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Abstract

Inter-speaker accommodation is a well-known property of human speech and human interaction in  

general. Broadly it refers to the behavioural patterns of two (or more) interactants and the effect of  

the  (verbal  and  non-verbal)  behaviour  of  each  to  that  of  the  other(s).  Implementation  of  this  

behavior in spoken dialogue systems is desirable as an improvement on the naturalness of human-

machine interaction. However, traditional qualitative descriptions of accommodation phenomena 

do  not  provide  sufficient  information  for  such  an  implementation.  Therefore,  a  quantitative  

description of inter-speaker accommodation is required. 

This thesis  proposes a  methodology of  monitoring accommodation during a human or  human-

computer dialogue, which utilizes a moving average filter over sequential frames for each speaker.  

These frames are time-aligned across the speakers, hence the name Time Aligned Moving Average  

(TAMA). Analysis of spontaneous human dialogue recordings by means of the TAMA methodology 

reveals ubiquitous accommodation of prosodic features (pitch, intensity and speech rate) across  

interlocutors, and allows for statistical (time series) modeling of the behaviour, in a way which is  

meaningful for implementation in spoken dialogue system (SDS) environments. 

In addition, a novel dialogue representation is proposed that provides an additional point of view to  

that of TAMA in monitoring accommodation of temporal features (inter-speaker pause length and 

overlap  frequency).  This  representation  is  a  percentage  turn  distribution  of  individual  speaker  

contributions  in  a  dialogue  frame  which  circumvents  strict  attribution  of  speaker-turns,  by  

considering both interlocutors as synchronously active.  Both TAMA and turn distribution metrics 

indicate that correlation of average pause length and overlap frequency between speakers can be  

attributed to accommodation (a debated issue), and point to possible improvements in SDS “turn-

taking” behaviour. 

Although  the  findings  of  the  prosodic  and  temporal  analyses  can  directly  inform  SDS  

implementations,  further  work  is  required  in  order  to  describe  inter-speaker  accommodation  

sufficiently, as well as to develop an adequate testing platform for evaluating the magnitude of  

perceived improvement in human-machine interaction. Therefore, this thesis constitutes a first step  

towards a convincingly useful implementation of accommodation in spoken dialogue systems. 
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1.1  Overview

The  phenomenon  of  inter-speaker  accommodation  in  spoken  dialogues  is  well-known  in 

psycholinguistics, communication and cognitive sciences. The term itself is one of many used to 

describe a variety of complex phenomena associated with two – or more – interlocutors and the 

tendency of various features of their verbal and non-verbal behaviour to display growing similarity 

over time as the dialogue evolves, or across several dialogue sessions. The features span the entire 

spectrum of  forms of human expression: lexical, syntactic, prosodic, gestural and postural features, 

as well  as  turn-taking behaviour  have been found to  converge across  interlocutors  engaging in 

dialogue, both in controlled laboratory experiments, as well as in naturally occurring conversations.

The utilization of such behaviour in speech technology applications is highly desirable, for a variety 

of reasons. First, it opens an avenue of improvement upon the naturalness of synthesized speech, in 

the context of spoken dialogue systems (SDS), as it may be possible for the system voice to adapt to 

that of the user, providing for a more pleasant conversation. Second, accounting for accommodation 

can improve the overall performance of on-line monitoring, a process which is vital in predicting 

user expectations and user satisfaction/frustration in real time. Finally, implementation of temporal 

accommodation is essential in establishing a more sophisticated interaction management strategy in 

SDS  applications,  for  the  purpose  of  providing  smoother  and  more  efficient  human-machine 

interaction. 

However,  direct  implementation of inter-speaker accommodation into current speech technology 

applications  is  not  feasible  for  two  reasons:  first,  inter-speaker  accommodation  is  a  complex 

behavioural  phenomenon,  and its  manifestation  in  spoken language has  not  been  quantitatively 

described  yet;  and  second,  current  SDS architectures  are  not  designed to  accommodate  natural 

dialogue with human users, therefore a platform for testing quantitative models of inter-speaker 

accommodation does not yet exist.  This thesis focuses on the first problem, i.e. the quantitative 

description of accommodation phenomena in view of implementation in spoken dialogue interfaces 

and  systems,  but  also  presents  a  preliminary  application  of  the  accommodation  models  in  a 

simulated SDS environment. 

1.2  Scope of work and motivation

This thesis focuses on the description of accommodation phenomena exhibited in specific properties 

of speech. In particular, the features studied are acoustic-prosodic measures of the speech signal 

(pitch, intensity and speech rate), as well as temporal features (inter-speaker silence duration and 

occurrence of overlapping speech). The motivation for studying these specific features is explained 
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in detail in chapter  2. Briefly, the acoustic-prosodic (a/p) features were selected because of their 

historical prominence in improvements on naturalness of synthesized speech, which in turn is due to 

the multitude of functions they are known to carry in human speech: prosody is essential in speech 

production and perception (Cutler et al. 1997); expresses attitudes and emotions  (Schroeder et al. 

2001);  and  enables  smooth  dialogue  transitions  and non-interrupting  overlapping  speech which 

provides feedback to the speaker (Cerrato 2002). Temporal features are also central to the temporal 

organization of dialogue, i.e. the smooth transition of turns between interlocutors. Importantly, the 

function of turn-taking and smoothness of dialogue is one of the major short-comings in current 

SDS applications (Raux and Eskenazi 2008). 

A better understanding of the accommodation phenomena related to prosodic and temporal features 

may directly improve the performance of current SDS technology in various ways: (a) enhancement 

of the human metaphor (Edlund et al. 2008), by simulating accommodation in SDS, (b) smoothness 

of conversational dialogue based on temporal accommodation, (c) positive evaluation of the overall 

interaction by the user, based on convergence, according to certain theories (e.g. Giles et al. 1987), 

(d) improvement of prosodic models for synthesized speech, in relation to the problem of mapping 

abstract prosodic representations to actual signal features, by providing more appropriate prosodic 

baselines, (e) informing classification for emotion recognition in dialogues (Cowie et al. 2001), (f) 

informing classification of dialogue acts (Wright 1999), and (g) improving performance of ASR by 

exploiting user adaptation to the system voice (Bell et al. 2003).

1.3  Aims and objectives

The overall aim of this research was to study accommodation of prosodic and temporal features of 

speech in human dialogues, in order to inform implementation of this behaviour in spoken dialogue 

systems. However, as was mentioned in section  1.1, neither a complete theoretical description of 

accommodation phenomena nor  a  standard  development  and testing platform currently exist  in 

order to “build” such a system. Thus a set of more realistic objectives were defined, which are 

consistent with currently adopted methodologies in speech technology and speech science research 

in general, and SDS in particular:

a) Design and implementation of a recording laboratory environment,  properly equipped in 

terms of audio equipment and other infrastructure, for the purpose of carrying out recording 

experiments,  specifically for  the  purpose  of  acquiring  recordings  of  spontaneous  speech 

(dialogues). 

b) Development of tools for annotation and feature extraction of spontaneous speech corpora, 
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for the purpose of statistical analysis of prosodic and temporal features.

c) Formulation of a methodology for analysis of prosodic features from the recorded dialogues 

in  (a)  above,  for  the  purpose  of  analyzing  inter-speaker  accommodation  within  single 

interactions.

d) Formulation of a methodology for the purpose of analyzing temporal accommodation in 

human dialogues.

e) Formulation of a quantitative model of accommodation of prosodic and temporal features 

for implementation in human-computer dialogues

f) The  development  of  a  testing  platform,  in  order  to  demonstrate  the  implementation  of 

accommodating behaviour in an SDS application environment. 

1.4  Contributions

The major contributions presented in this thesis are as follows:

(a) A methodology for monitoring accommodation in human (or human-machine) dialogues 

(Time-Aligned Moving Average  or  TAMA in short),  that  is  feature independent  and uses 

summary  statistics  (average  and  standard  deviation)  of  normalized  speech  features  in 

overlapping dialogue frames. The transformation allows direct comparison of features from 

two speakers in contemporaneous frames. 

(b) Statistical evaluation of accommodation of a/p features among speakers in the recorded 

dialogues  by  means  of  time  series  analysis  which  verifies  and  objectively  measures  the 

presence  of  feedback  and  bi-directional accommodation.  In  addition,  the  statistical 

methodology points  towards possible implementations of similar  behaviour  in SDS, using 

models derived from the human dialogues. 

(c) A novel dialogue representation (turn-share and turn-distribution) that is complementary 

to current chronographic (Lennes and Anttila 2002) representations of the temporal structure 

of  dialogue  (turn-taking).  This  representation  provides  evidence  additional  evidence  of 

temporal accommodation to that previously available, and points to design strategies that can 

be utilized in SDS implementations. 

In addition, the following minor contributions are also presented: 

(d)  The acquisition of a corpus of spontaneous dialogues, recorded at high audio quality 

(192 KHz/24-bit) in low-noise conditions (isolation soundproof booths). Each speaker has 
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been  recorded  in  a  separate  audio  channel,  thus  eliminating  cross-channel  noise 

contamination.  Further,  each  speaker's  speech  stream  has  been  annotated  for 

silence/vocalization, facilitating future research on this data. The recordings took place in an 

audio  recording  laboratory  that  was  setup  specifically  for  the  purpose  of  recording 

spontaneous speech. The recording experiments and the laboratory setup were collaborative 

work undertaken within the SALERO project1.

(e) An exploratory application of the findings from chapter 7 was carried out as a simulated 

SDS environment with conversational capabilities that adapted its a/p features in accordance 

to those of human subjects. Despite the fact that this was an experimental approach, thus not 

performance-optimized,  a  number  of  useful  conclusions  were  drawn  that  could  serve  in 

designing actual systems in the future. 

1.5  Thesis statement

Human dialogues  exhibit accommodation of  a/p  (pitch,  pitch  range,  speech rate,  intensity)  and 

temporal  (pause duration and overlaps) features. This thesis proposes quantitative descriptions of 

these phenomena that  provide useful insights for the development of SDS  which are capable of 

implementing appropriately similar behaviour. 

1.6  Outline

The  following  is  a  brief  outline  of  the  rest  of  this  document.  Chapter  2  provides  relevant 

background on  significant  improvements  towards  natural  speech interaction,  and  naturalness  in 

speech  technology  in  general.  Emphasis  is  placed  on  prosody,  which  is  central  to  improving 

naturalness in various areas of speech technology research. In addition, the major issues in current 

research and commercial SDS are discussed, in order to highlight areas in which a quantitative 

description of inter-speaker accommodation can improve on the current performance. Chapter 3 

outlines  the  theoretical  frameworks  of  inter-speaker  accommodation,  with  a  more  detailed 

description  of  Communication  Accommodation  Theory  and  the  Interactive  Alignment  Model, 

which have been the most prominent theoretical descriptions of inter-speaker accommodation in 

speech  technology  literature.  Chapter  4  provides  a  review  of  related  work,  which  consists  of 

previously  proposed  methods  of  measuring  inter-speaker  accommodation.  This  review  is  not 

restricted to prosodic and temporal features but includes studies focusing on accommodation in 

other features, such as lexical or gestural. A summary and analysis of the literature review findings 

is presented in chapter 5. The result of this critical analysis provides justification for the rest of the 

1 www.salero.info
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work presented in this thesis. 

Chapter 6 presents the outline of the research methodology followed, as well as the steps taken 

towards acquiring the data on which the major contributions were based, which comprise the design 

of  the  audio  recording  laboratory  and  recording  experiments  for  acquiring  recordings  of 

spontaneous speech, as well as the development of corpus annotation and feature extraction tools. 

The  TAMA analysis  method is  presented  in  chapter  7,  along with  the  statistical  evaluation  of 

accommodation  of  a/p  features  in  the  recorded dialogues,  which  points  to  possible  models  for 

accommodation that can be used in spoken dialogue systems. Chapter 8 presents an application of 

the TAMA methodology on temporal features, which shows partial evidence of accommodation of 

pause length and overlap frequency in the recorded dialogues. The novel dialogue representation, 

also presented in this chapter, explores a different approach to explaining the variations of these 

features as a function of dialogue activity (or liveliness) and turn share distribution among speakers. 

The  preliminary application  of  a/p  feature  accommodation  in  a  simulated  SDS environment  is 

presented in  chapter  9,  and chapter  10 presents  the conclusions  derived and possible  paths  for 

extension of this work. 
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2.1  Overview

This  chapter  serves  as  background,  in  order  to  explain  the  motivation  behind  studying 

accommodation of acoustic/prosodic (a/p) and temporal features in human dialogues. Since this 

research is focused on studying these phenomena in view of incorporating them in human-machine 

interaction, a review of current methodologies employed in spoken interface applications - and their 

limitations -  is essential. 

In particular, section  2.2 discusses  current research in speech as an interface in human-machine 

interaction and the need for more “natural”, or “human-like” interaction with “talking” systems. As 

was mentioned in the introduction, this has been the major motivation for the work described in this 

thesis, as inter-speaker accommodation is a well-known property of human dialogues that could 

improve the perceived naturalness of human-machine interaction. The issue of naturalness and its 

evaluation in spoken dialogue systems is also discussed in this section, and the need for corpora of 

natural human dialogues in order to study inter-speaker accommodation is identified. 

Section  2.3  presents a conceptual view of the operation of spoken dialogue systems, indicating 

some of  their  advances  and limitations  that  are  related to  the naturalness of the interaction,  as 

experienced by the  users  of  such systems.  The  floor-taking  and floor-releasing  (in  short,  turn-

taking) strategy of SDS is the most notable such limitation, and inter-speaker accommodation of 

temporal  features  (such as  inter-speaker  pause length)  is  closely related to  this  problem. Other 

functions  of  SDS,  such  as  user  monitoring  and  error  detection,  are  likely  to  benefit  from  a 

quantitative description of prosodic accommodation, as prosody has been used prominently as a 

classifier  in  error  detection.  These  findings  have  motivated  the  study  of  inter-speaker 

accommodation in temporal and a/p features, respectively.

Speech prosody is  discussed in  detail  in  section  2.4,  in  relation  to  its  form (the speech signal 

features that are considered in the study of prosody) and function (the role of prosody in human 

speech).  Historically,  prosody  has  been  prominent  in  speech  technology  in  relation  to  the 

naturalness of synthesized speech as it carries several linguistic and paralinguistic functions. The 

latter include the expression of emotions as well as prosodic cues that serve dialogue organization, 

which find application in SDS that detect user emotions (e.g. for error detection) or adapt their turn-

taking strategy based on online prosodic analysis of the user utterances. In addition, SDS rely on 

models of prosody when generating their prompts to the user, with the majority of these models 

being based on monologue speech. Thus, SDS do not take into account the interaction context when 

generating prompts, which can make the latter sound inappropriate. A description of inter-speaker 
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accommodation  of  a/p  features  is  likely  to  improve  performance  in  all  these  areas  (prompt 

generation, emotion recognition/synthesis, online prosodic analysis for interaction management), 

thus a/p features are identified as primary targets for such a description.

Finally,  section  2.5 briefly discusses the issue of acquiring  recorded corpora of natural human 

speech, which is an essential step in studying any property of human speech. This also true for inter-

speaker accommodation, in which case recordings of dialogues are required. In particular possible 

methods  of  acquiring  such recordings  in  a  laboratory environment  are  compared  against  using 

existing  data  (e.g.  from  customer  service  call-centers)  according  to  three  specific  criteria: 

naturalness of the content, audio quality and re-usability/resource cost. This chapter is concluded by 

a discussion that summarizes the key points in section 2.6.

2.2  Towards natural spoken dialogue interfaces

This section discusses current research directions that point towards the development of spoken 

dialogue  systems  capable  of  engaging  in  “natural”  interaction  with  human users.  In  particular, 

sections  2.2.1 and  2.2.2 discuss the motivation and aims of this research direction, as the work 

presented  in  this  thesis  supports  the  development  of  these  goals.  The  issue  of  naturalness  is 

discussed in section  2.2.3, while a framework for implementation and evaluation of human-like 

behaviour in spoken dialogue systems is discussed in section 2.2.4.

2.2.1  Long term goals in speech science and technology research

A speech-based  interface  utilizes  speech  as  input  and/or  output,  in  order  to  accomplish  an 

application related task. From this point of view, traditional speech-related technologies, such as 

text-to-speech synthesis (TTS), automatic speech recognition (ASR), and spoken dialogue systems 

(SDS), can all be seen as speech interfaces:  TTS screen readers are programs that “read aloud” the 

contents of the computer screen, thus replacing the need for a human reader (Dutoit 1997); typical 

applications of ASR are “dictation” of text to the computer (replacing the need to type) and voice 

commands  (Boves and Os 1999). Both TTS and ASR have general applications of this type but 

have also been specifically targeted for people with hearing and/or visual impairments (Syrdal et al. 

1994; Dutoit 1997; Sproat et al. 1999). Spoken dialogue systems, which build upon the other two 

technologies,  are  interactive  conversational  environments  with  multiple  applications,  such  as 

automated customer service (Hardy et al. 2004), travel booking (Seneff and Polifroni 2000), or call 

routing (Williams and Witt 2004).

For each of the above applications, speech technology components, such as TTS, ASR and SDS, 
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aim to  adequately imitate  the human abilities  of  speaking,  perceiving speech,  and  engaging in  

conversation.  There are  at  least  two questions  arising  from the  above statement:  first,  why do 

humans need  “machines” that  can  speak,  understand speech,  and engage  in  conversation?  and, 

secondly, how feasible is  this, or, how adequately can these machines imitate humans? 

The first question can be answered – both from a research and commercial point of view – by the 

need for speech technology in applications such as those mentioned above. However, there is a 

much  wider  scope  in  this  field  of  research  than  that  which  is  revealed  by  the  applications 

themselves. Generally, human scientists and engineers aim to imitate nature and this applies also to 

speech2, which is the most natural form of human communication (Lustgarten and Juang 2003); 

hence the science-fiction incarnations of intelligent androids, or - in the case of an intelligent talking 

computer – the famous HAL from the film 2001:A space Odyssey3. Although current state-of-the-art 

systems produce highly intelligible speech, as well as impressive “understanding” capabilities, HAL 

continues to remain in the sphere of science fiction (Larsson 2005).  This also answers the second 

question: how good are the current systems? In short, not good enough, according to (Pieraccini and 

Huerta  2005).  Although there are  many successful  applications  of speech technology,  there  are 

domains where the results have not been satisfactory. One of these issues that concerns the current 

thesis is naturalness of synthesized speech, or of the overall human-machine interaction in general. 

This is discussed in more detail in section 2.2.3.

Beyond the current applications, speech technology is also an essential tool for an even greater goal: 

the  understanding  of  how human beings  speak  and understand speech,  and -  more  generally - 

communicate.  The  latter  is  the  goal  of  speech  and  communication  science,  a  diverse 

multidisciplinary  field  of  research.  Speech  technology  and  speech  science  are  connected  bi-

directionally: speech technology provides a test-bed for experimental testing of various existing and 

emerging speech science theories, while it borrows findings from speech science in order to achieve 

better performance in speech technology applications. 

From the application point  of  view,  speech interfaces  are  seen as  potentially the most  efficient 

possible, as speech is the most natural form of human communication (Lustgarten and Juang 2003). 

Thus, the development of naturally interacting speech interfaces points to better efficiency in current 

systems,  as  well  as  to  an  extension  of  the  application  field  to  tasks  for  which  the  current 

technologies are inadequate (Dybkjær and Dybkjær 2004). This is discussed further in the following 

2 The first recorded “talking machine” (1769) was that of the Hungarian count Wolfgang Ritter von Kempelen, which 
was a  mechanical apparatus that produced vocalic sounds.

      [http://en.wikipedia.org/wiki/Wolfgang_von_Kempelen%27s_Speaking_Machine,(01/04/2010)] 
3 http://en.wikipedia.org/wiki/2001:_A_Space_Odyssey_%28film%29,(01/04/2010)
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section.

2.2.2  Recent trends in SDS research 

One of the research areas in spoken language technology that has attracted interest in recent years is 

that of spoken dialogue systems (SDS). These have been successfully used in telephony, where they 

are also termed  interactive voice response (IVR) systems. Automated call-routing  (Williams and 

Witt  2004) is  perhaps  the  most  widespread  use  of  this  technology.  These  systems  have  been 

traditionally perceived as machines that understand spoken commands and produce monotonous 

spoken output.  However,  advances  in  natural  language  processing and  increased  computational 

capabilities have fuelled more optimistic visions and goals,  moving away from the view of the 

computer  speech  interface  as  a  tool,  towards  speculated  “intelligent  dialogue  systems”  and 

“communicative agents” (Jokinen 2000). The field of applications that such systems are thought to 

accomplish in the  future is virtually endless (Jokinen 2003):

“Sjöberg and Backlund (2000) envisage the future information and communication systems 

contain computers that are built into products such as clothes, books, beds, and sporting gear, 

and which communicate easily with other objects. Computers will also have senses and they 

can interpret human expressions, can smell, feel, hear, see and taste, and there will be intuitive 

human-computer interfaces that mimic human communication.”

Indeed, talking agents are nowadays perceived both as machines and as “virtual persons” giving rise 

to the distinction between the  human metaphor  and the  interface metaphor (Edlund et al. 2006), 

also explained in (Carlson et al. 2006): 

“In the interface metaphor, the spoken dialogue system is perceived as a machine interface – 

often but not always a computer interface. Speech is used to accomplish what would have 

otherwise been accomplished by some other means of input, such as a keyboard or a mouse. 

In the human metaphor, on the other hand, the computer is perceived as a creature (or even a 

person) with human-like conversational abilities, and speech is not a substitute or one of many 

alternatives, but rather the primary means of communicating with this creature.”

This concept of human-like behavior extends to many applications, such as games and educational 

programs  (Hakulinen and Turunen 1999). Moreover, research in emotional speech has led to the 

ambition of developing systems that can recognize and express emotions (Austermann et al. 2005; 

Lee and Narayanan 2005). As pointed out in (Holzapfel et al. 2002): 

“For example, uses have been software to assist learning and intelligent agents. It proved to 
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be beneficial for tutoring agents and learning software to show emotional behavior (e.g. the 

persona-effect) and use strategies based on emotional intelligence. For example motivating 

the user depending on his current emotional state [...]. Emotional intelligence has also been 

used in programs to improve user acceptance. This can be achieved by responding to user 

frustration and trying to help relieve frustration and recover to a positive emotional state […]. 

However, most applications are entirely unaware of the emotional state of the user and have 

no user model at all. This prevents a variety of possibilities to create programs that are better 

adapted to the user than today’s programs are.”

But, is this human-like “creature” the ultimate goal in speech technology research? Indeed, there are 

considerations against such an idea (Edlund et al. 2008), never mind whether it is even possible to 

ever build a “Turing machine”4 (Larsson 2005). Why would we need a machine that is designed to 

perform tasks to be - or at least to behave - like us? The answer is that human-likeness is likely to 

enhance certain applications. For example, commercial SDS are likely to be more pleasant if the 

user had the impression that they were actually speaking to a  person, even if they knew that they 

were speaking to machine. Some argument towards this issue is given in (Carlson et al. 2006): 

“We are aware that more ‘natural’ or human-like behaviour does not automatically make a 

spoken dialogue system ‘better’ (i.e. more efficient or more well-liked by its users). Indeed, 

we are quite convinced that the advantage (or disadvantage) of human-like behaviour will be 

highly dependent  on the  application.  However,  a  dialogue system that  is  coherent  with  a 

human metaphor may profit from a number of characteristics of speech that are typically not 

exploited in current systems designed with the interface metaphor in mind: it comes natural to 

us; it  is good for reasoning and problem solving; and it is commonly used for social and 

bonding purposes, to mention a few.” 

(Edlund et al. 2009) points out that some of the benefits of using speech as an interface (works in 

hands-free  and  eyes-free  situations  or  when  other  interfaces  are  inconvenient;  provides  an 

alternative  interface  for  the  disabled;  or  uses  simple  hardware  such  as  a  telephone)  are  more 

consistent with the interface metaphor and have been exploited accordingly in suitable domains 

(call  routing,  travel  booking,  voice  commands,  dictation,  TTS  text-reading).  Other  benefits, 

however, (simplicity, as humans are used to communicate through speech; quickness, as speech is 

fast to produce and perceive; robustness, utilizing human-like error-handling; and pleasantness, as 

human dialogue is sociable and pleasant) are more consistent with the human metaphor and have 

hardly been considered outside research systems (games and entertainment; education and learning; 
4 Alan Turing (1912-1954) proposed a test, in which A (a human) has a dialogue with B (a machine). If  A can be 

convinced that B is human, then B should be considered as having intelligence equal to a human (Larsson 2005)
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expert systems for problem solving tasks such as IT support; and guiding, such as city-guides). 

It should be made clear from the above that there is a definitive turn in spoken dialogue interface 

research, towards a mode of interaction that resembles everyday conversation between humans, i.e. 

towards natural interaction.  However, this has proved to be a non-trivial undertaking:

“The computer synthesis of natural-sounding speech has been a goal of computer scientists 

and  speech  technologists  for  more  than  half  a  century  [...] yet  neither  linguists  nor 

phoneticians have yet achieved a comprehensive definition of the full range and variation of 

speech as a means of human communication and social interaction.”, (Campbell 2006)

Indeed,  human speech and communication is  characterized by complex phenomena that  speech 

science is striving to explain. As a result, speech technology interfaces are characterized by lack of 

naturalness, or dissimilarity in comparison to the type of interaction that humans are accustomed to 

in their everyday life. The next section discusses the issue of naturalness in speech technology.  

2.2.3  Naturalness in speech technology

As pointed out in the previous section, the issue of naturalness is not new in speech technology and 

has been one of the major goals  (Campbell 2006) as well as one of the major short-comings in 

speech technology research. This section discusses the issue of naturalness in relation to various 

areas of speech technology.

The definition of naturalness in the field of speech technology has always been left vague. This is 

because providing a definition for naturalness raises philosophical questions, due to its subjective 

nature. Spoken language is ever changing in form and what appears as natural to one may appear 

unnatural to another. Different gender, age, cultural or ethnic groups use language differently. From 

a speech interface point of view, the properties of the system need to match the expectations of the 

user  (Perez-Quinones  and  Sibert  1996) as  to  what  is  natural  or  not;  given  the  diversity  in 

expectations among the possible users, it becomes clear that this is a major problem. The typical 

answer  to  this  problem  is  the  adoption  of  a  vague  working  definition  of  naturalness  as  a 

“convincingly human-like property” or  “human-likeness” (Edlund et al. 2008). 

The problem of evaluating how natural the synthesized speech sounds has not been solved either. 

The most frequently occurring solution is that of listening tests in which subjects are asked to rate 

the naturalness of the output, using scores on a scale from 1-10, on a number of different questions, 

a procedure that constitutes a  mean opinion score (MOS) test (Dutoit 1997; Tatham and Morton 

2005). An alternative to subjective testing is that of comparing the human subjects’ response to 
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synthesized speech, against their response to natural (human) speech (Edlund et al. 2008). If the 

responses are the same, then the subjects can be assumed to perceive the synthesized speech as 

natural  speech.  This  type  of  “objective”  testing,  which  is  possible  only in  a  dialogue  context, 

requires special care to ensure that the comparison of the responses is valid. This “equivalence” is 

not straightforward to accomplish, as discussed in section 2.2.4.

There are at least four major areas in speech technology where naturalness is a major issue. The first 

is  text-to-speech  synthesis  (TTS).  In  the  recent  years,  TTS  has  overcome  the  “intelligibility 

threshold” and efforts have been directed towards improving the naturalness of the speech produced 

by the various synthesis methods  (Tatham and Morton 2005). In  (Dutoit 1997) intelligibility and 

naturalness are presented as two “benchmarks” for synthesized speech. (Tatham and Morton 2005) 

points out that the two are not uncorrelated, as it is natural for human speech to be intelligible under 

realistic conditions (outside the laboratory), while synthesized speech is often unintelligible in such 

conditions.  Prosodic modeling is perhaps the most significant improvement on the naturalness of 

synthesized speech, as it accounts for appropriate tone configuration of an utterance and alleviates 

the “robotic” sound of synthesized speech (Dutoit 1997).

The second  area  is  Emotional  Speech Synthesis  (Schroeder  2001),  which involves  synthesizing 

speech  that  is  expressive  and  conveys  human  emotions.  Within  the  area  of  emotional  speech 

synthesis, naturalness refers to the final output speech, or whether the intended emotion is conveyed 

in a natural way, so that it can be perceived as such. Emotional speech synthesis offers a significant 

improvement on naturalness of synthesized speech, as human speech conveys emotional content 

which is an essential part of human interaction. 

The third area is that of recorded speech corpora. This area relates to the previous two as part of the 

development process, or as a “live” component of the system. In TTS, a corpus is required in order 

to  synthesize  new  utterances,  at  least  in  the  most  successful  concatenative  and  unit  selection 

methods (Dutoit 1997): the quality of the corpus directly affects the naturalness of the TTS output, 

by  providing  coverage  for  all  possible  utterances  that  the  system is  designed  to  generate5.  In 

emotional speech synthesis, corpora are required in order to obtain  acoustic correlates  of human 

emotions, or properties of the speech signal that are associated with a particular emotional state 

(Murray and Arnott  1993) or  emotion “dimension”  (Schroeder  2001).  In  the  former  case,  it  is 

required that the corpora contain a range of emotional states, which are appropriately labeled by 

expert listeners. In the latter case, the emphasis is placed upon spontaneous speech, which conveys 

genuine emotions and attitudes which are representative of real-life conversations. In both cases, 

5 It is outside the scope of this thesis to describe TTS methods. For a review see (Dutoit 1997)
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naturalness refers to the recorded (human) speech itself and – in particular – to the genuineness of 

the emotions with respect to their similarity to real life scenarios (Batliner et al. 2000). 

The fourth and final area is that of spoken dialogue systems (SDS), where naturalness usually refers 

to the overall interaction, although it is not uncommon for it to imply only a part or component of 

the system as being “natural” (dialogue management,  lexical  choice,  response time, voice tone, 

voice expressiveness etc). As SDS encompasses other areas of speech technology in its components, 

the overall naturalness of an SDS depends on the naturalness of its individual components (e.g. of 

the TTS voice).  An important  issue is  that  several  of these component  technologies have been 

developed with monologue speech in mind and are  thus inadequate in a dialogue context (e.g. 

prosodic models – see section 2.4.4). The inadequacy arises  from the fact that dialogue speech has 

properties not exhibited in monologue speech. 

One such property is inter-speaker accommodation.  Therefore, inclusion of this property in spoken 

dialogue interfaces is a possible path of improving the naturalness of such systems. Since human 

dialogues are characterized by complexity, due to its numerous properties, it is arguably useful to 

build  upon  current  systems  incrementally,  by  identifying  a  property  in  human  speech,  and 

evaluating  its  improvement  on  naturalness  in  human-computer  interaction.  An  existing 

methodology for performing this task (Edlund et al. 2008) is described in the following section. 

2.2.4  Evaluation of naturalness in SDS

(Edlund et al. 2008) proposed a procedure for implementing and evaluating individual properties of 

human interaction in SDS. This section outlines the key points of this procedure, which will be from 

here on referred to as the human metaphor paradigm. 

Human users can be trained to use a system, such as an SDS, by learning its instructions one by one, 

but it is easier for them to understand the operation of a system (in general) through a  metaphor.  

(Edlund et al. 2008) extended this idea to SDS, in that the design of a system can help the users 

perceive the system through a  specific  metaphor.  Two contrasting metaphors  were presented in 

(Edlund et  al. 2008):  the  human metaphor  and the interface metaphor  (see  section  2.2.2 for  a 

description).  Some users  can better  understand the  operation  of  a  system through the interface 

metaphor, while others can use a system more efficiently if they perceive it as having human-like 

abilities in speech production and understanding. In addition, the task a system is designed for can 

largely influence the type of metaphor that is more suitable (see section  2.2.2), while for some tasks 

both metaphors can be used. One can even imagine other metaphors that are in-between the two 

extremes, such as the “android” metaphor proposed in (Edlund et al. 2008), which are human-like 
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in some aspects and “machine-like” in some other aspects. (Larsson 2005) described a continuum 

defined  between  the  “engineering”  (interface  metaphor)  and  “simulation”  (human  metaphor) 

positions. 

In order to make human-machine interaction more human-like, which (Edlund et al. 2008) adopted 

as a working definition of “natural”, an evaluation target is required. In this case, the evaluation 

target is human dialogue. The implementation evaluation schema is shown in Figure 2.1. The left-

hand side of the picture depicts a human dialogue between two persons, h1 and h2.. After measuring 

some property in the speech of h1 and h2, the property is implemented in C1 on the right-hand side of 

the picture, which depicts a human-computer interaction. The implementation can then be evaluated 

in terms of (a) similarity, between the behaviour of  C1  and that of h1 and h2, and (b) response, if the 

behaviour of H1 ,who interacts with the system C1, resembles that of h1 and h2.

In this manner, the implementation can be evaluated both subjectively and objectively: (a) above 

can  be  evaluated  perceptually  in  listening  experiments,  in  which  subjects  judge  whether  the 

behaviour is firstly perceivable, and secondly whether the behaviour of  the system resembles that 

of a human more than a control condition in which the behaviour is not present, but (b) can be 

directly evaluated by measuring the properties of the user speech  (in the case of human-computer 

interaction), and comparing the results to those from the human-human interaction. As pointed out 

in (Edlund et al. 2008), this comparison is not always straightforward, and the equivalence must be 

considered carefully, by keeping as many variables as possible constant in the two cases. Three key 

methods are presented for extracting speech features in a way that can enable such comparisons: 

micro-domains, direct data manipulation of human dialogues and Wizard-of-Oz experiments.

Micro-domains are interactions that are constrained in such a way that human-machine interaction 

can be perceived as human-like. (Edlund et al. 2008) provided the example of narration, a type of 

interaction in which the listener is not expected to interrupt. A state-of-the-art unit-selection speech 

synthesis system in such a limited domain is very likely to be perceived as an actual human speaker. 

According to  (Edlund et al. 2008), the usefulness of micro-domains is that they can be used to 
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directly  model  the  user  behaviour  in  some  respect.  In  the  case  of  narration,  this  can  be 

backchanneling feedback responses which signal attention.

Direct data manipulation refers to changing the speech properties of one of the speakers in the 

human dialogue and using the resulting modified signal as the “system” voice. A  distinction can be 

made between on-line  and off-line  manipulation.  In  off-line  manipulation,  the  speech signal  is 

altered  is  some  way  (such  as  prosodic  modification  or  introduction  of  longer  silence  before 

utterances) and presented to subjects in perceptual listening tests, in order to accumulate judgements 

on the effect of the manipulations. The drawback of this method is that it cannot be used to measure 

the user's response to the manipulations, because introducing changes to the speech of one speaker 

arguably changes the interaction in such a way that the data from the second speaker is no longer 

valid: had the manipulation occurred during the interaction, the speech of the second speaker would 

have been different. This problem is not present in on-line manipulation.  The latter method also has 

the  advantage  of  using  data  from  both  speakers,  if  the  manipulations  are  made  symmetrical. 

However, the level of control is lower than that of Wizard-of-Oz experiments (see below), because 

computationally expensive manipulations introduce latencies to the interaction. (Edlund et al. 2008) 

provided  only  one  example  of  this  method  actually  being  used  to  manipulate  speech  (noise 

contamination of the signal in order to elicit acknowledgement requests), while it has also been used 

to manipulate text-chat and gestural features. 

Wizard-of-Oz experiments  (Woffit et al. 1997) are simulations of functioning systems, in which 

subjects are led to believe that they are interacting with a fully automated SDS, while – in reality – a 

human experimenter is controlling some aspect of the system. These have been used for several 

purposes, such as in the research and design phase of many SDS (Edlund et al. 2008). Experiments 

of this type also present a viable option for evaluation of human-likeness in SDS. Since unlimited 

conversational SDS are currently unavailable, a Wizard-of-Oz set-up can be used instead, in order 

to  monitor  the  user  perception  and  response  to  an  implemented  human-like  property  in  the 

interaction. This is possible both by use of questionnaires (or any other method  of recording user 

judgement), as well as by directly measuring properties of the users' speech. Another advantage of 

this method is that it allows a significant level of control, in terms of manipulating the interaction in 

order to elicit a particular response from the user. 

The proposed evaluation framework of (Edlund et al. 2008) makes it possible to implement and 

evaluate models of various aspects of natural human speech. Inter-speaker accommodation is one of 

these aspects that (Edlund et al. 2008) identified as a possible target for such an implementation. 

This is desirable for enhancing the “human metaphor” and improving on the human-likeness or 
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naturalness of the interaction in general. According to the outlined methodology of (Edlund et al. 

2008),  this  requires  careful  investigation  and characterization  of  accommodation phenomena in 

human speech, in order to inform SDS design strategies that can take them into account. 

Currently,  there  are  two major  obstacles  to  such  an  implementation.  First,  there  is  insufficient 

knowledge on accommodation phenomena, especially in relation to their form. As was mentioned in 

the  introduction,  traditional  descriptions  of  inter-speaker  accommodation  lack  a  quantitative 

approach that can inform SDS implementations (Oviatt et al. 2004). Second, state-of-the-art SDS 

are not  yet  capable  of human-like communication,  nor are  they likely to  be in  the near  future 

(Larsson 2005). There are, however, components in current architectures that can benefit even from 

“naive”  implementations  of  accommodation  phenomena.  These  components  relate  to  several 

aspects of dialogue (dialogue management, turn-taking, prosody, emotional speech) that have been 

identified among the major issues in recent SDS research discussions (Minker et al. 2006). The 

following section provides a brief outline of the operation and major components of SDS systems, 

discussing the implications of inter-speaker accommodation where appropriate. 

2.3  Spoken dialogue systems

This section provides a brief description of spoken dialogue systems, in order to highlight areas in 

which inter-speaker accommodation may improve current performance. It is noted that this is not a 

strictly  technical  description,  but  rather  a  conceptual  (abstract)  discussion,  from which  several 

insights can be drawn in relation to possible improvements in naturalness of such systems. A brief 

outline of the operation of SDS is given in section 2.3.1. Section  2.3.2 discusses the issue of the 

floor-exchanging strategy of SDS, which is termed interaction management, in comparison to floor-

exchanging in human dialogues as described by studies in conversation analysis. The conversational 

capabilities of SDS are discussed in section 2.3.3, under the topic of dialogue management, which 

is the central component of the SDS architecture. Finally, the issue of multimodality, which is the 

transmission of information through various parallel  communication channels (lexical,  prosodic, 

gestural) is discussed in section  2.3.4.

2.3.1  Operation of SDS

Spoken dialogue systems combine a number of other speech technologies, such as text-to-speech 

synthesis (TTS),  automatic speech recognition (ASR),  automatic language understanding (ALU), 

voice  activity  detection  (VAD)  and  natural  language  processing  (NLP).  A schematic  of  the 

operation of SDS is shown in Figure 2.2.
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Figure 2.2: Schematic of spoken dialogue system

The interaction between a user and an SDS requires audio sensory equipment (microphone and 

speakers,  or  a  telephone),  unless  visual  information  is  also  available,  in  which  case  visual 

equipment (camera, monitor) is also required. User utterances are detected by means of a  voice 

activation detection (VAD) algorithm (Song et al. 2009). Spoken input from the user is processed 

when  the  user's  utterance  is  completed.  This  decision  is  made  by the  interaction  management 

component, typically by means of silence duration threshold (see next section). 

If the user turn has ended, the recorded user utterance is passed to the ASR component, which 

transforms the recorded speech signal into a phonetic transcription, i.e. a series of phonemes. This 

transcription is input to the NLP component, which performs lexical parsing, identifying the lexical 

elements from a list of possible candidates and outputs a word stream. The latter is semantically 

parsed by the  ALU component,  so  that  the  system can  “understand”  the  utterance.  The  dialog 

manager  decides  on  the  appropriate  action  (provide  a  reply,  ask  for  clarification  etc.)  and  an 

appropriate utterance is generated (or chosen from a preset list of available prompts) and passed to 

the speech synthesizer in order to be “spoken” to the user. 

The above is only a basic description of the operation of an SDS, but it is sufficient for the purpose 

of discussing some of the key issues in relation to inter-speaker accommodation. In particular, two 

areas  are  identified as  currently limiting the human-likeness  of  human-machine interaction:  the 

dialogue  manager  component,  which  is  central  to  the  SDS architecture  and  represents  all  the 

possible actions the system can perform (Pieraccini and Huerta 2005), and the interaction manager 
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component,  which  is  responsible  for  smooth  floor-exchanges  between the  system and the  user 

(Raux 2008). In addition, the inclusion of additional communication channels, or modalities, has 

been identified as a key area of improvement on users' perception of the human metaphor (Edlund 

et al. 2008). The following three sections outline a number of key issues which are related to these 

areas in SDS research.  

2.3.2  Interaction management

Traditionally,  SDS have adopted a “push-to-talk” or “ping-pong” turn-talking strategy,  in which 

there is a rigid one-speaker-per-turn succession between user and system (Carlson et al. 2006). All 

this requires is the detection of the end of the user turn, also termed  end-pointing detection,  or 

simply end-pointing, a process based on a silence duration threshold, typically from 500-2000 ms 

(Edlund et al. 2005). This approach introduces false alarms, when the user hesitates, or unwanted 

latencies, when there is an actual endpoint and the system “waits” for a time equal to the duration 

threshold.  This problem arises from the “ping-pong” view of dialogue, which is not consistent with 

actual everyday dialogue between humans  (Furui et al. 2005). Thus, research has recently turned 

towards  conversation  and discourse  analysis  (Mushin et  al. 2003) in  order  to  implement  more 

adequate interaction management strategies in spoken dialogue systems. 

A famous quote  from the  seminal  paper  on turn-taking  (Sacks et  al. 1974) states  that  “in  any 

conversation, we observe the following: speaker-change recurs, or at least occurs. [...]”. Sacks et al 

proposed perhaps the first systematic account of how turns are exchanged, inaugurating the field of 

conversation  analysis  (Raux  2008),  which  evolved  into  discourse  analysis  (Campbell  2009), 

although  much  earlier  chronographic  records  of  dialogues  are  reported  in  (Lennes  and  Anttila 

2002), and  (Campbell 2009). In the model of  (Sacks et al. 1974), turns are defined by means of 

turn-construction units  and turn-allocation  units.  A central  concept  is  that  of  transition-relevant 

points (TRP). A TRP is a point in the dialogue where potentially there can be a turn-exchange. 

(Raux 2008) presented previous research on several TRP cues, which include syntactic conclusion, 

prosody, semantics/pragmatics and non-verbal behaviour, such as making eye contact in order to 

indicate the end of a turn. According to Raux, the only objective definition of a turn that does not 

take into account interpretations by the researcher (which would lead to subjectivity) is  that  of 

(Jaffe and Feldstein 1970):

“The speaker who utters the first unilateral sound both initiates the conversation  and gains 

possession  of  the  floor.  Having  gained  possession,  a  speaker  maintains  it  until  the  first 

unilateral sound by another speaker, at which time the latter gains possession of the floor.”
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However, natural human dialogue does not consist of a mere “exchange of turns”, but there are 

many instances of overlapping speech, which serve as acknowledgments of continuing attention, 

agreement or may be attempts to interrupt and take over  the floor.  A definition of overlapping 

speech segments, or overlaps, is given in  (Delmonte 2005):

“Overlaps may be defined as a speech event in which two people speak simulateneously by 

uttering actual words or in some cases non-words, when one of the speakers,  usually the 

interlocutor, interrupts or backchannels the current speaker.”

Among the first to view conversation as a “collaboration” were Clark and Schaefer  (1989), who 

defined the conversation as a joint process between two partners who join a “pact” with some prior 

knowledge, obligations, and goals. The way of achieving these goals is by means of contributions,  

in order to establish common ground (shared knowledge). A central concept in discourse analysis is 

that of  speech acts  or  dialog acts  (Wright 1999), which are a categorization of all utterances in a 

dialogue, with each act serving a distinct communication purpose in the discourse. For example, 

short, overlapping utterances which can be anything from hums and noises to utterances such as 

“yes,  yes”,  or  even  longer  utterances,  are  used  in  spoken  dialogs  to  signal  acceptance  or 

disagreement, or can be prompting the speaker for continuation/interruption of their current turn. 

Back-channel feedback or  back-channeling is a term coined for these dialog acts that serve the 

double purpose of conveying the listener’s attitude towards what the speaker is currently saying and 

managing the transition of turns. However, there is still no consensus on what a turn is, never mind 

a  categorical  description that  can be used to  annotate  speech corpora in  a  straightforward way 

(Bosch et al. 2005; Raux 2008).

Further,  the view of conversation partners  having distinct  roles of  “speaker” and “listener” are 

fictional according to some (cf Heylen 2009): interlocutors do not take turns to speak, but rather 

accommodate the transition from one speaker to the next by means of cues. More recently, there 

have been proposed representations of human dialogue as a joint process, in which both participants 

are  actively  participating  continuously  through  the  process  of  active  listening and  synchrony 

(Campbell 2009), feedback and instantaneous response (Heylen 2009). The former study is closer 

to  the  accommodation  phenomena line  of  research,  as  it  focuses  on  synchronous behaviour  of 

interlocutors,  while  the  latter  is  based  on  a  discourse  analysis  point  of  view.  (Heylen  2009) 

suggested a schematic representation of dialogue  (see Figure 2.3):
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In its simplest form, shown in the figure above, the schema essentially considers a  feedback loop 

(A→B→C→D→A) together with simultaneous transmission of information from both speakers 

(diagonal  line).  A communicative act  A by speaker  x is  perceived by speaker y,  who produces 

his/her own communicative act as a response. This is perceived again by x and so on in this circular 

fashion. Thus the communicative acts of both x and y are influenced by the previous responsive acts 

of  each  other,  resulting  in  a  feedback  loop.  In  addition  to  this,  both  x  and  y  provide 

acknowledgements  to  each  other  that  they  have  perceived  the  communicative  acts.  This  is 

performed instantaneously by use of overlapping speech (back-channeling) or head nods, facial 

gestures, eye movements etc., in the case of face-to-face conversation. In this manner, x perceives 

the acknowledgement of y while x is still producing their own utterance, which again influences the 

communicative act  manifestation.  This also explains lexical  and syntactic alignment,  as well  as 

utterance  length  accommodation  (Matessa  2001) which  are  discussed  in  chapter  3.  Thus,  the 

schema of (Heylen 2009) captures both feedback and monitoring, two processes that accommodate 

interaction management in natural human dialogues. 

