survival could be increased after a priming dose, no
abrogation of transformation frequency was found (21).
This questions the long-term fate of the progeny of these
adapted cells.

In summary, this study has shown that bystander signals
produced by irradiated cells can induce an adaptive re-
sponse in unirradiated cells to a subsequent exposure to
bystander signals.
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