Commercial systems systems, however, have largely remained loyal to silence-threshold turn-taking 

strategies, driven by such goals as task-completion efficiency and robustness (see section 2.3.3). For 

example, push-to-talk interfaces (that require the user to push a button in order to speak to the 

system) can be equally or even more efficient than free turn allocation interfaces for certain tasks 

(Fernandez et al. 2006). However, there are also significant developments towards more realistic 

turn-taking behavior in SDS, which take into account temporal, prosodic, syntactic, semantic and 

pragmatic  (domain  knowledge)   information  in  order  to  improve  end-of-turn  detection  while 

allowing for non-interrupting overlaps (e.g. Raux 2008). 

Knowledge  of  inter-speaker  accommodation  phenomena  could  improve  the  performance  of 

interaction management in SDS. For example, accommodation of pause duration between speaker 
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turns has been reported in several studies (Jaffe et al. 2001; Bosch et al. 2005; Edlund et al. 2009). 

Therefore, turn-taking behaviour could be improved by dynamically adjusting the silence threshold 

according to the on-going activity in the interaction,  e.g.  by monitoring silence duration before 

speaker turns and its variation according to silence duration before system turns.

2.3.3  Dialogue management

The gap that divides current spoken dialogue systems from human-like conversational speech is 

perhaps  most  evidently  illustrated  by  the  type  of  dialogue  that  current  SDS  are  capable  of 

entertaining.  Currently,  SDS are incapable of engaging in human-like conversation that exhibits 

spontaneous  speech,  however  they  are  capable  of  dealing  with  increasingly  complex  tasks  in 

commercial applications (Allen et al. 2001; Dybkjær and Dybkjær 2004). This is made possible by 

the dialogue manager, the SDS component responsible for controlling the interaction with a user. A 

categorization  of  SDS that  is  relevant  to  the  organization  of  the  dialogue  is  that  of  initiative: 

typically, applications such as call-routing or travel booking are system-initatitive (the system asks 

questions and idly waits for user replies). User-initiative refers to the opposite schema of operation, 

e.g.  a  user  articulates  queries  to  a  database.  Mixed-initiative systems  (Allen et  al. 1999) can 

combine  both  approaches,  either  in  presenting  an  open  prompt  in  order  to  circumvent  the 

requirement of presenting all possible menu options, or as an adaptive strategy, depending on the 

dialogue flow (Litman and Pan 2002). 

According to a review of existing dialogue management implementations (Pieraccini and Huerta 

2005),  commercial  systems  and research  on  SDS have  followed  contrastingly  different  routes: 

spoken dialogue interaction research aimed for “conversational interfaces”, and fell back to more 

feasible  goals  when  limitations  became  apparent.  In  contrast,  commercial  systems  followed  a 

“bottom-up” evolutionary path, as a result of designing SDS for specific applications, in which the 

domain constraints made a speech interface feasible with the technology that was available. In flight 

booking, for example, the dialogue – even with a human agent -  follows a strict procedure in which 

all fields in a form have to be filled before a booking can be completed. 

The beginnings of dialogue management in the commercial domain were directed dialogue systems, 

in which a sequence of prompts was presented to the user and resolution of each step was required 

for  the  script  to  proceed  to  the  next  action.  These  were  typically  developed  directly  on  the 

application platform and used proprietary development tools, resulting in zero portability and re-

usability. The next step was finite-state machine dialogue modeling (Pieraccini and Huerta 2005). In 

this paradigm, a dialogue is represented by a flow diagram of nodes and arcs. The nodes represent 

states in the dialogue (such as waiting for a specific user input) and the arcs represent transitions 
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between states, depending on conditions. The simplest form of this is a call flow diagram (such as 

the flight booking example above). The advantage of this method is that finite state machines can be 

re-used  for  several  applications,  while  the  topologies,  or  task-specific  requirements  can  be 

accommodated  by  adapting  the  flow diagram.  A limitation  of  this  method  is  that  all  possible 

outcomes in each dialogue state must be thought of in advance, which makes management of more 

complex tasks (such as problem solving) impossible to program. 

A further improvement on finite state dialogue managers was the abstraction of states and arcs into 

a functional control manager, which is a finite state representation of the dialogue control logic 

(rather  than  the  dialogue  itself).  In  this  case,  states  correspond  to  functions  that  are  executed 

depending on conditions that are evaluated by means of separate memory structures, which can be 

accessed  by  all  states.  In  this  manner,  more  complex  topologies  can  be  modelled.  However, 

complex tasks (such as problem solving) can result in very complex models which are impractical 

or  insufficient  (Dybkjær  and  Dybkjær  2004).  This  problem  has  not  yet  been  resolved  in  the 

commercial domain, but there are approaches in the research community towards resolving these 

problems (Allen et al. 2001). Inference based dialogue managers make use of domain knowledge 

and strategy, which is defined as goals and sub-goals. These can be re-defined dynamically during 

the dialogue, thus giving rise to the term “adaptive” dialogue management. The advantage of this 

approach is that it  provides the dialogue manager with a set of actions it can perform, without 

having to define every state and transition separately, thus allowing for more complex topologies to 

be implemented (Pieraccini and Huerta 2005). 

Despite the advances in dialogue management described in (Pieraccini and Huerta 2005), SDS are 

still incapable of conversing in a “human-like” manner (Dybkjær and Dybkjær 2004) and there are 

arguments against the idea that this goal will ever be feasible, as it would require computer agents 

with human  intelligence  (Larsson 2005).  However, (Larsson 2005) points  out that  this does not 

mean that spoken dialogue research is without purpose, as it can still largely improve SDS in terms 

of naturalness.  

One of the most important issues in dialogue management is error detection and an error-recovery 

startegy. i.e a “fall-back” plan when things go wrong in the conversation (Carlson et al. 2006). Error 

detection is crucial for the operation of SDS, as failure to recognize an error can result in either 

acceptance  of  erroneous input,  or  user  frustration  (or  both).  Error  detection  strategies  typically 

utilize  confidence scores  (Lee and Narayanan 2005) from the ASR component  (a  low score is 

indicative of a possible error). The semantic parser may also provide error detection functionality if 

it fails to understand the user request. It is also possible to detect errors with the help of prosody, as 
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user rephrased or repeated commands have been found to have different prosodic content from 

utterances  in  smooth  regions  of  the  interaction  (Bell et  al. 2003),  or  by  means  of  emotion 

recognition  (see  section  2.4.4).  In  addition  to  detecting  errors,  an  SDS must  have  a  recovery 

strategy. In the simplest of implementations, this can be a clarification request in the form of yes/no 

question (which the system can  recognize  with  more  confidence),  or,  in  case of  severe errors, 

dispatching the task to a human operator (Pieraccini and Huerta 2005).

A quantitative description of inter-speaker accommodation can enhance the user monitoring and 

error detection capabilities of SDS, as they are based on an on-line analysis of features extracted 

from the speech signal. For example, a/p features can be used to determine possible user frustration, 

based on online monitoring of user emotions (Holzapfel et  al. 2002), as emotion recognition is 

based on classification  based  on these features.  This  classification  can  perhaps  be improved if 

variation of prosodic features due to inter-speaker accommodation is taken into account. 

2.3.4  Multimodality

In human interaction, information is exchanged through various modalities: lexical content, syntax, 

prosody, facial expression, gesture, gaze and “body language”. It is noted that “information” in the 

context of interaction denotes either pragmatic content, or expression of one's emotion, attitude or 

belief  on  a  particular  subject.   These  communicative  functions  are  expressed  simultaneously 

through the various modalities. For example, pleasure/displeasure on a particular situation that is 

being discussed may be expressed lexically, but this is often accompanied by manifestations of this 

mood in other modalities (e.g. smile or disgusted facial gesture, relevant intonation, possible hand 

gestures). This multimodality is an intuitively known property of human interaction.

Spoken dialogue systems have utilized multimodality (Dybkjær et  al. 2004; Oviatt et  al. 2004; 

Pieraccini et al. 2009) through the inclusion of avatars, which typically have the form of animated 

talking heads (McTear 2004). These exhibit impressive capabilities in terms of lip-synchronization 

with  the  speech  signal,  as  well  as  displaying  facial  gestures  and  nods  of  approval  or 

acknowledgment  (signaling  understanding).  The  inclusion  of  talking  heads  is  considered  as  a 

significant  improvement  on  the  naturalness  of  the  interaction  with  SDS  and  has  been  used 

successfully in various applications  (Pieraccini et al. 2009). Other modalities are the use of light 

pen or hand-writing, 2D gesture input and graphics – such as images and maps – output (Dybkjær 

et al. 2004).

As mentioned in the introduction, and further discussed in chapter 3, inter-speaker accommodation 

is  known to  occur  along  different  modalities  simultaneously.  Therefore,  an  implementation  of 
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accommodating  behaviour  in  different  modalities  in  an  SDS  environment  is  likely  to  bring 

improvements to both naturalness and efficiency.  This has been proposed in (Bell et  al. 2000), 

which  involved  subjects  interacting  with  a  multimodal  SDS.  (Campbell  2009) demonstrated 

simultaneous  activity  of  interlocutors  across  several  modalities  (speech,  head  movement,  body 

movement) in spontaneous (human) dialogues. Implementation of similar behaviour in SDS would 

intuitively enhance the perception of naturalness. 

2.4  Prosody

As was mentioned in section 2.2.3, the study of speech prosody has resulted in major improvements 

of naturalness in speech technology. In addition, sections  2.3.2 and  2.3.3 have already identified 

areas in SDS research in which prosody plays an important role. This section presents a sufficiently 

detailed account of the form (section 2.4.1) and function (sections 2.4.2 - 2.4.3) of prosody, in order 

to  further  illustrate  its  importance  in  dialogue  systems  and  the  motivation  for  studying 

accommodation of prosodic features.

The word “prosody” is of ancient Greek origin: According to Diomedes (400 BC), prosody “is sung 

with the syllables”, an etymological definition referring to the strict rhythmic and melodic rules 

(similar  to  music)  of ancient  Greek,  hence the Latin  equivalent  ac-centus (ad –cantus):  accent. 

Therefore,  prosody refers  to  the  melodic  (pitch)  and temporal  (speech rate,  phoneme duration) 

features of speech. However, since these features are studied from different points of view, such as 

linguistic studies and engineering applications, there is no universal definition for prosody (Cutler 

et al. 1997). (Werner and Keller 1994), for example, examining prosody from a speech technology 

(synthesis and recognition) point of view, re-stated a classic definition of prosody as  “the speech 

features whose domain is not a single phonetic segment, but larger units of more than one segment, 

possibly whole sentences or even longer utterances”. (Werner and Keller 1994) thus accepted the 

equivalence  of  prosody  to  suprasegmental features,  a  term  attributed to  (Lehiste  1970).  This 

equivalence is also present in the definition of (Dutoit 1997): 

“The term prosody refers to certain properties of the speech signal such as audible changes in 

pitch, loudness, and syllable length. […] are also referred to as suprasegmental phenomena” 

According to  both (Dutoit  1997) and  (Werner  and Keller  1994),  there is  a number  of different 

representations or “levels” of prosody.  (Dutoit 1997) distinguishes three different representations 

(see  Table 2.1). The  acoustic level refers to measurable properties of the speech signal, such as 

fundamental frequency (F0), amplitude and segmental duration, which is included despite not being 

a strictly acoustic feature. 
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Acoustic Perceptual Linguistic

Fundamental Frequency (F0) Pitch Tone, intonation, 
aspect of stress

Amplitude, Energy, Intensity Loudness Aspect of stress

Duration Length Aspect of stress

Amplitude dynamics Strength Aspect of stress

Table 2.1: Three representations of prosody and their properties (Dutoit 1997) 

The perceptual level refers to perceptible features of prosody. Fundamental frequency is an acoustic 

property of the signal that is perceived as  pitch. Similarly, intensity, amplitude or energy can be 

perceived as loudness. Thus, a variation at the acoustic level has to be large enough to be perceived 

as such at the perceptual level, and micro-perturbations of the same acoustic features should not be 

(mistakenly) characterized as prosodic variations. The properties of the perceptual level have, in 

turn, their own correspondences to the properties of the linguistic level. In particular, intonation can 

be associated with pitch (and therefore F0). On the other hand, acoustic correlates of  stress have 

been difficult to define (Dutoit 1997). 

The general consensus is that F0, intensity, rate of delivery and duration are the most important 

prosodic features (Hakulinen and Turunen 1999). Other signal features have been considered as 

prosodic, because they satisfy the definition above of being “suprasegmental” (spanning several 

segments). One such example is voice quality (Laver 1980), which is "the characteristic auditory 

coloring of an individual's voice, derived from a variety of laryngeal and supra-laryngeal features 

and running continuously through the individual's speech" (Trask 1996). However, the four features 

mentioned above are widely accepted (Dutoit 1997) as the most relevant in the study of prosody:

a) Pitch/F0: Human speech is a quasi-periodic signal (in voiced regions). The vibration of the 

vocal folds in the larynx, coupled with the resonances (or formants) of the oral and nasal 

cavities, produces the voiced speech sounds (vowels and voiced consonants), while passage of 

the turbulent breath stream through narrow constrictions in the oral cavity produces fricatives 

(e.g.  /s/  and  /f/),  and  sudden releases  of  built-up  air  pressure,  modulated  by constriction 

produce stop consonants (/p/,  /k/ and  /t/)  (Pickett  1999).  The vibration of the vocal  folds 

exhibits  micro-perturbations,  i.e.  consequtive  periods  have  slightly  different  length.  This 

phenomenon  is  termed  jitter  (Titze  1994).  However,  under  normal  circumstances,  these 
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perturbations are small and any voiced sound can be approximated by a periodic signal, with a 

fundamental frequency (F0) measured in Hertz or semitones. The term F0 contour or pitch 

contour refers to a continuous curve that represents the variation of F0/pitch over a given 

amount of time (Dutoit 1997). Thus, a segmental F0 contour describes the shape of a  pitch 

accent  or  tone,  while  a  phrase  or  sentence  pitch  contour  describes  phrase  or  sentence 

intontation, respectively (see Figure 2.4).

Figure 2.4: Utterance F0 (pitch) contour with stylization (topline, baseline) lines and average 
F0 line shown

b) Intensity: In signal processing terms, the intensity of a sound wave is the average amount 

of energy transmitted per unit time through a unit area in  a specified direction (Pickett 1999). 

A simpler description would be that intensity expresses the amount of pressure or energy that 

a travelling wave carries. A speech sound with higher intensity is perceived as being “louder”. 

Intensity is measured in decibels (dB) relatively to a reference pressure, thus yielding a sound 

pressure level (SPL). For speech sounds, the reference pressure is the auditory threshold6 (2 * 

10-5 Pascal) and thus the value of intensity in dB SPL is given by the equation:

Equation 2.1: Intensity of a speech sound in decibels (dB)

where  I is the intensity,  Preference is the auditory threshold, and  Psound is the sound pressure in 

Pascal. Intensity in speech exhibits micro-pertirbations, termed shimmer (Titze 1994), which 

are again negligible in the study of prosody. An  intensity contour  is a continuous line that 

represents the variation of the speech signal intensity over time (Dutoit 1997).

c) Speech rate. The rate of delivery, or speed of delivery, or speech rate of the signal expresses 

6 20 μPa in air and 1 μPa in water (ANSI S1.1 – 1994) is the minimum sound pressure noticeable by a young person 
with undamaged hearing, for a pure sine wave tone with a frequency of 1000 Hz. 
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how fast an utterance is spoken. This measurement can only be an approximation, since it is 

usually  calculated  over  the  length  of  an  utterance,  under  the  assumption  that  it  remains 

constant during that period. Therefore, it is actually a mean velocity that is usually calculated 

in syllables per minute or vowels per minute (Pfau and Ruske 1998; Wang and Narayanan 

2005).  The vowel length is also (negatively) correlated with speech rate, as faster delivery 

implies  shortened vowels.  However,  this  method of  calculation is  unreliable,  since vowel 

length is also subject to variations not related to speech rate (Galanis et al. 1996).

d) Segmental duration. The length of a speech segment is measured in milliseconds (ms). 

Phonetic segmentation is a process of identifying phoneme boundaries in a recorded speech 

signal. This can be done manually, which is a tedious process, or automatically (e.g. in ASR), 

using an algorithm. Both approaches are subject to a certain amount of error, although results 

from automatic segmentations have become reliable (e.g. Chang et al. 2000) .The length of 

syllables or vowels is typically related to prosodic effects: vowel lengthening is an acoustic 

correlate of linguistic stress, but can also serve other functions (e.g. lengthening of the final 

vowel in an utterance signals continuation of the current speaker turn in a dialogue).  

2.4.1  Prosodic modeling

In TTS, prosodic modeling aims to inform speech synthesis by deriving the prosodic (melodic and 

temporal) structure of a sentece from the textual input and/or any other information that is available, 

such as a prosodic mark-up on words or syllables that need to be emphasized (Dutoit 1997). Various 

different prosodic models have been introduced in decades of research. As reported in (Kochanski 

2006), the majority have focused on intonation (the fundamental frequency contour of an utterance). 

Intonation models have been categorized (e.g. Botinis et al. 2001), in a way that corresponds to the 

categorization of (Dutoit 1997) for prosodic representations (see previous section). Table 2.2 shows 

such a categorization and the most representative models of each category. Prosodic modeling has 

significantly  improved  the  naturalness  of  TTS,  as  synthesized  speech  without  any  form  of 

implementation for prosody sounds robotic and monotonous (Dutoit 1997).  An exception to this 

rule are unit selection synthesizers that use large “chunks” of recorded speech corpora as units (e.g. 

Chu et al. 2001), as these long units already carry a prosodic structure.

Despite the advances that prosodic modeling has brought to TTS, certain limitations have been 

encountered. These arise mostly from the complexity of prosody itself (the mapping problem), as 

well as the fact that the most prominent prosodic features (pitch, intensity, speech rate, duration) 

have  several  functions  in  language  (the  function  problem).  In  addition,  and  perhaps  most 

importantly, it has been argued that proper prosodic rendering for text input requires intelligence, or 
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rather “world knowledge” (Dutoit 1997), which is how human speakers can read aloud any text and 

use prosody to put emphasis where appropriate. Thus, it  is not surprising that the most natural-

sounding speech comes from limited domain unit  selection synthesizers  (Narayanan and Alwan 

2004), where the content words and phrases that need to be emphasized can be more accurately 

predicted. However, there are applications (such as SDS) in which additional semantic information 

is available (domain knowledge). This information, combined with the textual input, can provide for 

more appropriate prosody in the final synthesized utterance, a methodology that is also known as 

concept-to-speech synthesis (Dutoit 1997).

Phonological Perceptual & 
acoustic stylization

Acoustic-phonetic 

Pierrehumbert's intonational phonology
(Pierrehumbert 1980)

Ladd's phonological intonation model 
(Ladd 1983, 1996) 

TOBI 
(Silverman et al. 1992)

IPO 
(t'Hart et al. 1991)

TILT 
 (Taylor 2000)

INTSINT 
(d'Alessandro and Mertens 
1995)

Fujisaki model 
(Fujisaki 1992)

Table 2.2: Categorization of the most important intonation models in TTS

The mapping problem, as described in (Taylor 1992), refers to the three different representations of 

prosody mentioned above and how each representation is reflected in a particular prosodic model. 

All  models  have  three  basic  components  or  layers:  (a)  a  phonology,  which  is  an  abstract 

representation of prosodic boundaries and accents and may or may not be informed by linguistic 

phonology, (b) an intermediate layer, which is the  core of the model  and typically comprises an 

inventory of abstract prosodic units, and (c) an acoustic realization of the prosodic structure into 

actual numerical  values which constitute the input to the speech synthesizer.  Depending on the 

representation to which the model is closest (and thus categorized in Table 2.2), at least one of the 

mappings between two of the layers becomes problematic. Pierrehumbert's model (Pierrehumbert 

1980), for example, has a straightforward mapping between the abstract and intermediate form, as it 

is  a  linguistic  model,  but  actually  computing  values  for  prosodic  features  requires  several 

assumptions and arbitrary choices, for example in defining a pitch baseline.  (Taylor 1992) points 

out that this is a case of an “one-to-many” mapping: several realized utterances share an identical 
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intermediate prosodic representation. Fujisaki's model (Fujisaki 1992), a purely acoustic model, is 

much better at computing values from the intermediate representation, but it  is very difficult to 

assign linguistic meaning to the core elements of the model (phrase and accent commands).

So far this discussion has covered problems associated with the form of prosody, but the situation is 

equally problematic in respect to its function. It has been argued (Kohler 2004) that the majority of 

prosodic models have overlooked the functional aspects of prosody  (e.g. Aubergé 2002).  A first 

approach  towards  function-based  descriptions  of  intonation  was  made  in   (Kohler  1991),  by 

integrating semantics/pragmatics and expressive functions of intonation in the Kiel Intonational 

Model (KIM). The development of KIM was established on the discovery of meaningful functional 

contrasts related to the position of F0 peaks in accented syllables (early vs medial vs late peaks) in 

German.  A  later  function-based  approach  is  the  PENTA model  (Xu  2005).  However,  these 

approaches cover only some of the multiple functions of prosody in human speech. The following 

section gives a brief overview of these functions.

2.4.2  Functions of prosody in human speech

According  to  (Cutler et  al. 1997),  prosody has  at  least  four  distinct  contributions  to  language 

understanding: At the pre-lexical and lexical level, prosody aids the listener in identifying word 

boundaries and recognizing words, by use of strong-weak syllable contrasts and stressed syllables. 

Especially in the case of tonal languages, the stressed syllable is essential in resolving the ambiguity 

that arises from many possible words that only differ in their stress. At the structural level, prosody 

provides  cues  that  aid  the  listener  infer  the  syntactic  structure  of  the  utterance,  although  the 

mapping  between  the  prosodic  and  syntactic  structures  is  not  isomorhpic.  Finally,  prosody  is 

strongly related to understanding at  the discourse/pragmatic level,  where focal stress is  used to 

distinguish  newly  introduced  from  already  known  information,  or  to  resolve  ambiguities  and 

emphasize the important part of a sentence (e.g. “Mary did not come to  Dublin by plane”, where 

putting stress on each of the underlined words emphasizes a totally different point). 

At  the  signal  (acoustic)  level,  pitch  (or  F0),  intensity,  speech rate  and duration  are  the  speech 

features associated with the above linguistic functions. However these acoustic/prosodic (from here 

on  a/p)  features,  carry  several  other  paralinguistic  functions  (Kochanski  2006).  Paralinguistic 

communication refers to aspects of speech that are not parts of the language or its spoken, verbal 

form, but are nonetheless required in order to communicate a speaker's affective state, attitude, or 

emotion, or to regulate time-sharing of the conversation.

(Gussenhoven 2005) distinguished three paralinguistic “codes”. These are the frequency, effort, and 
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production  code.  Frequency (or  pitch)  is  primarily  associated  with  the  size  of  the  larynx and, 

therefore,  with  the  speaker's  age  and  gender.  As  an  extension  of  this  pitch-based  biological 

distinction,  the  frequency  (pitch)  of  speech  can  be  used  to  signal  masculinity  or  femininity, 

dominance  or  submission,  friendliness  or  hostility,  vulnerability  or  protectiveness.   These 

distinctions are,  according to  (Gussenhoven 2005),  related to  the biological  or cultural  roles of 

genders and/or primal codes of behaviour of humans and animals. A lower pitched voice indicates a 

longer larynx, i.e. a larger animal, which can be more aggressive or dominant. 

The effort  and production codes are associated with the energy required to produce the speech 

signal. In particular, the effort is represented by variations in the pitch span, while the production 

code is  associated with pitch and loudness declination due to  the correlation of utterances  and 

breath groups. Effort  can be used to focus on significant parts of the utterance through various 

mechanisms such as wider pitch span or delayed peaks. Articulation precision that is higher than 

average in the utterance is another manifestation of the effort code. According to  (Gussenhoven 

2005), the effort  code can be used to signal surprise or concern.  The production code is  better 

demonstrated in utterances that present variations in their normal declination trend. A higher than 

usual initial tone can indicate the start of a new topic, while a high or low final tone can respectively 

signal continuation or finality,  allowing the listener to assess the information or respond before 

proceeding  further  (Gussenhoven  2005).  Therefore,  prosody enables  dialogue  organisation  and 

smooth transitions between speakers engaging in conversation. This is discussed further in section 

2.4.4.

2.4.3  Prosody and emotions

Modern research in  speech analysis  and synthesis  focuses on describing the acoustic  effects  of 

emotion or, in other words, how speech is affected by the emotion of the speaker.  One of the main 

reasons for this is the challenge of developing high quality human-machine interaction, where the 

machine would be able to recognize the emotions of the user and take actions accordingly, as well 

as interact  with the user using highly intelligible and natural-sounding speech,  even expressing 

human-like emotions  appropriate  to the situation (see section  2.2.2).   But,  as  was discussed in 

section  2.4.2, conveying emotions or attitudes is one of the paralinguistic uses of prosody.  It is 

therefore reasonably argued that naturalness highly depends on appropriate prosodic modelling and 

the essential inclusion of expression/emotion in synthesized speech (Schroeder 2004 ).

According to (Murray and Arnott 1993), vocal correlates of emotion (that can be used for synthesis) 

can be divided into five groups: Pitch-related features, formant frequencies, timing features, voice-
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quality parameters and articulation parameters. However, emotional speech synthesis studies are 

often restricted to the prosodic parameters only (Schroeder 2004 ), although several other acoustic 

correlates have been studied as well  (e.g. Xiao et al. 2005). One example is voice quality (Laver 

1980), that has been studied as an acoustic correlate of emotion (Johnstone and Scherer 1999; Gobl 

et al. 2002), but is rarely treated as such in emotional speech synthesis studies (Schroeder 2004 ). 

The issue of naturalness in emotional speech synthesis revolves around two themes. The first of 

these relates to theoretical perspectives and definitions of human emotion, while the second is the 

issue of obtaining recorded speech which contains genuine emotions.

In  the  past,  research  in  emotional  speech  syntesis  had  been  based  on  traditional  theoretical 

perspectives of emotion (Cornelius 2000), which describe “fully blown” emotional states, described 

by labels such as “anger”, “fear”, “disgust”, “happiness”, “sadness”, “surprise” etc. However, it was 

argued (Cowie and Cornelius 2003) that these impressionistic descriptions of emotion are not on par 

with normal everyday-life  speech,  since emotional labels  are  ambiguous and subjective both in 

perception as  well  as attribution of a label  to  an utterance.  Thus,  alternative representations of 

emotions,  such  as  that  of  the  circumplex  model  (Russell  1997),  became   prominent.  This 

perspective  describes  emotional  continuums  (rather  than  states);  a  continuum  is  defined  by  a 

number of perpendicular axis, or dimensions. The most prominent such dimensions are those of 

activation, evaluation and power  (Schroeder et al. 2001). Correlations between positive/negative 

directions along these dimensions  and several a/p features have been studied in (Schroeder 2004 ). 

Therefore, both distinct emotional state approaches and dimensional models attempt to quantify a 

relationship between prosodic parameters and emotion (Schroeder et al. 2001).The validity of this 

approach depends on the speech material (corpora) that are available for analysis and, in particular, 

the validity of the emotional content in the recordings. The validity can be evaluated by recognition 

rates in listening experiments: If the intended emotions are perceived as such, then the reliability of 

the  content  can  be  considered  satisfactory.   (Campbell  2000) categorized  various  methods  of 

acquisition of speech material used in studies of emotional speech.

a) Acted speech, where actors perform the intended emotions, produces the most recognizable 

results, but it is arguable that this is because actors are trained to exaggerate their emotional 

displays, so that they are easily recognized by their audience.  It has been argued  (Kehrein 

2002) that this type of expression is very distant from the type of expression encountered in 

real-life conversations. The advantage of this method is that it can produce sentence pairs of 

content-neutral texts acted with different emotions, which can be used to model variations in 

a/p features due to emotion in a straightforward way.  In (Banse and Schrerer 1996), a number 
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of  actors  spoke  two pseudo-sentences  (nonsense  sentences),  while  performing 14  distinct 

emotional  states.  The  recordings  were  rated  by  experts  for  recognizability  and  a  further 

selection was made according to recognition rates during a number of listening tests. The 

selected recordings were analysed,  particularly studying the variations of F0,  speech rate, 

mean energy, and spectral features. After discarding all variations related to speaker gender, 

age,  and  identity,  it  was  found that  emotion  is  responsible  for  a  large  percentage  of  the 

variations.

b) Context-based stimulation refers to a procedure in which subjects are reading aloud a text 

that stimulates a specific emotion. The recognition rates in this case are high, but this could be 

because there are many linguistic cues in the recording that listeners can base their assessment 

on. A solution to this problem was suggested by (Campbell 2000): recognition rates can be 

obtained from subjective tests that are based on re-synthesis of the acquired prosodic contours 

on  content-neutral sentences, thus removing the linguistic cues.

c) Found speech corpora (from radio/TV shows, broadcast news etc) are also used in studies 

of emotional speech,  but the argument remains that newscasters and people generally in a 

studio are still “performing”, rather than displaying their natural, everyday emotional code. 

Other “found” recordings, such as radio transmissions during dramatic situations (such as the 

Hindenburg  crash  radio  broadcast7)  or  recordings  in  public  places  may  overcome  this 

problem, but the audio quality of such recordings is often inadequate.  Recorded telephone 

conversations  from customer care  services  is  another  example of large corpora with high 

emotive content (such as customers expressing their dissatisfaction with a product/service) but 

legal issues with releasing such material often become a barrier to their use for research. 

d) Finally,  emotion elicitation makes use of mood induction procedures (MIPs) (Gerrards-

Hesse et  al. 1994),  which  are  experiments  designed  to  induce  emotive  reactions  to  the 

subjects. For example, (Johnstone 1996) used computer games to induce emotional stimuli to 

the subjects, who had to report on their progress in the game verbally. The main advantage of 

this method is that it  produces recordings of  spontaneous  speech, which can be argued to 

contain the most genuine emotions that is possible to record in a laboratory environment. 

There are  ethical  issues to  consider  when designing such experiments.  For  example,  it  is 

unethical  to  induce  negative  emotions  to  the  subjects.  Another  disadvantage  is  that  it  is 

7  One of the finest German passenger zeppelins, the Hindenburg, crashed on May 6th, 1937 in Lakehurst, New Jersey, 
while attempting a mooring. Engineer C. Nehlsen was recording the mooring process. When the disaster happened, 
Nehlsen continued describing the events as they occurred, thus producing an “emotional” recording, in which his 
expression clearly shows he is shocked and overcome by the tragedy. [online: http://www.otr.com/hindenburg.html, 
(01/04/2010)]
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difficult to build a large corpus, as such a process requires a  significant amount of time and 

resources. However, some significant work in this direction has been reported (Maekawa et  

al. 2000; Cullen 2008a). 

2.4.4  Prosody in Spoken Dialogue systems

In the previous sections, research on several functions of a/p features has been presented. However, 

most of  that  work  has  been  focused  on  monologue  speech  (Macchi  1998;  Campbell  2006), 

essentially neglecting prosodic functions in relation to dialogue (Kohler 2004), although it has been 

known for quite  some time that  there  are  significant  differences in  prosody of  monologue and 

dialogue speech (e.g. Hirose et al. 1996). There are exceptions to this research tradition (e.g. Bruce 

et al. 1996) and, recently, prosody has been taken into account in the context of research in SDS. 

Due to the multi-functional role that prosody holds in spoken communication, there exist many 

different  studies on how prosody can be utilized to improve performance of SDS.  (Swerts  and 

Terken 2002) distinguishes three main themes:

(a) Improving performance of the ASR component: Prosody can help re-segment previously 

ill-segmented  utterances  and  improve  the  overall  recognition  rate,  therefore  reducing 

recognition errors and the need for additional clarification prompts from the system. 

(b)  Improving  performance  of  the  synthesizer,  by utilizing  utterance  generation,  in  other 

words formulating an utterance that can be delivered with an appropriate prosody, providing 

for smoother and more pleasant dialogue. 

(c) Interaction management which relies on dialogue act classification (see section 2.3.2), can 

utilize prosody as one of its classifiers (see below). 

Of the above, (c) especially above is attracting a lot of interest in the research community since the 

review in  (Swerts and Terken 2002). Prosodic information is usually combined with lexical and 

semantic information in order to improve the performance of  dialog-act tagging (Hastie et al. 2002; 

Cerrato 2002; Ang et al. 2005; Rangarajan et al. 2007).  (Rangarajan et al. 2007) reported a 74% 

accuracy rate using prosodic and acoustic cues only, compared to a 9% increase when combining 

lexical  information and only marginal  improvement  when combining syntactic  information and 

syntax-based prosody. As mentioned in section 2.3.2, the classification of dialogue acts is crucial for 

implementing sophisticated interaction (turn-taking) in dialogue systems (Raux 2008). According to 

(Lennes and Anttila 2002):

“Turn-taking  dynamics  are  related  to  systematic  changes  in  the  prosodic  and  acoustic 

properties of speech, but such processes are not well understood.”
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The latter  study found significant  correlation  between low-level  acoustic  and  prosodic  features 

(overall time-share, F0, tempo, pauses, creakiness) and turn switches or topic changes in dialogues 

in  Finnish.  Moreover,  (Lennes  and Anttila  2002) identified  differences  in  these  patterns  across 

languages  (namely  between  Finnish  and  English).  (Edlund et  al. 2005) also  implemented  an 

utterance segmentation and turn-taking methodology for dialogue speech based on online prosodic 

analysis. 

In addition, the issue of emotional speech, which is also related to a/p features (see section 2.4.3) 

has come into attention in the context of dialogue speech, not only as a possible improvement of 

naturalness,  that  can  arguably  be  accomplished  by  synthesizing  a  system  voice  that  conveys 

appropriate emotional/attitudinal behaviour, but also as a method of detecting user emotions during 

human-computer  interaction.  Although  user  emotions  can  be  relevant  in  various  tasks  (e.g. 

Fernandez and Picard 2000), a direct application can be the detection of user frustration, which can 

lead to better error-detection (Holzapfel et al. 2002; Lee and Narayanan 2005; Austermann et al. 

2005). 

Therefore, prosody has been identified as a major avenue of improving the naturalness or human-

likeness of SDS both in recognizing user emotions and synthesizing expressive speech, as well as 

re-defining  prosodic  modeling  (utterance  generation  and  dialogue  act-tagging)  in  a  dialogue 

context.  Dialogue  act  classification  and  emotion  recoginition  can  benefit  from  a  quantitative 

description of inter-speaker  accommodation of a/p  features,  as the latter  features are  prominent 

classifiers  in these techniques.  Similarly,  utterance generation can be improved significantly by 

implementing  a/p  feature  accommodation  in  the  prosodic  model  of  the  synthesis  component. 

However, as discussed in section 2.2.4, an analytical study of inter-speaker accommodation requires 

the acquisition of a corpus of natural human dialogues. This issue is discussed in the next section. 

2.5  Recordings of natural speech 

As mentioned earlier (section 2.2.3), the acquisition of natural human speech recordings is a major 

issue in speech technology in general. In section  2.4.3, this issue was discussed in relation to the 

naturalness of the emotional content of the utterances in the corpus. However, the requirement for 

recordings of natural speech is not restricted to emotional speech synthesis and recognition. A study 

of inter-speaker accommodation has to be based on such recordings as well, as discussed in section 

2.2.4: human dialogues are the target against which the naturalness of human-machine interaction 

can be evaluated. 

There exist two prominent sources of natural speech recordings. In-lab experiments and real data, 
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which correspond roughly to “found” and “elicited” speech corpora, respectively, according to the 

terminology of (Campbell 2000) which was presented in section 2.4.3. There are three criteria for 

evaluating  methods  of  speech  corpus  acquisition  that  are  implied  in  that  description: 

feasibility/resource  cost,  audio  quality  and  naturalness  of  the  content.  A fourth  criterion  is  re-

useability:  if  the  content  can  be re-used  for  several  research  studies,  then  the  resource  cost  is 

balanced. The difference between re-usability and resource cost is that the former is a property of 

the final corpus (as are audio quality and naturalness) whereas resource cost is only considered 

before and during the process of acquiring the recordings. 

Audio quality is an issue commonly overlooked in speech technology, although the advent of high-

throughput computers and state-of-the-art audio equipment has minimized this problem. However, 

there  are  issues  with  the  currently  available  corpora.  For  example,  found  speech  corpora  of 

telephone conversations are the largest currently available (Furui et al. 2005), but the quality of the 

recordings is questionable. Telephone quality is typically of an 8KHz sampling rate combined with 

low-pass  filtering,  a  specification  that  is  unacceptable  both  in  comparison  to  modern  audio 

processing standards, as well as because it effectively omits a large band of frequencies that falls 

within the audible range.  According to (Katz 2002), even CD quality (44KHz/16-bit),  which is 

often considered as “top-level”, is in reality a minimum standard in state-of-the-art audio recording 

and production.  Noise contamination  can  also  affect  recordings  not  carried out  in  a  laboratory 

environment,  for  example  when a  microphone is  installed in  a  bus  or  an underground rail  car 

(Campbell  2000),  or  due  to  distortion  introduced  by  compression  when  the  voice  signal  is 

transmitted over telephone.  

Perhaps the most significant criterion, however, is that of naturalness of the recorded speech. The 

term most commonly used to describe real-life occurring speech, is spontaneous speech, as opposed 

to speech that is read from text or acted or performed in any other way that is planned in advance 

(Stolcke et al. 1998). As pointed out in (Furui et al. 2005):

 “Both acoustically and linguistically, spontaneous speech and speech read from a text are very 

different.  Spontaneous  speech  includes  filled  pauses,  repairs,  hesitations,  repetitions,  partial 

words, and disfluencies”

In order to overcome the audio quality problems with found speech mentioned above, there is the 

solution of recording spontaneous speech in a laboratory environment. However, people tend to 

“perform” when put in front of a microphone, and in some cases they become anxious. It is difficult 

to  inspire  a relaxed atmosphere during the recording session,  due to  the presence of  the audio 

equipment. Thus, the task of collecting genuine spontaneous speech of laboratory quality (noise free 
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and high sampling rate) is difficult. 

A compromising  solution  arises  from the  psychological  studies  on  mood  induction  procedures 

(MIPS) (Gerrards-Hesse et al. 1994) and, in particular, task-based MIPS. These generally employ a 

scenario where isolated subjects are asked to perform seemingly simple tasks while their speech is 

being recorded. In (Kehrein 2002), the task given was assembling a LEGO puzzle. One subject 

provided instructions from the manual while another was trying to assemble the pieces together. 

Artificial nuances (such as missing pieces) were used to stimulate expressive responses from the 

speakers. In  (Johnstone et al. 2005), speakers were recorded while playing computer games, with 

events in the game providing the necessary stimuli for expressive, spontaneous speech. Although 

both examples above were employed in studies of emotional speech, task-based experiments are 

relevant to recording spontaneous dialogue in general (e.g. Bomsdorf and Szwillus 1999). Despite 

the fact that the speakers are aware that they are being recorded, an artificially created task-based 

situation can provide the necessary context to help diminish the effect of that awareness. Thus, task-

based scenarios have been used in order to record “natural” dialogue as, for example, in (Kurematsu 

et  al. 2000),  where  subjects  were  asked  to  collaborate  in  making  travel  and  accommodation 

arrangements, based on conflicting schedules and timetables provided. 

In  conclusion,  carefully  designed  task-based  experiments  are  the  most  appropriate  means  for 

recording natural, spontaneous dialogues in a laboratory environment, although existing recordings 

of dialogues from real applications (such as customer assistance call-centers), can also be used if the 

audio quality is acceptable. 

2.6  Discussion

Spoken dialogue systems have reached a point at which the goal of human-like conversation is 

being considered both as a means of improving on the naturalness of the interaction, as well as a 

means of increasing efficiency and making  possible the extension of the application field to more 

complex tasks. The former is a long-term goal of speech technology in general, as indicated by the 

literature  review  on  prosodic  modeling,  emotional  speech  and,  the  more  recent  turn  towards 

conversational spoken dialogue systems that exhibit  human-like conversational capabilities.  The 

second goal (increased efficiency) is driven by observations on the efficiency of human dialogues in 

problem solving and reasoning tasks, and the inadequacy of current SDS to deal with these complex 

domains. There is a clear distinction between these two lines of research, as human-likeness is not 

directly  related  to  usability  (Pieraccini  and Huerta  2005).  The  two goals  are  followed through 

distinct (but parallel) lines of research . 
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Human-likeness, which can refer to any property of human-computer interaction which resembles 

human dialogue, is sought after through research on human dialogue corpora, as was discussed in 

section 2.2.4. Within this framework, the content of the corpus is crucial to characterizing human 

speech  phenomena.  As  discussed  in  section  2.5,  the  most  credible  source  of  natural  human 

interaction are corpora of spontaneous dialogues (either found or elicited). The importance of using 

dialogue  recordings  is  evident  from  studies  that  showed  the  inadequacy  of  monologue-based 

methods to characterize the variable properties of speech in various domains of research, such as 

emotional  speech  (Batliner et  al. 2000) and  prosodic  modeling  (Hirose et  al. 1996).  Off-line 

analysis of human dialogues leads to models of human-human interaction which can possibly guide 

design principles for SDS (Larsson 2005), but are often incompatible to industry standards or even 

more  complex  architectures  that  are  only  implemented  in  the  research  domain  (Dybkjær  and 

Dybkjær 2004). However, spoken dialogue research is the primary path for improving naturalness 

of  SDS  (Larsson  2005),  as  human  dialogues  are  the  only  evaluation  targets  for  assessing  the 

perception of human-likeness (Edlund et al. 2008).

(Edlund et al. 2008) points out that human-like interaction is not suitable for all tasks and, in some 

cases, it may actually hinder efficiency (Pieraccini and Huerta 2005). In addition, it has been argued 

that, although speech is a natural and efficient way of communication, it may not always be the 

most suitable (Larsson 2005). In some cases, a GUI, or a combination of a GUI and an SDS can be 

much more  efficient  (e.g.  in  city guides).  In  addition,  (Edlund et  al. 2008) points  out  another 

possible  pitfall,  namely the “uncanny valley”:  a  system that  is  too  human-like,  so that  it  feels 

awkward and causes dis-comfort to the user community. The answer of (Edlund et al. 2008) to this 

is  that,  given  the  current  capabilities  of  commercial  SDS,  it  is  premature  to  think  about  this 

problem. 

Conversely,  efficiency has  traditionally  been  accomplished  by  constraining  the  interaction  and 

choosing sufficiently limited domains. However, human-likeness is desirable for many commercial 

SDS applications, as it would increase pleasantness and user satisfaction, which is also a significant 

benchmark in the SDS industry (Moller et al. 2007).  In addition, implementation of certain aspects 

of  human interaction,  such as  the collaborative nature  of  dialogue  (Traum and Allen 1994),  is 

desirable in order to extend the application field of SDS into more complex tasks, such as problem 

solving  (Dybkjær  and  Dybkjær  2004).  The  main  focus  of  research  in  this  area  is  put  on 

characterization of the discourse structure (Mushin et al. 2003), in order to allow SDS to manage 

dialogues more efficiently. 

Importantly,  prosody plays  a  key role  in  both of  the  above lines  of  research.  For  example,  an 
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improvement in naturalness of SDS is the implementation of prosodic models suitable for dialogue 

speech (e.g. Hirose et al. 1996), in contrast to traditional prosodic models that have been based on 

well-formed  monologue  sentences  (Kohler  2004).  Discourse  structure  and  dialogue  speech 

segmentation  also  depend  on  classification  of  prosodic  features  (Bruce et  al. 1996).  Emotion 

recognition and emotional speech synthesis are also based on prosodic features (Lee and Narayanan 

2005) and  are  simultaneously  utilized  in  utterance  generation  (naturalness)  and  error-detection 

(efficiency).   Therefore,  it  is  likely  that  inter-speaker  accommodation  of  prosodic  features,  if 

implemented  in  SDS,  will  improve  human-likeness,  by  simulating  this  behaviour,  as  well  as 

efficiency, by informing dialogue act and emotion classification with output from online monitoring 

of prosodic accommodation. 

Another significant issue in human-computer dialogues is that of interaction management in terms 

of the  temporal  organization of the interaction (inter-speaker silence duration and occurrence of 

overlapping speech).  Again,  two lines  of research can be distinguished here.  On one hand, the 

functional description of turn-taking and back-channeling feedback cues aims to identify methods 

for SDS to take or release the floor in a way that reduces latencies (Raux 2008) and allows for user 

“barge-ins” (e.g. Glass 1999). This line of research builds upon current half-duplex representations 

of dialogue and approaches human-like conversation incrementally upwards. On the other hand, 

research on human dialogues has indicated coupling of interlocutors in closed-loop  systems that 

exhibit  synchrony,  feedback  and  simultaneous  activity,  (Campbell  2009;  Heylen  2009).  While 

theories on rigid coupling of rhythm (e.g. Wilson and Wilson 2005) have not sufficiently captured 

the temporal accommodation of turn taking (Benus 2009), there is significant evidence of temporal 

accommodation in human dialogues (Bosch et al. 2005). This is particularly the case in spontaneous 

dialogue  speech.  These  findings  provide  further  motivation  for  investigating  accommodation 

phenomena in spontaneous human dialogues.

(Edlund et al. 2008) proposed a complete framework of implementing and evaluating human-like 

behaviour in spoken  dialogue systems. This framework suggests feature extraction from recordings 

of human dialogues (in order to formulate a description of a particular phenomenon, such as a 

simple model), and a range of alternative evaluation  methods for implementing similar behaviour 

in SDS. In this case, the evaluation target is not necessarily the perceived naturalness (the usual case 

in  monologue  speech  tradition),  but  the  similarity  of  the  human-machine  manifestation  of  the 

investigated phenomena to the human dialogue manifestation. A further distinction is made between 

evaluating whether the system voice resembles that of a human in some aspect of dialogue, and/or 

the user responds to the system similarly to a human in a human dialogue. The former evaluates the 

40



feasibility  (or  goodness) of  the  implementation,  while  the  latter  tests  the  user  response  to  the 

modeled  behaviour.  (Edlund et  al. 2008) also  suggested  that  incorporation  of  inter-speaker 

accommodation  phenomena  may  improve  SDS,  both  in  pleasantness  and  efficiency,  as 

accommodation is known to have a communicative as well as a social function. 

In  conclusion,  the  background  review in  this  chapter  has  identified  the  study of  inter-speaker 

accommodation as a promising route towards improving SDS in a number of ways. The following 

chapter presents a review of  inter-speaker accommodation phenomena in human dialogues.
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3  Inter-speaker accommodation in human interaction 

42



3.1  Overview

In  the  previous  chapter,  inter-speaker  accommodation  was  identified  as  a  property  of  human 

interaction that can improve current SDS primarily in terms of naturalness but also in terms of 

efficiency.  This  chapter  presents  a  review  of  theoretical  studies  on  accommodation  in  human 

dialogues that are primarily focused on its function in human interaction. An understanding of the 

function of accommodation is required in order to inform SDS design, in terms of simulating this 

type of behaviour in a way that serves a similar function. 

The basic concept of inter-speaker accommodation is that two (or more) individuals engaging in 

dialogue tend to show similar behaviour in respect to various aspects  of their  speech; prosody, 

accent,  lexical  and  syntactic  choice,  as  well  as  temporal  features  which  involve  turn-taking 

behaviour,  such as the duration of intra-speaker and inter-speaker pauses and the occurrence of 

overlapping speech; and this behavioural “adaptation” extends to other modalities in face-to-face to 

conversation; gestural and postural behaviour of one matches or complements that of another while 

engaged in dialogue. This phenomenon is generally believed to be ubiquitous, and -most of the 

time- unnoticed, at least at the higher levels of consciousness, but can also be an intended strategy 

with specific communication goals.

Apart  from  evidence  presented  here  and  elsewhere,  this  phenomenon  is  intuitively  known  in 

general: one common example is well known to people who have grown up in a region with a 

characteristic regional accent but have moved elsewhere, for example to a big city. These people 

typically adopt a more neutral and widely accepted accent in their everyday city life, but can readily 

switch back to their  regional  accent as soon as they return to their  home region,  even without 

consciously deciding to do so. Another typically occurring situation is when fluent, native speakers 

of any language match a non-native (and less fluent) interlocutor's erroneous grammatical/syntactic 

forms, as they believe this to make the communication more efficient. The latter is an example of a 

conscious choice to adapt one's speech.

A basic distinction that has to be drawn, is that between studies on  inter-speaker accommodation 

which are discussed here, and studies on the collaborative nature of dialogue, which lie in the field 

of conversation and discourse analysis and were discussed (briefly) in the previous chapter (see 

section 2.3.2). Accommodation phenomena are mostly studied in psychology and psycholinguistics, 

communication science,  and cognitive  sciences.  In  addition,  they have  been studied in  human-

computer interaction, even before the emergence of SDS. For example, it has been reported that 
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users adapted their lexical choices to those of a text-based interface (Zoltan-Ford 1991). In addition, 

interest in accommodation phenomena has been recently refueled in the context of SDS (Edlund et  

al. 2008).

(Burgoon et al. 1995) describes a variety of behavioral patterns emerging in both verbal and non-

verbal  communication:  adaptive  responses,  accommodation,  convergence,  matching,  mimicry, 

synchrony, reciprocity, complementarity. All of the above observed interaction behavioral patterns 

are “non-random, patterned,  or synchronized in both timing and form” (Bernieri  and Rosenthal 

1991). Importantly, the patterns exhibited by two interactants are similar or dissimilar in form, as in 

the case of divergence, dis-synchrony, non-accommodation etc.  

Due to the diversity of approaches arising from the different - but relevant - fields of research that 

were mentioned in the second paragraph, there is also diversity in terminology, definitions, research 

goals and methods used. Such situations allow for several categorizations of the studies found in the 

literature, of which there exists a multitude. Given the lack of universally adopted definitions, this 

text will use “inter-speaker accommodation” or simply “accommodation” to collectively describe 

any of the phenomena described in this chapter. It is also noted that the theories described here refer 

to interpersonal behaviour in general,  which is  not restricted to speech,  but also includes other 

modalities such as body movement and posture, hand and facial gestures, gaze and eye movement. 

3.2  Terminology and definitions

A  number  of  terms  have  come  to  prominence  over  decades  of  research  on  inter-speaker 

accommodation:  convergence,  accommodation  (Giles et  al. 1987);  coordination,  inter-speaker 

influence  (Jaffe and Feldstein 1970; 2001); alignment  (Pickering and Garrod 2004); entrainment 

(Brennan  1996);  behavioural  matching,  adaptation  (Burgoon et  al. 1995);  synchrony  tendency 

(Nagaoka et al. 2005); and synchrony (Campbell 2009). There is some confusion arising from the 

multitude  of  terms and the fact  that  they are  often used under  different  definitions.  Moreover, 

although they all fall under the same basic concept that was described in the previous section, there 

are  subtle  differences  that  are  often overlooked.  According  to  (Warner  2002),  one  of  the most 

consistent terminologies  is that of (Burgoon et al. 1995):

Behavioral matching is an ‘umbrella-term’, introduced to summarize many of the above observed 

behaviors. It refers to greatly similar or even identical patterns of behavior, between two or more 

interactants. 

Complementarity is the opposite of matching, and refers to dissimilar behaviors that complement 

each other. 
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Convergence  is  the  process  by  which  the  observed  behaviors  of  two  interactants,  although 

dissimilar at the start of the interaction, are moving towards behavioral matching. 

Divergence  is  the  opposite  of  convergence  and  refers  to  the  behavior  of  moving  towards  a 

dissimilar pattern, therefore indicating a change of behavior for at least one of the interactants. 

Mirroring  involves visual behaviors (such as posture) and refers to the interactants keeping an 

identical posture or gaze.

Synchrony  is  a  temporal  equivalent  of  mirroring,  in  that  it  refers  to  similar  or  identical 

rhythmic/temporal patterns exhibited by the interactants.

Reciprocity is the tendency to respond positively to the interaction by exhibiting a similar behavior 

and, according to Burgoon et al, is reflected by both mirroring and synchrony. 

Dissynchrony is the opposite of synchrony and, as implied by its name, refers to the interactants 

exhibiting non-synchronous temporal or rhythmic behaviors.

Compensation in a narrow sense is the opposite of mirroring, as in keeping one’s gaze or posture 

opposite  to  that  of  another,  but  in  a  broader  sense  implies  a  behavior  opposite  to  reciprocity: 

avoidance of matching expectations, adopting behavioral patterns towards opposite directions. 

However, as pointed out in the previous section, but also elsewhere (Warner 2002; Edlund et al. 

2009),  there  are  no  universally  adopted  definitions.  In  the  seminal  presentation  of  Speech 

Accommodation Theory (Giles et al. 1987), convergence is defined as “a linguistic strategy whereby 

individuals adapt to each other's speech by means of a wide range of linguistic strategies, including 

speech rates, pauses and utterance length, pronunciations and so on.”. Hence, there is no mention of 

an  evolving  process  in  this  definition,  in  contrast  to  the  definition  in   (Burgoon et  al. 1995), 

although the theory itself implies it. (Warner 2002) reports that synchrony has been used for at least 

two distinct  measurements:  “global  observer  judgments”  and “synchronized  cycles  detected  by 

cross-spectral analysis”. (Edlund et al. 2009) adopted standard dictionary definitions, arriving at a 

definition for convergence virtually identical  to that  of  (Burgoon et  al. 1995) (movement from 

initial  dissimilarity towards similarity),  but  a  different  one for  synchrony:   “...  phenomena that 

happen at the same time or work at the same speed”. There is a referential mismatch here, in that 

(Edlund et al. 2009) refers to “synchronous phenomena”, the  contemporaneous,  or  synchronous 

variation  of  any   feature  of  the  speech  signals  of  two  interactants,  whereas  the  definition  of 

(Burgoon et al. 1995) only refers to temporal (duration, latency) aspects of speech. 

As  will  become clearer  in  chapter  4,  the  operational  definition  adopted  in  each  case  suits  the 

proposed methodology or theory, hence the diversity of definitions. Rather than adopting any of 

these  definitions,  each  is  selectively  conceptualized  with  respect  to  its  proponents'  theory  or 
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methodology. In the next sections, the most representative such theories are presented. 

3.3  Perspectives of inter-speaker accommodation

Inter-speaker accommodation phenomena have been described by several theories (or models), of 

which a comprehensive review can be found in (Burgoon et al. 1995). In that review, the models are 

categorized along a “continuum”, in which four basic categories of models are identified, as shown 

in Table 3.1. At one end of the continuum, there are the physiological and biological models that 

consider  accommodation  phenomena  as  automatic,  non-conscious  reactions.  From a  biological 

point of view, convergence and synchronization is seen as advantageous to survival, as well as a 

sign of intimacy. This point of view is supported by observations of similar behaviour exhibited (in 

non-verbal communication) by other species  (Oviatt et al. 2004). Accommodation at this level is 

also seen as serving communication efficiency (Giles et al. 1987; Pickering and Garrod 2004). 

The term interactional synchrony was first proposed by Condon and Ogston (1966, 1967; 1971) as 

a  means  of  describing  listener  body movements  as  affected  by speech  and movements  of  the 

speaker. The phenomenon, which was considered as a non-conscious autonomous behaviour, was 

later  observed  on  mother-infant  interactions  (Gratier  2003) and  was  also  related  to  infant 

development  (Jaffe et al. 2001). 

Motor mimicry, also termed mirroring, refers to mimicking (or mirroring) an emotive expression of 

another  person,  and had  already been observed by Adam Smith,  Herbert  Spencer,  and  Charles 

Darwin (Bavelas et al. 1986). One example of motor mimicry is people watching an accident scene 

on video and making a “painful” facial gesture. Traditional accounts of motor mimicry attributed 

this behaviour to the  individual, as “a primitive empathy”, a trait (empathic ability), a means of 

expressing a vicarious emotion, or a signal of “taking the role of the other” (Bavelas et al. 1986). 

A second category (arousal and affect models) consists of theories that, in addition to the above 

biological needs, propose that matching behavioural patterns in interactions satisfy psychological 

needs. According to the  Affiliative Conflict Theory (Argyle and Dean 1965), human interaction is 

characterized by an equilibrium of immediacy (or intimacy). If there is an action by one of the 

partners that causes the interaction to deviate from the equilibrium point, this causes anxiety (or 

arousal) to the other partner, who tries to re-establish the equilibrium by means of  compensation 

(see  definition  in  previous  section).  The  Arousal-Labeling  Theory (Patterson  1976) introduced 

reciprocity into this  description,  by positing that departures  from the equilibrium that are large 

enough  to  cause  arousal  are  “labeled”  positively  or  negatively,  thus  producing  reciprocal  or 

compensatory  behavioural  patterns,  respectively.  A  further  expansion  was  introduced  by  the 

Bidimensional model  (Kaplan and Kaplan 1984), which considered a two-dimensional approach: 
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manifestations of reciprocity and compensation are caused by the psychological needs of intimacy 

and social control. 

Reactive, automatic,
non-symbolic, 
indicative behaviour 

↑

I. BIOLOGICAL MODELS
(based  on  comfort  needs,  safety,  bonding,  social  organization, 
universal processes)
Interactional Synchrony (Condon and Ogston 1966)
Motor Mimicry and Mirroring (cf Bavelas et al. 1986)

Biological and 
Psychological Needs – 
Focus on Individual 

II. AROUSAL AND AFFECT MODELS
(addition of psychological needs to above factors)
Affiliative Conflict Theory (Argyle and Dean 1965)
Arousal-Labeling Theory (Patterson 1976)
Bidimensional Model (Kaplan and Kaplan 1984)
Discrepancy-Arousal Theory (Cappella and Green 1982)
Dialectical Models (Altman et al. 1981)

Habitual Behaviour 

↓

III. SOCIAL NORM MODELS
(incorporation  of  cultural,  societal  factors,  ingroup-outgroup 
relations)
Norm of Reciprocity (Gouldner 1960)
Social Exchange and Resource Exchange Theories (Homans 1958)
The Dyadic Effect  (Jourard and Landsman 1960)
Communication Accommodation Theory  (Giles et al. 1987)

Social Processes, 
Societal Needs – Focus 
on Groups 

IV.  COMMUNICATION  AND  COGNITION 
MODELS
(emphasis on functions, goals, meanings, perceptions, attributions)
Sequential-Functional Model  (Patterson 1982)
Expectancy Violations Theory (Burgoon 1978)
Cognitive-Valence Theory (Andersen 1999)
Motor Mimicry Revisited (Bavelas et al. 1986)

Hybrid Needs and Goals 
– Focus on Dyads

Communication, mindful, 
intentional, symbolic

Table 3.1: Categorization of interactional theories, adapted from (Burgoon et al 1995)

Discrepancy  Arousal  Theory  (Cappella  and  Green  1982) proposed  that  arousal  occurs  from 

discrepancies  from  expected  behaviour  of  an  interlocutor.  These  expectations  are  based  on 

familiarity,  acquaintance and an established level of intimacy.   Again,  the discrepancies can be 

evaluated positively or negatively, giving rise to reciprocal or compensatory responses. Dialectical 

models  (Altman et  al. 1981) consider  psychological  needs as resulting from cyclic  fluctuations 

(oscillations) driven by oppositional forces which occur in everyday interaction (rather than being 

biologically based as in the previous theories). These oppositional forces are various: autonomy vs 

connection, openness vs closeness and novelty vs predictability. Dialectical tension, in contrast to 

discrepancy or equilibrium violation, is seen as neither good or bad; thus, the theory predicts that 

interactants  may reciprocate  or  compensate,  depending on whether  they attempt to  match  their 
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psychological needs (such as in stable relationships).

The third category,  labeled “social  norm models” differs  from the other two in that,  instead of 

focusing  on  the  individual,  focuses  more  on  social  relationships.  The  principle  of  similarity  

attraction  is one example of this:  in order to become more attractive,  people attempt to appear 

similar (or converge) to their attraction targets. Thus, people try to look similar to others, in order to 

be liked, or accepted, and adapting their speech to that of others is one way to express this similarity 

(Giles et al. 1987).

The  norm of reciprocity  (Gouldner  1960) refers to  the expectation that  people tend to respond 

positively  to  positive  action  or  attitude  towards  them,  and  negatively  or  indifferently  towards 

negative or harmful action/attitude. This is a social principle (or norm), which derives from the need 

for survival, as it encourages cooperation in order to survive in hostile conditions (Aronson 2007). 

Social Exchange Theory (Homans 1958) posits an economic model for human social relationships, 

in that  people's  behaviour can perhaps be explained on the basis  of a subjective “cost-benefit” 

analysis. The Dyadic Effect (Jourard and Landsman 1960) relates to the degree of self-disclosure in 

dyadic  relationships,  as  it  has  been  observed that  interpersonal  feedback elicits  the  same from 

others.  All  of  the  above  social  norms  have  been  related  to  behavioral  matching  in  some way 

(Burgoon et al. 1995). Perhaps the most representative and popular theory from this category is the 

Communication Accommodation Theory (Giles et al. 1987; 1992) which is explained in more detail 

in section 3.4.

The  opposite  end  of  the  categorization  continuum,  the  communication  and  cognition  models, 

groups  together  those  theories  that  describe  interlocutor  similarity  phenomena  as  conscious  or 

intentional from the point of view of the interactants who are typically well-acquainted dyads (e.g. 

married couples).  Well-acquainted interactants  usually develop communication “norms” - which 

both adhere to – over time, and departure from that norm by either speaker violates the expectations 

of the other, thus giving a warning sign that the situation requires attention. A description of the 

relationship  between the interactants, as well as their goals and expectations, is central to these 

theories, since this knowledge is required in order to explain the interaction phenomena in this way. 

The  Expectancy  Violations  Theory  (Burgoon 1978) bears  many similarities  to  the  Discrepancy 

Arousal  Theory  mentioned  above.  One  of  the  major  differences  is  that  in  the  former,  the 

expectations are not limited to arousal and affect but are formed through acquaintance, are known 

as social norms, or they are specific to a particular interaction. Cognitive Valence Theory (Andersen 

1999) similarly  proposes  six  schemata  (culture,  personality  traits,  state,  situation,  interpersonal 

valence,  relationship),  in  order  to  explain  the  valence  (positive  or  negative)  of  perception  of 

intimacy behaviour by either partner in a dyadic or social relationship. Finally, the revision of motor 
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mimicry  (Bavelas et  al. 1986) takes the focus away from the individual and proposes that  this 

phenomenon has a social function of empathy and indication of similarity towards a conversational 

partner. 

The categorization of (Burgoon et al. 1995), although informative and wide in scope, should not be 

followed strictly; there is overlap between the categories, hence the description of the categorization 

as a “continuum” rather than a categorical classification. Communication Accommodation Theory 

(CAT)  (Giles et al. 1987), for example, describes the phenomena as both autonomous as well as 

intended behaviour. The classification of a particular theory into one of the four categories is a good 

indication  of  its  main  focus  at  best.  This  is  particularly  the  case  for  Interpersonal  Adaptation  

Theory (IAT), which is proposed in the same text as the review that is summarized here  (Burgoon 

et al. 1995), as it lends from all four categories. The same applies to the Interactive Alignment 

Model  (Pickering  and  Garrod  2004),  which  describes  “alignment”  between  interactants  during 

dialogues at various levels, from non-verbal low-level signal features to lexical/syntactic and further 

on to  semantic/symbolic  representations  and situational  models,  covering the entire  range from 

spontaneous adaptation to conscious actions.  Nevertheless,  the review of  (Burgoon et  al. 1995) 

serves well as a starting point to understanding the scope of functions attributed to inter-speaker 

accommodation phenomena. 

3.4  Communication Accommodation Theory

The phenomenon of speech accommodation in dialogues has been studied and introduced into the 

framework of Speech Accomodation Theory (SAT) over two decades ago (Giles et al. 1987). This 

framework,  that  was later  renamed  Communication Accomodation Theory (CAT),  proposes that 

accommodation  of  speech  features  (accent,  speed,  pause  duration,  lexical)  occurs  as  a 

communication strategy (either conscious or unconscious), with specific social goals (integration 

into a social group, or identification with a member of the same group). In this section, a summary 

of the main ideas of SAT (and CAT) is given. 

3.4.1  Convergence and divergence

SAT  defined  convergence as  a  linguistic  strategy.  Convergence  refers  to  adaptation  of  an 

individual’s speech characteristics (pause duration, speech rate, utterance length,  accent, etc.) in 

order  to  match  those  of  a  partner  in  dialogue  more  closely.  Similarly,  divergence refers  to  a 

tendency of the individual to maintain their distinct speech style by accentuating differences in the 

aforementioned  characteristics  of  speech.  SAT distinguishes  between  upward  and   downward 
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convergence (or divergence), the former refering to changing one’s style in order to match a valued 

social status profile, while the latter suggesting ‘shifting’ towards less valued social profiles, such as 

a language variant specific to ethnic/cultural/social groups or non-fluent speech/illiteracy. 

Futher,  SAT  proposes  further  categorizations  of  convergence  (and  divergence)  by  relative 

movements or ‘shifts’ between two interlocutors (A,B). Thus convergence or divergence can be 

mutual (A   B,  A B ) or non-mutual ( A  B, A B ), or one speaker might converge 

while the partner diverges ( A B). 

Another distinction is introduced by the difference that lies between a manifest speech style and  the 

perception of that speech style that is biased by a stereotypical belief. (Giles et al. 1987) pointed out 

that  both  convergence  (or  divergence)  and  its  evaluation  (how  positively  or  negatively  it  is 

perceived)  depend on one’s  perception of  the other’s  speech,  rather  than their  actual,  manifest  

speech styles. A common example is imitation of a language variant by non-native speakers (such as 

a Dublin accent in Irish English): although characteristics of that accent might be prominent in the 

native speaker’s manifest speech style, they might be perceived as  accentuated  by the non-native 

speaker, therefore misleading them to converge towards a similar speech style. From the point of 

view of the native speaker, that might be perceived as mocking of their social group, or as a comical 

social integration attempt at best. 

Convergence (or divergence) can be additionaly distinguished into total and partial.  The former 

refers  to  near  absolute  matching of  speech style  metrics,  e.g.  two interlocutors  exhibiting  very 

similar speech rate.  The latter  signifies a clear  movement towards matching,  such as increasing 

one’s speech rate in order to converge to a higher rate of the interlocutor, but not to the extent of 

matching that speech rate.

Finally, convergence and divergence can be either unimodal, when accomodation occurs along only 

one characteristic of speech (such as speech rate, or accent),  or  multimodal, when two or more 

speech  characteristics converge.

The central idea of SAT is that convergence (and divergence) is a strategy that humans engaging in 

dialogue  use  (either  consciously  or  unconsciously)  in  order  to  achieve  specific  goals.  In  the 

landmark study of SAT (Giles et al. 1987), three such goals are proposed: social approval by the 

listener, serving communicational efficiency, and maintaining a positive social identity. 

3.4.2  Communicative function of convergence

Within the framework of SAT, convergence is regarded as a readily available strategy, which is 
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utilized to invoke similarity attraction by the listener. The latter is a sociological principle (Giles et  

al. 1987),  which  states that  attraction  is  more  likely to  occur  towards  individuals  that  display 

similarity  in  behavior.  Reduction  of  dissimilarities  of  dialects,  convergence  of  native  speakers 

towards grammatical errors of non-fluent speakers, interviewees adjusting their speech to match the 

style of the interviewer, and sales people matching speech styles of their customers, are only a few 

examples of such cases given in (Giles et al. 1987).

According to SAT, convergence will not always be the best communication strategy, as its effect is 

moderated by ‘situational constraints’. Such constraints are introduced by ‘sociolinguistic norms’ 

or, in simpler terms, what people believe ‘is right’ in a given situation. An example given in (Giles 

et al. 1987) is that of interviews in Australian English, were interviewees were rated higher if they 

were using a ‘refined’ rather than a ‘broad’ accent, regardless of the accent of the interviewer (who 

was switching accents between interviews). In this case, therefore, convergence of the interviewee 

towards the interviewer’s accent was not rated favorably. Also, “powerful” speech style was more 

often  rated  favorably  as  a  response  to  a  “powerless”  speech  style,  whereas  convergence  to  a 

‘powerless’ speech style was more often negatively evaluated. 

SAT further  advocates  that  the evaluation of convergence of the interlocutor  to  an individual’s 

speech pattern is largely dependant on causal attribution. Listeners tend to evaluate the effort on the 

part of a converging speaker favorably, when they attribute that effort to the speaker’s desire for 

social integration and attraction. When convergence is forced by situational constraints, it is rated 

less favorably. As pointed out in (Giles et al. 1987), although SAT defines speech accommodation 

as a strategy, that does not necessarily mean that it is a conscious one. Rather,  (Giles et al. 1987) 

points to evidence of spontaneity and autonomy for speech accommodation at various cognitive 

levels. SAT advocates that speech accommodation may well be “scripted”  behavior (established 

behavioural routines) in many cases, but one can be simultaneously making conscious decisions on 

the appropriate choice of speech style.

3.4.3  Communication function of divergence

Similarly to convergence, SAT proposes a number of communication goals for divergence: the main 

goal proposed is social identity maintenance, or the desire of individuals or groups to maintain a 

positive social  identity,  cultural  pride and distinctiveness.   A series of studies in  the review of 

(Giles et al. 1987) provides many examples of ethnic  minority group members accentuating their 

distinct  dialects  or  accents  when  their  ethnic  identity  is  made  more  salient,  or  they  encounter 

ethnically “threatening” situations. Gender is also proposed as a socially identifying factor as, in 
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one of the studies reviewed, men talking to women were found to sound “more masculine” when 

their gender was made more salient. 

(Giles et al. 1987) points out that a distinction between non-convergence and divergence would be 

superficial or unnecessary at best. Non-convergence is a passive behavior towards the dialogue and 

the interlocutor, and its most extreme form of intended accentuation of distinct speech features has 

been termed as speech dis-accommodation. Divergence (by definition) means shifting one’s speech 

style away from that of an interlocutor. According to (Giles et al. 1987), it is more likely that causal 

attribution plays a key role in the evaluation of divergence (similarly to convergence). After all, 

non-convergence  may well  be  the  result  of  repertoire  constraints  (as  in  the  case of  non-native 

speakers) or individual personality factors. 

Another communicative function for divergence proposed by SAT is that of cognitive organization, 

i.e. to put the interaction (dialogue) in order, or to provide a ‘mutual basis for communication’. A 

series of studies reviewed in (Giles et al. 1987) provides various examples of this communicative 

behavior: speakers who are unfamiliar with the host social group or the situational context, tend to 

accentuate their accent or employ other divergent strategies in order to indicate their unfamiliarity. 

The  expected  result  of  this  is  tolerance  on  the  part  of  the  host  community  members  towards 

violations of situational norms on the part of the speaker. 

Another example given is that of speakers diverging from a speech style that is uncomfortable for 

them, in order to encourage the interlocutor to converge to a different speech style, such as when 

talking  slowly in  an  attempt  to  “cool  down” a  rapidly speaking  interlocutor.  Similar  examples 

include therapy sessions, where clients may be invited to talk more when therapists talk less. 

In certain situations, dissimilarities in the interlocutors’ speech styles are expected, as is the case 

with  interviewers  and  interviewees  where  the  latter  were  more  positively  evaluated,  when 

maintaining  their  ‘refined’ accent  as  opposed  to  converging downwards to  the  ‘broad’ accent 

exhibited by the former.

Finally,  there are social  norms that  indicate  a  pattern of interaction where the interlocutors are 

expected to ‘complement’ each other’s speech.  This is more often made obvious in interactions 

between doctors and patients, teachers and pupils, parents and children and so on. As pointed out in 

(Giles et al. 1987), this complementary nature of speech patterns does not exclude the possibility of 

simultaneous convergence, along a different dimension (such as speech rate). The complexity (and 

multi-modality) of convergence and divergence are also highlighted in the text: 

“… it is not entirely impossible to concoct instances in which people may wish to converge, 
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diverge,  and complement  each other  with regard to  various  verbal,  vocal,  and non-verbal 

forms simultaneously”. 

In conclusion,  SAT provides a theoretical  framework that attributes communicative functions to 

convergence and divergence of speech style. Speech style is used as a broad term and can denote 

anything from speech rate and pause duration to choice of words, utterance length, accent, dialect, 

and even switching languages (in bilingual communities). Of particular interest are the definitions 

for  mutual/non-mutual,  partial/total,  unidirectional/bidirectional  and  unimodal/multimodal 

convergence  (or  divergence).  Additionally,  SAT proposes  that  a  genuine  effort  to  converge  to 

another’s  speech style  is  likely to  be  evaluated  positively,  if  the  situational  constraints  do  not 

suggest otherwise.

3.5  Interactive Alignment Model

A different  approach to  inter-speaker  accommodation is  given  in  (Pickering and Garrod 2004), 

which proposes  the Interactive Alignment  Model  (IAM).  IAM is in  essence a  cognitive theory 

focused on dialogue speech, in contrast to the former Autonomous Transmission account  (Levelt 

1983), which has been based on monologue speech. The remainder of this section summarizes the 

key points of IAM. 

3.5.1  Alignment at different layers

IAM describes the process of alignment or, in other words, a matching  of linguistic features among 

two  interlocutors  engaging  in  dialogue.  The  alignment  occurs  at  different  “layers”  (phonetic, 

lexical)  of  dialogue  communication.  Thus,  there  is  alignment  at  the  lexical  level  (interlocutors 

matching their choice of words) and adoption of mutually agreed descriptive words or expressions, 

without any open agreement. In simpler terms, a word or expression that is used once to refer to a 

concept is later repeated by the interlocutor at an appropriate time. This is both an acknowledgment 

of  comprehension  and a sign of agreement on the use of that particular word from that point on in 

the conversation. 

Further,  there  is  alignment  at  the  syntactic  level,  as  the  repetition  of  expressions,  especially 

routinized ones, leads to utterances of similar or identical syntactic form. In addition, (Pickering and 

Garrod 2004) presents evidence that syntactic alignment can also occur in “complementary” form, 

when responses of either interactant complement the prompts of the other, both contributing to the 

formation of a single syntactic structure.
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(Pickering  and  Garrod  2004) posits  that  there  is  also  alignment  at  the  semantic  level,  with 

interactants sharing the same situational model (a a multidimensional representation of a specific 

situation that is taking place). In the experiment described in (Pickering and Garrod 2004), this 

representation is spatial: two subjects are asked to identify the location of a dot on a square grid. 

Therefore, they tend to “define” a coordinate system, as this is the easiest way to achieve this task. 

This  mutually  agreed  definition  is  not  explicitly  stated  as  such,  but  occurs  through  referential 

expressions  such  as  “two from the  bottom,  one from the  left”.  IAM posits  that,  although it  is 

possible for the two interactants to have their own individual situational models (coordinate systems 

in  this  case)  and  rely  on  interpreting  their  partner's  model  while  using  their  own  to  convey 

information, it is much more efficient for communication if they share the same one.

Alignment at the articulation level makes production and comprehension more efficient. Repeated 

words tend to become less well articulated, to the point that they are not easily recognized outside 

the dialogue context (if listened to in isolation). This also occurs when the repetition is produced by 

the partner, which implies that comprehension and production mechanisms of both interactants are 

aligned  simultaneously.  Finally,   (Pickering  and  Garrod  2004) refers  to  previous  findings  of 

alignment in accent and speech rate, which they see as another layer (phonetic) in the proposed 

multilayer model. 

3.5.2  Autonomous process

IAM claims that alignment at different layers occurs autonomously at each layer. The mechanism of 

this process is priming. Priming refers to influence over repetition of introduced signals (in this case 

speech), which are called  primes  (Kolb and Whishaw 2003).  As an example, an utterance that 

introduces a representation, such as the spatial reference frame that was described above, is likely to 

act as a prime; either speaker is likely to adopt and re-use that representation in the course of the 

dialogue. According to the authors, there are different primes for the different layers of the model (a 

word for the lexical layer, a syntactic form for the syntactic level, etc). Thus, alignment occurs 

autonomously at each layer separately. However,  IAM also argues that alignment at one layer leads 

to alignment at another layer. 

Another driving mechanism for alignment is the principle of “parity of representations” between 

production and comprehension. This, according to (Pickering and Garrod 2004), is a controversial 

but  widely  adopted  principle  which  states  that  a  representation  which  has  been  acquired  for 

comprehension can be used for production and vice versa. This explains, for example, why two 

interlocutors can complete each other's utterances. 
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Lastly,  IAM  suggests  that  there  exist  simple  “repair  mechanisms”  in  order  to  deal  with 

misalignment.  In the experiment described in (Pickering and Garrod 2004), there are occasions 

where subjects had adopted subtly different representations,  thus requiring clarification at  some 

point when it was realized that communication was inefficient. The interactive repair mechanism 

employs  grounding,  or in simpler terms, establishment of shared knowledge among interactants 

(Clark and Brennan 1991).

3.6  Discussion

Theoretical descriptions of inter-speaker accommodation phenomena have existed for a long time, 

and they have proposed several functions as explanations. A few key conclusions can be extracted 

from the review in this chapter. 

The factors that affect accommodation are numerous: individual, biological, psychological, social, 

as  well  as  situational  and  dyad-specific.  From  the  point  of  view  of  SDS,  these  findings  are 

interesting.  A common  misinterpretation  in  speech  technology  is  that  accommodation  occurs 

automatically, while the potential use of other factors is largely ignored. For example, the fact that 

accommodation has a social function (as proposed by CAT) has important implications for SDS that 

use animated avatars and other such personifications. Perhaps an animated agent appears unsocial 

because his/her/its8 speech does not converge to that of the user. Similarly, evolving interaction 

behaviours  of  well-acquainted  dyads  could  be  utilized  in  SDS for  home use,  which  learn  the 

behavioural patterns of the end-user and adapt towards them over many sessions (thus acquiring 

more training data). A suitable human metaphor (see section 2.2.2) for SDS in real applications is 

that of talking to a service providing agent. In this context, the talking agent should appear social, in 

which case at least the social aspect of accommodation, as described by SAT, should be taken into 

account.  

In  addition,  accommodating  behaviour  may vary  from autonomous,  spontaneous,  non-intended 

adaptation to semi-conscious or even deliberately implemented strategy. Several possibilities for 

SDS  arise  from  these  findings  as  well.  Although  the  simplest  design  strategy  would  be  the 

implementation of spontaneous convergence, one can imagine an SDS that articulates more clearly 

and reduces speech rate if a user is having problems or is taking too long to reply (e.g. elderly 

users).  In  addition,  it  is  possible  to  elicit  a  specific  speech style  from the  users  (faster/slower, 

louder) by taking advantage of the fact that they themselves tend to align to a synthesized voice (see 

chapter  4).  The  purpose  of  this  is  to  encourage  a  speech style  which  can  be  recognized  more 

accurately by the ASR component. 
8 'its' in case the talking agent is an animal character  (e.g. Oviatt et al. 2004)

55



Although  the  theoretical  descriptions  of  accommodation  phenomena  reviewed  in  this  chapter 

provide several possibilities for improving human-likeness and performance in SDS, the data that 

they have been based on are not particularly useful for implementing similar behaviour in SDS. The 

majority  of  theories  described  in  this  chapter  are  based  on  empirical  studies  and  experiments 

controlled in such a way as to provide evidence of the correlation of a function (social, dyadic, etc) 

and a particular accommodation phenomenon. A particular note has to be made on  longitudinal 

studies, which monitor the behavior of dyads over long periods of time (often for several years). 

The motivation behind this method is that interaction patterns can be monitored as the relationship 

between  the  interactants  develops.  In  addition,  some  of  the  studies  that  provided  supporting 

evidence  for  the  theories  described  in  this  chapter  have  been  based  on  expert  assessments  of 

whether the interactants' behavioral patterns “match” or not, rather than direct measurements. 

Therefore,  despite  the  significant  body  of  knowledge  that  has  been  acquired  over  decades  of 

empirical  research on inter-speaker accommodation phenomena, theoretical  models have mostly 

focused  on  their  function  (biological,  emotional,  dyadic,  social),  while  the  form  of  their 

manifestation has not been adequately described in a way that is usable for SDS. In order for the 

possible improvements provided by the theoretical models to be explored in the context of SDS, a 

quantification of accommodation phenomena is required. The following chapter presents a review 

of studies which have proposed methodologies of measuring accommodation. 
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4  Measuring accommodation
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4.1  Overview

In this  chapter,  previous studies on measurements of accommodation phenomena are reviewed. 

These studies come from a variety of research areas (such as psycholinguistics, human-computer 

interaction  and  speech  technology)  and  are  thus  significantly  dissimilar  in  their  specific  aims, 

objectives,  and  methods.  However,  they  share  the  goal  of  quantifying  the  accommodation 

phenomena described in the previous chapter. There are four dimensions along which these studies 

can be categorized or described:

(a) The overall goal of the study: depending on the research area of the study, the goal can be 

investigation and characterization of phenomena in order to validate a theoretical hypothesis (e.g. 

functional  relationship  between  accommodation  and  positive  evaluation,  or  efficiency  of 

communication), a model that can be utilized in an SDS context, or an observation that can inform 

the design of further experiments/implementations. 

(b) The communication feature(s) studied: these features can be prosodic (pitch, loudness, speech 

rate or vowel duration) , temporal (typically inter-speaker silence duration), lexical and/or syntactic 

features (usage of same words/syntactic structures by both speakers), gestural/postural (position, 

gaze, body and head movement) or phonetic (pronunciation).

(c) The speech corpora used: these can be recordings of human dialogues in various contexts, tasks, 

or settings. A distinction can be made between face-to-face conversations and dialogues without 

visual  contact  (e.g.  telephone  conversations).  In  addition,  there  are  studies  that  measure 

convergence of users towards a synthesized voice in an SDS context. These can either be actual 

SDS or Wizard-of-Oz implementations,  in which an experimenter  controls  the responses of the 

system, while the subjects believe that they are interacting with an actual system (see section 2.2.4). 

(d) The method of quantification:  there are studies that compare speech features of speakers across 

several  dialogues.  In  this  way,  a  whole  dialogue  becomes  a  single  data  point  (e.g  the  average 

intensity  of  a  speaker  in  an  entire  dialogue).  Summary statistics  (mean,  standard  deviation)  or 

regression  (between speaker  A and speaker  B)  can  be  then  used  to  validate  the  hypothesis  of 

accommodation. In contrast, some studies investigate accommodation within a particular dialogue. 

This approach can be continuous, which usually results in two time series (one for each speaker), or 

a comparison in “initial” and “final” values of the features which are measured for the first and 

second half  of a dialogue respectively.  A third approach is  to measure the effect  of categorical 

events (e.g. priming targets – see section 3.5.2) in a sequence of turns or frames after the event, in 
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order to determine the effect of the prime on the interlocutor's speech.

The  studies  reviewed  in  this  section  are  categorized  based  on  (d)  above  (the  method  of 

quantification): Studies based on comparisons of features across dialogues are reviewed in section 

4.2. These are further distinguished into studies that measure the average of a feature per speaker 

for the entire dialogue, and studies that consider specific lexical elements or utterance categories on 

which the features are measured. 

Studies which measure accommodation phenomena within each interaction are reviewed in sections 

4.3 -  4.5. Section  4.3  reviews studies in which measurements are based on ratios of successful 

repetition, a methodology restricted mainly to lexical/syntactic features, as in this case the repetition 

targets (specific words and syntactic structures) are categorical. A subset of these studies comprises 

linear regression in order to describe the effect  of  distance,  i.e.  the frequency or probability of 

repetition as a function of distance (in seconds or in dialogue turns) from the initial target.

A somewhat  unique  approach  to  assessing  accommodation  phenomena  (rhythmic  entrainment) 

within single interactions  is reviewed in section 4.4, as it does not lend itself to the categorization 

followed  in  this  chapter.  Time  series  approaches  to  describing  accommodation  phenomena  are 

reviewed in section 4.5. 

It is noted that the categorization implied in the outline provided above is not strict,  as there is 

significant  overlap  across  categories  (e.g.  some studies  investigate  accommodation  phenomena 

across  several  dialogues  as  well  as  within  single  dialogues).  The  categorization  only  serves 

presentation  purposes.  In  ambiguous  cases,  studies  have  been  categorized  according  to  the 

measurement methodology relevant to the main findings of each study. 

Another  significant  note  relates  to  the  definition  and  theoretical  framework  disparity  that  was 

discussed in the previous section. Since there are various relevant theories, terminologies and lack 

of universal definitions, the terminology used in each study is also used in its description. The 

theoretical foundations and the phenomena investigated should become clear from the description 

itself. 

4.2  Comparison of features across dialogues

This section reviews studies that assess accommodation based on comparisons of speech features 

across several dialogues. One of the methods comprises calculating an average value of a feature 

per  speaker  for  the  entire  dialogue  and  comparing  several  speaker  pairs  (section  4.2.1)  or  the 

average feature value of the same speaker across several conditions (section 4.2.2). The latter subset 
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also considers within-dialogue accommodation, by splitting the dialogue in two equal parts (early 

and late) and comparing feature averages between these two parts. Sections 4.2.3 and 4.2.4 review 

studies  in  which  measurements  are  based  on  specific  lexical  items  or  utterance  categories, 

respectively. 

4.2.1  Comparison of average inter-speaker pause across dialogues

(Bosch et al. 2004a, 2004b; 2005) focused on temporal aspects of turn-taking in human dialogues. 

The goal of these studies  was to investigate the effect of speaker change on temporal features 

(pause  length  and  overlaps)  in  corpora  with  “shallow”  annotations,  i.e.   annotations  of 

speech/silence that contain little or no information about the linguistic content of the utterances. The 

corpora comprised recorded telephone conversations and face-to-face conversations without any 

constraints (spontaneous speech). The two features investigated were pause duration and frequency 

of overlaps. Pauses were distinguished into three types: (a) within-utterance, (b) between utterances 

within the same speaker turn, and (c) between speaker turns. The annotations were either temporal 

only, from which turns are defined depending on the temporal organization of speech/silence among 

the  two  speakers,  or  semantic,  by  incorporation  of  a  basic  utterance  categorization  scheme 

(propositional  vs  backchannel  with  three  subcategories  each).  Silence  durations  were  log-

transformed, as this yields a more “bell-shaped” distribution that makes arithmetic means good 

estimates of the average duration of a speaker for the entire dialogue (see section 8.2.2). 

Comparisons of average pause duration per speaker (for each of the three pause categories) in 93 

telephone dialogues showed a high correlation for between-turn pauses, as well as a combined set of 

between-utterance and between-turn pauses. The frequency of overlapping speech at turn exchanges 

was found to be dependent on sex and dialogue type:  a greater proportion of overlap was found for 

female pairs compared to male pairs, as well as for telephone conversations compared to face-to-

face conversations.  In addition, turn-exchange latencies were found to have an even two-tailed 

distribution around a positive peak. The left tail extended into negative values, when duration of 

overlapping  speech is  taken  into  account  for  turns  that  initiate  before  the  previous  turn of  the 

interlocutor has finished. 

(Bosch et al. 2005) suggested that the correlation of inter-speaker pause length is evidence of inter-

speaker accommodation as proposed in  (Pickering and Garrod 2004) and  (Giles et al. 1992), but 

also offered the alternative explanation that the correlation might be the result of dialogue or topic 

liveliness: interlocutors that are engaged in a lively 'chat' are likely to exhibit reduced pause length, 

thus yielding a medium-sized correlation.  One of the main problems identified in  (Bosch et  al. 
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2005) is that of defining “turns”, especially when there is little information on the actual content of 

the utterance, as is the case in large corpora with shallow annotations.

4.2.2  Comparison of feature averages between first and second half of a dialogue

(Coulston et  al. 2002) examined  amplitude  (intensity)  convergence  of  children  to  simulated 

educational  SDS  applications  with  embodied  agents  (“animated  personas”).  The  experimental 

setting comprised a Wizard-of-Oz (Woffit et al. 1997) scenario in which children aging 7-11 years 

interacted with animated characters, while the SDS output was controlled by an experimenter who 

was in a different location. Thus, children believed the SDS was automated. The TTS voice of the 

system  had  two  different  voice  personalities  (introvert  and  extrovert)  with  different  prosodic 

characteristics (including amplitude). The goals of the study were to (a) examine whether children 

converge  to  TTS  voices  of  these,  (b)  determine  whether  they  do  so  dynamically,  during  an 

interaction, (c) determine whether this happens both in the case of upward or downward movement 

in order to converge and (d) evaluate the magnitude of convergence. 

The children were assigned three tasks.  During the first  two, the speech of the main character 

remained constant (introvert or extrovert), while in the third there was a switch in style half-way 

through the interaction (in one of two directions: from introvert to extrovert and vice versa). There 

was also contrasting speech style in a sub-character, in order to test  short-term  accommodation. 

Children engaged in sub-dialogues with the sub-character, which had an introvert voice when the 

main character had an extrovert voice and vice versa.

Amplitude was measured in voiced regions of utterances, as well as in hand-labeled vowel regions 

only.  A comparison  of  mean amplitude  of  children's  speech across  dialogues  showed that  they 

converged to the TTS voice style. The significance was evaluated by a repeated measures ANOVA9 

which  showed  that  the  children  raised  their  amplitude  significantly  when  interacting  with  the 

extrovert TTS voice (higher amplitude) and similarly lowered their amplitude when interacting with 

the introvert TTS voice (lower amplitude). In the case of the style change, the mean amplitude from 

the first half of the dialogue was compared to that of the second half and it was found that children 

showed both upward and downward convergence. Little or no significant evidence of convergence 

was found for the sub-dialogs with a second character that had a contrasting speech style.

As  a  measure  of  the  magnitude  of  convergence,  (Coulston et  al. 2002) used  the  percentage 

increase/decrease in energy,  which can be calculated from intensity. This was calculated for each 

9 A variant of the ANOVA method, which calculates a mean and variance from a subset of the population based on a 
condition; individual observations may satisfy more than one conditions, hence these observations are repeated
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subject (child) individually, and the increases in the introvert to extrovert condition ranged from 0 to 

~300%, with a “grand mean” of 37%.  The measurements of amplitude in hand-labeled vocalic 

regions were slightly more sensitive compared to automatically detected voiced regions, as they 

generally yielded smaller p-values in significance tests (repeated measures ANOVA). 

Following the same methodology, two more studies (Darves and Oviatt 2002; Oviatt et al. 2004) 

extended  the  set  of  prosodic  features,  including  durational  and  temporal  features  (utterance 

duration,  number  of  within-utterance  pauses,  speech  rate  and  response  latency).  The  highest 

magnitudes  of  accommodation  (as  percentage  increase/decrease  of  energy,  log  transformed 

duration, or speech rate) was found for within-utterance pauses (both in number and duration). In 

general, children were found to adapt all of the aforementioned features, depending on the style of 

the TTS voice (introvert vs extrovert). Less concrete evidence of convergence was found for the 

sub-dialogues with a sub-character with contrasting TTS voice, except for the intra-sentence pause 

patterns. In addition, little or no evidence was found of any effects of age, gender or personality 

match between child and TTS voice (introvert or extrovert). 

(Coulston et al. 2002; Darves and Oviatt 2002) and (Oviatt et al. 2004) proposed that these findings 

can be helpful in SDS design in order to guide children's speech to prosodic behaviour that is easier 

for ASR to handle (e.g. low amplitude in children speech is a problem in speech recognition). 

A series of studies (Suzuki and Katagiri 2003, 2004, 2005) examined prosodic alignment/synchrony 

of users' features (intensity and response latency) with the respective features of an SDS voice (pre-

recorded prompts). The goal of the study was to compare the findings with those of previous studies 

on human-human dialogues, in order to find evidence of similarities or difference between these 

two settings.  Recordings  of  adult  Japanese  speakers  interacting  with  the  SDS in  a  Q&A quiz 

scenario were used for the analysis. Since the dialogues were “half-duplex” (because of the Q&A 

structure of the dialogues),  turns were annotated in a straightforward way and  the response latency 

between subject and speaker turns was measured. The average intensity of the user utterances was 

also measured. During the first half of a quiz, participants interacted with the original SDS voice, 

while in the second half one of the the prosodic features was modified (±3dB in intensity or ±30% 

in response latency)  or both were left  constant.  The mean intensity and response latency were 

calculated for each speaker and half-dialogue. 

In  the  follow-up statistical  analysis,  all  three  studies  used  t-tests  to  find  whether  the  prosodic 

features  studied  changed  significantly  in  the  increasing  and  decreasing  conditions.  The  results 

showed alignment in both directions (increasing and decreasing) and no significant change in the 

constant conditions. However, it was found that the changes were statistically significant only in the 
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increasing condition for intensity and the decreasing condition in response latency, i.e. only in one 

direction for each a/p feature.

These results  partly evaluate the predictions from human-human dialogues,  where alignment of 

both features occurs in both directions (Jaffe and Feldstein 1970), as was also found for human-

computer interaction in other studies (Coulston et al. 2002; Darves and Oviatt 2002; Oviatt et al. 

2004) that followed a very similar methodology for measuring alignment of the same features. The 

comment of (Suzuki and Katagiri 2005) on this difference was that the latter studies used Wizard-

of-Oz scenarios rather than actual SDS for their tests. However, there were other differences: the 

former  studies  (Coulston et  al. 2002;  Darves  and  Oviatt  2002;  Oviatt  and  Seneff  2004) used 

synthesized TTS voices rather than pre-recorded prompts, and children rather than adult subjects. In 

addition,  the  type  of  interaction  was  different   in  the  two  cases:  a  talking  agent  educational 

environment in one case and a Q&A test in the other. 

(Suzuki and Katagiri 2005) concluded that alignment of users to SDS is a global phenomenon that 

can be utilized to serve SDS efficiency,  in  relation to ASR component:  a system can adapt  its 

amplitude in order to make the user voice converge towards a value that yields better performance 

of automatic speech recognition. 

4.2.3  Comparison of features measured on specific lexical elements

(Pardo  2006) conducted  a  study on  phonetic  convergence.  Several  theoretical  foundations  are 

discussed, such as priming, entrainment or influence of social factors. The goal of the study was 

exploratory: to provide evidence supporting/rejecting the several hypotheses. The speech material 

was recorded during a task-based experiment (map-task), during which one of the subject had to 

draw a path on a map that contained landmarks, based on the instructions of the other subject (who 

had a complete path). The efficiency of task execution was assessed by superimposing the two paths 

on a 1cmX1cm square grid and calculating the number of the squares that the two paths had in 

common.  The  phonetic  similarity  between  the  two  speakers  was  assessed  on  identical  lexical 

elements  (names  of  landmarks  on  the  map)  by  perceptual  listening  tests,  in  which  (different) 

subjects  were  asked  to  make  a  forced  choice  of  similarity  to  a  sample  utterance,  based  on 

pronunciation  (as this tended to draw the focus of listeners on the phonetic content, rather than 

prosodic or voice quality or any other  features).  This was done for utterances recorded before, 

during, and after the task.

The ANOVA method was used to assess convergence based on number of factors such as (a) talker 

role (information giver vs information receiver), (b) sex (male vs female), (c) persistence (pre-task 

63



vs  during-task  vs  post-task),  and  (d)  timing  (first  half  vs  second  half  of  the  dialogue). 

Conversational partners were found to converge phonetically during the task (compared to pre-task) 

and more so over time (early vs late in the dialogue). In addition, convergence persisted beyond the 

task (post-task instances were judged more similar than pre-task instances). Further, information 

givers were found to converge more towards receivers than vice versa and male pairs showed more 

convergence than female pairs. (Pardo 2006) presents a detailed discussion related to theories of 

episodic  memory,  perception-production  link,  entrainment  and  social  factors,  in  view  of  the 

experimental results: for entrainment, the degree of  “coupling” plays an important role, thus it is 

suggested that convergence is less likely in relaxed interactions than in task-based scenarios with 

increased cognitive load; relative coordination, as in the Interactive Alignment model, is a more 

plausible  explanation  of  the  phenomena;  the  link  between  perception  and  production  is  not 

automatic;  and  situational  constraints  impose  restrictions  on  convergence  in  relation  to  social 

factors.

4.2.4  Comparison of features measured on specific utterance categories

(Ward and Nakagawa 2004) explored speech rate adaptation in human conversations and proposed a 

methodology for IVR implementation. The corpus in the study consisted of 508 recorded telephone 

directory service dialogues, in which there was information provided to the user in the form of a 

series of digits (telephone numbers). This was not an actual service, but an experimental set-up in 

which human agents (with prior customer service experience) were used. It was hypothesized that 

the (human) agents delivered the digits faster or slower depending on (a) the users' initial speech 

rates, and (b) the user's response latency after the initial greeting of the agent, which is seen as a 

measure  of  hesitation.  These  hypotheses  were  tested  on  a  subset  of  dialogues  that  were  (a) 

previously rated “good” by the subjects (callers), and (b) the digit delivery pattern was the most 

commonly occurring (a  confirmation after  each group of  digits).  Speech rate  was  measured  in 

morae/second.  A mora was defined as  “roughly a syllable” in  (Ward and Nakagawa 2004):  an 

approximation of two morae per double vowel, and one mora per single vowel, syllabic nasal or 

geminate  consonant  was  used.  This  resulted  in  user  speech  rates  ranging  from  6  to  10 

morae/second. 

Significant correlations were found between among both user speech/rate and response latency to 

the agent's initial greeting on one hand, and the duration of delivery from the agent on the other. A 

linear  model,  with  both  factors  as  independent  variables  and  the  agent  delivery  duration  as  a 

dependent  variable,  was calculated by multiple  regression (least  squares).  This  model  was then 
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tested in the design of an IVR implementation, in which the conversation was handled by a human 

agent up to the point of the information delivery (the actual digits). The novelty of the system was 

that the user speech/rate and response latency were measured on-line, so that the final delivery 

(automated)  could be implemented based on the previously fitted linear  model.  The evaluation 

showed a significant  correlation between the  predicted duration for  the system and the actual 

duration in the corpus. 

(Ward and Nakagawa 2004) noted that they did not evaluate the system on-line with real users, 

considering two issues. First, that the system needs a “sanity check”, in order to avoid producing 

too long or too short deliveries (based on erroneous parameter measurement online). Second, users 

do  not  tend  to  confirm  groups  of  digits  when  the  delivery  is  performed  by  a  machine.  The 

conclusion was that speech rate adaptation should find numerous applications in SDS. 

(Bell et  al. 2003) examined  user  prosodic  behaviour  during  interaction  with  a  Wizard-of-Oz 

implementation of an SDS. The goal of the study was to investigate users' adaptation of their speech 

rate during mis-recognition and other  errors, in order to explore possible design strategies for SDS. 

A common problem in real SDS environments, is that users typically hyper-articulate their speech 

after  a  speech  recognition  error,  since  that  strategy  “works”  in  human-human  dialogues. 

Unfortunately, the same strategy has the opposite effect in SDS, as ASR performs badly on hyper-

articulated speech (Bell et al. 2003). 

The study utilized a Wizard-of-Oz scenario (Woffit et al. 1997), in which subjects (members of the 

general public) interacted with either a fast or slow version of the SDS.  The goal of the task was to 

aid an animated character complete a sorting task comprising geometric shapes of different colors. 

During the interaction, experimenters deliberately introduced errors, such as mis-recognitions.  The 

subjects either repeated or rephrased their utterance.  The fast and slow version of the system were 

implemented by modifying the speech rate of the original pre-recorded prompts by ± 30%. The 

measurement of user speech rate was segment duration, which was calculated using an automatic 

alignment algorithm, the output of which comprised an annotation of words and phonemes. Stressed 

syllables were also annotated. A z-score technique normalized the durations for inherent duration 

and effects of stress. 

ANOVA tests were used to determine the effects of user turn, system speech rate and lexical content 

on the user speech rate.  User turns were distinguished into original user utterances, re-phrasings, 

and repetitions. Lexical elements were distinguished into descriptions of the shapes (color, shape, 

position) and speech rate was either fast or slow. All three independent variables were found to have 

a significant effect on user speech rate, with words describing color being the only lexical content 
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that was pronounced significantly slower. It was also found that user turn type (original, rephrasing, 

repeating) also had a significant effect on within-utterance pause length in user speech. Finally, the 

speakers  spoke  slower  to  the  slow  version  of  the  system,  thus  validating  the  hypothesis  of 

convergence to the TTS voice. 

(Bell et al. 2003) observed that users adapt their speech rate unknowingly according to the speech 

rate of the system, but also depending on the dialogue context. In order to handle system errors they 

slow down but, as soon as the system recovers from the error, the users “speed up” quickly and the 

dialogue flows smoothly. 

4.3  Measurements of successful repetition

This section reviews studies that measure successful repetition of targets, which are typically lexical 

or syntactic elements, although prosodic targets have also been defined in some of the studies (Ward 

and  Litman  2007b,  2007a).  Section  4.3.1 reviews  two  studies  that  have  measured  successful 

repetition  ratios  of  lexical  elements.  Section  4.3.2 reviews  two  studies  which,  in  addition  to 

successful repetition, have also used linear regression in order to measure the effect of distance on 

the probability or frequency of repetition. 

4.3.1  Successful repetition ratio

(Brennan  1996) studied  lexical  entrainment  in  recordings  of  spontaneous  speech,  as  well  as 

adoption of system terms (lexical convergence) by users of speech interfaces. The goal of the study 

was to investigate differences and similarities between these two processes, and implications of this 

for SDS, especially in relation to the vocabulary problem: the wealth of language is a problem for 

SDS, because a user may adopt several terms to describe the same concept. Lexical entrainment (or 

convergence) is a possible way of encouraging the user to use specific terms (by presenting this 

vocabulary  to  the  user),  thus  shortening  the  list  of  candidate  words  that  the  ASR  and  ALU 

components have to process, which in turn would result in increased efficiency.

The spontaneous speech recordings were acquired using a task experiment, which involved two 

participants who could converse without visual contact and had to line up identical sets of picture 

cards  in  the  same order.  The  purpose of  these  experiments  was  to  further  investigate  previous 

theoretical predictions on lexical entrainment (Clark and Wilkes-Gibbs 1986; Brennan and Clark 

1996). The latter explain lexical entrainment through “conceptual pacts”, or implicit “agreements” 

between interlocutors on terms that describe concepts in the discourse.
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(Brennan  1996) conducted  a  series  of  wizard-of-oz  experiments  (database  query),  in  which  a 

(simulated) system employed two different correction strategies in order to encourage the user to 

adopt its  terminology:  “embedded” and “exposed”.  Embedded corrections are repetitions of the 

query  by  the  system with  substitution  of  the  user  term  with  the  system term,  while  exposed 

corrections are explicit clarification requests of the system that contain the system term (e.g. “did 

you mean /term/ ?).  A speech-based, as well as a text-based interface were used. 

The measurements comprised a ratio of successful adoption of the system term by users over the 

total amount of user turns.  Also, the effect of delay (whether the user response came immediately 

after a correction or after several utterances) was investigated. In both text and speech cases, there 

was significantly more lexical convergence for the immediate condition (compared to delayed) and 

exposed corrections (compared to embedded). However, convergence was significant in all cases. 

(Brennan  1996) suggested  that  convergence  only  in  the  immediate  condition  would  imply 

autonomous entrainment, while frequent convergence in the delayed condition would imply a more 

strategic process. The study concluded that (a) a system should output only terms that it can process 

as input, (b) should be consistent in its output and documentation, (c) repairs are essential, as shown 

from the higher convergence to exposed corrections, and (d) a system could adopt terms proposed 

by the user by adopting grounding strategies. 

In  (Fais  1996),  lexical  accommodation  was  investigated  in  view  of  human-machine  interface 

design. Three experimental scenarios were conducted, in which a conversation was either (a) direct 

monolingual, between English-speaking subjects and conference “agents”, (b) bilingual,  between 

English-speaking and Japanese-speaking agents, mediated by a human interpreter, and (c) mediated 

by  a  simulated  machine  translation  system.  The  goal  of  the  study  was  to  study  lexical 

accommodation in these three contexts  in order to determine the effect  of (1) desire  for social 

approval, and (2) difficulty of communication, on the degree of accommodation. The measurement 

was a ratio of the number of (different) words spoken by both speakers over the overall number of 

(different) words in each dialogue. The direction of accommodation was assessed by defining that a 

speaker who uses a word previously spoken by the interlocutor is the one who accommodates. 

The results showed significant accommodation in all three scenarios.  The highest accommodation 

occurred in the human-mediated scenario where, according to (Fais 1996), both social factors and 

communication efficiency are important. Higher accommodation was also found for the machine-

mediated  scenario,  when compared  to  the  direct  dialogue  scenario,  despite  the  fact  that  social 

factors were irrelevant. In addition, accommodation was equal between interlocutors in the direct 

dialogue scenario, but in the other two the client accommodated to the agent. (Fais 1996) attributed 
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this finding to the fact  that clients perceived interpreters (either human or machine) as having the 

dominant role. Thus clients accommodated to the lexical choices of the interpreters, in order to 

improve communication efficiency.  The latter  conclusion is  in agreement  with (Brennan 1996). 

(Fais 1996) also suggested that higher accommodation in SDS can be encouraged by use of an 

animated  face  or  “persona”,  replicating  the  human-interpreted  setting  (that  shows  the  highest 

accommodation). 

4.3.2  Linear regression of repetition over distance

(Reitter et al. 2006) explored priming of syntactic structures, in order to test various predictions of 

the Interactive Alignment Model  (Pickering and Garrod 2004) that  was outlined in section  3.5. 

Spontaneous  (telephone)  speech and task-oriented  speech (a  map-task,  which  was  described  in 

section 4.2.3) were used in order to test the effect of the situational constraints of the task on the 

degree of priming. The syntactic trees of all utterances in the corpus were converted to phrase rules 

and an algorithm search for repetition of these rules was conducted. Any sentence could be a valid 

candidate for a prime or target for priming (repetitions of entire phrases were excluded). Distance 

(expressed in number of turns or seconds) of priming was also taken into account. In addition, a 

distinction  was  made  between  comprehension-production   (CP) priming,  where  one  speaker 

produces the prime and the partner produces the target, and  production-production  (PP) priming, 

where both prime and target are produced by the same speaker. 

Statistical  analysis  is  performed  by  use  of  generalized  linear  mixed  effects  regression  models 

(GLMM). This regression approach allows the calculation of coefficients of linear models, such as a 

model of the probability of repetition of a prime, based on discrete factors (such as type of corpus) 

or continuous explanatory variables (such as distance). The maximum distance used was 25 turns or 

15 seconds. There were various outcomes from this study. The probability of priming was found to 

decay with distance in both corpora, and significant PP priming was found in both corpora. In the 

case of  CP priming,  higher  confidence was found for  the  map-task corpus,  when compared to 

spontaneous  speech.  This,  according  to  (Reitter et  al. 2006),  validates  the  hypothesis  of  the 

Interactive Alignment Model that syntactic priming leads to semantic priming: when the cognitive 

workload is increased (task corpus), speakers reproduce each other's syntactic structures in order to 

align  their  situational  models  with  less  effort.  In  the  unconstrained  spontaneous  speech,  the 

cognitive  workload  is  less,  thus  the  speakers  are  less  eager  to  adopt  their  partners'  syntactic 

structures, but they still do so to a lesser extent mechanistically. 

Following (Reitter et al. 2006), (Ward and Litman 2007a, 2007b) investigated dialog convergence 
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in relation to learning in tutorial sessions with a human tutor and an intelligent tutoring system 

(SDS). The features studied were lexical (word repetition) and prosodic (F0 and Intensity).  The 

theoretical background of the studies was based on the Interactive Alignment Model (Pickering and 

Garrod 2004).

The measure of lexical convergence was the count of different word tokens repeated by the student 

in  a  window  of  up  to  20  turns  after  the  tutor's  utterance  (prime).  For  prosodic  features,  the 

minimum, maximum and average F0 and Intensity of the tutor's utterance were considered primes if 

their  z-score normalized  values  where  greater  than one (an  arbitrary threshold of  one  standard 

deviation). Again, the response of the student to the prosodic prime for a window of up to 30 turns 

(to capture variation in intensity) was measured. The effect of distance on the number of repetitions 

(either lexical or prosodic) of a prime in the speech of the tutor was measured as the slope of a line 

fitted by linear regression (least squares). The slopes typically have a negative value, which is an 

indication  that  prime  repetition  decays  over  time.  The  significance  of  this  was  assessed  by 

calculating a p-value, as an indication of the probability of fitting that line if there was no effect of 

distance.

In order to assess the effect of convergence on learning, (Ward and Litman 2007a) used a corpus of 

students  who completed  two physics  tests,  one  before  and  one  after  a  tutoring  session  with  a 

(human) tutor. Thus, the learning outcomes from the tutoring session were quantified by means of 

test-scores. An automatic feature selection algorithm (stepwise regression) was used to find which 

features, if any, affect the learning outcomes. The only factors that were identified by the algorithm 

were lexical  repetition and response on mean intensity primes,  for a  window of  20 turns.  The 

identified  models  were  then  tested  on  a  different  corpus,  which  contained  dialogues  between 

students and an automatic intelligent tutoring system. The latter was following the same tutoring 

session layout and procedure as in the sessions with a human tutor. The models remained significant 

in the test data, although there were some unexplained differences (e.g. change of sign in some 

coefficients). (Ward and Litman 2007b) concluded that there is evidence of a relationship between 

convergence and learning, despite contrasting differences of the models in the two corpora, which 

can possibly be explained by the differences in speech style between human-human and human-

computer conversation.

4.4  Assessment of latency distribution 

(Benus 2009) studied rhythmic entrainment of syllable and pitch accent timing in human dialogues 

and,  in particular,  the predictions of the “coupled oscillator model” (Wilson and Wilson 2005), 
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which are (a) isochrony in turn-internal chunks, (b) entrainment across turn exchanges, (c) latency 

distribution  should  be  bi-modal  with  two  peaks  around  zero  (when  considering  overlap  turn 

exchanges as negative latencies) and a valley at zero, and (d) that the entrainment should persist 

without signal transmission (when both speakers are silent) for a period up to (roughly) one second, 

after which there should be more simultaneous starts observed. A corpus (American English) of 

young  adults  recorded  while  playing  games  in  separate  isolation  sound-proof  booths,  and 

communicating via audio channel only, was used in this study. 

Turns were categorized using the temporal scheme of (Beattie 1982) in order to determine turn 

types.  This  scheme  considers  seven  categories  of  “speech  chunks”:  (1)  backchannel,  (2) 

backchannel with overlap, (3) smooth switch, (4) overlap switch, (5) “butting-in” (or unsuccessful 

interruption), (6) interruption-by-pause, and (7) Interruption by overlap. In addition, (Benus 2009) 

defined two additional labels, namely (8) continuation of the same speaker after a back-channel, and 

(9) simultaneous start. 

(Benus  2009) used  syllables  and pitch  accents  as  the  rhythmic  units  of  speech,  following  the 

proposal of (Wilson and Wilson 2005). The utterances were transcribed using the TOBI scheme 

(Silverman et al. 1992) and the time of maximum energy was used as an estimate of the pitch 

accent  location  in  accented  syllables.  Correlations  among  syllable  durations  or  pitch  accent 

latencies were used to test the several  hypothesis  (a-d above) of (Wilson and Wilson 2005). In 

addition, a “phasing measure” was defined as latency/chunk-rate to test the particular hypothesis 

that latency before initiation of vocalization depends on the rhythm of the preceding speech chuck. 

The latencies of the 9 categories defined above were plotted as histograms, on top of which the 

phasing measure was plotted as a smooth curve. In this way, the hypotheses of the model of (Wilson 

and Wilson 2005) could be validated by inspecting the histograms of latencies between chunks, 

based on syllable boundaries or pitch accent locations, if peaks could be found at specific latencies.

The results showed weak support for the model of (Wilson and Wilson 2005) especially in relation 

to  hypotheses  (b)  persistence of  rhythmic  entrainment  across  turn  exchanges,  and  (c)  bi-modal 

distributions of response latencies. (Benus 2009) attributed this to several possible factors, such as 

the type of corpus (task-based or spontaneous) or timing units used (syllable and pitch accent may 

not be the most suitable) and concluded that perhaps the key assumptions of the model ought to be 

rethought. It is noted that hypothesis (c) was also not validated in (Bosch et al. 2004b) where one 

positive two-tailed peak was found with the left tail extending into the negative values. Further, the 

results of (Benus 2009) are in agreement with those of (Bosch et al. 2004b, 2004a; 2005) regarding 

accommodation of pause latency at turn exchanges. 
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4.5  Time series measurements of accommodation

This section reviews studies that have utilized time series analysis in order to describe inter-speaker 

accommodation. The approaches mostly vary in two ways: the method of obtaining the points, and 

the statistical analysis performed on the time series. Points can be obtained either by averaging a 

feature over the duration of an utterance, or by measuring the feature at specific elements (words, 

syllables)  or  utterance  categories  (e.g.  only  at  the  beginning  of  turns).  In  case  of  continuous 

phenomena,  such  as  head  movement,  points  can  be  obtained  by  direct  sampling  (without 

averaging). The statistical analysis can also vary from making inferences simply from observing 

simultaneously plotted time series of two speakers to more sophisticated statistical methods, such as 

as cross-correlation analysis, lag regression analysis, recurrence analysis and spectral analysis.  

4.5.1  Time series plots of utterance-based feature averages

(McRoberts and Best 1997) studied the prosodic convergence of an infant to her mother and father 

at various ages (3-18 months) in the context of validating hypotheses from CAT (Giles et al. 1987; 

1992). In particular, F0 of infant and parent were measured for interactions recorded at home on a 

weekly basis.  The mean F0 was calculated for each utterance and a grand mean for the entire 

interaction (15-20 minutes) was calculated from these. A weighted mean for each utterance was also 

calculated by multiplying each utterance by its duration and dividing the sum of cross-products by 

the grand mean of the dialogue. This was done to exclude the possibility of bias introduced by 

correlation of utterance duration and F0. Using ANOVA, the authors found that the parents raised 

their F0 when interacting with the infant, and there was an effect of the infant's age on their F0, 

although different for each partner (a more “linear” adaptation was found for the mother).  The 

infant's F0 was not found to change when interacting with either parent, compared to when she was 

alone. 

Further, the (McRoberts and Best 1997) examined F0 convergence within single interactions, by 

plotting the mean F0 of infant and parent as two time series. The “time” variable was the utterance 

number. As the utterances were of various lengths, it was not possible to determine time intervals 

from the plots in (McRoberts and Best 1997), nor are the points of the two series synchronous. The 

study discussed  the  apparent  synchronous  movements  in  F0 that  can  be  observed,  although  it 

pointed out the difficulty to infer conclusions from the data. (McRoberts and Best 1997) also noted 

that the scale of the Y-axis affects the apparent “similarity”: increasing the Y-axis “resolution” by a 

factor of 2 revealed that previously “similar” points were actually very distant. The results were 

interpreted as  an indication of prosodic (F0) convergence, as defined in (Giles et al. 1992).
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4.5.2  Simultaneous time series plots of activity in multiple modalities

(Campbell 2009) explored multimodal synchrony in video-captured conversations of more than two 

interactants at a time. The goal of the study was to illustrate the process of  active listening  and 

synchrony,  by presenting evidence of simultaneous activation of interactants  across features (or 

modalities)  of  speech,  gesture,  and posture,  in  a  continuous representation  (in  contrast  to  half-

duplex, or “ping-pong” representations). In particular, vocalization, hand gestures, head movement 

and body pose were the features studied. The corpora comprised telephone dialogues in Japanese, as 

well as video recordings acquired with a 3600 camera position at the center of a table around which 

four or five participants were sat. The head and movement position was captured dynamically from 

the video recording and the movements were automatically tracked by a 2-D algorithm tracking 

lateral  and  up-down  head  movement  with  additional  correction  based  on  size  for  the  third 

dimension (back-front). The vocalization intervals of each speaker were manually annotated. The 

annotation and analysis of gestures employed the MUMMIN coding scheme (Allwood et al. 2007).

Based on visual assessment of chronographic representations of the telephone dialogue recordings, 

(Campbell 2009) pointed out that (a) periods where the dialogue is dominated by either speaker are 

likely to be rich in propositional content, while short bursts of overlapping speech are characterized 

by backchannels   expressing understanding or  agreement  and other  such functional  gestures  of 

feedback, and (b) that it is very difficult (if not impossible) to define “turns” or “turn-holders” in 

these cases of short overlapping segments that frequently occur in natural conversational speech. 

(Campbell  2009) posited  that  dialogue  is  a  synchronous  interaction  in  which  both  participants 

continuously  participate  by  a  process  of  active  listening.  The  data  from the  video  recordings 

verified  this  hypothesis,  as  high  correlation  was  found  in  action,  gaze  and  pose  among  four 

interactants. In addition, high correlation between the imagery analysis data (which is automatic) 

and the chronographic representation (manually segmented) of these dialogues was also found, as 

bursts  of  movement  and  overlapping  speech  were  identified  as  points  of  high  activity  in  the 

interaction. These “activity peaks” were found to be common to all interactants most of the time, 

which was proposed as evidence of synchrony in the interaction. 

(Campbell  2009) concluded  that  these  findings  provide  evidence  that  interactants  participated 

positively  in  the  dialogues,  and  that  their  multimodal  synchronization  was  a  result  of  this.  In 

addition,  the  automatic  feature  extraction  from the  visual  data  can  be  very useful  in  detecting 

“activity peaks” without the need for manual annotation. In an SDS context, these peaks in activity 

can be indicative of topic changes or any other significant events in the discourse, therefore SDS 

could employ automatic activity peak detection in order to be aware of important discourse events. 
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4.5.3  Time series plots of features measured on specific targets

(Kakita  1996) studied  F0 convergence  during  dialogues  between humans,  in  order  to  test   the 

validity of theoretical predictions and based on previous work of the same author on other prosodic 

features (speech rate and pause duration). The speech material consisted of 18 scripted question-

answer pairs, which were designed so that a specific vowel was always pronounced in the same, 

non-emphatic position, in all questions. After each answer, the subjects exchanged roles, so that 

points were acquired for both (25 utterances each). The subjects were male adult Japanese students. 

The F0 was measured on the target syllable, and the points were plotted as two time series, with the 

X axis representing question-answer pairs, numbered 1-50, and the Y axis representing F0. Trend 

lines were fitted to each series by linear regression (least squares). By visual observation of the 

slopes  of  the  fitted  lines,  (Kakita  1996) distinguished  three  patterns:  (a)  convergence,  (b) 

divergence,  and  (c)  parallel  movement  (unaffected).  Further  investigation  showed  that  when 

speakers had a small difference in their initial F0, they tended to diverge. In contrast, large initial 

difference lead to more cases of convergence. 

Based on these (briefly summarized) findings, (Kakita 1996) hypothesized various possible causes 

of  convergence  as  a  function  of  initial  difference,  and  identified  a  region  of  5-20Hz of  initial 

difference that is possibly optimal for inducing convergence, although that could not be verified due 

to the small amount of data in the study. Across dialogue comparisons of initial F0 for subjects that 

took part in more than one dialogue showed little evidence of per-partner adaptation of F0.

4.5.4  Calculation of lag-zero coefficient

(Nishimura et  al. 2008) studied  the  relationship  between  synchronous  prosodic  variation,  or 

“synchrony tendency”  and perceived “liveliness”,  “familiarity”  and “frankness”,  in  a  corpus  of 

spontaneous dialogs in Japanese. The goal of the study was to find useful features that can be used 

in making an SDS voice more pleasant. The prosodic features studied were F0, F0 range, intensity, 

intensity range, speech rate, speech rate range. Averages of these features were calculated  for each 

utterance and these were plotted as a time series, with each point located at  the center of each 

utterance in time. Contemporaneous points were obtained by means of  linear interpolation for one 

of the speakers (chosen randomly) at the times of the points of the other speaker. 

Significant positive lag zero correlations between the two speakers were found for all features in 

389 out of 508 1-minute fragments taken from 7 dialogues. (Nishimura et al. 2008) suggested that 

this is evidence of high synchrony tendency. The results of the time series analysis were combined 
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with questionnaire results from a perceptual study, in which listeners were asked to rate the same 

corpus for  “liveliness”,  “familiarity” and various  other  descriptors.  Again,  high correlation was 

found between higher ratings and higher synchrony tendency, especially for F0. In addition, the 

correlations were increasingly stronger and found in a greater percentage of the dialogue extracts 

when the rating for “liveliness” was higher. 

Since SDS voices that sound familiar and lively are desirable, the authors (Nishimura et al. 2008) 

proposed a multivariate regressive model that monitors the user's prosodic feature (pitch, intensity, 

speech rate) and adapts the same feature on the voice of an SDS, in order to match the behaviour 

observed in human dialogues. The parameters of the model are the average value of a prosodic 

feature for the last N turns and a time constant K that specifies the delay of the system (how quickly 

it adapts). High correlation of the model values calculated from speaker A with actual values of 

speaker B were found. However the 'optimal' parameters computed did not allow any delay for the 

system to converge to the user in some cases. (Nishimura et al. 2008) concluded that the model 

follows the user passively, but it should actively change its prosodic behaviour depending on the 

context. 

4.5.5  Pearson coefficient 

(Edlund et  al. 2009) examined convergence and synchrony of pause (between utterances of the 

same speaker) and gap (pause between utterances of different speakers) length across two speakers 

in  six  spontaneous  dialogues.  The  study was  proposed  as  a  proof-of-concept  for  the  proposed 

methodology, which is a time series approach to measuring convergence continuously. The overall 

goal stated is to produce a model that can capture the dynamics of convergence on-line and in real-

time (in view of implementing similar behaviour in SDS). The speakers were recorded in free face-

to-face  conversation.  The audio  channels  were processed with a  VAD algorithm that  made the 

speech-silence decision. The resulting durations (in milliseconds) of the gaps and pauses were then 

transformed into the log domain,  which is based on previous findings (Jaffe and Feldstein 1970) 

that the distribution of silent interval lengths is positively skewed, thus making arithmetic means 

overestimates. 

(Edlund et al. 2009) distinguished between  convergence/divergence and  synchrony.  The first was 

defined as the decrease/increase of the difference in duration of pauses or gaps across two speakers 

over time; in other words, speakers were considered to converge when the similarity in gap and 

pause duration increased over time. The second was defined as contemporaneously similar variation 

of pause or gap duration across the two speakers, i.e. whether the speakers' variations in pause and 
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gap duration show similar local trends. (Edlund et al. 2009) used  a 20-point feature window (the 

average of the last 20 pauses or gaps)  with varying length: some windows had a length of less than 

1 minute or more than 6 minutes, with most frequently occurring lengths of 2 minutes for pauses 

and 3.5 minutes for  gaps.  Linear interpolation was used in  order to  compare values  from one 

speaker to interpolated values of the other speaker at that exact time, randomly chosen each time. 

(Edlund et al. 2009) reported that exchanging the speaker data (interpolating speaker B instead of 

speaker A values) had a negligible effect on the results.  Statistical evaluation of synchrony was 

performed using the Pearson correlation coefficient between the values of two speaker series for 

each dialogue. For convergence/divergence, the differences between the values of speaker A and the 

interpolated  values  of  speaker  B  were  correlated  (Pearson  coefficient)  with  the  time  of  their 

occurrence in each dialogue.  

Significant correlation was found for both tests and for both gaps and pauses in a portion of the 

dialogues.  However, few dialogues from the overall set of 6 showed significant convergence and 

even fewer showed divergence. (Edlund et al. 2009) noted that the hypothesis of convergence (or 

accommodation of pause/gap length) being a global phenomenon was not validated. Synchrony was 

more evident according to the same results, as most dialogues showed strong positive correlations. 

Some (weak) negative correlations were also found. The conclusion of (Edlund et al. 2009) was that 

possibly there are other factors of variation in pause and gap duration, which “override the general 

synchrony of the exchange”.  

4.5.6  Lag regression analysis

(Jaffe et al. 2001) studied rhythmic “coordination” in mother-infant communication. The goals of 

this study were to (a) describe the vocal rhythms in such interactions based on previous work on 

speech rhythm (Jaffe  and Feldstein 1970),  (b)  describe coordination of  vocal  rhythms in  these 

interactions  in  terms  of  their  significance  and  bi-directionality,  (c)  predict  infant  development 

(attachment and cognition) at age 12 months from coordination at age 4 months, and (d) explore 

whether familiarity of partner or environment has  any effect on coordination (using stranger-infant, 

mother-stranger and home-lab control conditions). The theoretical bases are that rhythm is inherent 

in speech and interaction (a mechanistic/autonomous approach) and previous studies on the effect 

of mother-infant coordination on infant development.

(Jaffe et al. 2001)used a transformation of the speech signal into an on/off (binary) series of points 

sampled every 250 milliseconds,  which is the smallest  time unit  in the analysis.  Thus the only 

information in the series is whether either speaker (mother, infant or stranger) is vocalizing or not 
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(on or off) during the 250 millisecond time-frames, which are represented as points in time series. 

(Jaffe et al. 2001) used two rhythmic features: the beat, as the sum (V+P) of average vocalization 

(V) and average  pause duration  (P)  in  a  time frame or  turn,  and the (V/P)  ratio.  The latter  is 

proposed as a measure of extroversion/introversion due to the fact that extrovert speech is more 

“lively” and is thus characterized by shorter pauses in general, in contrast to introvert speech that is 

more hesitant. A turn of speaker A is defined as beginning when A starts vocalizing alone and ends 

when B starts vocalizing alone. Five vocal states are defined: (1) continuous vocalization, (2) pause, 

(3) switching pause (at turn exchanges), (4) non-interrupting overlap and (5) interrupting overlap. 

The last two categories are distinguished by considering whether the initial turn holder (before the 

overlap) retains or gives up the turn respectively. The switching pause is defined as belonging to the 

speaker  whose  turn  it  terminates.  (Jaffe et  al. 2001) distinguished between  (and  separately 

analyzed)  rhythmic  entrainment beats  and  (V/P  ratios),  as  well  as  coordination (of  average 

durations of vocal states) across speakers within each interaction.

The  statistical  analysis  comprised  lag  regressions  (excluding  lag  zero)  between  time  series  of 

average duration of vocal states (frame length 5 seconds) and turns (frame length 30 seconds). 

across speakers in each dialogue. Exchanging data from each speaker as dependent/independent 

variables,  (Jaffe et  al. 2001) calculated a  coefficient  of  coordinated interpersonal  timing  (CIT) 

index, as the strength of regression R2 between the series of each speaker and the lagged series of 

the other speaker. A series of 12 lags (accounting for a period of one minute) were considered in 

order to assess CIT. (Jaffe et al. 2001) considered each speaker's CIT in order to assess whether 

coordination was uni-directional, bi-directional, or absent, in case one, both, or none of the CIT 

indices were found significant. Coordination was considered present if the CIT for at least  one of 

the  vocal  states  was  significant.  Further  statistical  analyses  (MANOVA10 and  multiple  linear 

regression) were performed in order to test the effect of setting (home or laboratory) or novelty of 

partner (mother-infant vs stranger-infant), as well as to infer whether coordination between mother 

and infant at age 4-month has any effect on infant development. The latter was assessed by a series 

of specialized observation tests (Jaffe et al. 2001). 

The general results were (a) non-significant entrainment in beat cycles and V/P ratios, except for 

familiar  partners  (mother-infant)  at  familiar  settings  (home),  (b)  significant  coordination  in  the 

largest  percentage  of  cases,  the  magnitude  of  which  could  be  used  to  predict  development 

outcomes, (c) increased bi-directionality in adult-infant interactions (compared to adult-adult), (d) 

increased bi-directionality when novelty (of partner and site) is introduced, (e) positive correlation 

of switch pause and overlap across speakers, (f) negative correlation of pause and vocalization. The 
10 Multivariate ANOVA
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latter  two findings  were attributed to  convergence and complementarity in  temporal  (rhythmic) 

features.  Finally,  (Jaffe et  al. 2001) estimated an  optimal  lag  which  accounted  for  the  largest 

amount of variation (R2) in the calculation of CIT from the 12 five second lags. This was found to 

be in the region 20-30 seconds (lags 4-6) in most cases. This was proposed as a recurrent rhythmic 

cycle that is inherent in mother-infant interaction. 

4.5.7  Spectral analysis of filtered series

(Buder and Eriksson 1997; 1999) studied synchrony of F0 and Intensity in human dialogues. The 

goals of the studies were to investigate whether synchrony is a persistent, universal or language-

specific phenomenon and its relationship to transitions from each speaker to his/her partner. 

The corpus consisted of four dialogues, two in American English and two in Swedish, with a male 

pair and a female pair in each language. One approximately half-minute extract from each of these 

recorded dialogues was analyzed in order to measure F0 and Intensity synchrony. The prosodic data 

was extracted at a rate of 240 times per second and further down-sampled by 3-point and 5-point 

smoothing. Median and mean smoothing was used for F0 and Intensity, respectively. (Buder and 

Eriksson  1997) pointed  out  that  this  process  was  required  in  order  to  exclude  micro-prosodic 

variations, recording artefacts and algorithmic failures. The result of the process was a number of 

time series comprising 16 samples of F0 and Intensity per second. These were organized into 128-

point (8 second) frames with an overlap of 48 points (3 seconds). At each point, the F0 and intensity 

were normalized to the frame average (and overall sample average) and missing points for the F0 

(in non-voiced regions) were zero padded. Spectral analysis (FFT11 of the filtered signal) revealed 

periodic patterns in the variations of both F0 and Intensity, to which the authors fitted sinusoidal 

models. 

By observation of the plotted models,  superimposed on the prosodic data, (Buder and Eriksson 

1997) found that the periodic pattern of one speaker, who dominated the conversation for a part of 

the dialogue sample,  persisted (with aligned period and phase) across the turn exchange to the 

speech of the second speaker. In signal processing terms, the sinusoidal model fitted to the prosodic 

data of the speaker who released the floor, fitted well with the prosodic data of the second speaker 

who took the floor.  This behaviour was observed in all  four dialogue samples in the study. (Buder 

and Eriksson 1997) reported that the most typical cycle (period) for the fitted models was 4 seconds 

for Intensity and 2.5 seconds for F0. (Buder and Eriksson 1997; 1999) concluded that these findings 

are an indication that rhythmic alignment (or synchrony) in dialogues may well  be a universal, 
11 The Fast Fourier Transform (FFT) is a computer algorithm that is used to calculate the Discrete Fourier Transform 

of a signal. The result is a transformation of a signal to the Frequency Domain. See: (Rabiner and Schafer 1978)
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language-independent phenomenon and proposed further work, in view of natural  interaction in 

SDS applications.

4.5.8  Recurrence analysis

(Richardson et al. 2008) studied postural and gaze features, and reviewed a body of previous work 

in this area. The general goal was to investigate entrainment of conversants' body swing and eye 

focus,  when standing in  upright position.  In a series of experiments,  subjects  were involved in 

several tasks which were designed to produce spontaneous speech, such as watching sitcoms and 

discussing their favorite characters, discussing a painting, or performing tasks in a common area 

through wall-mounted monitors, with or without visual contact with other subjects. During these 

experiments,  the  body  swing  (lateral  movement  of  upper  body  in  upright  position)  and  eye 

movement and focus were recorded continuously.

Statistical analysis of the resulting time series was performed by means of recurrence analysis, a 

method which, according to (Richardson et al. 2008), is more straightforward in revealing recurrent 

(or cyclic) patterns by observation of  recurrence  plots. A point is registered on a recurrence plot 

only when events that occur at fixed intervals (recurrently) are sufficiently “similar” (within a preset 

threshold). Thus, the density of points registered along lines that represent specific periods yields 

the amount of recurrence for that period. The density can be expressed as a  percent recurrence, the 

proportion of points registered on the plot vs all possible points. An extension of this method to bi-

variate time series (which comprised cross-recurrence plots and percent cross-recurrence measures) 

was used to assess coordination among behavioral patterns of two participants. 

Interestingly,  (Richardson et al. 2008) found coordination of body swing even when the subjects 

were facing away from each other (interacting through monitors on opposite-facing walls), or when 

there  was  no  visual  contact  (subjects  interacting  through  monitors  without  visual  contact).  In 

addition, eye movement (gaze) coordination was found not only between partners in an on-going 

conversation, but also between listeners and speakers when the former were listening to a recorded 

description of a painting.  (Richardson et al. 2008) concluded that there is transmission of rhythm 

through speech, and that this is not only a by-product of interaction but also has an effect on its 

outcome.  (Richardson et  al. 2008) proposed  some  evidence  that  common  ground  (Clark  and 

Schaefer 1989) is relevant to coordination of gaze, as listeners could answer questions about the 

painting correctly more often when their gaze was coordinated to that of the speaker. 
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4.6  Discussion

This chapter has reviewed various methods of measuring accommodation phenomena in various 

modalities. Regardless of the theoretical foundations or goals, each study measured accommodation 

in one or more verbal or non-verbal features (see Table 4.1). It was mentioned in section 4.1 that 

these can be broadly categorized into across-dialogues and within-dialogue measurements. 

Across  dialogue  measurements  are  the  most  robust  method,  as  the  whole  dialogue  is  used  to 

calculate an average value of a feature: if the dialogue is long enough, then the arithmetic mean can 

be  safely assumed  to  be  unbiased  by some  event  that  occurred  during  the  interaction  causing 

unusual behaviour which deviates from the mean. Provided that a sufficient amount of dialogues is 

available, conclusions can be drawn on whether accommodation generally occurs under specific 

conditions or not. Although this methodology produces informative results, there are two arguments 

against it: first, it has been argued whether this correlation is the result of accommodation or not. 

The alternative explanation provided, is that it may be a result of topic liveliness (Benus 2009), or 

of the overall liveliness of the dialogue (Bosch et al. 2005). Second, it fails to capture the dynamic 

evolution of accommodation over time as the dialogue progresses (Edlund et al. 2009).

Within-dialogue measurements  can also be  sub-categorized into  continuous  and non-continuous 

methods. Continuous methods consider utterances, turns, or other arbitrarily constructed units, on 

which a feature value can be measured or accumulated (averaged). These values are then located on 

a single point of the dialogue time-line. For example, the “center” of the utterance was used in 

(Nishimura et al. 2008), or a particular recurring syllable was used in (Kakita 1996). This process 

results in a time series for each speaker. Another option for creating a time series is to use the values 

from  one  speaker  and  linearly  interpolated  values  from  the  second  speaker  at  these  points 

(Nishimura et al. 2008; Edlund et al. 2009).  These time series are often simply inspected, in order 

to  provide preliminary evidence of  dynamic  patterns  (Kakita  1996;  McRoberts  and Best  1997; 

Campbell 2009). In other cases, the time series undergo statistical analysis, with one of various 

methods available in standard statistics handbooks (e.g. Chatfield 1996).
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METHODOLOGY FEATURE CORPUS STUDY

Time series (lag regression) Rhythm, duration 
coordination

Mother-infant  Jaffe et al (2001)

Across dialogues &
Time series (plot observations)

F0 accommodation Parent-infant McRoberts and Best 
(1997)

GLMM, frames of fixed length after 
prime

Syntactic priming Spontaneous
Task-oriented

Reitter et al (2006)

ANOVA, perceptual test of pronunciation 
pre-task, task, post-task

Phonetic convergence Task-based Pardo (2006)

Time series (trend line fit) F0 convergence & 
divergence

Scripted answer-
question pairs

Kakita (1996)

Across dialogues & Histograms Pause duration 
overlaps

Spontaneous face-to-
face & telephone

Bosch et al (2004, 
2004b, 2005)

Time series (spectral analysis) F0 and Intensity 
synchrony

Laboratory 
Adult conversations

Buder & Eriksson 
(1997, 1999)

Histograms & phase component Syllable & accent 
timing entrainment

Spontaneous
Elicitation

Benus (2009)

Superimposed time series plot 
observations

Multimodal 
synchrony

Multi-party 
conversation (video)

Campbell (2009)

Time series (recurrence analysis) Swing & eye move-
ment entrainment

Task oriented Richardson et al 
(2008)

Time series (by interpolation)
Pearson coefficient

Pause and gap length 
accommodation

spontaneous Edlund et al (2009)

Linear regression, frames of fixed length 
after prime

F0 & lexical 
convergence

Tutorial sessions Ward & Litman 
(2007,2007b)

Across dialogues Speech rate 
adaptation

Task-oriented
(telephone)

Ward & Nakagawa 
(2004)

Time series (by interpolation)
lag zero coefficient 

F0, Intensity and 
speed synchrony

Spontaneous Nishimura et al 
(2008)

Percentage of success Lexical entrainment Spontaneous & WoZ
& text

Brennan (1996)

Same word/different word ratio Lexical entrainment WoZ – Automatic 
translation

Fais (1996)

Across dialogues, Half-split dialogue
ANOVA

F0, Intensity, speech 
rate, pause length 

WoZ – Multimodal 
SDS

Oviatt et al (2002, 
2002b,2004)

Per turn type
ANOVA

Speech rate 
adaptation

WoZ – Multimodal 
SDS

Bell et al (2003)

Half-split dialogues
t-test

Intensity, speech rate WoZ – Quiz SDS Suzuki & Katagiri 
(2003, 2004, 2005)

Table 4.1: Measurements of inter-speaker accommodation in various studies

The advantages of continuous (time series) methods are that (a) the variations in the feature value 

over time are captured, hence analysis can be performed on a single dialogue (McRoberts and Best 

1997), and (b) that it is possible to determine whether only one or both speakers converge/diverge 

(Jaffe et al. 2001). In addition, it is possible to identify cyclical patterns to which it is possible to fit 
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models based on their periodicity (Buder and Eriksson 1997; 1999). In the latter study, a physical 

function was given to the period of the fitted sinusoids, namely that of rhythmic entrainment across 

the  two  speakers  during  turn  exchanges  (different  periods  were  found  for  F0  and  intensity). 

Similarly, (Jaffe et al. 2001) proposed an “optimal lag” which was found to be the most significant 

in a series of lagged regressions between the two time series. (Jaffe et al. 2001) proposed that this 

may be evidence of rhythm (periodicity) in dialogue interaction. Aside from the question whether 

such assumptions are valid or not, the findings themselves are proof that continuous approaches 

reveal  much  more  information  about  accommodation  than  across-dialogue  comparisons.  The 

disadvantages of time series methods are the increased complexity (Edlund et al. 2009), and the fact 

that the usual assumptions for time-series analysis (stationarity, normal distribution of variance) are 

probably not satisfied in a strict sense (this is discussed in section 7.4.1). 

Non-continuous  methods  encompass  all  other  within-dialogue  measurements:  priming 

measurements, for example, make use of fixed-length frames that are defined by the location of the 

prime. Histograms display the distribution of values for a feature (such as pause duration), which 

can often provide valuable information. A somewhat crude method of measuring within-dialogue 

accommodation is the “half-split” approach: a dialogue is divided into two halves of equal length, 

and a feature average (for each speaker) is calculated for each half (e.g. Oviatt et al. 2004). This can 

be used to show whether speakers converged,  diverged,  or not.  Although this method has been 

criticized for the same reasons as across-dialogue approaches (Edlund et al. 2009), it does combine 

merits from both, as the result is, in a sense, a two-point time series. One can imagine further splits 

into quarters  etc,  but there  is  a trade-off:  unless the “pieces” are big enough, the average of a 

calculated feature may be biased by local events in the interaction.

In conclusion, time-series is the only analysis method which has been used so far to measure inter-

speaker  accommodation  in  a  continuous  way.  Despite  the  disadvantages  that  were  mentioned 

above, time series analysis provides the most complete description of accommodation phenomena 

and constitutes the most promising route towards a quantitative model that can be useful for SDS, 

as online monitoring and real-time accommodation pre-require a continuous description.  
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5  Review conclusions
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5.1  Motivation for investigating accommodation phenomena

Inter-speaker accommodation is a ubiquitous phenomenon in human interaction, which has been 

studied in various disciplines and has been explained in various ways. It covers a wide spectrum of 

phenomena, which encompass the entirety of communication channels: lexical and syntactic choice, 

pronunciation,  prosodic features,  rhythm, posture,  gaze and movement are the modalities  along 

which  interlocutors  align  their  behavioural  patterns.  As  highlighted  in  chapters  2 and  3, 

incorporation of methods to allow for “realistic” accommodation would significantly benefit spoken 

dialogue systems in a number of ways:

(a) Accommodation phenomena have been associated with smoothness of dialogue  (Buder 

and Eriksson 1999) and communication efficiency (Pickering and Garrod 2004). Therefore, 

SDS that display such behaviour would be more efficient in communicating with the user. 

This should not be confused with efficiency of task completion in terms of dialogue duration, 

or  any similar  measure.  Assuming that  an SDS is  designed for  “human-like” dialogue,  it 

should be able to communicate more efficiently if accommodation was built-in. 

(b) According to Communication Accommodation Theory (Giles et al. 1987), convergence to 

the interlocutor's speech is evaluated positively if the situational constraints do not dictate 

otherwise.  In  other  words,  it  is  natural  for  interlocutors  to  converge,  due  to  similarity 

attraction. Therefore, an SDS implementing the human metaphor could exploit convergence 

in order to make the interaction more pleasant for the user.

(c) As has already been mentioned, accommodation is a ubiquitous phenomenon in human 

speech,  even if  people  do  not  consciously realize  it.  Consequently,  an  SDS that  exhibits 

accommodating  behaviour  is  likely  to  be  perceived  as  more  natural  (or  human-like), 

enhancing the “human metaphor”, as proposed in (Edlund et al. 2008).

(d) Prosodic modeling for speech synthesis may directly benefit from a/p feature convergence 

models. Traditional prosodic models that have been developed for monologue speech have 

faced the mapping problem (see section  2.4.1),  which is the transformation of a prosodic 

representation  to  an  actual  prosodic  contour.  Typically,  these  realizations  of  the  abstract 

prosodic representations have a  constant baseline,  which is  considered as speaker-specific 

(Dutoit 1997; Tatham and Morton 2005).  If prosodic accommodation is taken into account, 

more  appropriate  realizations  can  perhaps  be  found,  due  to  a  baseline  change  which  is 

consistent with the running dialogue. The resulting synthesized prosodic contours are likely to 

be perceived as more natural-sounding when considered in the dialogue context. The same 
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applies for prosodic  modeling beyond fundamental frequency. For example, silence and filled 

pause duration modeling (Zellner 1994) for speech synthesis  could benefit  from adjusting 

predicted silence durations for inter-speaker accommodation. 

(e)  Classification of dialogue acts, both on-line and off-line is  based on lexical,  prosodic, 

syntactic and semantic/pragmatic information. Accommodation along any of these dimensions 

can  inform  this  classification.  For  example,  prosodic  information  is  used  to  classify 

backchannelling expressions based on their pitch and duration  (e.g. Rangarajan et al. 2007). 

The  accuracy  rates  of  the  classifiers  could  be  improved  by  changing  parameter  values 

according to the on-going pitch/duration accommodation in a given dialogue.

(f)  Emotion  recognition  also  relies  heavily  on  prosodic  correlates  in  the  speech  signal. 

Similarly to (e) above, the classification could be informed with accommodation information 

that is dynamically defined during the interaction.

(g)  ASR typically shows high word error  rates  when then speech input  is  too  variant.  If 

speakers can be encouraged to adapt properties of their voice (such as speech rate, loudness) 

within certain limits, then ASR performance could be improved, as proposed in (Bell et al. 

2003)

The above list of benefits is not inclusive, as it mostly focuses on accommodation of prosodic and 

temporal features of speech. The motivation behind investigating these particular features, apart 

from the potential benefits presented above, was already discussed in section 2.5: prosody has been 

perhaps the major “avenue” of improving on naturalness of synthesized speech. The problem of re-

defining existing models that account for linguistic and para-linguistic variations of a/p features in a 

dialogue context has already been widely acknowledged (Mushin et al. 2003; Kohler 2004; Lee and 

Narayanan 2005). Temporal features, such as the duration of silences between dialogue utterances 

and  the  occurrence  of  overlapping  speech  are  also  inadequately  dealt  with  in  current  SDS 

implementations (Raux and Eskenazi 2008). Investigation of accommodation phenomena related to 

both  prosodic  and  temporal  features  constitutes  a  step  away from speaker-listener  studies  and 

towards dialogue-based approaches to modeling these features.  

Similarly,  accommodation  phenomena  in  other  modalities  are  equally  essential  to  developing 

human-machine  interaction  that  can  be  perceived  as  human-like:  lexical  and  syntactic  choice, 

pronunciation, rhythm, posture, gaze and movement offer additional possibilities for improving on 

multimodal human-machine interaction. A replication of the entire range of this phenomena in the 

context of SDS would enhance the human metaphor significantly.
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However,   incorporating  inter-speaker  accommodation  in  human-machine  interaction  requires  a 

quantitative  description  of  these  phenomena  in  order  to  replicate  the  behaviour  adequately.  As 

highlighted in  section  4.6,  past  research has  not  accomplished this  goal.  The following section 

discusses  some  of  the  limitations  of  previously  proposed  measurements  of  inter-speaker 

accommodation, in relation to developing SDS that exhibit such behaviour. 

5.2  Limitations to quantifying accommodation

A review of  theoretical  perspectives  of  inter-speaker  accommodation  phenomena was  given  in 

chapter  3.  As highlighted in  section  3.6,  the majority of these theoretical  models  are  based on 

positive  empirical  evidence  acquired  in  laboratory  conditions.  The  presence  or  absence  of 

accommodating behaviour in some cases has been assessed by perceptual “expert” judgements, 

while little emphasis has been put on measuring the magnitude of these phenomena. In contrast, 

theoretical models have focused on the cause and function of accommodation. Such functions are 

cognitive alignment, communication efficiency, satisfaction of emotional needs, social approval or 

balancing a dyadic relationship. Several of these functions are relevant in the context of SDS, but 

without a quantification of the observations, it is impossible to develop systems that can replicate 

the behaviour observed in human dialogues. This problem was identified in (Oviatt et al. 2004):

“One weakness of past research on interpersonal linguistic adaptation has been its lack of 

follow-through on quantitative research and user modeling. Instead, this literature has focused 

on  qualitative  descriptions  of  the  social  dynamics  and  context  involved  in  linguistic 

accommodation. It has also relied on global correlational measures to demonstrate linguistic 

accommodation between two interlocutors. In future research, more quantitative predictive 

modeling will be needed on the process of linguistic convergence, including the magnitude 

and rate of adaptation of different linguistic features, the factors that drive dynamic adaptation 

and re-adaptation during human-computer conversation, and other key issues. Such models 

will be valuable in guiding the design of future conversational interfaces and their adaptive 

processing capabilities.”12, (Oviatt et al. 2004)

As  noted  in  chapter  4,  the  mechanisms  currently  available  for  monitoring  and  quantifying 

accommodation  are  unsuitable  for  SDS  that  aim  to  mimic  human-like  interaction.  Existing 

approaches to measuring accommodation are almost exclusively – with few exceptions – statistical. 

The  typical  process  comprises  (a)  acquiring  speech  recordings,  (b)  extracting  features  and  (c) 

performing statistical analysis or – in some cases – signal processing techniques in order to validate 
12 (Oviatt et al. 2004) uses the term “linguistic” to signify any property of spoken language. The features studied in the 

same text are amplitude, speech rate and response latency. 
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the  hypothesis  of  accommodation,  or  to  compare  the  results  of  two  or  more  experimental 

conditions. In assessing the limitations of existing studies of measuring accommodation, these three 

stages are discussed in the remainder of this section.

As highlighted in section 2.5, proponents of human-like SDS (Carlson et al. 2006; Edlund et al. 

2008) have emphasized the need for investigating human behaviour in dialogues of spontaneous 

speech. The reason for this requirement is that spontaneous speech is human speech in its most 

natural  form.  Therefore,  knowledge  derived  from investigating  such  corpora  is  more  likely  to 

perceived  as  “natural”  when  applied  to  SDS.  Wizard-of-Oz  SDS  environments  simulating 

application tasks can also be used, but care has to be taken that properties of natural human speech 

are not masked by the experimental constraints. Accommodation, in particular, has been found to be 

affected by task complexity (Pardo 2006) and talker role (Fais 1996) among other factors. 

However,  few  of  the  studies  reviewed  in  chapter  4  have  used  spontaneous  speech  in  their 

investigation of accommodation phenomena (see Table 4.1). Some of the studies have used scripted 

dialogues, which were designed so that features could be extracted from identical lexical elements 

(Kakita  1996),  or  utterance  types  (Suzuki  and  Katagiri  2005).  Despite  the  advantages  of  this 

approach in relation to robust feature extraction, the “dialogue” is artificial and the results of these 

studies cannot be generalized. A second group of studies used simulated human-machine interaction 

scenarios, in which subjects had the role of the “user” (Bell et al. 2003; Suzuki and Katagiri 2004; 

Oviatt et  al. 2004).  While  these studies  provided evidence of user accommodation towards the 

“system”,  it  is  doubtful  whether  they can  be  helpful  in  comparing  human-human  and  human-

machine interaction in this regard and informing improvements on the human-likeness of SDS. A 

third group of studies reported using spontaneous speech recordings  (Brennan 1996; Bosch et al. 

2004b; Reitter et al. 2006; Nishimura et al. 2008; Campbell 2009; Edlund et al. 2009; Benus 2009). 

However, as discussed in section  2.5, acquiring recordings of genuine spontaneous speech is not 

trivial, and careful consideration is required in order to record such dialogues. 

The stage of feature extraction is also typically accompanied by a number of assumptions. Turns, in 

particular, are typically defined using an arbitrary turn attribution scheme (see section 2.3.2) which 

assumes speakers are holding and releasing the floor at specific points. However, such schemes are 

not adequate in describing spontaneous speech and thus introduce bias in the subsequent analysis. 

Another assumption commonly found is to extract features from entire utterances and “tie” them to 

a specific time point, such as the beginning (Kakita 1996) or the middle (Nishimura et al. 2008) of 

the utterance. While such conventions are convenient, they are not necessarily consistent with the 

process  of  speech  production  and  perception  in  human  speech:  the  prosodic  realization  of  an 

utterance is not pre-determined before vocalization, but comes as a result of articulation effort (Xu 
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2005) and simultaneous feedback  from the interlocutor (Heylen 2009). 

Finally, statistical validation of inter-speaker accommodation has been accomplished in a variety of 

ways, but most of these methods are not helpful for quantifying/modeling this behaviour for SDS. A 

characteristic example is across-dialogue comparisons (Coulston et al. 2002; Bosch et al. 2004a; 

Suzuki  and  Katagiri  2004;  Ward  and  Nakagawa 2004),  in  which  subjects'  speech  features  are 

compared across two or more different conditions; in some cases, the dialogue is arbitrarily split 

into two halves (Darves and Oviatt 2002; Suzuki and Katagiri 2005), resulting in a comparison 

between the first and second half;  and yet it is clear, from any of the theoretical descriptions, that 

accommodation phenomena are  dynamic: they (are thought to) evolve through the interaction and 

characterize it in terms of “coordination” or “synchrony”. This can only be indicated by using a 

continuous  measurement  methodology,  sampling  at  regular  intervals  or  identified  instances 

(depending on the features studied), in order to arrive at a model which describes the variations of 

these features that occur as a result of inter-speaker accommodation. Such a model can then be used 

in SDS in order to continuously monitor the user's speech (or other modalities) and adapt the system 

voice accordingly.   

A promising approach in this direction is time-series analysis, which has been used in a number of 

studies reviewed in chapter 4. However, time series analysis is characterized by complexity, which 

discourages wide adoption of this technique (Edlund et al. 2009). Thus, several studies are limited 

to inferring conclusions by simply inspecting the time series plots (McRoberts and Best 1997), 

while a few take the next step and employ an analytical approach (Buder and Eriksson 1999; Jaffe 

et al. 2001; Nishimura et al. 2008; Richardson et al. 2008). However, only one of these proposed a 

model for monitoring user accommodation and adapting the system voice to accommodate to that of 

the user (Nishimura et al. 2008). 

The problem of quantification is  perhaps most evident in  studying accommodation of temporal 

features, such as the duration of silences before/after utterances. The phenomenon is studied from 

two distinct viewpoints: Communication Accommodation Theory (Giles et al. 1992) proposes that 

this is another form of socially-driven behaviour, while studies on rhythmic entrainment (Jaffe and 

Feldstein 1970;  Wilson and Wilson 2005) suggest  that  interlocutors are rhythmically “coupled” 

when  engaged  in  dialogue.  Evidence  is  weak  for  both:  across-dialogue  comparison  of  silence 

duration convergence among speakers (Bosch et al. 2004b) does not constitute solid evidence, as it 

can be attributed to other causes, such as dialogue or topic liveliness  (Bosch et al. 2005; Benus 

2009); turn-based time series approaches show partial evidence: only a portion of the dialogues 

exhibit simultaneous variation of silence duration among speakers (Edlund et al. 2009); and there is 

little empirical support for “coupling” theories (Benus 2009). Therefore, temporal accommodation 
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is a subjectively observed phenomenon, but there is weak evidence for it, especially in the case of 

spontaneous speech. 

It is evident from the review that inter-speaker accommodation phenomena have not been described 

adequately  in  respect  to  their  manifestation; and  this  is  a  significant  obstacle  towards  their 

implementation in SDS. Therefore, further investigation of the form of accommodation is required, 

in order to extract information that can be useful for SDS. 

5.3  Conclusion

Inter-speaker accommodation offers the potential  of improving on naturalness and efficiency of 

SDS in various ways. The theoretical foundations and experimental findings support this view. In 

particular, prosody and the temporal structure of dialogue are the most promising features of human 

dialogue which would arguably improve on the naturalness of SDS the most. In addition, speech 

synthesis  technology  allows  for  straightforward  manipulation  of  these  features,  thus  making 

incorporation of inter-speaker accommodation in SDS feasible, provided that an adequate model 

exists.  

However,  existing  methods  of  measuring  inter-speaker  accommodation  have  not  adequately 

quantified these phenomena, and have also been based on assumptions which are inconsistent with 

naturally occurring  human speech.  Therefore,  an investigation of  these  features  in  spontaneous 

human  dialogues  is  required,  as  this  type  of  interaction  is  the  most  general  case  of  spoken 

communication and allows inference of knowledge without making assumptions on the possible 

effects  of  arbitrarily  imposed  constraints.  A  methodology  for  acquiring  high  audio  quality 

recordings of spontaneous speech is presented in chapter 6. 

In chapter  7, a methodology for quantifying/monitoring accommodation is presented which deals 

with these limitations by considering a frame-based representation of the dialogue: features are 

extracted from each speaker's utterances as averages of overlapping frames of fixed length, thus 

circumventing  the  requirement  to  define  turn-exchanging  points.  This  process,  termed  TAMA 

(Time-Aligned Moving Average), results in two time series (one per speaker) in which the time 

indices for both speakers are the same. This enables the consideration of a dialogue as a bi-variate 

process  which  demonstrates  feedback,  as  shown  by  the  statistical  analysis.  The  magnitude  of 

accommodation can be estimated by statistical modeling, which allows for direct implementation of 

accommodating  behaviour  in  an  SDS environment.  A first  approach  towards  the  latter  goal  is 

demonstrated in chapter 9. 

Chapter 8 presents an investigation of accommodation of temporal features. Due to issues of data 
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sparsity  and  variation  introduced  by  the  discourse  structure,  the  TAMA methodology  is  not 

adequate in itself to describe accommodation phenomena of temporal features. Thus, an additional 

novel dialogue representation is presented in the same chapter, which explores the effect of turn 

“shares”  on  the  variations  of  temporal  features.  Turn  shares  represent  the  “floor  balance”  in  a 

dialogue over time, i.e. whether the floor is shared or dominated by either speaker. The proposed 

representation provides additional evidence of temporal accommodation to that provided by across 

dialogue comparisons (Bosch et al. 2004b), turn-based time series approaches (Edlund et al. 2009) 

and TAMA. 
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6  Design of research methodology and data acquisition
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6.1  Overview

Following the discussion in the previous chapter and the findings in the literature review, the overall 

aim  established  is  to  formulate  a  continuous  quantitative  description  of  inter-speaker 

accommodation  (of  a/p  and  temporal  features),  based  on  analysis  of  recorded  spontaneous 

dialogues. This chapter describes the overall research design (section 6.2), as well as the design and 

implementation of the audio recording environment (section  6.3) and experimental scenarios for 

eliciting spontaneous dialogues (section  6.4).  Section  6.5 describes the procedures followed for 

annotation of the corpus and extraction of prosodic and temporal features which are analyzed in 

later chapters. 

6.2 Research design

The research methodology was designed according to a specification that is described here (see 

Table 6.1). The overall goals were:

(a) acquisition of high audio quality recordings of spontaneous dialogue speech, for the purposes 

of this work, but also beneficial for future research,

(b) analysis of the recordings for evidence of inter-speaker accommodation in acoustic/prosodic 

and temporal features, 

(c) formulation of a quantitative description of inter-speaker accommodation, and 

(d)  proposal  of  methods  which  can  utilize  inter-speaker  accommodation  in  spoken dialogue 

systems. 

Each of the above main goals is divided into secondary objectives. For example, (a) above required 

both a recording environment and an experimental design, in order to elicit spontaneous speech 

from the participants. Taking into account the audio quality issues discussed in section 2.5, it was 

decided that  (1) CD quality (44.1 KHz, 16-bit)  would be the absolute minimum quality for the 

recordings, (2) since dialogue recordings are needed, a two-channel approach would be the most 

efficient, and (3) a separate soundproof environment for each speaker (to avoid cross-channel noise 

contamination) would be best.  As was also discussed in section  2.5 mood induction procedures 

(MIPS)  were  considered  as  the  best  method  for  spontaneous  speech  elicitation  in  laboratory 

conditions. In addition, unconstrained dialogues (without the MIP method) between subjects were 

also considered, as this method of obtaining spontaneous speech has also been proposed by several 

studies, as discussed in section 4.6). 
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Similarly, (b) can be considered as a two-stage process: the first step is feature extraction, which 

essentially is taking measurements of relevant properties from the speech signal. As discussed in 

chapter  5, acoustic/prosodic (a/p) and temporal features were identified as the most relevant for 

improving naturalness in SDS. In particular, these are pitch (F0), pitch range, speech rate, intensity, 

inter-speaker  silence  duration  and  occurrence  of  overlapping  speech.  The  second  step  is  the 

subsequent  analysis  of  the  extracted  features,  in  this  case  for  the  purpose  of  describing  the 

phenomenon of inter-speaker accommodation. As was pointed in section  4.6, and also by others 

(Edlund et al. 2009), only a small number of studies have considered a  continuous  approach to 

describing the phenomena, although this approach is the most promising in terms of usability of the 

results. Thus, this methodology was seen as the most suitable for investigation of the phenomena. 

Main Objective Requirement Specification

Recordings of 
spontaneous dialogues

Channels 2 (in separate soundproof environments)
Audio quality CD (44.1 KHz/16-bit) or better
Spontaneous 
speech 
elicitation

MIPS 
task-based experiments
unconstrained speech

Analysis of corpus Feature 
Extraction

Prosodic and Temporal Features
pitch, intensity, speech rate, pause duration 

Main analysis Continuous – time series approach 
Description  of 
Accommodation

Quantitative Statistic  evaluation  per  dialogue  and  per 
individual featureBi-directionality 

& feedback
SDS implementations Simulations  & 

model fitting
Off-line manipulation

Test platform Wizard of Oz

Table 6.1: Specification of the overall research methodology

A quantitative description of inter-speaker accommodation must take into account the theoretical 

predictions described in chapter 3. More specifically, the influence of each speaker's prosodic and 

temporal properties of speech on the respective properties of the other, is considered as a first step 

towards this description. This is schematized as shown in Figure 6.1 below. 
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Figure 6.1: Schema for describing measurement of inter-speaker accommodation of speech features

The schema shown is a representation of a dialogue between speakers A and B. This representation 

assumes that any utterance from speaker A (downward vertical arrow on the right) is perceived by 

speaker B (left-pointing dashed arrow at the bottom) in a way that influences B's own utterance 

(upward vertical arrow on the left) and vice versa. The summation symbols (+) denote that there is 

an influence both by the each speaker's own (inherent) speech properties, as well as those of the 

interlocutor  (therefore a “summation”). The yellow rectangles denote internal processes (speech 

perception and production) of either speaker, while the white space in-between denotes the external 

(shared) environment.

 The result of the summation is the actual, uttered speech which can be recorded and analyzed. This 

schema hypothesizes that there is a feedback loop involved in the process of dialogue. The goal is 

therefore  to  evaluate  this  hypothesis,  by  quantifying  the  influence  of  each  speaker's  speech 

properties  (a/p  and  temporal)  on  the  actual  (measured)  properties.  Further,  if  both  speakers 

influence  each  other,  then  accommodation  is  bidirectional.  In  case  one  of  the  speakers  is  not 

influenced  by  the  other,  then  the  above  schema  is  simplified  to  an  open-loop  system  and 

accommodation is uni-directional.

Finally, as suggested in (Edlund et al. 2008), the most prominent methods of evaluating human-

machine interaction against human dialogues are those of data manipulation (off and on-line) and 

Wizard of Oz experiments (see section 2.2.4). Thus, both of these evaluation methods were planned 

at the beginning of this project.  The overall design of the methodology is shown in  Figure 6.2 

below.
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6.3  Audio recording environment

In  order  to  ensure  noiseless  and  optimal  quality  recording  of  dialogues,  the  audio  recording 

environment comprised two soundproof isolation booths (see Figure 6.3). The standard equipment 

for each booth comprised a 17” flat monitor, a  Beyer DT150®   headphone set and  a Neumann 

U87®  microphone.  The  audio  equipment  was  connected  to  a  ProTools  HD®   console,  and 

controlled by an Apple Mac Pro®  workstation running DigiDesign ProTools®  audio processing 

software.  These  internal  monitors  were  connected  to  separate  external  workstations  or  game 

consoles depending on the experiment

The advantages of this setup are (a) soundproofing of the booths only is required (rather than an 

entire room), (b) each speaker is recorded in a separate audio channel, (c) subjects are not situated 

in a such a way that they might feel “being watched”, and (d) visual feedback can be introduced by 

use of cameras.
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Figure 6.3: Schematic of audio recording setup

Clearly,  (a)  above is  mainly a resource consideration,  although there are significant differences 

between the two options: the booths were placed on wooden frames, thus were not in direct contact 

to the laboratory floor (during installation, this was found to reduce noise caused by floor vibrations 

due to footsteps etc). They were soundproofed with foam material on all 6 faces, including I/O 

cable  outlets.  LED  light-chains  were  installed  inside  each  booth  for  lighting.  The  flat  panel 

monitors, speakers and microphones were connected to their inputs via long cables, thus moving the 

workstations  at  a  sufficient  distance  from the  booths  and  ensuring  no  interference  from noisy 

computer components, such as cooling fans  All  of the above installations ensured a low-noise 

environment inside the booths.

Recording both (or more) subjects in the same space would require the use of close-talk or contact 

microphones.  In  the  first  case,  obtaining  a  high  signal-to-noise  ratio  without  cross-channel 

contamination is difficult.  In other words,  both speakers would be recorded on both  channels, 

although the amplitude of speaker “A” on channel “B” would be much smaller than that of speaker 

“B” and vice versa. Signal sources can be separated in each channel, using audio source separation 

(Persia et al. 2007), but the signal distortion (artefacts) introduced by this process were deemed 

inappropriate for the purposes of analysis and re-usability of the corpus, or at least unnecessary if 

they could be avoided.  

Contact microphones all but extinguish this problem, but are known to produce a “tinny” sound, 

due to the sound signal being transmitted through bone tissue, which results in attenuation of some 
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frequencies. Thus, they are more suitable for voice activity detection  (e.g. Jaffe et  al. 2001) or 

fundamental frequency measurement and glottal source estimation by inverse filtering (Askenfelt et  

al. 1980; Walker and Murphy 2007). 

Consequently, the chosen method (separate isolation booths) ensures the best possible recording of 

each speaker in a separate audio channel. 

The booth itself was considered to provide some “privacy” to the subjects, as they cannot be seen 

from outside.  This  was  thought  to  encourage  spontaneous  behaviour  in  the  case  of  task-based 

mood-induction experiments, as the presence of other people in the setting (e.g. experimenters) 

might bias the subjects' responses, due to the feeling of being watched. This view is supported by 

related research studies (Gross and Levenson 1995; Fernandez and Picard 2000; Picard et al. 2001) 

which propose a relaxed and isolated environment for inducing spontaneous speech.  

The  drawback,  of  course,  is  that  direct  visual  feedback  is  not  possible,  and  thus  face-to-face 

conversations  could  not  be  recorded.  The  possibility  of  using  cameras  to  enable  facial 

communication was deemed sufficient to overcome this problem, considering the fact that the goal 

of studying a/p and temporal features did not require visual contact: several other relevant studies 

(see chapter 4) have used corpora comprising telephone conversations. However, and particularly in 

relation to  inter-speaker  accommodation phenomena,  it  has also been found that  relayed  visual 

feedback is not equivalent to face-to-face communication (Richardson et al. 2008).

In conclusion, the particular setup was chosen for providing the best possible audio quality and a 

suitable environment for recording spontaneous dialogues. The recording console and equipment 

made possible  the recording of  audio at  a  sampling rate  of  192 KHz /24-bit  (in  lossless WAV 

format), which was used for all experiments, while the soundproof booths provided for a low noise 

environment and a separate audio channel for each speaker13. 

6.4  Recording experiments

Two types of recording experiments have been used in the work described in this dissertation. The 

first type is unsolicited, unconstrained dialogues that were recorded with subjects situated in the 

booths. The second type is spontaneous dialogue recordings elicited by mood induction procedures. 

Both types are discussed in the next two sections (6.4.1 and  6.4.2). Detailed information of the 

dialogues can be found in appendix A. 

13 The installation of the described audio recording laboratory was a collaborative  undertaking within the SALERO 
project (www.salero.info), which was funded by the EU. The laboratory has been used for other projects, such as the 
acquisition and annotation of an emotional speech corpus (Cullen 2008a).
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6.4.1  Unconstrained dialogues

These  dialogues  were  recorded  while  loosely  acquainted  or  well-acquainted  subjects  (mostly 

DMC14 and DIT staff  and students)  conversed in  pairs  from within the isolation booths.  These 

conversations  were primarily recorded for the purposes of a language learning research project 

called FLUENT15.  In FLUENT, these recordings aim to provide a non-native language learner with 

audio  material  from native  speakers,  in  three  gradually  “ascending”  stages:  (1)  short,  scripted 

conversations,  (2)  “role-playing”  dialogues  (such  as  ticket-booking),  and  (3)  unconstrained 

dialogues.  Dialogues  acquired  with  method  (3)  were  selected  for  analysis  of  inter-speaker 

accommodation, based on a quality rating given by the FLUENT research group to each dialogue. 

The dialogues comprise unconstrained speech that is not organized in any way. The dialogues can 

be characterized as “friendly chats”. There are many unpredictable topic changes, and there is a fair 

amount of spontaneous dialogue acts (interruptions, laughter, disfluencies, repairs), which would 

classify this speech as spontaneous. Therefore,  these dialogues were considered as appropriate for 

studying inter-speaker accommodation.

However, it could be argued that subjects in these experiments were not as “relaxed” as they would 

be in a real-life setting, due to the presence of the recording equipment and the awareness of being 

recorded. In order to overcome this, one needs to turn towards experimental settings that require 

subjects  to  participate  in  a  task,  as  task  requirements  are  found  to  distract  speakers  from the 

recording setting and communicate more freely (Gross and Levenson 1995; Fernandez and Picard 

2000; Picard et al. 2001). 

6.4.2  Elicited spontaneity

A variety of experimental scenarios for eliciting spontaneous speech were considered in the design 

phase  (Vaughan et  al. 2006;  2007).  These  were  primarily  designed  to  elicit  human  emotions. 

However, since the chosen method of emotion elicitation was to encourage spontaneous speech, 

these scenarios were considered for analysis of inter-speaker accommodation.

The first of these experimental designs was a LEGO® puzzle which has also been used in (Kehrein 

2002). In this scenario, one of the subjects is given the instructions for constructing an object (in 

this case a fire engine), while the other subject is given the LEGO pieces. In the simplest case, this 

encourages the two subjects (who are situated in the two separate booths and have no visual contact 

to each other) to get involved in the construction of the puzzle, a process which provides for natural 

14 Digital Media Center, www.dmc.dit.ie
15 FLUENT is a language learning project, funded by Enterprise Ireland (http://www.dmc.dit.ie/2006/projects.html)
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interaction between the participants. An extension to this idea is to provide the subjects with fewer 

pieces  and/or  misleading  instructions,  which  is  more  tailored  to  the  idea  of  inducing  mild 

frustration, for the purpose of recording spontaneous emotions  (Cullen et al. 2006). An important 

point in this scenario - from an accommodation point of view - is that the two subjects have distinct 

roles (information giver vs information receiver). While this is perhaps also relevant from an SDS 

application  point  of  view,  it  was  considered  that  –  for  the  purpose  of  studying  inter-speaker 

accommodation – any task should be “symmetrical” for the two subjects. 

Another  proposed scenario  was that  of  a  dice game known as  “Mexican”  or  “Bluff”  in  which 

players roll two dice in turns. Each player has to claim a roll higher than the opponent's previous 

roll. If a bluff is called then that player loses a “life”, while if the roll was actually the one claimed, 

then the player who called the bluff loses a life. While this scenario is symmetrical and also suitable 

for acquiring spontaneous emotions, it was considered that the lexical variety in the corpus would 

be small (mainly digits that describe rolls) and that the game itself has a short duration with only 

two players, unless they are given a large amount of lives, in which case it becomes very repetitive. 

A third  idea,  proposed  in  (Johnstone  1996),  was  to  record  subjects  while  they were  playing  a 

computer game (Gears of War®16 - a combat-style game). Actual sessions were recorded using this 

method. This required the additional installation of two Microsoft XBOX II ® gaming consoles, 

which were connected to the monitors in the booths. The subjects were playing in the same game 

area (via LAN connection) and had to combat each other in-game. Although this method is suitable 

for obtaining spontaneous emotions, it is less suitable for obtaining spontaneous conversation, since 

the subjects tended to remain silent for long periods of time. Most of the speech material occurred 

in “bursts” along with laughter or other non-verbal expressions, typically when a significant event 

happened in game. Minimal conversations occurred that were sparse and of very short duration. 

Thus, these recordings were not used in the study of inter-speaker accommodation.

6.4.3  The “shipwrecked” scenario

The experience from the early efforts described in the previous section led to the conclusion that the 

experimental design should comprise a task for the subjects to be involved with, while having a 

number  of  desired  properties  (a)  it  must  require   discussion, thus  encouraging  spontaneous 

conversation, (b) it must be symmetrical, i.e. experienced equally by both participants, (c) it must 

not constrain the subjects to any specific linguistic content (as in the case of the dice game), and (d) 

some motivation should be provided to the subjects to get involved with the task promptly.  

16 http://gearsofwar.xbox.com/AgeGate.htm
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The above specification led to the design of the “shipwrecked” scenario (see  Figure 6.4). In this 

experiment, the two subjects experienced a hypothetical shipwreck, from which they had to survive. 

In order to accomplish this, the two subjects had to agree on which items from those shown on-

screen were the most essential and in what order. Thus they had to rank the 15 objects shown in the 

picture by order of importance in surviving the hazard. In addition, a time limit of ten minutes was 

imposed,  so  as  to  encourage  quick  involvement  from  the  subjects.  The  result  was  that  the 

conversations were relatively focused, thus eliminating the problem of long stretches of silence that 

was encountered in the computer game experiment.  In an earlier  version of the experiment the 

subjects were given a list of the objects on paper and a pen to write down the ranks. However, this 

was found to introduce noise in the recordings. The inclusion of pictures instead of object names 

required the subjects to name the objects themselves. Thus, the corpus can be used for investigating 

lexical accommodation, in addition to a/p and temporal features. Based on the same procedure, two 

more “hazard” scenarios were implemented: an expedition in the Himalayas, in which the subjects 

had  lost  their  guide  and  path,  and  a  space  mission,  where  the  subjects  had  to  abandon  their 

spaceship and get into a rescue pod. The task in both these cases was identical (ranking a set of 15 

objects relevant to the task). These two sets of objects are shown in appendix A. 

A further expansion of this experimental design was the inclusion of an on-line performance score. 

This score was automatically assigned and shown on-screen by an “intelligent” system, based on 

the “correct” ranking. This was actually a Wizard-of-Oz implementation, in which the changes in 
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the score shown were always the same regardless of the choices that the subjects made (there was 

no “correct” solution). The purpose of this was to record the subjects' reactions when they thought 

they were doing well with the task or when their score was dropping. Since this expansion did not 

alter the task and recording conditions significantly (in reality it only made the task appear more 

difficult), these recordings were also used in the study of inter-speaker accommodation. 

Conclusively, a total of 30 dialogues were recorded using all methods, as shown in Table 6.2. The 

recording experiments for some categories are on-going: the table contains those dialogues that 

were analyzed for inter-speaker accommodation.  

Method Number of 
dialogues

Average Duration 
(min)

Total Duration 
(min)

Unconstrained 8 20 161

Shipwrecked 14 8 108

Shipwrecked + 
ranking score

8 9 76

Total 30 - 345

Table 6.2: Recorded dialogues

6.5  Corpus annotation and feature extraction

This section describes the annotation and feature extraction procedure followed in the analysis. 

There are three distinct steps in this procedure: (a) segmentation of the continuous recording into 

speech/silence, (b) annotation of non-silent segments with suitable labels and (c) feature extraction 

from the annotated segments. These three separate procedures are described in sections  6.5.1, 6.5.2, 

and 6.5.3 respectively.

6.5.1  Silence/ non-silence segmentation

The process of segmentation of a continuous audio stream into speech/silence segments is termed 

chronography (Lennes and Anttila 2002). The result of this process is typically a representation of 

the form shown in  Figure 6.5, in which black and white areas denote speech activity and silence 

respectively (Lennes and Anttila 2002; Campbell 2009). 

Segmentation can be performed either manually or automatically. In manual segmentation, a human 

annotator listens to the audio stream and demarcates the speech/silence areas one by one.  This 

method produces adequately precise segmentation (±10ms) and, in addition, can be combined with 
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annotation  of  non-silent,  non-speech  areas.  The  latter  step  is  explained  in  section  6.5.2.  The 

disadvantage of manual segmentation is that is a repetitive and tedious process, which makes it 

costly and inefficient, especially for large corpora.     

Alternatively, an automatic segmentation can be achieved by means of a voice activation detection 

(VAD) algorithm. A simple implementation of such an algorithm is that of segmentation based on 

intensity and duration thresholds. As a first step, the audio stream is divided into frames, the length 

of which defines the “resolution” of the algorithm (e.g. ~10ms). The intensity is calculated for each 

frame based on Equation 2.1. Depending on the intensity relative to the intensity threshold, a frame 

is  characterized  as  silent/non-silent.  Adjacent  silent/non-silent  frames  are  joined  together  in 

silent/non-silent segments, respectively. This yields numerous segments that are shorter in duration 

than the minimum duration thresholds (which can be different for silent/non-silent intervals). As a 

last  step,  these  segments  are  “erased”  and  neighbouring  segments  are  joined.  This  has  to  be 

performed both for silent and non-silent intervals (in either order). 

The above algorithm was implemented in the speech analysis software Praat (Boersma and Weenink 

2009), originally using a Praat script17 which is available on-line18, and subsequently using a built-in 

command that was included in later versions of Praat (see appendix C). 

The resulting segmentation using the automatic method typically contains errors. Areas that are 

non-silent  may be  annotated  as  speech  and  vice  versa.  This  occurs  because  a  “flat”  intensity 

threshold cannot capture the possible variations in voice intensity throughout an entire dialogue. A 

high threshold “misses” utterances spoken much less loudly then average, while a low threshold 

captures too much extraneous noise, such as air stream from the mouth and nostrils when a subject 

is not speaking.  A reasonable trade-off value can be found by manually adjusting the threshold 

value, but this cannot overcome all the problems. For example, stop-consonant  (/p/ /k/ /t/) closures 

are typically cut-off from the speech segment and annotated as silence. Thus, manual corrections 

are again required for an adequately precise segmentation to be obtained. The resulting method, 

which was used for segmentation of all the dialogues in the corpora used in this thesis, is a semi-

17 Praat software operates as a shell where objects such as sounds can be queried or modified by means of commands. 
A series of commands can be executed as a shell script, also known as Praat script. 

18 http://www.helsinki.fi/~lennes/praat-scripts/public/mark_pauses.praat (01/04/2010)
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Figure 6.5: Chronographic represenation of dialogue (two speakers A, B)

            Speech                          Silence     time (sec) 

A
B



autonomous process:  Automatic  segmentation  using  the  built-in  Praat  command,  followed  by 

manual  correction  of  the  output  segments.  An  example  segmentation  using  Praat  and  Mietta 

Lennes's script is shown in Figure 6.6 (silences marked by “xxx”). 

 

6.5.2  Annotation

This  section  describes  the  corpus  annotation  procedure  followed in  the  work  described  in  this 

dissertation. The output of the automatic segmentation process is a “textgrid” Praat object. This type 

of  object  is  a  time-line  with  marked  boundaries,  which  define  “intervals”  (or  segments).  The 

timeline is shared between the sound object and textgrid object,  in a way that boundaries mark 

silent and non-silent intervals, as shown in Figure 6.6. During the manual correction step that was 

described in section 6.5.1, the intervals are labeled for content according to the simple annotation 

schema shown in Table 6.3 below. 

Label Description

s Speech interval

p Silent interval

l laughter

b Breathing noise

n Other non-speech noise

Table 6.3: Labels for annotation of textgrid intervals 

The speech intervals, marked “s”, denote any type of vocal activity by the speaker. This means that 

nonsense words, such as “uhm”, “err”, and filled pauses are considered as speech. This is justified 

from the point of view of further analysis. These utterances were observed to be prosodicaly similar 

to  actual  words  (in  the  linguistic  sense)  and  are  thus  further  analyzed  for  prosodic  features. 

Nonsense words, for example, frequently appear as back-channeling expressions in the corpus (both 

task-based and unconstrained). By comparison to “proper” lexical elements used as backchannels, 
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Figure 6.6: Segmentation of audio stream into silent/non-silent intervals



such as “yes”, it was found that these nonsense words serve the same purpose (acknowledgment of 

understanding/continuing attention) and exhibit similar prosodic structure. Nonsense words are not 

dictionary words, but the former are in all other ways equivalent to the latter: function, vocalization, 

prosodic structure. Filled pauses, which are typically of the form of elongated vowels,  are also 

classified as speech, on the same premise as before: they represent vocal activity by the speaker and 

are prosodicaly similar to well-formed utterances, in terms of average pitch, intensity and pitch 

range.  Therefore, it was decided that these should be treated as speech for the purpose of prosodic 

analysis. By extension, any prosodicaly “speech-like” interval uttered by the speakers was classified 

as speech, regardless of timing or function in the dialogue.

In contrast to the above rule, occurrences of laughter, marked “l”, were not classified as speech and 

were not prosodicaly analyzed. Laughter was common in all recorded dialogues. From a prosodic 

point of view, laughter  is  characterized by short  repetitive bursts  of high pitch and intensity,  a 

pattern largely different from that of speech, which exhibits smoother pitch and intensity contours. 

In addition, pitch and intensity peaks fall outside their normal range during laughter. As these values 

introduce bias to the acoustic/prosodic analysis, it was decided to exclude them. Importantly, this 

did not apply to instances of “laughing” speech, which is audible speech uttered by a speaker who is 

laughing at the same time, but only to instances of pure laughter. The purpose of the distinct label is 

that  laughs  are  still  considered as  “contributions”  of  the speaker,  for  the  purposes  of  temporal 

analysis. 

Similarly, the “b” and “n” labels denote breathing and other non-speech noises respectively. Breaths 

are quite common at the beginning of utterances and are often loud enough to be captured by the 

intensity-threshold algorithm. Due to their high intensity and non-voiced nature, breaths introduce 

bias to prosodic analysis and thus had to be located and labeled appropriately. As in the case of 

laughter, breaths were considered important for the purpose of temporal analysis. A long  inhaling 

sound before an utterance may be signaling the intention to speak, and is therefore considered as a 

contribution by the speaker. The 'n' label groups together all other unvoiced, non-speech sounds 

(coughing, nasal inhalation, lip-smacking etc). 

Silent intervals were annotated as pauses, marked “p”, and contain silence but also certain types of 

extraneous noise. This noise includes accidental knocks on the microphone stand or other surfaces 

that are “picked-up” by the intensity threshold algorithm. Such noises are not considered part of the 

interaction, and are thus not labeled. Instead, any interval that is automatically marked as non-silent 

because of extraneous noise was manually annotated as silent instead. This is significant mainly for 

the purposes of temporal analysis, as these noises are relatively infrequent and thus do not introduce 

bias in the prosodic analysis.   
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6.5.3  Feature extraction

Following segmentation and annotation of the audio files, feature extraction was carried out using 

the Praat software. The various steps described in this section were implemented as a collection of 

Praat scripts which can be found in appendix C. 

As  described  in  the  previous  section,  the  audio  files  were  semi-automatically  segmented  and 

annotated with the labels shown in Table 6.3. Prosodic features were extracted using built-in Praat 

algorithms  (Boersma and Weenink 2009) from intervals  marked with  the  “s”  label,  henceforth 

termed speech intervals. The features measured on each speech interval were as follows:

(a) Fundamental frequency (F0), or pitch19,  was measured (in Hz) using the built-in Praat 

function  that  is  based  on  the  autocorrelation  method  (Boersma  1993).  For  each  speech 

segment, the built-in function computes a pitch contour. Querying the pitch contour in the 

Praat environment yields a minimum, a maximum and an average value (arithmetic mean). 

The minimum and maximum were used to calculate pitch range. However, this method of 

pitch range calculation was too error-prone due to erroneous pitch values introduced by the 

algorithm,  such  as  octave  jumps  or  mistakenly  calculating  pitch  values  for  non-voiced 

regions.  Thus pitch range was consequently calculated as 2*std,  the standard deviation of 

pitch, which can also be found by querying the pitch contour. 

(b) Intensity, was measured (in dB) using the built-in Praat function that is based on Equation

2.1. For each speech segment, the built-in function computes an intensity contour. Querying 

the intensity contour yields a minimum, a maximum and an average value (arithmetic mean). 

However, the minimum and maximum were not used in further analysis. The built-in Praat 

function was used with the option “subtract mean” enabled. The purpose of this option is to 

subtract the “DC offset” introduced by audio recording equipment. Since the audio equipment 

used was of very high quality, with a signal-to-noise ratio greater than 90 dB, disabling the 

option yields negligible difference in the computed intensity values. 

(c) Speech rate was measured (in vowels/minute) by counting the number of detected vowels 

and dividing by the length of the speech segment. This method yields only an approximation 

of speech rate (Pellegrino et al. 2004). However, since the purpose was to compare the speech 

rate of two speakers, the approximation was deemed sufficient in order to assess inter-speaker 

accommodation of speech rate. The vowel detection method used is based on calculating the 

derivative of the intensity contour (Press et al. 1992) and detecting vowel onsets and offsets 

based  on  steep  rises,  falls  and  peaks  (Cummins  and  Port  1998) in  the  intensity  contour 
19 Pitch and F0 used here as equivalent terms. For a discussion on these terms see section 2.4
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(located as maxima, minima and zero crossings on the derivative contour). This method was 

chosen for its  computational  robustness and low computational  cost  over  other  automatic 

vowel/syllable detection methods (see appendix B).

Other features measured (using built-in Praat functions) were jitter, shimmer, harmonics-to-noise 

ratio and degree of voice breaks. These four features are measures of voice quality (see section 2.4). 

All of the aforementioned features were also measured on each vowel, in addition to the entire 

speech segment. The entire process was implemented as a collection of Praat scripts, which can be 

found in  appendix  C.  Parts  of  these  scripts  were  included  in  the  development  of  LinguaTag20 

(Cullen  2008b),  a  multipurpose  speech  corpus  annotation  tool  that  allows  for  linguistic 

transcription, prosodic and emotional annotation of speech and stores the annotation data in XML 

format for portability.

The extracted feature data was stored in tab-delimited text files that replicate the table-like memory 

structure  used  in  the  scripts.  These  “table  files”  can  be  imported  into  other  programs  such  as 

Microsoft Excel® , OpenOffice Calc and MATLAB®. The first two were used for visualization of 

the data (plots), and the latter was used for the subsequent analysis which is described in the next 

two chapters. 

6.6  Summary

This chapter has described the overall methodology design, as well as some of the “foundation” 

stages that are shown in  Figure 6.2: the design and implementation of the audio recording lab, 

recording  experiments,  corpus  annotation  and  feature  extraction  tools.  This  work  provided  the 

foundation  for  the  analysis  of  inter-speaker  accommodation  that  is  described  in  the  next  two 

chapters.  More  specifically,  chapter  7 describes  the  analysis  and  evaluation  of  prosodic 

accommodation using the TAMA methodology. Inter-speaker accommodation of temporal features 

(pauses and overlaps) is discussed in chapter 8. 

20  LinguaTag is a product of the SALERO project
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7  Accommodation of a/p features
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7.1  Overview

This chapter presents the methodology used to validate and describe inter-speaker accommodation 

of acoustic/prosodic features in human dialogues. The motivation for this work was described in 

chapter  5. Briefly, a/p features are of interest due to their significant impact on the naturalness of 

(synthesized) speech in general and SDS in particular. Inter-speaker accommodation of a/p features 

is  therefore  a  crucial  behavioural  phenomenon,  which  SDS  could  benefit  from if  it  could  be 

adequately described. Thus, the goal is to move away from the “dual monologue” tradition and 

towards representations that consider the interaction as a whole, rather than the sum of two parts. 

Such a  representation is  shown in  Figure 6.1 above.  The schema hypothesizes the presence of 

feedback in the interaction. The Time-Aligned Moving Average (TAMA) analysis method (Kousidis 

et al. 2008) was designed and implemented to evaluate this hypothesis. 

7.2  Design considerations

The initial specifications of the methodology design (see  Table 6.1) dictated that the above goal 

required  a  continuous,  within-dialogue  approach.  As  was  discussed  in  section  4.6,  continuous 

approaches are the only known method of capturing the dynamics of inter-speaker accommodation 

within a dialogue, which is impossible to do using non-continuous measurements or across-dialogue 

comparisons. The latter, however have the advantage of being more robust. A trade-off approach is 

to split the dialogue in two halves, measuring the features on each half and for each speaker, and 

determining whether the two speakers converged or diverged across the two halves.  The major 

problem of this approach is that there is not enough granularity (or resolution) in the time domain to 

capture the changing behaviour over time. 

Continuous approaches are based on measurements taken on arbitrarily defined time units in the 

interaction (see section 4.6). In the case of speech, these units can be syllables, utterances, or turns. 

These linguistically defined units have variable duration. One of the problems encountered is the 

selection of a single time  point, which represents the entire unit, for which an average of an a/p 

feature  is  calculated.  A common  solution  is  that  of  an  arbitrary  decision:  the  start  or  centre 

(Nishimura et al. 2008) of the utterance have been used, without any mention of the premise for this 

decision. There is either some underlying assumption that the a/p features are “planned” before the 

utterance is spoken (or half-way through), or it is simply a matter of convenience. Regardless of the 

units,  the result  of  this  process  is  a  time series  of  per  unit  feature  values  for  each speaker.  A 

comparison of the two (or more) time series is used to evaluate the hypothesis of accommodation. 
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However,  a direct  comparison is  more straightforward if  the time points  are the same for both 

series. This is not possible if utterances or other instances of verbal activity are used as units, since 

two interlocutors do not start and finish speaking at the same time instants. One solution that has 

been proposed (Nishimura et al. 2008; Edlund et al. 2009) is to compare actual feature values from 

one speaker with interpolated values at corresponding time instants from the other speaker. While 

this solution solves the problem conveniently, it does raise arguments on its validity: unless there is 

clear evidence that variations of a feature over time can be fitted with a model, then any type of 

interpolation is unfounded. Fitting a model of feature variation over time is not trivial either, since 

human speech is not isochronous. Another proposed solution is to fit a model on each time series 

separately  and  compare  the  two  models.  Similarity  across  the  two  univariate  models  is  then 

proposed  as  evidence  of  accommodation  (Buder  and  Eriksson  1997;  1999).  This  approach 

circumvents the need to “synchronize” measurement points across the two interactants, but also 

fails to capture the element of feedback: if two series are thought to be inter-dependent, a bi-variate 

approach is required (Chatfield 1996).

Finally,  certain features of human speech (including a/p)  are speaker-dependent:  pitch (F0),  for 

example, is an inherent property to any individual, as it depends on the size of the larynx - which is 

why children  have  higher  pitch  than  adults  and  female  speakers  have  higher  pitch  than  male 

speakers.  It  is  also  known  that  speech  rate  and  loudness  vary  depending  on  an  individual's 

personality (Oviatt et al. 2004). Thus, the manifestation of a/p features in dialogue can be thought 

of as a combination of inherent traits and dialogue context (accommodation), as schematized in 

Figure  6.1 (also  see  section  6.1).  In  order  for  a/p  feature  values  of  the  two  speakers  to  be 

“compatible”, some type of normalization is required. Again using the example above, pitch from a 

female speaker cannot be directly compared to the pitch of a male speaker. If a direct comparison is  

possible (e.g. for speech rate), then normalization does not have any significant effect. 

In  conclusion,  the  points  discussed  above  indicate  a  bi-variate  time  series  approach,  using 

normalized  a/p  feature  values,  which  are  measured  on  some  kind  of  synchronous  units.  This 

specification led to the formulation of TAMA, which is presented in the next section. 

7.3  Time-aligned moving average

The TAMA method utilizes a  sequence of contemporaneous fixed-duration frames in  which an 

average value of each a/p feature is calculated. The frames may overlap, making the process similar 

to a moving average filter, hence the name of the method. The sequence is initiated at the start of 

the dialogue (time instant zero), and there are two main variables: the frame length,  and the time 
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step.  The frame length is the duration of each frame, while the time step defines the degree of 

overlap and the total number of frames. The degree of overlap, as a percentage of the frame length 

is given by the following formula:

The overlap expresses the proportion of a frame that is overlapped by an adjacent frame. Thus a 

frame length of 20 seconds combined with a time step of 10 seconds yields 50% overlap: the second 

half  of each frame is  the first  half  of the next  frame.  The total  number  of frames is  given by 

Equation 7.2 (“\” denotes an integer division):

7.3.1  Frame average calculation 

The average a/p feature value of a frame is calculated over the speech intervals found in that frame 

as shown in  Figure 7.1 below. The speech intervals have previously been annotated and a/p features 

for each interval have been extracted using Praat software (see sections 6.5.2 and 6.5.3). 
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Equation 7.1: Proportion of frame overlap

Overlap=100× FrameLength−TimeStep
FrameLength

NumberOfFrames = (DialogueDuration \ TimeStep) + 1

Equation 7.2: Calculation of total number of frames

Figure 7.1: Schematic of calculation of TAMA frame average of an a/p feature
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Let  fi denote the feature value for speech interval  i. The overall mean value of the feature for the 

entire frame, μframe, is given as a weighted mean, where the interval durations, di are the weights and 

N is the total number of speech intervals in the frame:

Equation 7.3: Frame average calculation

The weights,  di can be normalized, if divided by their total, i.e.  wi  = di   / Σdd, with  Σwi   = 1, in 

which case the standard error is given by: 

Equation 7.4: standard deviation for weighted mean with normalized weights

where σi is the standard deviation of feature fi  in interval i. 

The weighting ensures that longer speech intervals have a proportionally higher contribution to the 

frame  average  than  shorter  intervals.  The  latter  are  characterized  by  large  variations  in  their 

prosodic characteristics:  back-channeling expressions  often  have  very low pitch/intensity,  while 

short exclamations have very high pitch/intensity. Since these short intervals are very frequent in 

spontaneous speech, the averaging would be biased in frames with such intervals. Alternatively, one 

could concatenate all speech intervals in a given frame and calculate the average feature for the 

concatenated sound, which leads to the same result: the grand mean of two populations is equal to 

the mean of the individual means weighted by the population sizes. In this case, the “populations” 

are the speech intervals, and the “sizes” are the interval durations. 

As shown in Figure 7.1, speech intervals may cross frame boundaries. In this case, the duration of 

the part of the speech interval that lies inside the frame is used as the weight in the calculation. This 

can be thought of as trimming the intervals: the “clipped-off” parts of the speech intervals do not 

contribute to the frame average. This does not involve a re-calculation of the a/p feature value for 

the remaining part:  the a/p value for the whole interval is  used in the calculation and only the 

duration is affected.
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7.3.2  TAMA plots

The result of the process described in the previous section is two series (one for each speaker) of 

contemporaneous frame averages of a/p features, which can directly undergo bi-variate time series 

analysis. In order to fully satisfy the specification of section 7.2, the frame averages are normalized 

by dividing over the overall dialogue mean value, μ, of each speaker. This is again calculated using 

Equation 7.3, considering the entire dialogue as a single frame. An example TAMA plot is shown in 

Figure 7.2 below. 

The TAMA method can be thought of as an expansion of the “half-split” idea (see sections 4.6 and 

7.2). Instead of split in two, the dialogue is divided into several shorter frames. The disadvantage in 

this case, as was mentioned in section 4.6, is that due to the smaller amount of utterances the frame 

averages tend to be biased by local phenomena, as different utterance types have different prosodic 

properties. Interrogative statements, for example, have rising intonation, as opposed to declarative 

statements,  which have falling intonation.  Thus,  there is a trade-off between robustness (longer 

frames) and resolution (shorter frames). The introduction of overlap, similarly to a moving average 

filter,  has a smoothing effect, highlighting slower-moving (or low-frequency) patterns of prosodic 

variation over abrupt changes (high-frequency) in prosody that often occur in spontaneous speech.

Figure 7.2: Normalized average pitch of two male speakers measured over 30 second frames with 
33% overlap (part of dialogue shown)

In addition,  the usage of frames,  rather than utterances or turns,  as units,  resolves the issue of 

synchronous analysis without the need for assumptions over turn allocation to a speaker or marking 

turn-exchange instants, which is difficult to do in spontaneous speech (Campbell 2009). Instead, a/p 

feature values are collected by  accumulation over an arbitrarily defined frame, regardless of the 
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specific linguistic detail during that time. Some information is lost, such as the time instants that 

vocalization  is  initiated  or  terminated  by either  speaker.  Thus,  it  is  possible  that  each  speaker 

dominates a different portion of the frame, so that the frame average similarity shown in Figure 7.2 

is not indicative of a strictly synchronous similarity in a/p features. 

However, speakers in general do not speak contemporaneously most of the time (despite significant 

occurrences of overlapping speech). In addition, the temporal order of vocalization among speakers 

is significant when accommodation is considered as a  result  of dialogue structure, rather than an 

underlying behaviour. In naturally occurring human speech, vocalizations can be anticipated before 

they actually occur, thus accommodation does not necessarily depend on the immediately preceding 

utterance  or turn.  A TAMA frame captures a local  portion of the dialogue,  and both speakers' 

contributions during that time are considered as equal in terms of causality. This alleviates the need 

to define “speaker turns”.

Information on each speaker's contribution during a frame is given by Σdi which, if divided by the 

frame length, yields a relative duration:

Equation 7.5: Calculation of relative duration

The relative duration has a value between 0 (no contribution) and 1 (entire frame covered by one 

speech interval of that speaker), and can be used as a confidence score for the a/p value obtained for 

that frame and speaker: if a speaker's relative duration is low, as a result of minimal contribution, 

such as a single one syllable back-channeling utterance, it is possible to obtain extremely high or 

low values for some features. The thresholds depend on the frame length, as longer frame lengths 

reduce the variance more than shorter  frame length.  In such cases,  points  can be removed and 

replaced by either the overall mean or a linearly interpolated value. Interpolation is justified in this 

case as each point represents an entire frame rather than a single utterance and thus a linear model 

can  be fitted  locally  for  frame  averages  (if  the  a/p  feature  can  be  assumed  to  have  a  normal 

distribution, see section 7.4.1). 

In a  preliminary study based on three 30-minute long unconstrained dialogues  (Kousidis et  al. 

2008),  accommodation was evaluated by visual  inspection of the plots  for all  four a/p  features 

studied (pitch, pitch range, intensity, speech rate). The overall picture was that the two speakers 

were consistently following each other's prosodic variations over progressively longer time frames 

(20, 30 and 60 seconds), in all three dialogues. Some dialogue portions, such as the approximately 8 
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minute-long extract  shown in  Figure 7.2,  showed accurate  “tracking” among the two speakers. 

Several instances of deviation from this behaviour were also found. A careful inspection of these 

frames showed that the deviation could be attributed to specific causes such as (a) non-standard 

speech style, such as laughing speech or extreme expressions of enthusiasm (e.g. “wow”), or (b) 

inaccurate measurements due to low relative duration.  While (b) can be dealt with by increasing the 

frame length, with the consequences discussed in the previous paragraph, (a) is a natural occurrence 

in human dialogues and it should not be considered as an error. This means that speakers are not 

obliged to converge (accommodate) in their a/p features, rather they do so spontaneously most of 

the time.

The results in (Kousidis et al. 2008) showed that the TAMA method  can capture accommodation of 

a/p features in spoken dialogues, in a continuous representation. In order to formally evaluate this, a 

statistical validation was sought, as described in the next section. 

7.4  Statistical evaluation 

As previously mentioned, the statistical method employed to evaluate inter-speaker accommodation 

was bi-variate time series analysis (Chatfield 1996). This type of analysis considers two time series 

and  is  mostly  useful  when  there  is  indication  that  the  values  of  one  series  are  in  some  way 

dependent on the values of the other series. Time series is perhaps most popular in economics, but 

has a wide range of applications  in  such areas  as  biology,  medicine,  demographics,  as well  as 

engineering (Chatfield 1996). 

In the special case of bi-variate time series analysis,  one of the two series is considered as the 

predictor (or independent) variable, while the second series is called the predicted (or dependent) 

variable.  For  example,  a  raise  of  salaries  among a  population  can  be  used  as  the  independent 

variable  to  predict  a raise  in  household spending.  This  is  a  classical  example of  an  open loop 

system: the predicted variable cannot affect  the predictor variable in any way. If  however both 

variables  are  “equal”,  one of  the series  is  used  as  the predictor  variable  by convention.  If  the 

predicted variable is found to have an effect on the predictor variable, then feedback is present in 

the process,  and the  system is  called  close  loop.  The  presence  or  absence  of  feedback can  be 

assessed by means of bi-variate time series analysis. In the case of prosodic accommodation, one 

would expect an open-loop system for uni-directional accommodation (only one of the speakers 

converges  towards  the  other),  or  a  closed-loop  system for  bi-directional  accommodation  (both 

speakers converge). 
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7.4.1  Assumptions

Time series analysis considers  stochastic  processes. These processes have the property that they 

include a random, non-deterministic component. The purpose of the analysis is to de-compose the 

series into a deterministic and a non-deterministic component. For example, a simple random walk 

is a purely stochastic process: the series starts at zero and at every step it increases or decreases by 1 

with equal probability. An added noise model is a stochastic process in which each observation is 

equal to the previous observation plus a random, uncorrelated noise component, εi, i.e.  xi  =  xi-1  + 

εi. Stochastic processes describe a wide range of phenomena in which the deterministic component 

explains some of the variation in the observations, while the variation due to unknown factors is 

considered as the “random” component. In this study, the time series of a/p frame averages are 

considered as stochastic processes.

One  of  the  basic  assumptions  in  time  series  analysis  is  that  of  stationarity.  In  its  strict  form, 

stationarity requires that the joint probability distribution F( x1, … xN ) of the observations xi , of a 

time series  X = [ x1, x2, … xN ]  is  constant over time, i.e.  F( x1, … xN  ) = F ( x1+τ, … xN  +τ). 

However, since this assumption can rarely be satisfied in real applications, the assumption of weak 

stationarity  (or  second order  stationarity)  is  more  often  used (Chatfield  1996).  The  latter  only 

requires that the mean and variance of the observations xi  need to be constant over time, so that the 

correlation between two observations of a time series only depends on their time distance,  τ.  The 

frame averages can satisfy this assumption,  if the true mean and variance of an a/p feature are 

considered as inherent to the speaker. However, a realization of the process of a/p feature variation 

during a dialogue does not  necessarily exhibit  a stationary form.  In this  case,  it  is  required to 

transform a series to stationary by using standard techniques such as differencing or fitting a model 

to the series.   

A second assumption is that of ergodicity. A stochastic process is said to be ergodic if its statistical 

properties (mean, variance) can be estimated from a single realization of the process: the observed 

time  series  is  only one  possible  realization  from the  probability  space  comprising  all  possible 

realizations of the same underlying process. If the realization is sufficiently long, then the mean and 

variance of the observed variable can be deduced from this single series of observations. A TAMA 

a/p feature time series can be considered as a  realization of a  probability space comprising all 

dialogues among the two speakers that have the same content (utterance-wise): if the dialogues are 

sufficiently long, reasonable estimates of the speaker's mean value for a/p features can be obtained..

Conclusively,  the  underlying  assumptions  for  the  individual  series  of  each  speaker  imply  a 

decomposition of the observed a/p frame averages into a deterministic component (inherent to the 
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speaker) and a random component which encompasses all other causes of variation: utterance type, 

mood/emotion, and – most importantly – influence of other speaker. Inclusion of the latter cause of 

variation as a deterministic component is the purpose of bi-variate analysis. 

7.4.2  Time series analysis

The first step in time-series analysis is plotting the data, as useful information can be inferred from 

the time series plots. Two such plots are shown in Figure 7.3. These plots have been obtained from a 

dialogue recording obtained with the “shipwrecked” experimental scenario (see section 6.4.3). The 

plots  represent  the entire  duration of the dialogue (approximately 7 minutes).  Considering both 

series  in  each plot,  there  is  an indication that  the  two series  are  correlated,  which  implies  the 

presence  of  inter-speaker  influence  (accommodation).  Theoretically,  there  could  be  a  third, 

underlying cause that affects both speakers in a similar way, but the only input to the process of 

dialogue  is  the  two  speakers  themselves,  and  no  other  external  factors  exist.  Thus,  the  only 

reasonable conclusion is that the similar movement is the result of influence from at least one of the 

series on the other. 

In  addition,  when considering each  series  individually,  there  appears  to  be  a  certain  degree  of 

autocorrelation: consecutive values in the (individual) series are dependent on preceding values of 

the same series. This is partly a result of the moving average filtering introduced by the TAMA 

method:  each  point  represents  a  frame  20  seconds  long,  50%  of  which  is  shared  with  the 

immediately preceding frame. The second underlying cause of autocorrelation is that a speaker's a/p 

feature average is to an extent dependent on the past values, even if there is no overlap between 

frames: speakers may well maintain their speaking style over several frames, as is the case of points 

3-6 in Figure 7.3a, or exhibit smooth transition from a low to a high value,  which indicates that the 

values are dependent on the preceding values. A final indication of this autoregressive structure of 

the individual series, is that a value above the mean tends to be followed by another value above the 

mean. The mean in this case is equal to 1, as a result of the normalization method (see section 

7.3.1). 

Another observation that can be made particularly for the intensity plot (Figure 7.3b) is that the 

values appear to decline over time. This is an indication of a global decreasing trend in the series. A 

series exhibiting such a trend is not stationary,  as the mean value changes over time. A simple 

method  to  transform this  series  to  a  stationary  one  is  to  use  differencing,  i.e.  subtracting  the 

preceding value from the current value in the series, creating a new series  Y, with  yi = xi  -xi-1. In 

some cases, differencing more than once is required. If differencing d times is required in order to 
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achieve stationarity, then the series is called integrated of order d, denoted I(d). 

(a)

(b)

Figure 7.3: Time series plots of (a) pitch and (b) intensity for two speakers (A,B). Normalized 
feature averages over 20 second frames with 50% overlap

A useful way of extracting information on individual series, is the sample autocorrelation function 

(ac.f),  a good estimate of which is the  correlogram  (Chatfield 1996). A correlogram is a plot of 

correlation coefficients over a number of lags. A lag of 1 denotes the immediately preceding value 

of the series, a lag of 2 denotes the value before that, etc. The sample autocorrelation coefficient, rk 

at lag k is given by: 

116



Equation 7.6: Sample autocorrelation coefficient

where μ is the overall mean for the entire dialogue,  xt  is the TAMA frame a/p feature average for 

frame t.  both calculated by Equation 7.3, and N is the total number of TAMA frames.

The correlograms of the first six lags for the two series in Figure 7.3a are shown in Figure 7.4. The 

horizontal bars denote confidence intervals at ±2/√N. 

Figure 7.4: Correlograms of the two individual series shown in Figure 7.3a

The coefficients for both series quickly drop to zero, which indicates that the series are stationary 

(values within the confidence intervals are statistically zero). The coefficient at lag zero is always 

equal to 1 (series correlated with itself). There is one significant coefficient at lag 1, with a value 

around 0.4 for both series. This validates the hypothesis of the autoregressive structure of the series 

as the values for each series are dependent on the immediately preceding values. 

In  contrast,  the  correlograms  for  the  two  intensity  series  (Figure  7.3b)  are  typical  of  series 

exhibiting  a  global  trend  (see  Figure  7.5):  the  coefficients  decline  exponentially,  but  remain 

significant and do not drop to zero. Thus, a transformation (such as differencing) of these series is 

required in order to obtain two stationary series. 
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Figure 7.5: Correlograms of the two individual series shown in Figure 7.3b

The analysis so far has concentrated on each individual series. As mentioned earlier, a bi-variate 

analysis is required to validate the hypothesis of feedback between the two series. 

7.4.3  Bi-variate analysis

Bi-variate analysis considers two series together and is the simplest case of multivariate time series 

analysis. Each observation, rather than being a real number, is a vector, the elements of which are 

the values from each individual series. If  x1 , x2 are two time series, then the vector X = [x1  x2] is 

the bi-variate time series. In general, the observations of an n-variate time series are n x 1 vectors. 

The individual univariate time series are called component series (Chatfield 1996).

The relationship between the component series can be explored by means of the  sample cross-

correlation function  (cc.f), an estimate of which is the cross-correlogram. In order to to obtain a 

cross-correlogram, one needs  to  distinguish the component  series  into an input,  x (independent 

variable),  and output, y (dependent variable). As mentioned in  section 7.4, this is done arbitrarily 

in this case, as the two subjects have an equal role in the dialogue experiment of the shipwrecked 

scenario (see section 6.4.3). In this manner, the series for speaker A is considered as the “input”, and 

the series of speaker B is considered as the “output”. 

Careful consideration needs to be given to cross-correlation, as spuriously large coefficients may 

appear in the cross-correlogram if the component series are themselves autocorrelated  (Chatfield 

1996). A technique commonly used in such cases is that of  pre-whitening  the component series. 

This means that their  correlograms should resemble  white noise,  which is  a random process in 
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which subsequent values are uncorrelated21. Therefore, each component series has to be transformed 

so that its respective correlogram shows no significant coefficient. In the case of the two pitch series 

(Figure 7.3a), this can be achieved by fitting an autoregressive (AR) model of order 1 to each series. 

This is indicated by the respective correlograms of the series (Figure 7.4), which show a significant 

coefficient at lag 1 for both series. According to (Chatfield 1996), the value of that coefficient is the 

best estimate for an alpha (α) value in an AR(1) model of the form  (xi – μ) =  α(xi-1 -μ) + εi, where εi 

denotes random noise. Using the value of α = 0.4 found on the correlogram, the above equation is 

solved for  εi,  which yields a  residual series  for each speaker. The success of the pre-whitening 

method can be validated by plotting the correlograms of the residual series, in order to determine 

whether any coefficients remain significant (not shown). 

Cross-correlation  coefficients  are  then  calculated  for  this  pair  of  residual  series.  The  sample 

correlation coefficient rk  at lag k is given by:

 

Equation 7.7: Sample cross-correlation coefficient

where  μx, μy are the means of the component (residual) series x,y respectively, xt, yt are the values of 

the residual series at time  t, and  N is the total number of points in the residual series. The cross-

correlogram for the two pitch series (Figure 7.3a) is shown in Figure 7.6 below.   

One  major  difference  between  the  cross-correlogram and  correlogram plots  is  that  the  former 

contains both positive and negative lags. According to (Chatfield 1996), a linear system with input 

x and output y demonstrates feedback if significant coefficients are found at zero or positive lags. 

However, if  the roles of the two speakers'  series – as input and output – are reversed, then the 

coefficient at lag 1 which can be seen in Figure 7.6 will appear at lag -1. Therefore, a coefficient at 

lag 1 or -1 is  an indication of uni-directional  convergence,  in this  case A→B: as the roles are 

21 For a formal definition of white noise, see Chatfield (1996)
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reversed, B is now the input and A the output, and a significant coefficient at lag -1 means that A 

converges to B. This can be seen on several occasions in  Figure 7.7, where A (blue) is lagging 

behind B (orange) by one point, particularly in the right part of the plot.  

Figure 7.6: Sample cross-correlogram of the two series of Figure 7.3a, pre-whitened by fitting an 

AR model with α = 0.4

It is noted that this interpretation of the cross-correlogram  is not very reliable, due to the presence 

of a (borderline) significant coefficient at lag zero. This indicates the presence of feedback in the 

system, unless a common underlying process is  affecting both series.  This point is  emphasized 

because correlation by itself does not imply causality: unless the possibility of a common external 

factor can be safely excluded, there is no basis to assume a causal relationship. Since the only input 

in  the  dialogue  is  provided  by  the  speakers  themselves,  the  coefficient  at  lag  zero  has  to  be 

attributed  to  feedback  (see  section  7.5).  When  feedback  is  present,  the  interpretation  of  the 

correlogram can be misleading (Chatfield 1996), especially in terms of using the cross-correlogram 

in order to  estimate model  parameters,  e.g.  as  in  the univariate  case,  where it  was  possible  to 

estimate the alpha value for an AR(1) model directly from the correlogram. 

In Figure 7.7, the residual (pre-whitened) series are plotted. These residuals represent the amount of 

variation in the a/p features not accounted for by autocorrelation (a deterministic component). The 

existence  of  one  or  more  significant  cross-correlation  coefficients  implies  the  existence  of  an 

additional deterministic component, whether an external factor that affects both series, or a causal  

relationship between the two series (the latter in this case). However, estimation of the power of this 

component is not possible using the correlogram because of feedback: as shown in Figure 7.7, there 

are points at which the two series are “in-phase”, as well as points at which blue is lagging behind 
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orange. These two coefficients are competitive: the instances of zero lag reduce the value of the 

coefficient at lag 1 and vice versa. Positive and negative lag coefficients are also competitive. In 

fact, in an extreme case where two pure open-loop processes with opposite lags (at -1 and 1) are 

combined (concatenated), there is only one significant coefficient at lag 0. Therefore, the values of 

the cross-correlation coefficients  can only be used for  model  parameter  estimation only if  it  is 

certain that there is no feedback. 

In addition, each point in the time series represents an entire frame, rather than a single time instant; 

therefore, the coefficients at lag 0 and and lag 1 are competitive with respect to the frame length. In 

other  words,  some  of  the  autoregressive  structure  is  “masked”  due  to  the  averaging  process. 

Intuitively, accommodation in human dialogues is always deterministic, as speakers accommodate 

to each other's speech based on past utterances. However, it has been suggested (Heylen 2009) that 

feedback in human interaction can be instantaneous, due to visual or other cues. In the absence of 

visual feedback in the recordings analyzed here, it can be argued that instantaneous feedback occurs 

by means of  overlapping speech segments.  As pointed out in  section 7.4,  feedback implies  bi-

directional  accommodation  (A↔B).  However,  due  to  the  issues  discussed  here,  i.e.  the 

competitiveness between coefficients and the loss of some temporal information due to the frame 

length, the cross-correlogram cannot show the degree of convergence separately for each speaker. 

Despite the fact the cross-correlogram is not useful for model estimation, it can be used for model 

identification (see section 7.4.4).

In a paper presenting this statistical evaluation method (Kousidis et al. 2009a), five dialogues from 

the “shipwrecked” scenario corpus were analyzed for accommodation of four a/p features: pitch, 
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Figure 7.7: Residual series plot for the two series in Figure 7.3a after fitting an AR(1) model with 
α = 0.4 to both series
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intensity, pitch range and speech rate  (see Table 7.1). Significant positive correlations were found 

for all four  features, albeit mostly for pitch and intensity. Most of these coefficients were found at 

lag zero, which implies bi-directional accommodation. Whether uni-directional or bi-directional, the 

presence  of  a  significant  positive  correlation  coefficient  constitutes  a  statistical  validation  of 

accommodation, as there is a deterministic component for at least one of the speakers that is caused 

by inter-speaker influence. 

Table 7.1: Lags at which significant positive cross-correlation coefficients are found among two 
speakers in 5 “shipwrecked” dialogue recordings

Importantly,  the  positive  sign  of  the  cross-correlation  signifies  convergence,  in  other  words 

adaptation of one's a/p features to the respective features of the other. This occurs simultaneously 

along different dimensions (or modalities), if each a/p feature is though of as a distinct channel of 

accommodation.  A  negative  cross-correlation  coefficient  would  signify  divergence,  or  non-

accommodation (see section  3.4.3),  but  no negative coefficients  were found in  (Kousidis et  al. 

2009a).  As  positive  and  negative  coefficients  are  also  competitive  at  the  same  lag,  non-

accommodation will not be statistically significant unless it occurs in a relatively large portion of 

the dialogue. The results of (Kousidis et al. 2009a) were confirmed from the analysis of the rest of 

the corpus (see appendix A).

7.4.4  Modeling inter-speaker accommodation

A major motivation for describing inter-speaker accommodation phenomena, apart from gaining a 

better  understanding  of  the  phenomena,  is  to  provide  a  model  that  can  be  used  in  SDS 

implementations.  As  was  discussed  in  section  5.1,  such  an  implementation  is  desirable  for 

improving on the naturalness  as  well  as the efficiency of SDS. This section describes  possible 

modeling approaches. 

The presence of autocorrelation and feedback in the bi-variate process of accommodation points 

towards a vector autoregressive (VAR) model. This is the multivariate extension of the AR model 
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Pitch Intensity Pitch 
range

Speech rate

1 0,1 0,1 1 -1
2 0 0 0 -
3 1 0 - 1
4 0 0 0 -
5 0 0 - 0



that was used in section  7.4.3 in order to “pre-whiten” the two component series. The simplest 

possible model is the VAR(1), a model which takes into account the preceding values of the series 

in order to predict (or forecast) the current values: 

Equation 7.8: A VAR(1) model

where x,y are the two component series, Φ is the parameter matrix, and E is the error vector. The 

elements  φij of the main diagonal (φ11 ,φ22) in the parameter matrix are the  autoregressive terms, 

which explain the autoregressive portion for each series (the AR models). The secondary diagonal 

elements  (φ12 ,φ21)  are  the  feedback  terms  (Chatfield  1996):  If  both  are  significantly large,  the 

system is  closed-loop and demonstrates  feedback.  If  the matrix  Φ is  triangular,  i.e.  one of the 

feedback terms is zero, then the system is open-loop, which implies unidirectional accommodation. 

If both feedback terms are zero,  then there is  no cross-correlation and  Equation 7.8 yields two 

separate univariate models. 

Estimation of the parameters can be performed by means of error minimization. Let  x,y be two 

series of TAMA frame averages (mean intensity in dB), as shown in Figure 7.8: 
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Figure 7.8: TAMA plot of average intensity for two speakers A,B



Both series exhibit  a global decreasing trend as shown in the correlograms of  Figure 7.9a (the 

coefficients  do not  decline to  zero).  Unfortunately,  differencing (see  section  7.4.2)  in  this  case 

results in a  large negative autocorrelation coefficient at lag 1 in the correlogram for both series (see 

Figure 7.9b). This is a sign that the series have been  over-differenced.  Instead of differencing, an 

AR(1) model is fitted for both series with the following method (the correlogram does not provide 

an estimate for an alpha value in this case, as the series are not stationary yet): 

Using the AR(1) model equation (xi – μ) =  α(xi-1 -μ) + εi, a least squares fit is performed in order to 

obtain the slope (the offset is ignored). Thus, if y = (xi – μ) and x is the lagged series of y: (xi =  yi-1), 

then solving the least squares problem of the form y=αx+β yields an alpha value of 0.42 for speaker 

A and 0,40 for speaker B. The residual series are now stationary (see Figure 7.9c).

Figure 7.9: Correlograms for the two series of figure 7.8: (a) original series, (b) differenced series  
and (c) series fitter with AR(1) models 

Now the cross-correlogram can be calculated. A significant correlation is found for lag zero, as 

expected (not shown). In order to compute the feedback terms, the same process as in the univariate 

case  is  followed  by  performing  multiple  regression.  Equation  7.8 can  be  written  as  a  set  of 

simultaneous equations: 

 

Equation 7.9: VAR(1) model written in simultaneous equation form
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Solving the multiple least squares problem for y=α1χ1 + α2χ2 + α0 yields: 

The feedback term for speaker A is large (0.44), which implies that speaker A converges  towards 

speaker B. The feedback term for speaker B is insignificant, which implies no convergence from B. 

However, the above model does not take into account the lag zero correlation between the two 

speakers. As discussed above, the lag zero coefficient accounts for the accommodation taking place 

within the TAMA frame time-span, which includes instantaneous feedback. A third deterministic 

component can be added to the model in order to account for lag zero cross-correlation: 

Equation 7.10: VAR(1) model with added zero lag component

where θ1,θ2 are the zero lag feedback terms. Multiple linear regression yields:

Large zero-lag feedback terms  are  found for  both speakers.  In  fact,  it  is  apparent  most  of  the 

accommodation  occurs  within  the  20-second  long  TAMA frame,  although  at  least  one  of  the 

speakers (A) is accommodating based on even older context (see  Figure 7.10). 

Figure 7.10: TAMA frame series (mean intensity) fitted with VAR(1) model with zero-lag feedback 
term
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Another approach is to bias the fit in favor of autocorrelation, i.e. to fix the autoregressive terms to 

the values calculated for the univariate case. The purpose of this is to enforce the hypothesis of no 

accommodation,  as was done in the calculation of the cross-correlogram. In this  case,  multiple 

regression is performed for the residual series occurring after the optimal AR model has been fitted 

to each series, i.e:

Equation 7.11: VAR model with feedback terms at lags 0 and -1 fitted to residual series

where εx =  xi    αxi-1 is the residual series of the AR(1) model with the optimal α (0,42 and 0,4 for 

speakers A, B respectively). The least squares fit yields:

Therefore even when “ fixing” the autoregressive terms, the lag-zero feedback terms remain large. 

However, the lagged feedback terms have become insignificant for both speakers in this model (see 

Figure 7.11)

Figure 7.11: TAMA frame series (mean intensity) fitted with AR(1) models and  VAR(1) model with  
zero-lag feedback terms on residual series

As shown in figures 7.10 and 7.11, both models follow the local variations of the speakers' intensity 

adequately. For comparison, the mean square error (MSE) for the models are shown in Table 7.2. 
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The models should not be expected to follow the actual values accurately, because variations in a/p 

features such as intensity are not subject solely to inter-speaker accommodation. Other factors that 

influence the a/p features (such as the utterance type or phonetic content) can be added to the model 

as  exogenous factors,  resulting in a VARX model  (Chatfield 1996). These are added to the right-

hand side of Equation 7.10 and constitute additional deterministic components to the process. For 

example, a promising extension of the TAMA methodology would be to annotate the dialogues for 

utterance  type  (declaration,  wh-question,  yes/no  question,  back-channel,  etc.)  and  calculate  an 

average value per feature and per utterance type for the whole dialogue. The contribution of each 

utterance to the frame average would then be based on its normalized value, i.e. its value relative to 

the utterance-type mean. 

speaker VAR(1) with zero lag term VAR(1) with zero lag term and 
fixed autoregressive terms

A 3,835 4,165
B 3,093 3,272

Table 7.2: Mean square error (MSE) for the model in figures 7.10 and 7.11

Another  possible  refinement  of  the  modeling method described here would  be to  consider  co-

integration.  In  Figure  7.5,  the  correlogram of  the  two intensity series  shows that  they are  not 

stationary (the coefficients do not decline to zero). However, their first order difference is stationary. 

This  means  that  the two series  are  co-integrated,  and the  order  of  co-integration  is  equal  to  1 

(Chatfield 1996). It is possible then to simplify an otherwise complicated model by including the 

co-integration vector  [1 -1] in the model. This approach could be given meaning by positing that 

accommodation  may  (partly)  be  affected  by  the  distance (or  perceived  distance)  between  the 

speakers along a hypothetical continuum of accommodation/non-accommodation. 

7.5  Discussion 

This chapter has presented a novel methodology (TAMA) for describing accommodation of a/p 

features in spontaneous dialogues. The main advantages of the methodology are (a) the continuous 

representation of accommodating behaviour, (b) the acquisition of two time series which can be 

statistically analyzed to validate the hypothesis of accommodation, (c) the robustness of the frame 

average estimation by means of overlapping frames, and (d) feature independence, provided that the 

feature has a measurable  magnitude and sufficient amount  of data is  included in the frame.  In 

addition, the hypothesis of accommodation was statistically verified by means of bi-variate time 

series  analysis,  and  the  direction  and  degree  of  accommodation  were  quantified  by  means  of 
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statistical modeling of the VAR variety. 

Accommodation  of  a/p  features  has  been  previously  observed  and  statistically  evaluated,  by 

comparing the a/p feature averages of entire dialogues  (Oviatt et  al. 2004; Suzuki and Katagiri 

2005). The  latter studies addressed the issue of describing inter-speaker accommodation within a 

dialogue by splitting the dialogue in half and comparing a/p feature averages across the two halves. 

TAMA builds upon the idea of “half-split” dialogues, but extends it to any number of dialogue 

parts, which are termed dialogue frames. This leads to a combination of merits from utterance-based 

continuous representations and across-dialogue comparisons. The trade-off between resolution and 

robustness  is  addressed  by  allowing  frames  to  overlap.  Thus,  TAMA  yields  a  continuous 

representation of accommodation phenomena in the form of two time series. 

Existing work on describing a/p accommodation by means of time series differs from TAMA in 

various key points, but there are also significant similarities. (McRoberts and Best 1997) used the 

same normalization  method as  TAMA (dividing  an F0 measurement  over  the  speaker's  overall 

average F0) and presented time series plots of F0 variation. However, the measurements in that 

study were  taken  on  each  utterance.  TAMA avoids  attributing  turns  to  each  speaker,  which  is 

difficult  to do in spontaneous speech,  and is  more consistent with representations that consider 

dialogue as a synchronous activity (Campbell 2009; Heylen 2009). This point is further elaborated 

by  the  statistical  analysis  which  reveals  a  significant  lag-zero  term  for  both  speakers  in  the 

dialogues studied. 

(Kakita 1996) also used a time series approach in order to study  accommodation of F0, but used 

scripted dialogue rather than spontaneous speech, and measured F0 on a specific syllable in a word 

that was present in each utterance by design. In addition the F0 values were not normalized, and 

thus inherent F0 of speakers was not taken into account. (Buder and Eriksson 1997; 1999) used a 

time series approach to compare synchrony of F0 and Intensity “cycles” across two speakers over 

floor exchanges. The sinusoidal models were fitted on each series separately, and thus the analysis 

was not bi-variate and could not reveal the presence of feedback. 

Perhaps the most similar approach to TAMA is that of (Nishimura et al. 2008), which used a lag-

zero cross-correlation to assess accommodation of F0, and also calculated a bi-variate model for 

continuous system adaptation of F0 towards that of the user. However, (Nishimura et al. 2008) used 

utterances  as  units  and  analyzed  small  (minute-long)  portions  of  dialogues.  The  findings  were 

similar to those presented here and in (Kousidis et al. 2009a): Significant lag-zero correlation of F0 

and a model that has to take instantaneous feedback into account.

The  statistical  approach  (bi-variate  time  series  analysis)  presented  in  section  7.4.3 bears 
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resemblances to that of (Jaffe et al. 2001). The latter study, which focused on rhythmic features (see 

section 4.5.6), used frame lengths of 5 seconds in which the average duration of vocal states was 

measured.  (Jaffe et al. 2001) also accounted for auto-correlation by fitting AR(2) models to the 

individual series prior to performing lag regression of frame averages, i.e. the regression strength 

(R2) between each series and the lagged series of the interlocutor was calculated (for up to 12 lags). 

This regression strength was interpreted as an indication of coordination among the two speakers, as 

well as of the strength and direction of accommodation. Importantly, (Jaffe et al. 2001) excluded lag 

zero  from the  analysis.  In  contrast,  (Kousidis et  al. 2009a) used  the  cross-correlogram as  an 

indication  of  accommodation,  and  the  feedback terms  of  the  VAR models  as  indicators  of  the 

strength and direction. As the VAR models were also calculated by linear regression (least squares), 

the feedback terms can be interpreted as the slope of the fitted line. 

The  statistical  analysis  (section  7.4.3)  revealed  significant  cross-correlation  at  lag  zero  and/or 

neighbouring  lags  (less  often),  which  was  considered  as indicative  of  feedback,  the  physical 

interpretation of which is bi-directional accommodation. This interpretation, schematized in Figure

6.1, is only valid if the possibility of any external factors influencing the prosodic features of the 

two speakers can be excluded, as correlation by itself does not imply causality  (Chatfield 1996). 

However, a/p features carry several functions, as discussed in section 2.4.2. The possibility that one 

of these functions is influencing both speakers simultaneously, leading to a significant coefficient at 

lag zero has to be considered thoroughly. 

Any linguistic functions of prosody have to be excluded, because that would imply that speakers 

produce utterances which have the same or very similar lexical, semantic and pragmatic content. 

That would only occur if speakers were repeating each other's utterances. Of course, there is the 

frequent phenomenon of users complementing each other's utterances, thus adhering to the original 

utterance  intonation  structure.  However,  such  behaviour  would  have  to  be  characterized  as 

accommodation.

Paralinguistic functions are less trivial to discard. The frequency code (Gussenhoven 2005), for 

example, carries the function of dominance (see section 2.4.2). Therefore a simultaneous rise/fall in 

average F0 could be interpreted as a dominance “duel” between the two speakers. However, there is 

no  indication  of  such  behaviour  in  the  recorded  dialogues,  in  which  speakers  are  eagerly 

cooperating and generally enjoying the sessions, as the frequent occurrences of laughter suggest. 

The effort and production codes are mostly manifested in local pitch and intensity variations which 

would contribute little to a 20 second frame average. 

Emotional content may also influence the a/p features of the speakers. Considering a dimensional 
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approach (Schroeder 2004 ) which would be more appropriate for these recordings than full-blown 

emotional  categories,  all  four  features  are  positively  correlated  to  activation.  Therefore, 

simultaneous activation, which is likely to occur as a result of stimuli arising from the progress in 

the task, as in the case of the “shipwrecked” recordings with a ranking score (see section  6.4.3), 

would result  in simultaneous rises in the a/p features. However,  such stimuli  are a few distinct 

events in the dialogue, but the TAMA plots reveal synchronous variation throughout the dialogue. If 

simultaneous activation occurs as a result of stimuli introduced by the speakers themselves, then 

that behaviour would have to be characterized as accommodation, as in co-activation manifested by 

similar prosodic variations. 

Therefore,  all  known  functions  of prosody can be excluded as  external causes of  simultaneous 

prosodic variations measured by means of the TAMA methodology. The only input to the process of 

dialogue are the utterances of the two speakers: contemporaneous activation exhibited by similar 

prosodic manifestation is therefore a  result  of the interaction, rather than a cause. Therefore, the 

correlation  can  be  attributed  to  inter-speaker  accommodation.  The  ubiquitous  nature  of  the 

phenomenon points to an implementation in an SDS environment based on the models derived in 

section 7.4.4. Such an implementation is presented in chapter 9. 

Another  important  point  relates  to  the  deterministic  nature  of  accommodation,  i.e.  the 

accommodation of speakers to their partners' past utterances. This is schematized in Figure 6.1 as a 

continuous feedback loop which follows a deterministic circular path from speaker A to speaker B 

and vice versa. This type of description implies a succession of turns between the two speakers. 

However,  spontaneous  dialogues  are  characterized  by  overlapping  speech  and  “fuzzy”  turn 

successions (this is further discussed in the next chapter). Therefore, the overlapping and otherwise 

perplexed speech segments point to instantaneous accommodation, as schematized in  Figure 2.3 

(Heylen 2009). This is captured by the lag zero coefficient and the zero-lag feedback terms of the 

models, although these measures also express some of the autoregressive accommodation due to the 

fact that each point in the series represents a time span rather than a time instant. 

Intuitively, it could be argued that accommodation is always deterministic, as a/p features of overlap 

segments accommodate to the spoken part of the utterance being overlapped. However, the purpose 

of the overlapping segment could be to signal understanding and prompt the speaker to proceed 

with their point at speed (indicated by the a/p features of the overlap segment). The speaker would 

then accommodate to this  stimulus while  the overlap segment  is  still  being vocalized (or  even 

before if the overlap can be predicted by the speaker). This type of behaviour is a prime example of 

instantaneous feedback. In fact, this type of feedback is essential to the organization of the dialogue, 
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and is manifested in several modalities. In the absence of visual contact, this function is carried by 

overlap segments. This also explains the findings of (Bosch et al. 2005), in which significantly 

more overlaps were found in telephone conversations in comparison to face-to-face conversations. 
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8  Accommodation of temporal features
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8.1  Overview

This chapter presents work undertaken in order to describe inter-speaker accommodation of timing 

in  human dialogues.  The motivation for  this  work was outlined in  chapter  5.  Briefly,  the time 

instants  at  which  speakers  initiate/terminate  their  vocalizations  during  dialogue  are  of  interest 

because they characterize the  floor  transitions between them. Therefore, it would be desirable to 

describe  this  process,  in  order  to  implement  more  natural  (and  by  extension  more  efficient) 

interaction management strategies for SDS, which are currently mostly based on a “ping-pong” or 

“half-duplex” model: the human user and the automated talking agent are speaking in turns, where a 

turn is defined as a time interval during which one of the parties holds the floor (speaker), while the 

other party is concentrated on understanding and processing information (listener). When the turn is 

exchanged, the parties switch roles and the process is repeated in the opposite direction. Turns can 

be exchanged either when the floor  is  released by the speaker (inter-speaker silence),  or  if  the 

listener interrupts the speaker in order to “take over” the floor (overlapping speech).  

However, the above account is clearly insufficient in describing natural human speech. The latter is 

characterized by frequent instances of overlapping speech which cannot be characterized as turn 

exchanges. It  is widely accepted that  one of the main functions of these  overlaps  is to provide 

feedback to the speakers that is currently holding the floor, and that this feedback is essential in the 

process  of  dialogue.  In  its  absence,  the  “speaker”  cannot  assess  whether  the  “listener”  has 

understood  what  is  being  said,  which  makes  the  communication  inefficient.  Feedback  is  not 

necessarily  verbal,  but  can  occur  on  other  modalities,  such  as  head  nods  or  eye  movement. 

Therefore,  when  these  modalities  are  not  available  (e.g.  in  telephone  conversations)  a  greater 

amount of verbal feedback is expected. Yet a “half-duplex-plus-feedback” model is still insufficient 

in  characterizing  human  interaction,  and  attributing  a  specific  communicative  function  (e.g. 

“feedback” or “declaration”) to each utterance in a dialogue is not without problems (Bosch et al. 

2004b). As a result, attributing turns to each speaker is not a straightforward task and requires a 

certain degree of subjectivity in order to be achieved (Raux 2008), as was discussed in section 2.3.2. 

Categorization  of  dialogue  acts  into  different  types  and  segmentation  of  the  dialogue  into 

semantically and pragmatically defined turns is the subject of conversation and discourse analysis 

(see section  2.4.4). Within this field, the temporal structure of human interaction is considered as 

accommodating the smooth transition of turns between the two speakers. In contrast, research on 

inter-speaker accommodation focuses on adaptation of the speakers' temporal patterns in order to 

match each other's “temporal behaviour”. These two approaches are distinct in origin but involved 

with the same phenomena, namely the temporal structure of dialogue. The same is true for research 
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in other modalities, such as lexical and syntactic choice (Matessa 2001): both conversation analysis 

and accommodation theory explain the tendency of speakers to make similar lexical and syntactic 

choices. The two lines of research are complementary and one can benefit from the other. 

In this context, this chapter presents an application of the TAMA methodology to temporal features 

as  well  as  a  novel  dialogue  representation,  in  order  to  describe  temporal  accommodation 

phenomena. The former lies exclusively within the accommodation theory line of research, while 

the  latter  “crosses  over”  into  conversation  analysis  by considering  the  influence  of  turn share 

distribution (a measure of dialogue activity and speaker dominance) on the same temporal features. 

This cross-over is unavoidable, as pauses and overlaps are the main features in any description of 

the temporal organization of dialogue. 

8.2  TAMA analysis of temporal features

The first approach towards describing inter-speaker accommodation of temporal features comprised 

an adaptation of the TAMA methodology described in chapter 7. As was discussed in section 7.5, 

TAMA is a feature-independent method for describing accommodation phenomena, provided that 

calculating an average value is feasible as well as meaningful. Two such features were identified 

from the literature review (see section 5.2) that are related to the temporal organization of dialogue: 

the duration of silent intervals and the occurrence of overlaps. 

Importantly,  the  silent  intervals  (or  pauses)  occur  both  between  speech  intervals  of  the  same 

speaker as well as during floor exchanges, i.e. a different speaker resumes speaking after the pause. 

(Edlund et al. 2009) used the terms  gap and pause  to differentiate between these two conditions, 

respectively. Here, the term switch pause is used when a different speaker vocalizes after the pause, 

while  pause  is used to signify  either or both  conditions, depending on the context or explicitly 

disambiguated. This is because accommodation of pause length has been known to occur mainly for 

switch pauses (but see Jaffe et al. 2001), but also because in the proposed representation the two are 

not differentiated (see section 8.3.2). 

Similarly, overlaps can be interrupting and non-interrupting. Interrupting overlaps occur when the 

speaker that “barges-in” takes over the floor after the overlapping segment, while non-interrupting 

overlaps result in the original speaker retaining the floor. In this text, these two cases are simply 

termed  interrupting  and  non-interrupting  overlaps.  Typical  non-interrupting  overlaps  comprise 

back-channel feedback utterances which are not  necessarily proper phrases or words in  a strict 

linguistic sense (see section 6.5.2). 

The justification for implementing the TAMA methodology on temporal features is the same as for 

134



a/p features  (section  7.2):  previous  evidence of temporal  accommodation is  primarily based on 

across-dialogue comparisons (Bosch et al. 2004b, 2004a; 2005), which do not reveal the occurrence 

of accommodation in a continuous representation. Exceptions to the above are studies on rhythmic 

coordination of speakers (Jaffe et al. 2001) and a recently published study (Edlund et al. 2009). 

8.2.1  Annotation of switch pause and overlap 

Floor exchanges between speakers are better visualized schematically by means of a chronograph, 

shown in Figure 8.1. In order to obtain a picture of the floor exchanges, the individual chronographs 

of the two speakers, which were obtained from the semi-automatic annotation process described in 

section  6.5.2, are added together. This results in a combined chronograph on which there can be 

only one of  four situations:  vocalization by speaker  A,  vocalization by speaker  B,  overlapping 

speech, and silence (pause).    

Figure 8.1: Part of dialogue chronograph for two speakers (individually and combined)

Numerous  approaches  to  defining  speaker  turns  from  the  combined  chronograph  have  been 

proposed  (Beattie  1982;  Weilhammer  and  Rabold  2003;  Bosch et  al. 2004b;  Benus  2009). As 

pointed out in (Raux and Eskenazi 2008) and (Bosch et al. 2005), this is difficult to do based on the 

chronograph itself. For example, the third utterance of speaker 2 (green) in  Figure 8.1 could be 

characterized  as  a  turn,  or  as  a  short  non-interrupting  contribution  in  an  otherwise  speaker  1 

(yellow) dominated part of the dialogue. 

In general, it is beneficial to be able to obtain a simple definition of switch pauses and overlaps 

from  the  chronograph  for  two  reasons:  (a)  temporal  information  is  objective,  as  opposed  to 

discourse analysis based on assumptions  about the speakers' intentions and meaning of utterances 

(Raux 2008), and (b) temporal information may be the only available data when analyzing large 

databases or performing online analysis (Bosch et al. 2004b). 

Thus,  one  of  the  simplest  possible  schemes  was  proposed  in  (Kousidis  and  Dorran  2009) for 

characterizing switch pauses and overlaps and attributing them to either speaker (see Figure 8.2):
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Figure 8.2: Switch pause and overlap definition and speaker attribution

Switch pauses occur between vocalizations that belong to different speakers. These are considered 

to “belong” to the speaker who takes the floor after the pause: P11 is a switch pause that belongs to 

speaker 1 (yellow)  as the floor is given up by speaker 2 (green). The opposite occurs at P21: yellow 

gives up the floor and, after a pause, green takes over. A similar rule is implemented for overlaps: 

the speaker who initiates a vocalization during an utterance of the other speaker is the “owner” of 

the overlapping segment: in  O21 speaker 1 (yellow) is talking when speaker 2 (green) initiates an 

overlapping vocalization: this overlap is attributed to green, who keeps the floor after the overlap 

segment (the opposite occurs in  O21). If after the overlap segment the floor is not exchanged, i.e. 

the speaker who had the floor retains it,  then the overlap is categorized as non-interrupting (no 

switch of floor) and belonging to the other speaker. The same is the case for a pause between two 

speech intervals of the same speaker, shown on the right-hand side of  Figure 8.2, which is not a 

switch-pause.

The annotation of switch pauses and overlaps can be performed automatically by means of a simple 

algorithm (Figure 8.3): each interval in the combined chronograph has only three properties: its start 

time, end time and label. The label can either be “speaker 1”, “speaker 2”, “pause” and “overlap”. 

Looping through all intervals, the algorithm identifies those labeled “pause” or “overlap”. If such an 

interval is found, the two neighbouring intervals are compared. If these belong to different speakers, 

the pause or overlap is characterized as a switch pause or interrupting overlap and attributed to the 

owner of the second interval. If they belong to the same speaker, the non-switch pause is attributed 

to the owner of the two intervals and the non-interrupting overlap is attributed to the other speaker. 

In the (extremely)  rare cases where overlaps are adjacent  to pauses,  the following rules apply: 

overlaps followed by pauses are non-interrupting. Simultaneous starts (overlaps immediately after a 

pause) are non-interrupting overlaps. The speaker that keeps the floor after the overlap is considered 

as the initial floor holder and the non-interrupting overlap is attributed to the other speaker. The 

code implementation of this algorithm can be found in appendix C.
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8.2.2  Feature average calculation

The annotation procedure described in the previous section yields four different measures for each 

speaker: The number of switch and non-switch pauses and the number of interrupting and non-

interrupting overlaps. If the dialogue portion shown in Figure 8.2 is considered as a TAMA frame, 

then the average pause length (APL) for each speaker in the frame is given by:

Equation 8.1: Frame average pause length calculation

where di is the duration of pause i and N is the number of pauses attributed to that speaker in the 

frame.  The same formula applies for switch pauses,  non-switch pauses or both.  Unlike the a/p 

features  studied in  chapter  7,  the durations  of pauses  cannot  be reasonably assumed to  have a 

normal distribution around a mean value: there is a minimum pause threshold which is defined as a 

parameter in the silent/non-silent interval segmentation algorithm (6.5.1) and is typically 50-100 

milliseconds (but  shorter  pauses can be introduced during the manual  segmentation phase),  but 
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there is no maximum. This results in a positively skewed distribution, in which large values bias the 

mean significantly. This can be overcome either by (a) taking the median value rather than mean, 

(b) setting a threshold above which all values are considered as outliers and are ignored, or (c) using 

a log transformation, e.g. log10di ,with di expressed in milliseconds (see Figure 8.4). The threshold in 

case (b) can be set by assuming an exponential distribution and removing all values with p<0.05 on 

the right-hand side tail.   

A different measure is defined for overlaps, which is termed overlap rate (OR). This expresses the 

amount of vocalizations initiated as overlaps over the total amount of vocalizations of that speaker, 

within a TAMA frame. In other words, how often a speaker tends to speak before the partner has 

finished their utterance:

    

Equation 8.2: Calculation of overlap rate

The overlap count may or may not include non-interrupting overlaps, in which case the total count 

is adjusted accordingly. In the former case, it is the total number of a speaker's vocalizations minus 

those occurring after a pause and OR expresses the tendency of a speaker to overlap in general. In 

the latter case, the total count is the number of vocalizations after a switch-pause or an interrupting 

overlap and OR expresses the tendency to take the floor by interrupting the other speaker. 

It is noted that interruption does not necessarily imply a pragmatic function: in spontaneous speech 

it is quite common for speakers to take the floor before the interlocutor has finished their utterance 
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without this being considered an interruption. This is because interlocutors often understand each 

other  without  having  to  listen  to  the  complete  utterance,  and  are  able  to  respond  earlier  thus 

increasing  efficiency.  However,  this  type  of  behaviour  may not  be  considered  polite  in  certain 

contexts (e.g. formal interviews), while in some cases it  could be a sign of positive evaluation 

between  interlocutors  (friendly  chat).  Therefore  accommodation/non-accommodation  of  OR  is 

interesting from the point of view of SDS, as it could increase the “friendliness” of a talking agent. 

Another  important  note  involves  non-speech  intervals  which  were  annotated  separately  in  the 

corpus (see section 6.5.2). These include breath noises, instances of laughter and other non-speech 

sounds.  Since these intervals  are  part  of the temporal structure of the dialogue,  they should be 

included in  the  analysis.  For  example,  an audible  breath  before an  utterance is  a  signal  that  a 

speaker is about to initiate a vocalization, and the partner is likely to interpret it as such. Similarly, 

laughter is a vocalization produced in response to a previous utterance and can be considered as 

interrupting overlap. On the other hand, laughter is “overlap-inviting”, i.e. a speaker is more likely 

to overlap while the partner is laughing (in order to extend the joke) and this may bias the overlap 

rate, as instances of laughter are frequent in the corpus. 

Finally, it is noted that, for these temporal features (APL and OR), the TAMA frame length trade-off 

is  much  more  severe  than  it  was  for  a/p  features.  Frame  lengths  of  30  seconds  contain 

approximately 10 instances per speaker (sometimes less), and this number includes both pauses and 

overlaps. Therefore, the calculation of an average value is much less robust, and one large value 

may severely bias the analysis. The only solution is to increase the frame length which, as discussed 

in chapter  7 reduces the resolution of the TAMA representation. Therefore, there is a problem of 

data sparsity when using the TAMA method on temporal features. 

8.2.3  Pilot study

A pilot study (Kousidis and Dorran 2009) was conducted in order to test the effectiveness of TAMA 

in  describing  inter-speaker  accommodation  of  temporal  features.  The  five  dialogues  from  the 

“shipwrecked” corpus that were presented in  (Kousidis et al. 2009a) were analyzed for temporal 

accommodation. The analysis focused on switch pauses and overlap rate including both interrupting 

and non-interrupting  overlaps.  Only speech intervals  were considered  in  the  analysis  and non-

speech intervals such as instances of laughter were excluded. The pause duration distribution was 

not transformed in any of the ways discussed in the previous section, but a small number (<3) of 

extremely long instances were excluded from the analysis of each dialogue, without setting a pre-

defined threshold. The techniques described in the previous section were considered as a result of 

the pilot study. Application of all three techniques to the entire corpus (see appendix A) did not 
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contradict the findings of the pilot study. 

An across-dialogue comparison showed a linear relationship between the APL of the two speakers 

(see  Figure 8.5),  confirming the findings of (Bosch et  al. 2005).  In the latter  study,  this  linear 

relationship was attributed to two possible causes:  (a) accommodation of APL between the two 

speakers, or (b) a result of the overall “liveliness” of the dialogue, as a more lively dialogue would 

exhibit silent intervals of shorter durations. This is discussed further in section 8.3.3. 

In  order  to  test  the  hypothesis  of  accommodation,  Kousidis  and  Dorran  (2009)  implemented a 

TAMA analysis for both APL and OR (see Figure 8.6):

Figure 8.6: TAMA plots of APL (left) and OR (right) calculated over frames of length 30s with 33% 
overlap

In these plots  (taken from different dialogues),  a similar  trend for both speakers is discernible; 

however, accommodation is not as evident for all five dialogues studied in  (Kousidis and Dorran 

140

Figure 8.5: APL of speakers in 5 "shipwrecked" dialogues



2009) as shown in the examples of Figure 8.7. Even rarer are the cases in which the similarity can 

be evaluated statistically (see appendix A).  Of course speakers' temporal features do not  have to 

converge, as discussed in section 7.3.2; but the  linear relationship of the overall dialogue average 

values that was also reported in (Bosch et al. 2005)suggests that accommodation is more ubiquitous 

than evidenced in the TAMA plots.

Figure 8.7: TAMA plots of APL (left) and OR (right) calculated over frames of length 30s with 33% 
overlap

The data sparsity problem that was mentioned in the previous section was identified as a possible 

cause for this lack of evidence of temporal inter-speaker accommodation. Thus, it is possible to 

increase the frame length in order to increase robustness, at the cost of resolution; but it is desirable 

to keep the resolution high, as this is one of the main advantages of TAMA. The upper limit for the 

frame length is the dialogue duration itself, which would degenerate the TAMA method into an 

across dialogue comparison method. 

A later study  (Edlund et al. 2009) which followed a methodology similar to TAMA, introduced 

frames of varying length by defining a window of 20 instances with an overlap of 19 instances 

(each window contained exactly 20 switch-pauses or 20 pauses). This resulted in frame lengths as 

long as 180 seconds. On the other hand, the resolution was kept high, as a new window was defined 

at each pause. This approach is similar to TAMA (increasing robustness by introducing overlapping 

frames), taken to the extreme (frame overlap equal to 95%). However, this would result in a time 

series with 19 significant coefficients in the correlogram, as each frame shares common instances 

with the previous 19 frames. This would make difficult to estimate model parameters using the 

methodology described in section 7.4.4. A possible approximation could be to assume exponentially 

decaying weights on the previous instances.  

(Edlund et al. 2009) found results that were similar to those of  (Kousidis and Dorran 2009): a 
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portion of the dialogues exhibited statistical evidence of contemporaneous accommodation in APL, 

while in other dialogues speakers' APL did not converge or even diverged. This does not necessarily 

imply that there is no temporal accommodation in the dialogues where the local averages do not 

follow similar trends, especially since (a) there is no  perceptual difference when listening to the 

dialogues,  and  (b)  the  same  dialogues  that  do  not  exhibit  accommodation  locally  contribute 

positively to the linear trend found for across-dialogue comparisons shown in Figure 8.1.   

An alternative explanation of the findings in (Kousidis and Dorran 2009), also given in (Edlund et  

al. 2009), was that the TAMA method is not sufficient in this case (of temporal accommodation) 

because the variation introduced by factors other than accommodation is relatively much larger than 

in the case of a/p features. Such factors could be specific dialogue modes, utterance types (e.g. 

back-channeling), or speaker dominance: if the dialogue is dominated (locally or globally) by one 

of the two speakers, this may have an effect on either (or both) speaker's APL and OR. Therefore, 

the value of APL and OR at any arbitrarily defined frame will be a function of various factors which 

introduce variations, so that accommodation is “masked”, or, as proposed in (Edlund et al. 2009), 

“overridden”. Another way to view this is that speakers accommodate their silence durations and 

overlapping speech behaviour but this process is not necessarily synchronous: the dominance factor, 

for example, suggests that speakers shorten their pause durations and increase their overlap rates 

(due to increased back-channeling) when the dialogue is dominated by the partner (a hypothesis), 

i.e.  not  contemporaneously.  This  is  further  discussed  in  section  8.3.  Therefore,  an  important 

outcome of (Kousidis and Dorran 2009) is that an SDS strategy of accommodating to the user's APL 

synchronously (in order to optimize its end-pointing threshold) would be too simplistic, as it would 

disregard all  other  factors of  variation in  APL, therefore leading to unnatural  behaviour  of  the 

talking agent. 

In conclusion, although the TAMA method shows that accommodation occurs at a local level, it is 

insufficient  in  itself  for  the  purpose  of  describing  temporal  accommodation,  mainly  because 

significant variation in temporal features is introduced by other factors (which are related to the 

discourse and require discourse analysis, e.g. floor exchanges), but also because of data sparsity, i.e. 

the small amount of feature instances in the TAMA frames. The inadequacy of serial approaches 

such as TAMA and the methodology of (Edlund et al. 2009) to capture temporal accommodation 

arises  from  the  schemata  of  turn  attribution  that  are  based  solely  on  the  chronographic 

representation. Thus, a novel dialogue representation (turn-share distribution) was formulated in 

order to explore the effect of floor exchanges on temporal features. This representation is described 

in the next section.  
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8.3  Flexible dialogue representations 

The schema for annotation of switch pauses and overlaps that  was employed in  (Kousidis  and 

Dorran 2009) is not the only one possible. For example, a more complex schema is proposed in 

(Weilhammer and Rabold 2003), in which 10 distinct configurations of pauses and overlaps are 

used to describe the process of turn-taking in human dialogues. As pointed out in  (Bosch et al. 

2005), such rule sets are ambiguous, especially when attributing overlapping speech to one of the 

two speakers. For example,  (Adda-Decker et al. 2008) defined four types of overlap in order to 

annotate  a  corpus  of  political  interviews,  but  categorization of  all  instances  to  one  of  the four 

categories required a semantic and pragmatic analysis of the dialogues, which introduces a certain 

degree of  subjectivity.  The situation with most  complexity is  that  of spontaneous dialogues,  in 

which speakers barge-in “out of turn” without this being considered as an interruption: this can 

either  be characterized as  an interrupting short  turn,  if  the floor is  given back  to the original 

speaker, or as a non-interrupting out-of-turn speech segment (i.e. not a turn). 

Thus,  the  “half-duplex  plus  feedback”  model  (Figure  6.1)  that  was  used  in  order  to  describe 

accommodation  of  a/p  features  is  insufficient  in  describing  temporal  accommodation,  as  the 

temporal organization of dialogue does not comply to this schema: dialogue does not flow “back 

and forth” as a sequence of interchanging of turns: this is only a  representation  of the dialogue 

which has been dominant since the invention of the interaction chronograph22 (Lennes and Anttila 

2002), due to its intuitiveness and utility to a certain extent. However, other representations are 

possible, in which it is not necessary to define “turns”. Such a representation is presented in the next 

section.

8.3.1 Turn share

In order to overcome the issues discussed in the previous sections, (Kousidis et al. 2009b) proposed 

a new dialogue representation which completely ignores the notion of “turns” and replaces it with a 

new measure termed  turn share.  This section describes the dialogue representation proposed in 

(Kousidis et al. 2009b).

Let the part of the dialogue shown in Figure 8.1 be a frame of known length, L. During this time 

frame, both speakers share the floor at any time, both when they are speaking as well as when they 

are silent. The dialogue is a shared experience where each interactant participates with their speech, 

but also their choice to remain silent and actively listen, instead. This assumption is consistent with 

22 The interaction chronograph was a mechanical device (basically a typewriter with continuous paper feed) which 
could record the times of events in a dialogue by means of key strokes (Lennes and Anttila 2002; Campbell 2009)
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the viewpoint  of  synchronous interaction (Campbell  2009).  Therefore,  at  any time point  in  the 

frame,  each  speaker  can  be  in  only  one  of  two  states:  active  (speaking)  or  passive  (silent). 

“Speaking” may also include non-speech segments, as the speaker is active when producing them. 

These “states” are expressed by two proportional measures, active time AT and passive time PT as:

Equation 8.3: Definition of active (AT) and passive time (PT) as proportions of vocalization and 
silence in a frame of length L

where  LA,LP are the total  durations of speech and silence in the frame, respectively.  These two 

measures have the property AT + PT = 1, which means that one can obtain AT by annotating only 

the silences and calculating AT = 1 - PT.  The turn share TS is then defined as:

Equation 8.4: Definition of turn share

where  TSn, ATn are the turn share and active time of speaker n, respectively. Apart from the obvious 

property  TS1 + TS2 = 1,  the definition can also be extended for interactions with more than two 

speakers. Also it should be noted that (AT1 + AT2) can be (and often is) longer than L, the length of 

the frame, due to the overlaps. In order to comprehend the physical meaning of turn share, it is 

helpful to look at a plot of turn shares over time (see Figure 8.8)

Figure 8.8: Turn share plot obtained by calculating TS for two speakers over 4-second-long frames

144

AT =
LA

L
, PT =

LP

L

TS1=
AT 1

AT1AT 2
, TS 2=

AT 2

AT 1AT 2



In  this  plot,  each  bar  corresponds  to  a  frame  four  seconds  long  and  the  vertical  axis  (time) 

progresses  from  the  bottom  to  the  top  of  the  figure.  Only  a  part  of  the  dialogue  is  shown 

(approximately 4.5 minutes long). In this representation,  it can be seen whether one of the speakers 

dominates the dialogue and in which parts. This can be useful for statistical analysis of temporal 

and other features depending on whether a speaker has a greater turn share, as opposed to whether it 

is his/her turn. The plot shows turn shares calculated for adjacent non-interrupting frames, but the 

representation can also be implemented as a continuous, real-time indicator, as shown in Figure 8.9: 

the colored bar boundary moves along the horizontal axis continuously as turn share is calculated 

for the previous n seconds, where n is a fixed value. 

The optimum frame length of the representation depends on the application. Shorter frames reveal a 

finer picture of the interaction in terms of turn-share exchange. In fact, taking progressively shorter 

frames leads to more instances of frames that are completely dominated by one of the speakers, 

indicated by uniform color bars that extend from one end the other in the turn share plot (bars 

extend from left to right for one speaker and from right to left for the other speaker). The limit of 

the representation (i.e. infinitely short frames) is the chronograph of Figure 8.1 and, in particular, 

the individual chronographs for each speaker. Longer frame lengths lead to less instances of totally 

dominated frames and are likely to include complete utterances, which is useful for analysis of a/p 

features. The disadvantage of longer frames, similarly to TAMA frames, is loss of resolution and the 

danger  that  an  equally  shared  frame  may  in  fact  be  two  adjacent  half-frames  that  are  totally 

dominated by each speaker. This issue is further discussed in section 8.3.2. 

In addition, it would be desirable to obtain a representation for the amount of overlap and silence in 

a given frame. Considering Figure 8.2, four measures (proportional to the frame length, L) can be 

defined in similar manner to the definition of  AT and  PT above. These are shown in  Table 8.1 

below.

Measure Descriptiom Formula

S1 Speaker 1 portion S1 = LS1 / L
S2 Speaker 2 portion S2 = LS2 / L
TP Total silence TP = LP / L
TO Total overlap TO = LO / L

Table 8.1: Definitions of proportions in frame for speaker share, overlap and silence
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where LSN  is the total duration of speaker N, LO is the total duration of overlapping speech, and  LP  

is the total duration of silence in the frame. 

It follows from the definition that the sum of all four proportions equals one, and that the quantity 

(1-TP), hereafter joint active time, JAT, is the sum of the other three proportions. JAT is a measure 

of how “engaged” or  “active” (in terms of liveliness or for example in presence of a debate) the 

particular part of the dialogue is, as more active dialogues are expected to have shorter pauses. A 

similar measure of liveliness, used in  (Jaffe et al. 2001) is the vocalization over pause ratio  V/P 

which is positively correlated to  AT = V/(P+V) (for individual speakers), and JAT (both speakers 

simultaneously). The overlap time, TO, is also expected to be a good indicator of high activation, as 

it  is  expected  to  be  positively correlated  to  JAT.  Therefore,  a  direct  application  for  these  two 

quantities may well be automatic recognition of activation (in the context of emotional speech) in 

spontaneous dialogues. 

Figure 8.10 shows a per frame turn distribution plot for one of the dialogues recorded. As in Figure

8.9, the vertical axis (time) progresses from the bottom to the top of the figure. The red areas are 

stretches of the dialogue characterized by large amounts of overlap speech (non-speech intervals are 

included). JAT equals the length of the bars (from left to right),  as the silence proportion TP is 

drawn in white. One can discern that longer bars seem to coincide with red areas (overlaps), which 

implies that more active speech is characterized by longer and/or more frequent overlaps. If a frame 

length equal to the duration of the entire dialogue is used, then the representation yields a turn share 

distribution for the entire dialogue, previously presented in (Lennes and Anttila 2002)

Figure 8.10: Per frame turn distribution for frame length equal to 4 seconds (50% overlap)
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8.3.2  A practical example

In order to test the usefulness of the proposed representation, (Kousidis et al. 2009b) carried out a 

preliminary analysis, based on 5 dialogues recorded using the “shipwrecked” scenario experimental 

setup.  In  this  study,  the  speakers'  average  pause  length  (APL)  and  overlap  rate  (OR)  were 

investigated  in  relation  to  turn  share  (TS)  and  joint  active  time  (JAT)  distributions.  Since  the 

proposed  representation  does  not  define  turns  for  the  speakers,  the  pauses  and  overlaps  were 

attributed to the speakers in an unambiguous manner (see Figure 8.2):  pauses belong to the speaker 

who initiates a vocalization immediately  after  the pause interval,  regardless of who is speaking 

before the pause; for overlaps, the interval immediately before the overlap segment, is considered, 

and the overlap is attributed to the speaker who is not speaking in that segment (thus initiating the 

overlap segment). There is no distinction between switch and non-switch pauses, or interrupting and 

non-interrupting overlaps. 

The results of the study in  (Kousidis et al. 2009b) are shown in  Table 8.2. A frame length of 5 

seconds with no overlap was used. APL was found to be strongly correlated to JAT. The correlation 

is negative, which indicates that high JAT results in shorter pauses. This is intuitive to an extent, as 

JAT is defined as the proportion of vocalization (total length minus the total duration of silence). 

Thus,  it  is  possible  that  there  are  fewer  –  and  longer  –  pauses.  This  correlation  validates  the 

hypothesis that there are in fact shorter pauses. OR is positively correlated to JAT, which indicates 

that  high JAT results  in  more frequent  overlaps.  Again,  OR is  positively correlated to  TO, but 

expresses the frequency of overlapping segments, rather than their relative length (TO). This finding 

validates that overlaps are more frequent when JAT is high. OR is also (negatively) correlated with 

TS, which indicates that speakers overlap their interlocutors more often when they have a smaller 

turn share (e.g. due to back-channeling). 

Dialogue TDD
(sec)

APL
JAT

APL
ER

OR
JAT

OR
TS

1 F 428 -0.6 - 0.3 -
M -0.5 -0.3 0.5 -0.3

2 M 490 -0.6 -0.3 0.4 -0.4
M -0.7 - 0.5 -0.2

3 M 409 -0.6 -0.3 0.5 -
F -0.4 - 0.6 -

4 F 516 -0.5 -0.5 0.4 -0.4
F -0.7 -0.4 0.4 -0.3

5 M 363 -0.7 - 0.4 -0.4
M -0.4 -0.3 - -

Table 8.2: Correlation coefficients between APL, OR and JAT, TS and ER (Significant at 95%, t-test  
with n-2 degrees of freedom, where n equals the length of the data).TDD: Total Dialogue Duration
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A correlation between APL and turn share, TS was not found. However, APL is correlated with a 

related measure, hereafter  exchange rate,  ER, defined as ER = 2·MIN(TS1, TS2).  ER takes values 

between 0 and 1 and expresses the degree to which a frame is dominated by either speaker (zero) or 

shared (1). The correlation between APL and ER is negative, which suggests that speakers shorten 

their pause length when exchange rate is high, i.e. when the floor is shared more equally. 

The results of  (Kousidis et al. 2009b), support the argument that the proposed representation of 

spontaneous dialogues  can be useful  in  verifying the effect  of  factors  such as JAT and ER on 

temporal features. One advantage of this representation is that it moves away from turn attribution 

and, consequently, the shortcomings of defining turns solely from the chronograph of the dialogue. 

Clearly, meaningful turn segmentation can only be achieved by discourse analysis which, in the 

context  of  SDS,  pre-requires  automatic  speech  recognition  (ASR)  and  spoken  language 

understanding (SLU) output. However, it is desirable for the interaction management component 

(which manages when the system can speak to the user or when the user’s  turn has ended) to 

operate independently of these components, due to their higher computational load and significant 

error  rates  in  practice.  For  this  reason,  spoken  dialogue  systems  have  to  rely  on  low-level 

information from the signal to manage turn-taking behaviour, namely the duration of turn-switch 

pauses and prosodic features such as final vowel lengthening. The approach presented here provides 

an alternative solution: the interaction management component can adapt to the ongoing session and 

adjust its thresholds and latencies according to JAT and ER. It would be naive to consider that the 

methodology outlined here could replace the current methods of SDS design; rather, the proposed 

representation should at best be seen as a starting point towards more flexible representations of the 

dynamics of human (and human-computer) interaction, which in turn may push naturalness of SDS 

forward. 

One argument against the representation presented here is that there is loss of information due to the 

averaging “sliding window” process. Indeed, the length of the applied frame determines the time 

resolution of the representation. But, as indicated by the example analysis presented in (Kousidis et  

al. 2009b),  there  is  nothing  preventing  the  use  of  the  original  chronograph in  order  to  extract 

features and analyze them  in combination with the proposed representation. The purpose of the 

averaging  is  only  to  extract  information  about  the  turn-share  distribution  properties  in  the 

neighborhood  of  a  segment  (in  this  case a  pause or an overlap).  This  information can also be 

combined with other inputs, such as low-level acoustic and prosodic features.

The size of that neighborhood, or frame-length, is another feature that needs to be considered. As 

discussed earlier, there is a trade-off between time resolution and frame length. It is desirable to 

keep the frames (and consequently the time resolution) small, because ER (or TS) is very sensitive 
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to frame length: the worst-case scenario is that a frame with ER=0.5 is actually two adjacent “half-

frames” with ER = 1 (each speaker dominating one of the adjacent half-frames, yielding an equally 

shared frame). This can be allowed for short frames, because even when this is the case, responses 

are often anticipated  before  they occur, therefore the speakers  know  that there is going to be an 

exchange.  Indeed,  the  correlations  in  Table  8.2 remain  significant  for  frames  with  length 

approximately up to 8 seconds. JAT and TO, on the other hand, are less sensitive to frame length, 

and can be used to monitor lower frequency variations in activation, or engagement in the dialogue.

Another important point is that APL is correlated to JAT and ER, which apply to both speakers 

equally at any time in the dialogue, although each speaker's APL is influenced differently by JAT. 

Therefore, the proposed representation did not reveal a source of variation in APL that would imply 

non-contemporaneous inter-speaker accommodation (see section 8.2.3). This was the case however 

for OR, as it was found to be correlated to TS, therefore a lag zero correlation of the two speakers' 

OR should not be expected unless the dialogue (or part of) is characterized by high ER, in which 

case turn shares tend to be equal most of the time.   

Finally, considering turn shares rather than turns is more consistent with dialogue representations 

which consider both speakers active at any time during the dialogue (Campbell 2009; Heylen 2009). 

Thus, the dialogue schema of Figure 6.1 can be updated in order to represent this view. In a full-

duplex model, properties of speech are not necessarily causally related to the immediately preceding 

time  interval  in  the  interaction,  but  subject  to  the  ongoing interaction  in  which  both  speakers 

participate equally. The process of instantaneous feedback that was discussed in section 7.5 is one 

aspect of this: a/p and temporal (and possibly other) features of speech are subject to variations at 

the instant the feedback is perceived, i.e.  during vocalization and not  after.  The simplest possible 

way to depict this process is to superimpose  Figure 8.9 on  Figure 6.1 resulting in the following 

schema, which is equivalent to the schema proposed in (Heylen 2009) 

Figure 8.11: Representation schema of dialogue including instantaneous feedback
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8.3.3  Accommodation or liveliness: a case study

This section describes further work carried out in order to answer the question introduced in section 

8.2.3:  is  the correlation between the average pause lengths  of two speakers  the result  of  inter-

speaker accommodation, or a result of the overall dialogue liveliness? The findings in (Kousidis et  

al. 2009b) suggest the second hypothesis, as APL is correlated to JAT. However, this does not imply 

that JAT is the only source of variation in APL. 

This study was based on a corpus of 34 telephone dialogues in Japanese (Campbell 2009). The 

average duration of these dialogues is approximately 30 minutes, and the annotation comprises a 

chronographic segmentation for each speaker, in which speech, silence, and non-speech intervals 

are separately labeled. The dialogues were split into four quarters (duration equal to approximately 

7.5 minutes) in order to deal with the data sparsity problem discussed in section 8.2.2. In addition 

the  threshold method  was used to deal with the skewness of the pause length distribution (see 

section 8.2.2). A threshold of 1 second was found to be reasonable based on the actual distribution 

(less than 2% of all pauses were above this threshold). 

Figure 8.12: Correlations between APL of the speakers in 136 dialogue parts equally binned 
per order in time.  X & Y axis in seconds. p<0.01 for all coefficients (t-test with n-2 degrees 
of freedom where n equals the length of the data, confidence intervals in parentheses)
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The quarter split resulted in 136 dialogue parts, which were in turn divided into 4 equal sized bins 

of 34 parts, based on two conditions. First, according to their position in the dialogue (i.e. initial, 

second, third, final), and second according to the JAT. For each quarter, the zero-lag correlation 

coefficient for the two speakers' APL was calculated. 

Figure 8.12 shows the results for the condition of order in time. The average pause lengths of the 

two speakers are positively correlated in all 4 quarters. This constitutes a statistical evaluation that 

speakers accommodate to each other's APL over time, although the resolution is very low due to the 

data sparsity problem. The p-values are low (<0.001) for all quarters, which implies that the frames 

are  too  long and that  the  optimal  frame  length  for  providing  evidence  of  continuous  temporal 

accommodation is less than 7 minutes (i.e. higher resolution can be achieved). This would however 

result in less points for each frame, further widening the confidence intervals. Interestingly, there is 

an  apparent  progressive  declination  in  the  strength  of  the  correlation,  although  the  confidence 

intervals are not narrow enough to validate this. 

Figure 8.13: Correlations between APL of the speakers in 136 dialogue parts equally binned per 
JAT. X & Y axis in seconds. *p<0.05, p<0.01 for all other coefficients (t-test with n-2 degrees of 

freedom where n equals the length of the data, confidence intervals in parentheses)

In the JAT condition (see Figure 8.13), it was found that correlations between the two speakers' APL 

remain significant regardless of JAT. However, the results show that JAT  (a measure of dialogue 

liveliness) is  not the only source of the correlation: first,  the APL does tend to become smaller as 

JAT increases, but the values are distributed over approximately the same range in all cases. In other 
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words, dialogues with lower JAT may have significantly lower APL, despite the fact that JAT and 

APL  have  a  strong  negative  correlation  (see  previous  section). Again,  there  is  an  apparent 

progressive increase in the strength (and significance) of the correlation as JAT increases, although 

the confidence intervals are not narrow enough to validate this.

These two findings provide sufficient evidence that the correlation between the speakers' APL can 

be safely attributed to inter-speaker accommodation. The alternative explanation of dialogue and 

topic liveliness (Bosch et al. 2005; Benus 2009) is not contradictory: the dialogue liveliness comes 

as a  result  of  the interaction between the two speakers,  whose speech is  the only  input  to  the 

process. Liveliness is not a third, external causal factor but an inherent property of the dialogue. An 

identical explanation was given in the case of a/p features (see section 7.5). This holds true even if 

liveliness  is  stimulated,  e.g.  by  means  of  MIP experiments.  Speakers  may  respond  to  such  a 

stimulus, but the degree to which they respond and the effect that this response has on the APL for 

example, is determined by the interaction between them. Otherwise, it would be expected to find 

instances were the APL of the two speakers is not close to the “line” in the plot, but such points are 

extremely rare (one point in lower left plot in Figure 8.13). The linear relationship of APL found in 

various studies  (Bosch et al. 2005; Kousidis et al. 2009b) implies that accommodation of APL is 

ubiquitous, but, due to the complexity of the temporal organization of dialogue, difficult to capture 

with continuous methods such as TAMA or the similar method in (Edlund et al. 2009).

8.4  Discussion 

This chapter has presented two distinct approaches to describing inter-speaker accommodation of 

temporal features, namely a modification of the TAMA methodology described in chapter 7 and a 

novel  dialogue  representation  based  on  turn  shares  and  joint  share  distributions.  The  two 

representations  are  complementary:  the  TAMA  methodology  describes  contemporaneous 

accommodation across speakers, while the turn share representation describes accommodation of 

each speaker towards dialogue activity as expressed by turn share (TS), exchange rate (ER) and 

joint active time (JAT). 

Contemporaneous adaptation is not evident in the TAMA plots (Figure 8.7) and cannot be validated 

statistically in most  cases.  However,  a  portion of the dialogues in  (Kousidis  and Dorran 2009) 

shows remarkably similar  variation in  average  pause length  and overlap  rate  (e.g.  Figure 8.6). 

Similar  results  were  reported  in  (Edlund et  al. 2009),  where  some  of  the  dialogues  showed 

synchronous variation in pause and gap length across the two speakers. This does not necessarily 

imply that no accommodation occurs in the other dialogues; rather, the inadequacy of these serial 
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approaches to capture temporal accommodation consistently arises from other sources of variation 

that are superimposed on the synchronous pattern (such as whether the dialogue is dominated by 

either speaker), as well as several other factors that serial analyses do not take into account, such as 

the different dialogue act categories.   

A significant  factor  that  influences  TAMA analysis  or  other  similar  approaches  is  that  of  data 

sparsity: unless frames are long enough to contain tens of instances, the averages are biased by large 

values and the image is “blurred”. But frame lengths of 3 minutes or more are closer to across-

dialogue comparisons than to a continuous representation. The series are over-smoothed, and the 

apparent similarity in pause length is not more meaningful than an across-dialogue comparison, 

especially in view of the fact that some dialogues last less than 3 minutes. In (Jaffe et al. 2001), an 

optimal lag of 25-30 seconds was reported for rhythmic coordination between mothers and infants. 

However, this coordination was measured on the durations of five vocal states (see section 4.5.6) 

and again only a portion of the interactions showed coordination in pause length. Frame lengths of 

30 seconds contain too few instances of pauses to calculate a robust average value. 

Another possible cause of the inadequacy of serial methods is the annotation of switch-pauses and 

turn attributions solely from the chronograph of the dialogue. The categorization of pauses and 

switch-pauses – or pauses and gaps in (Edlund et al. 2009) – is probably inadequate in describing 

the  temporal  accommodation  of  natural  dialogue.  Such a  representation  might  suffice  for  half-

duplex interactions of the sort found in SDS environments, where there are clearly defined turns (as 

in  request-response utterance pairs).  In  such scenarios,  these categorizations  can be useful.  For 

example, an SDS may adapt its end-pointing threshold and latency according to the user's response 

latency. The time frame for this type of adaptation may be sufficiently long (1-3 minutes) in order to 

ensure robust behaviour, resulting in a slowly adapting system. However, this strategy would be 

inadequate for a system that could engage in free-from conversation.   

An alternative approach was presented in  (Raux 2008), in which the system based its turn-taking 

strategy on incremental  analysis  of prosodic,  semantic and discourse structure information.  The 

system made a decision as to whether a silence from the user was indicative of the end of their turn 

or not. Although this was implemented in a half-duplex interaction task (bus timetable system), 

some  aspects  of  the  analysis  can  be  useful  in  order  to  describe  temporal  accommodation  in 

spontaneous dialogues. In particular, a more informed categorization of pauses based on prosodic, 

semantic and discourse structure factors is likely to yield more informative results on synchronous 

accommodation, similarly to introducing dialog act classification for the a/p features: an overall 

average for each pause category is calculated for the whole dialogue, and each individual pause is 
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given a z-score compared to its category average, prior to calculating a mean z-score for the frame. 

Similarly, the occurrence of overlaps can be calculated as an average of z-scored probabilities of an 

overlap occurring at the actual overlap occurrences. This is perhaps the most promising path for 

serial approaches to describing temporal inter-speaker accommodation. 

The turn share representation addresses the issue of turn attribution from a different point of view, 

totally disregarding turns and replacing them with turn shares. This is not a magical invention, but a 

simple mathematical formulation of a different perspective. Vocalizations of the two speakers are 

considered  as  occurring  simultaneously,  rather  than  in  succession,  in  accordance  to  proposed 

synchronous  descriptions  of  human  interaction  (Campbell  2009;  Heylen  2009).  The  proposed 

approach can be used to model temporal behaviour on the turn share distribution of the current 

frame, as indicated by the strong correlations shown in  Table 8.2. Thus an SDS could adapt its 

threshold based on the level of activity in the dialogue, for example by monitoring JAT. This could 

complement the approach in  (Raux 2008) and further reduce the latency of the dialogue system 

responses. 

The correlation between APL and OR with TS (and ER) is sensitive to the frame length, as the latter 

two  measures are only meaningful if the dialogue frame is reasonably short (shorter then 8-10 sec). 

Otherwise, it is possible that a “shared” frame (high ER, or equal TS) is in fact a concatenation of 

two frames dominated by either speaker, in the worst case scenario. Thus, there is an optimal frame 

length,  similar  to  the “optimal  lag” of (Jaffe et  al. 2001),  in  which the variation due to  either 

speaker dominating the dialogue is most significant. In contrast, the TAMA approach, as well as 

other approaches (Bosch et al. 2005; Edlund et al. 2009) are more robust when considering longer 

frames or even entire dialogues, due to the data sparsity problem. Therefore, these can be seen as 

“macroscopic”  approaches,  while  the  proposed  representation  is  meaningful  only when applied 

locally (short frame length), and can thus be seen as a “microscopic” approach. A combination of 

the two is another possible route for extension of the work described here. The same holds true for 

other microscopic approaches, such as studies on rhythmic entrainment (Jaffe et al. 2001; Benus 

2009). 

In  addition,  the  proposed representation provided evidence that  the  correlation  of  pause length 

between speakers  across  dialogues  is  not  (solely)  the  result  of  higher/lower  “liveliness”  in  the 

dialogue. Firstly, as was also discussed in section 7.5, the overall liveliness of the dialogue is not an 

external influencing factor but a result of the interaction, thus making the point moot. In addition, 

the analysis of the 34 telephone dialogues showed that values of APL are spread over a range of 

100-400 ms  for  the  same  JAT,  which  indicates  that  the  correlation  across  dialogues  is  indeed 

evidence of accommodation (since there are no other external factors). These findings support the 
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argument that the proposed turn-share representation is useful and constitutes a first-step towards 

other flexible dialogue representations which may provide useful insights in describing temporal 

accommodation. 
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9  Implementation of accommodation in SDS
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9.1  Overview

This  section  describes  the  implementation  of  a  Wizard-of-OZ  SDS  environment  with 

accommodating behaviour in order to evaluate (a) whether this stimulates accommodation from the 

user, and (b) whether the user perceives the interaction as more natural in comparison to a control 

condition  in  which  the  system  is  not  accommodating.  This  implementation  comprised 

accommodation of a/p  features,  for which a sufficient  model  of accommodating behaviour was 

estimated  in  section  7.4.4.  As  discussed  in  section  5.3,  the  motivation  for  implementing 

accommodation in SDS arises from the need for more natural interaction between user and system. 

The procedure described here is consistent with the human metaphor paradigm (Edlund et al. 2008), 

which was presented in section 2.2.4.  

It is noted that the work described this chapter constitutes a preliminary indicative approach: a fully 

operational  implementation  of  inter-speaker  accommodation  in  SDS  (Wizard-of-OZ  or  actual 

system) lies outside the scope of this  research,  as the time commitment and resources required 

would classify such an endeavour as a separate project. 

9.2  Design considerations

Two main design principles were considered in order to set-up a test platform for incorporating 

accommodation in SDS. The first one was that the SDS environment should be able to engage in 

“free-form” conversation with the user. This requirement arises from the fact that the description of 

accommodation  and  its  statistical  evaluation  that  were  derived  in  chapter  7 were  based  on 

unconstrained, spontaneous dialogues. The characteristics of that description, namely the TAMA 

methodology, are more suitable to describing this type of speech than more constrained forms, for 

which better descriptions exist. For example, answer-question pairs or “form filling” tasks could be 

dealt with by utterance-based descriptions such as (Nishimura et al. 2008). This does not imply that 

TAMA cannot  describe  accommodation  phenomena  in  such  dialogues;  however,  a  constrained 

dialogue task would not suffice as concrete proof that users accommodate their speech features to 

those of a system in more general cases: unconstrained dialogue is the most general case of speech, 

thus  an  implementation  and evaluation  of  accommodation  in  an  unconstrained  human-machine 

interaction scenario is arguably more “powerful” evidence of the usability of the findings of chapter 

7. 

The second design principle was that the interaction task for this experiment required that the user 

and the system should have an equal role. The underlying motivation for this design choice is again 
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the experimental foundation of the human dialogues on which the description of accommodation is 

based and the fact that talker role has been found to influence accommodating behaviour (Brennan 

1996;  Pardo 2006).  This  adherence to  equal  conditions  in  the  two settings  (human-human and 

human-computer) is dictated by the principles of the human metaphor evaluation paradigm (Edlund 

et  al. 2008),  as  comparisons  between  the  two conditions  are  more  meaningful  when all  other 

variables are kept constant. 

In the human-human condition (chapter 7), accommodation of a/p features was found for dialogues 

in which two participants were cooperating in order to solve a task, namely the “shipwrecked” 

scenario(section 6.4.3 ). Therefore, it was decided to use this scenario in the test platform, in order 

to support the equivalence of the two conditions. All conditions of the experiment were the same: 

the human user and the computer agent had to cooperate in order to rank the 15 objects shown on 

screen in order of importance within 10 minutes (after this time the screen automatically turned off). 

Each subject  would participate in at  least  two randomly ordered sessions,  one of which would 

comprise a non-accommodating computer voice, while the latter would comprise accommodation 

along four dimensions: pitch, intensity, pitch range and speech rate. This could be further expanded 

into several sub-conditions, comprising accommodation of the system either along one dimension, 

all dimensions or any other combination thereof. A different scenario variation would be used for 

each session/subject from the three available: “shipwrecked”, “space-pod” and “Himalayas” (see 

section  6.4.3 and appendix A). Subjects who had participated in the human dialogue recordings 

(mostly Digital Media Center staff) were excluded from this experiment, due to their knowledge of 

the task and the purpose of the experiment in general.

9.3  Technical implementation

The  need  for  unconstrained  dialogue  between  user  and  system  dictated  a  Wizard-of-Oz 

implementation, in which human users situated in a soundproof isolation booth (see section  6.3) 

interacted with a hypothetical SDS, while they were explicitly told that they were talking to a fully 

automated  intelligent  system.  The  latter  was  implemented  as  a  type  interface,  which  the 

experimenter used to provide input to the TTS voice. Since the subjects could only hear the voice 

from inside the booth through headphones, there was no indication that could compromise their 

belief, other than the apparent “intelligence” of the system. The system voice introduced itself as 

“Kevin” and explained the task to the subjects, as they were initially unfamiliar with the task 

The TTS voice used was FreeTTS23 (version 1.2), an open source diphone voice synthesizer based 

23 http://freetts.sourceforge.net/docs/index.php
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on the Festival24 speech synthesis system and a modified version of the FreeTTS Player25 demo (see 

Figure  9.1).  This  interface  comprises  a  text-box  (bottom  of  panel)  in  which  the  wizard 

(experimenter) could type an utterance and instruct the application to play it by pressing the “Speak 

Text” button. In addition, typed utterances are stored in the play list (middle of panel), where they 

can be selected and played using the “Play” button. 

Figure 9.1: The FreeTTS Player interface

The four sliders (two on each side of the panel window) could be used to adjust the a/p features of 

the  synthesized  voice  (pitch,  intensity,  pitch  range  and  speech  rate).  The  source  code  of  the 

application was modified so that these sliders would be automatically adjusted whenever either the 

“Speak Text” or “Play” button were pressed, according to the values found in a text file. This file 

was updated every 10 seconds by a simultaneously running Praat script, which performed on-line 

prosodic analysis of the user utterances. The overall operation is shown in  Figure 9.2. The user 

channel  was  recorded  on  a  workstation  by  a  real-time  recording  application  in  10  second 

increments, thus producing an audio file (WAV format) every 10 seconds. The audio file was then 

loaded  by  the  Praat  script  which  performed  the  segmentation  and  feature  extraction  process 

described in sections  6.5.1 and  6.5.3.  The script thus monitored the user average values per 10-

second frame for each of the four a/p features, for which it calculated the normalized value (divided 

over the overall mean). It then calculated an updated normalized value for the system based on a 

24 http://www.cstr.ed.ac.uk/projects/festival/
25 http://freetts.sourceforge.net/demo/JSAPI/Player/README.html
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simple VAR(1) model of the form shown in  Equation 7.8. The lag terms where preset as 0.7 for 

autocorrelation  and  0.3  as  a  feedback  term  (a  moderate  value).  This  process  was  performed 

separately for each feature. 

The resulting updated values for the a/p features were saved in the update file, which was then read 

by the TTS player upon request of  “speaking” an utterance. The overall delay of the analysis was 

approximately two seconds. Therefore, the system voice accommodated its a/p features based on 

the previous 10 seconds of dialogue with a 2 second delay: Unless the system was required to speak 

within that  period,  then its  features  were “up-to-date”,  according to  the simple VAR(1)  model. 

However,  the  current  interaction  frame  was  not  taken  into  account,  and  utterances  generated 

towards the end of the 10 second frame carried a/p features that were adapted to the previous frame, 

thus missing up to 12 seconds of immediately preceding context in the worst case (10 seconds 

frame length plus 2 seconds for the delay). 

Both the speaker and the TTS voice were simultaneously recorded on the ProTools console  as 

described in section 6.3, providing high audio quality recordings for further analysis. 

9.4  Performance

Upon initial testing of the testing platform, several performance issues were identified. First, the 

segmentation process (silence vs non-silence), as described in section 6.5.1, is semi-automatic and 

requires manual corrections, which were not possible in an on-line system. In addition, annotation 

of the intervals into speech and non-speech was not possible either. Therefore, a certain amount of 

error was introduced by mis-segmentation and mis-annotation of intervals. This error may introduce 

inaccuracy  in  the  prosodic  analysis  and/or  extreme  values  which  would  lead  to  erroneous 

accommodation of the system voice. 
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In order to overcome these problems, an optimized version of the Praat segmentation algorithm 

was implemented. The difference between the two algorithms is that the Praat function uses an 

intensity threshold based on the maximum intensity of the sound, while the optimized version uses a 

preset  value as a threshold. With the Praat version,  the optimum threshold is different for each 

frame, due to the difference in maximum intensity. For example, empty frames were characterized 

as  continuous  speech.  The  preset  value,  on  the  other  hand,  was  adjusted  to  3dB  above  the 

background noise which was considered constant. This is a reasonable assumption, based on the 

fact that activity outside the booth has little effect on the recording (provided that people in the 

room are reasonably quiet). The DC offset (see section 6.5.3)  was kept constant across sessions by 

keeping the same settings for pre-amplification gain and microphone phantom power. 

A comparison between automatic and manual segmentation is shown in Table 9.1. The automatic 

segmentation yields a 19 % increase in relative duration (Equation 7.5), mostly because of mis-

annotation and few exceptional segmentation errors. However, this has little effect on mean pitch 

and mean intensity calculations, and more significant effect on pitch range and speech rate. The 

median error shows a less biased estimate of the expected error, as the average error is biased by a 

few extreme cases. 

Feature Cross-
correlation 

Average error 
(%) 

Median error 
(%)

Relative Duration 0.79 24.5 12.7
Pitch 0.82 2.8 1.7
Intensity 0.82 1.8 1.2
Pitch range 0.73 16.4 12.4
Speech Rate 0.74 12.9 9.4

Table 9.1: Comparison of manual and automatic segmentation derived a/p feature averages for 43 
10-second frames 

Automatic segmentation yields consistently larger intervals, but this can be adjusted by means of 

fine-tuning  the  intensity  and  duration  thresholds.  The  trade-off  mainly  affects  the  correct 

segmentation of within-utterance pauses and short utterances competitively. The latter were favored, 

as they may be the only contributions of the user in a given frame. However, this leads to longer 

duration and, as a result, to slower speech rate, which is calculated in vowels/minute. Similarly, 

pitch  range  is  affected  by errors  in  the  pitch  detection  algorithm when  applied  to  non-voiced 

regions.  In  conclusion,  the  overall  accuracy  was  deemed  as  sufficient  for  the  purposes  of  the 

experiment. In order to avoid the effect of extreme errors, the adapted a/p features of the TTS voice 
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were limited to ±30% of the default voice settings.  

Another  performance  issue  identified  was  that  of  the  responsiveness of  the  system.  The 

experimenter had to type the system utterances in the FreeTTS Player text input box, a process that 

introduced a delay in the responses of the system. This latency works against the perception of the 

system as being able to  interact  in  natural  dialogue.  Whether this  would have an effect  on the 

accommodating  behaviour  of  the  subjects  could  be  shown  only  by  actually  performing  the 

experiments.  Nevertheless,  some action was taken to remedy the situation,  namely that  of  pre-

loading  the  play  list  of  the  FreeTTS Player  application  with  a  number  of  common utterances 

(“yes”,”no”,”hello”, “do you agree?”, etc.) as well as some task-specific words (names of the 15 

scenario objects and other scenario-specific words).  However, the actual experiments showed that 

this process did not improve performance significantly, as the experimenter had to type complex 

responses in order to contribute to the decision process, and there was no way to combine objects in 

the play list together in order to generate a single utterance. As a result, the experimenter had to type 

or select shorter utterance fragments, which introduced delays between each fragment. In addition, 

the  TTS  synthesizer  applied  an  utterance  intonation  contour  to  each  fragment,  which  lead  to 

individual phrases having inappropriate intonation and long utterances to sound “broken”. 

The TTS voice itself was of very low quality. It is based on diphone concatenation (Dutoit 1997), 

which yields unlimited domain coverage, as any orthographic text can be rendered into speech by 

combining (concatenating)  units  (diphones)  from a database.  The  specific  TTS voice used was 

Kevin16,  a  16-KHz diphone voice.  It  is  fairly intelligible  but  sounds robotic  and monotonous. 

FreeTTS also supports  MBROLA26 voices,  which  are  of  significantly higher  quality.  However, 

implementation  of  an  MBROLA voice  in  FreeTTS  was  not  possible  due  to  operating  system 

compatibility issues in the available workstations27.

9.5  Results

The severity of the performance issues described in the previous section became more apparent 

during the first two actual experiments. These were carried out with a male and a female subject, 

each participating in two sessions (accommodating vs non-accommodating condition). In particular, 

the delayed responses of the system voice resulted in the dialogue being significantly slow and 

“broken”. An indication of this is given by the overall JAT which was 0.5 for the male subject and 

0.4 for the female subject (in the accommodating conditions). These values are “abnormal”,  as 

26 http://tcts.fpms.ac.be/synthesis/mbrola.html(01/04/2010)
27 FreeTTS does not support MBROLA voices for Microsoft Windows XP and Mac OSX 10.5 
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typical values for human dialogues are typically higher than 0.7 (see section 8.3.3). Thus, frames of 

10 seconds that were used in the online analysis have very short relative duration (less than 0.1) 

which means that the a/p feature average estimates are not reliable. In addition, subjects tended to 

solve the task on their own, rarely asking the opinion of the intelligent system. This was mostly the 

case for the female subject. The male subject had a more cooperative attitude, asking the system for 

clarification  regarding  the  type  and  function  of  objects,  but  overall  both  subjects  made  final 

decisions  on the  ranking  of  the  objects  on  their  own.  Therefore,  the  “equality of  role”  design 

principle could not be met. 

When asked to rate the two systems they had interacted with for “naturalness” on a scale 1-10, both 

subjects  gave  equal  ratings  (male  speaker:  6/10,  female  speaker:  5/10).  Therefore,  the 

accommodating behaviour of the system was not perceived explicitly. Importantly, neither subject 

realized that the system was in fact mediated by a human experimenter, despite the fact that one of 

the  subjects  is  a  speech technology research  student.  The  most  likely cause  of  this  is  that  the 

speakers perceived the system through an interface metaphor (see section  2.2.4), due to the low 

quality voice. 

The recorded audio files for the accommodating condition underwent off-line analysis, following 

the procedure described in chapter 7. Due to the sparsity of the utterances, a TAMA frame length of 

60 seconds (50% overlap) was used. Significant cross-correlation coefficients were found only for 

the  male  speaker  for  mean  pitch  and  mean  intensity.  The  confidence  intervals  for  the  cross-

correlograms were large, because the longer frame length leads to less points in the time series 

(confidence intervals  are  ±2/√N, where N is  the number of points  in  each series).  A modeling 

procedure (described in section  7.4.4) yielded the term values shown in  Table 9.2. Model A is a 

model with “fixed” autocorrelation terms, φ11 (Equation 7.11) derived from the subject's time series 

individually,  while  the  feedback  terms  are  estimated  by multiple  linear  regression  (see  section 

7.4.4). Model B is a model in which all three coefficients are estimated by multiple linear regression 

(Equation 7.10). 

Feature Model A Model B
Term φ11 φ12 θ1 φ11 φ12 θ1

Pitch 0.39 0.41 0.28 0.32 0.42 0.35

Intensity 0.30 0.07 0.41 0.03 0.12 0.56

Table 9.2: Accommodation models for male user interacting with accommodating system

Thus, the large feedback terms φ12  and θ1  indicate convergence from the user towards the system 

163



along these dimensions. The models are not as good fits as those for the human dialogues, thus the 

evidence of accommodation is not as concrete.  Figure 9.3 shows the fitted models plotted along 

with the actual user values. The models fit well during the first half of the dialogue but less well 

during the later parts. Exclusion of outlier values such as the last value in each original series might 

yield a better fit. Interestingly, the zero-lag feedback term,  θ1, is significant for both a/p features, 

while  the  lag-one feedback term  φ12  is  significant  only for  pitch.  This  would  imply a  shorter 

“optimal  lag”  (Jaffe et  al. 2001) for  accommodation  of  intensity  than  for  pitch.  A physical 

interpretation  of  this  finding  can  be  that  accommodation  of  loudness  (of  which  intensity  is  a 

correlate) occurs more promptly than that of other a/p features. This finding is consistent with the 

results of (Kousidis et al. 2008), where accommodation of intensity was apparent in shorter frame 

lengths, while accommodation of pitch, pitch range, and speech rate required a longer frame length 

in order to increase robustness. 

The similarity of the two models is, as discussed in section  7.4.4, the result of linear regression, 

which minimizes the error in one dependent variable based on two (model A) or three (model B) 

independent variables. Thus, the series are  over-fitted.  The difference between the two models is 

that model A is biased towards autocorrelation, by keeping the autocorrelation term fixed, while 

model B finds the best fit based on all three terms. Therefore, the values of the terms are estimates 

of the contribution of each variable to the minimum error model.      

Figure 9.3: TAMA plots of mean Pitch and Intensity and two fitted models (A,B)
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9.6  Discussion

This chapter has described a first attempt towards implementing accommodation of a/p features in a 

simulated (Wizard-of-Oz)  SDS environment,  based on the  TAMA method.  As discussed in  the 

previous section, this attempt was generally unsuccessful, due to performance issues which were 

not resolved due to resource and time constraints. In particular, the main issues were the latency of 

the system, the robotic, low-quality voice, and the error in the automatic segmentation process, in 

that  order.  These  issues  severely  affect  the  performance  of  the  implementation.  The  results 

described in the previous section can be considered as a primary indication of user accommodation 

(as described by TAMA) at best. This section discusses possible improvements to the experimental 

design.

The problem of responsiveness, which was the most severe, can be addressed by extending the 

functionality of the text input interface. One possible extension is to implement an auto-complete 

function,  similar  to  that  used in  many web interfaces:  upon input  of  one character,  the system 

suggests a list of possible word candidates which makes typing faster. Another improvement could 

be to implement a touch-screen interface, through which the experimenter can select the suggested 

words even faster. A further improvement, which was utilized in  (Bell et al. 2003), would be the 

addition of another (or more) experimenter(s). In that study, each experimenter was responsible for 

a  different  portion  of  the  system's  utterances  (backchannels,  “buying  time”  for  the  other 

experimenter to complete forming an utterance etc). In the experiment described here, this could be 

implemented as a client-server architecture, in which each experimenter would be able to submit 

requests through a client interface, while the server would play the utterance queue. It is doubtful 

whether these improvements would provide for “spontaneous” reaction from the system, but it is 

likely that the JAT would be increased to a reasonable value (above 0.6), while the “system” would 

be able to contribute more actively to the task. 

The  TTS  voice  problem  is  easier  to  rectify,  as  several  alternatives  are  available  freely  and 

commercially.  The  replacement  of  Kevin16  with  a  more  natural  sounding  voice  would  vastly 

improve  the  perception  of  the  system  through  the  human  metaphor  (see  section  2.2.4),  thus 

encouraging accommodation from the users that would resemble the behaviour exhibited in human 

dialogues. It is possible then that the subjects would rate the accommodating system favorably in 

comparison to a non-accommodating system, but also even more favorably depending on whether 

they themselves accommodated towards the system. This hypothesis can only be validated after an 

appropriate test platform is implemented. 
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The implementation of the online prosodic analysis  can also be improved. A first  improvement 

would be to implement incremental  analysis  based on a real-time VAD algorithm. In this  case, 

frames  would  not  be  placed  at  fixed  positions,  but  relative  to  the  generated  utterance.  Thus, 

adaptation of a/p features would be based on the immediately preceding context at all times (barring 

the delay), while still including older frame averages as lag terms. This would enable testing of 

more elaborate models, which would include lag-zero and lag-one terms, such as the models of 

equations  7.10 and  7.11.  Further,  a  more accurate  VAD algorithm would enable  more accurate 

measurements of the user's a/p features, although the measurement error in the experiments that 

were carried out was probably the least significant performance issue.

The  online  analysis  and  accommodation  model  component  is  in  itself  dialogue  and  task-

independent and can be used in other interaction settings and experiments. It can be implemented in 

existing SDS architectures, in order to test the perception and evaluation of accommodation in a/p 

features  in  existing  applications  of  SDS.  In  addition,  the  TAMA  methodology  is  feature 

independent,  which  indicates  that  TAMA-based  accommodation  models  can  be  used  to  design 

systems that accommodate to the user in other modalities, such as head/body movement of the 

avatar. 

As a component of a complete SDS architecture, a TAMA module could share resources with other 

functions. Such resources include the VAD algorithm, as well as the feature extraction stage (with 

ASR). Therefore, the addition of accommodating behaviour to existing SDS by means of a TAMA-

based  module  would  add  a  negligible  amount  of  computational  load,  namely  the  VAR model 

equations. The best place to add the TAMA module in the general SDS architecture (see Figure 2.2) 

is the interaction manager, as conceptually inter-speaker accommodation is a behaviour related to 

the interaction between interlocutors. However, prosodic adaptation would have to be implemented 

in the utterance generation phase, as a modification of the input to the TTS module. In case of a 

system  with  pre-recorded  prompts,  prosodic  modification  could  be  performed  online  on  the 

prompts,  or,  in  case  this  is  computationally  expensive,  several  instances  of  the  prompts  with 

different prosodic characteristics could exist in the prompt database. 

In conclusion, while the experiment described in this chapter failed due to technical limitations and 

design  inadequacies,  the  suggested  improvements  point  to  an  appropriate  implementation  of 

accommodation  in  SDS  that  can  test  user  perception  and  user  response  to  such  behaviour  in 

accordance to the human metaphor paradigm. 
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10.1  Conclusions

The  main  objective  of  this  thesis,  as  stated  in  the  introduction,  was  the  the  formulation  of  a 

quantitative  description  of  inter-speaker  accommodation  of  prosodic  and  temporal  features  in 

spontaneous human dialogues that is useful from the point of view of SDS, in view of implementing 

similar behaviour in human-machine interaction where appropriate. 

The above objective  was pursued by the formulation of TAMA and the statistical modeling of 

accommodation that was presented in chapter 7. This approach proved sufficient for a/p  features, as 

the  feature  averages  calculated  from overlapping  frames  were  robust.  The  analysis  revealed  a 

picture of ubiquitous accommodation for mean pitch and mean intensity, while accommodation of 

speech rate and pitch range was less common. However, the measurements for the latter features 

were less robust and an optimization of the automatic feature extraction procedure may yield results 

which are comparable to those found for mean pitch and mean intensity. 

The statistical models presented in section 7.4.4 provide a measurement of the strength, or degree of 

accommodation for each speaker, namely the feedback terms of the models. However, these models 

assume accommodation as deterministic and other variations as random, thus the actual coefficient 

values  are  valid  for  across-speaker  comparison  purposes  only:  they  indicate  whether  speakers 

accommodate  their  features  or  not,  the  direction  of  accommodation  (uni-directional  or  bi-

directional), as well as which speaker accommodates more towards the other. They do not indicate 

the portion of variation in a/p features that is accounted for by accommodation. The latter can be 

estimated by the strength of regression (R2),  but this estimate is biased unless other sources of 

variation are taken into account and a principal component analysis is perfomed.    

An application of TAMA to temporal features was presented in chapter 8. TAMA analysis of mean 

switch-pause duration and frequency of overlap speech during turn exchanges was not as powerful 

as in the case of a/p features, due to data sparsity.  As a result,  there is a more severe trade-off 

between resolution of the representation and reliability of the calculated frame feature averages. 

Further, TAMA analysis of temporal features resulted in similar conclusions with those of (Edlund 

et al. 2009): only a portion of the analyzed dialogue shows synchronous accommodation of these 

features. Similarly to  (Edlund et al. 2009), it was concluded that additional sources of variation 

“override” accommodation of these temporal features. 

A novel dialogue representation, comprising turn shares and turn share distributions was presented 

in chapter 8. This representation can be derived directly from a chronograph of the dialogue and 

approaches the problem of turn-taking from a different angle, namely disregarding the idea of turns 
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and  considering  both  speakers  as  simultaneously  active.  Turn  shares  express  the  proportional 

amount of contribution of each interlocutor in a given time-frame, while turn distributions express 

the overall activity, in terms of the proportional amount of vocalization,overlap and silence in the 

dialogue.  The  proposed representation  proved useful  in  accounting  for  a  significant  amount  of 

variation in average switch-pause length and frequency of interrupting overlaps, as they were found 

to be correlated to dialogue activity (as expressed by JAT), turn share and exchange rate (ER), 

which  is  derived  from  turn  share.  In  addition,  a  follow-up  analysis  based  on  the  proposed 

representation  provided  evidence  towards  attributing  the  across-dialogue  linear  relationship  of 

average  pause  length  across  speakers,  found  in  (Bosch et  al. 2005),  to  inter-speaker 

accommodation, rather than to dialogue liveliness. Although average pause length is correlated to 

liveliness, it was shown that this correlation does not account for the similarity across speakers, 

although there was some evidence of similarity increasing with liveliness. The latter finding was 

also reported in (Nishimura et al. 2008). 

Although a model was not formulated for temporal features, as in the case of prosodic features, the 

findings provide useful insights for SDS with conversational capabilities (i.e. not half-duplex turn-

taking which is the current norm). One of these insights is the implementation of the turn-share 

representation in  SDS interaction management,  as it  could be used to  improve end-pointing by 

monitoring the turn-share distribution online: in an end-pointing approach such as that of  (Raux 

2008), which uses silence thresholds according to detection of TRPs based on the dialogue context 

(prosodic or semantic), online adaptation of the thresholds according to the turn-distribution  could 

improve performance. In contrast, synchronous accommodation of switch-pause length would  not 

be a sufficient strategy for “free-talk” SDS, as this model is too simplistic to characterize human 

communication. It is possible, however, that such a model would be sufficient for applications that 

are half-duplex by definition (e.g. information retrieval or travel booking), in which case there is a 

straightforward succession of turns in the interaction. 

A  preliminary  experiment  of  implementation  of  an  a/p  accommodation  model  in  an  SDS 

environment was presented in chapter 9. Several  performance issues hindered the possibility of 

acquiring useful information from these experiments. However, some components of the method, 

such as the online prosodic analysis and monitoring module performed well and could be re-used in 

other  experiments,  while  the  testing  platform  can  be  significantly  improved  by  a  number  of 

optimizations described in chapter 9. In addition, in one of the two experiments performed, the user 

was found to moderately accommodate his pitch and intensity to that of the system. Therefore, there 

is at least a minor indication of continuous user accommodation towards a TTS voice, which is in 
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agreement with findings of studies that performed comparisons across dialogues (Oviatt et al. 2004; 

Suzuki  and Katagiri  2005).  An optimization of  the  experimental  design  is  required in  order  to 

evaluate the magnitude of benefits for SDS. 

10.2  Future work

A number  of  possible  extensions  of  the  work  presented  in  this  dissertation  have  already been 

discussed in chapters 7,8 and 9. This section summarizes some of these directions for future work. 

(a) Extensions to TAMA: A combination of TAMA with dialogue act categorization, which 

can be obtained by one of the automatic classification methods presented in section  2.4.4, 

would yield a more accurate description of accommodation of a/p features. Such an approach 

would comprise a global feature mean per dialogue act type, and individual utterance features 

would be normalized over their respective global mean, prior to calculating the frame average. 

Thus, variation due to the inherent prosodic properties of dialogue acts would be accounted 

for  prior  to  assessing  accommodation.  This  approach  is  appealing  because  dialogue  act 

classification can be performed automatically, using prosody as a classifier. Another possible 

extension  of  the  work  presented  here  is  the  application  of  TAMA to  other  modalities 

(body/head movement)  or to other measurements of the same features (e.g. pitch/intensity of 

stressed syllables), which is relatively straightforward as TAMA is feature-independent. 

(b)  Extensions  to  the  statistical  model:  The  bi-variate  models  presented  in  section  7.4.4 

consider  variation  due  to  accommodation  as  deterministic,  while  the  random component 

accounts  for  all  other  variation (utterance-specific,  paralinguistic,  emotional  content).  The 

models  could  be  optimized  by  including  exogenous  factors  that  separately  model  other 

sources of variation (e.g. an emotional model). Another possibility is to formulate a model 

which considers co-integration (see section  7.4.4). This approach would comprise a linear 

combination of the two component series, such as their absolute difference, which can be 

considered as a measure of distance between interlocutors (for normalized feature averages). 

Finally, accommodation along different modalities can be modeled simultaneously, in an n-

variate  model,  which would include different  features from each speakers  as independent 

variables.  However,  such models are characterized by increased complexity:  the increased 

number of independent variables significantly increases the possibility of a type I error, i.e. 

cross-correlations could in fact occur randomly. This disadvantage is counter-balanced by the 

possibility to assess accommodation of different features that may have the same underlying 

cause: for example, the effort code (Gussenhoven 2005), is manifested in both pitch range and 
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articulation  precision.  Thus  accommodation  of  effort  could  be  manifested  along different 

modalities by each interactant. 

(c)  Extensions  to  studying  temporal  accommodation:  Variations  in  pause  duration  and 

frequency of  overlaps  can  be  attributed  to  many factors.  Perhaps  a  possible  route  is  the 

combination of discourse analysis and accommodation measurements, such as the application 

of TAMA presented in chapter  8.2 and the approach of (Raux 2008). In this case, actual pause 

durations  could  be  normalized  (z-scored)  according  to  a  normal  distribution  of  durations 

following specific dialogue acts. Similarly, the occurrence of an overlap could be z-scored 

according to the probability of an overlap occurring at a specific point in the discourse. This 

would enable an assessment of accommodation based on whether interactants tend to shorten 

their silent intervals synchronously, while taking variations that are dialogue-act specific into 

account.  Another  possible  route  is  to  investigate  the  relationship  between  temporal 

organization and speech rate, either by accounting for pause duration shortening due to faster 

delivery  rate,  or  by  investigating  whether  accommodation  of  speech  rate  and  temporal 

features  tend  to  co-occur.  Finally,  it  is  possible  to  combine  the  turn  share  representation 

presented in chapter 8 with a serial approach, such as TAMA or the one proposed in (Edlund 

et  al. 2009),  in  order to compare temporal  features  across speakers,  while accounting for 

variation due to turn share and liveliness, as expressed by JAT. 

(d) Extensions to the SDS implementation test platform:  In the absence of SDS that can 

engage in human-like conversation, Wizard-of-Oz experiments are the most plausible solution 

of evaluating the benefits  of implementing accommodation in  human-machine interaction. 

The performance optimizations described in section  9.6 (faster prompt generation/selection 

interface,  multiple  experimenters,  more  accurate  VAD  algorithm,  better  TTS  voice)  can 

provide  for  an  adequately  human-like  conversation,  in  order  to  investigate  continuous 

accommodation of a/p features in human-machine dialogues. Another option is to include the 

online prosodic analysis module and accommodating model in existing SDS architectures and 

applications, for which subjective evaluation procedures are well-established  (Moller et al. 

2007). An analogous evaluation approach for temporal features is far more challenging, as any 

kind of utterance generation, signal manipulation or decision process invariably introduces 

latencies before system prompts, thus making accommodation of temporal features difficult. 

However, it is still possible to assess the benefits of temporal accommodation by considering 

micro-domains (Edlund et al. 2009), in which the interaction is so constrained that latencies 

can be minimized.
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APPENDIX A: Recorded dialogues and analysis results
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This appendix presents additional information on the corpus of dialogues acquired as described in 

section 6.4. The dialogues are categorized in three types: 

a) Dialogues  recorded  using  the  “shipwrecked”  scenario  process  (section  6.4.3).  These 

dialogues are coded 'sn' in the tables below, and they include the additional two scenarios 

“space pod” (Figure A.1) and “Himalayas” (Figure A.2). The specific scenario is denoted in 

a separate column, named 'info' in the tables. 

b) Dialogues using a MIP procedure, in which participants are given a score every time they 

rank one of the items (section  6.4.3).  These dialogues are coded 'msn',  and the specific 

scenario used in the session is denoted in the 'info' column.

c) Dialogues which comprise unconstrained conversation between two participants situated in 

the isolation booths (section 6.4.1). These dialogues are coded 'un' in the tables. The 'info' 

column contains the main topic of conversation adopted by the speakers. 
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FIGURE A.1 – Himalayas scenario

FIGURE A.2 Space pod scenario
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TABLE A.1 – Prosodic Features

Dialog
ue

Info 
SPEAKER A SPEAKER B

Gender Mean 
Pitch
(Hz)

Mean
Intensity

(dB)

Pitch 
Range*

(Hz)

Speech
Rate

(vowels/
min)

Gender Mean 
Pitch
(Hz)

Mean
Intensity

(dB)

Pitch 
Range*

(Hz)

Speech
Rate

(vowels/
min)

s1 Shipwrecked M 121 70.5 45 227 M 125 73.3 44 200
s2 Shipwrecked M 113 65.6 41 250 F 202 60.2 104 246
s3 Himalayas M 139 72.1 31 214 M 109 66.1 26 227
s4 Nuclear M 105 72.0 23 236 M 119 70.8 37 257
s5 Shipwrecked F 215 70.8 96 194 M 164 70.0 30 233
s6 Shipwrecked M 103 68.3 24 231 M 161 61.7 30 222
s7 Shipwrecked M 136 69.0 42 224 M 163 69.3 39 229
s8 Shipwrecked F 199 63.6 110 239 F 210 60.4 79 226
s9 Space pod F 193 60.2 75 242 M 137 66.7 44 173
s10 Space pod M 117 69.4 25 227 M 144 69.1 46 178
s11 Shipwrecked M 144 79.7 32 216 M 138 62.0 33 217
s12 Space pod M 142 62.4 51 210 F 222 61.2 121 192
s13 Himalayas F 197 61.6 71 221 M 130 65.2 38 175
s14 Shipwrecked M 140 70.7 41 183 M 166 59.8 39 216
ms1 Shipwrecked F 225 57.4 93 228 F 214 62.4 96 225
ms2 Shipwrecked F 253 69.7 136 245 M 127 70.3 51 209
ms3 Shipwrecked F 199 67.3 68 243 F 182 65.7 95 262
ms4 Shipwrecked F 228 73.3 80 225 F 237 67.6 100 220



ms5 Shipwrecked M 139 68.1 42 193 M 155 62.8 42 211
ms6 Shipwrecked M 118 72.8 44 173 M 121 70.3 38 219
ms7 Shipwrecked F 208 60.4 109 229 F 196 63.2 75 220
ms8 Shipwrecked M 123 64.5 81 216 M 122 69.9 37 186
u1 Entertainment M 128 77.5 36 201 M 135 77.1 53 161
u2 Sports/Scotland M 140 68.0 41.3 230 M 118 66.2 38 222
u3 Various M 121 76.1 50 190 M 130 74.6 52 224
u4 Children M 118 74.5 59 191 M 113 76.9 46 167
u5 Environment M 131 65.7 54 164 M 120 61.2 50 214
u6 Work, society M 107 47.0 90** 213 M 126 48.0 127** 236
u7 Work in Ireland M 128 71.0 74** 221 M 125 73.0 73** 243
u8 Study, Slovenia M 110 60.0 79** 217 F 167 61.0 132** 289

* Pitch range calculated as 2*pstd, the standard deviation of speech interval pitch
** Pitch range calculates as pmax - pmin, the maximum and minimum pitch values in the speech interval pitch contour (not stylized) 



TABLE A.2 – Turn Distribution and duration

dialogue TA
(%)

TB
(%)

TP
(%)

TO
(%)

TSA TSB JAT TDD
(sec)

s1 44.9 29.7 19.7 5.7 0.59 0.41 0.80 524
s2 43.8 14.6 36.7 4.9 0.71 0.29 0.63 622
s3 37.5 33.5 20.7 8.3 0.52 0.48 0.79 488
s4 50.0 25.1 18.3 6.6 0.64 0.36 0.82 280
s5 27.2 28.1 40.2 4.5 0.49 0.51 0.60 465
s6 33.0 23.1 37.1 6.9 0.57 0.43 0.63 351
s7 35.9 28.3 31.9 3.9 0.52 0.48 0.68 636
s8 29.0 22.1 38.9 10.0 0.55 0.45 0.61 517
s9 20.5 43.9 18.4 17.2 0.38 0.62 0.82 428
s10 35.6 32.9 16.5 15.1 0.51 0.49 0.84 492
s11 49.3 18.2 27.3 5.3 0.70 0.30 0.73 595
s12 40.3 24.3 22.1 13.3 0.59 0.41 0.78 384
s13 18.3 46.4 20.2 15.1 0.35 0.65 0.80 354
s14 42.4 29.8 20.9 6.9 0.57 0.43 0.79 354
ms1 19.5 28.9 45.5 6.1 0.42 0.58 0.55 584
ms2 25.3 32.6 31.0 11.1 0.45 0.55 0.69 201
ms3 32.2 30.1 30.1 7.6 0.51 0.49 0.70 643
ms4 34.2 19.2 37.6 9.0 0.61 0.39 0.62 610
ms5 40.8 15.0 42.7 1.5 0.72 0.28 0.57 614
ms6 31.3 27.0 28.3 13.4 0.53 0.47 0.72 683
ms7 23.8 30.0 37.0 9.2 0.46 0.54 0.63 599



ms8 34.5 25.7 32.1 7.7 0.56 0.44 0.68 595
u1 49.9 27.8 8.6 13.7 0.61 0.39 0.91 1728
u2 35.1 45.3 8.5 11.1 0.45 0.55 0.92 538
u3 39.1 38.1 6.1 16.7 0.50 0.50 0.94 813
u4 32.5 51.1 6.5 9.9 0.41 0.59 0.94 403
u5 40.0 37.1 15.1 7.8 0.52 0.48 0.85 1266
u6* - - - - - - - 1781
u7* - - - - - - - 1805
u8* - - - - - - - 1330

* Dialogues analyzed in (Kousidis et al. 2008)

TA: Percentage of vocalization by speaker A
TB: Percentage of vocalization by speaker B
TP: Percentage of silence
TO: Percentage of joined (overlapping) vocalization
TSA: Turn share of speaker A
TSB: Turn share of speaker B
JAT: Joint active time
TDD: Total dialogue duration



TABLE A.3 – TAMA of A/P features and statistical evaluation of accommodation

Dialogue
Frame length: 30 sec
Time step: 20 sec

Frame length: 20 sec
Time step: 10 sec

Pitch Intensit
y

Pitch 
range

Speech 
rate

Pitch Intensit
y

Pitch 
range

Speech 
rate

s1 - - - 0 - - - -
s2 - -1 - - - - 1 -
s3 - - 0(-) 1* -1(-) - - -
s4 - - - - 1 0 - -
s5 - - - - 0 0,1* - -
s6 - -1 0 - - - - -
s7 - 0 - 1 1 0 - -1,1
s8 - - - - 0 0 0 -
s9 - - - - 0,1 0,1 1 -1

s10 - - - - 0 0 0 -
s11 - - - - - 0 0 -
s12 - - - - 1 0 - 1
s13 - - - - 0 0 0* -
s14 - - - 0* 0,1 - - -
ms1 - - - - 0,-1 0,-1 0 -
ms2 - - - - - - 1* 0*
ms3 - - - - 0 0 - 0
ms4 - - - - -1,0* 0 0 -
ms5 - - 0* 1* 0 0 - -
ms6 - - - - 0 0 0 1
ms7 - - 0 - 0 0* - -
ms8 - - 0 - 0 0* - -
u1 1 -1 1 - -1* - - -
u2 0 - - 1* 0* 0* 1 -
u3 - 0 0* - 0,1 0* - 0*
u5 - - - 0 - 0 1 -

* cross-correlation coefficients significant at 90% confidence intervals, all other coefficients 
significant at 95% confidence intervals
Numbers indicate lags at which positive coefficients are found in the cross-correlogram
(-) signifies a negative coefficient 
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TABLE A.3 – Average pause length and overlap rate 

Speaker  A  B
Dialogue APL 

(ms)

APL
d<1
(ms)

APL
d<2
(ms)

APL
median

(ms)

APL
log

(ms)

OR

(%)

APL 

(ms)

APL
d<1
(ms)

APL
d<2
(ms)

APL
median

(ms)

APL
log

(ms)

OR

(%)
s1 451 344 414 330 331 18,5 493 298 493 338 347 30,6
s2 710 374 532 513 483 12,3 544 334 442 350 374 26,9
s3 413 350 413 336 313 32 431 301 431 315 293 28,8
s4 343 307 319 256 267 24,4 375 324 375 312 290 37,7
s5 907 293 492 420 436 18,9 865 541 395 541 541 22,3
s6 890 282 381 264 333 23,3 412 300 384 265 273 35,3
s7 687 300 487 421 410 14,8 682 299 447 424 410 23,1
s8 775 296 644 535 502 30,4 1017 309 544 632 597 28,2
s9 335 290 335 224 222 44 353 310 353 296 268 41,2

s10 382 359 382 299 296 42,3 412 326 366 288 282 45
s11 728 331 547 477 509 18,9 505 234 424 259 278 34,5
s12 483 345 483 369 345 35,9 495 326 495 344 364 34,5
s13 339 317 339 262 264 48,6 408 284 408 300 288 35
s14 492 359 457 382 345 20,5 361 319 361 297 243 32,7
ms1 921 303 738 847 685 39,8 1021 304 729 821 760 15,2
ms2 662 401 541 511 454 25 926 299 567 460 515 33,3
ms3 680 274 589 436 449 31,5 608 362 456 382 382 23,3
ms4 845 321 516 505 513 30,1 844 282 595 532 499 34,5
ms5 926 315 654 680 634 6,6 834 335 581 560 580 12,8



ms6 590 330 540 415 427 34,7 479 367 464 368 358 30,1
ms7 862 277 683 584 514 30,7 884 322 543 564 548 31,6
ms8 696 317 599 482 451 25,7 673 257 482 404 380 36,8
u1 296 292 296 232 234 37,3 405 365 405 328 276 68,1
u2 386 331 386 349 277 42,6 543 396 437 430 385 39,1
u3 288 246 288 212 199 62,1 371 341 371 320 281 63,8
u4 405 380 405 352 306 57,5 281 281 281 224 228 45,1
u5 448 377 435 360 354 39,9 470 371 461 360 341 22,7

APL: Average pause length (arithmetic mean of original pause duration distribution) 
d<1: Distribution skewness corrected by applying a duration threshold of 1 seconds
d<2: Distribution skewness corrected by applying a duration threshold of 2 seconds
APL median: Distribution skewness corrected by taking median value instead of arithmetic mean
APL log: Distribution skewness corrected by taking the arithmetic mean of a log transformed distribution (mean transformed back to ms)
OR: Overlap rate (percentage of speaker utterances initiated during partner vocalization)



TABLE A.4  – Average switch pause and interrupting overlap rate 

Speaker A B
Dialogue APL 

(ms)

APL
d<1
(ms)

APL
d<2
(ms)

APL
median

(ms)

APL
log

(ms)

OR

(%)

APL 

(ms)

APL
d<1
(ms)

APL
d<2
(ms)

APL
median

(ms)

APL
log

(ms)

OR

(%)
s1 408 327 350 288 254 27,3 664 279 664 476 422 40,9
s2 676 306 466 401 361 24,7 656 375 460 496 440 31,9
s3 387 317 387 336 277 50,6 406 305 406 320 254 28,8
s4 233 233 233 208 176 38,6 324 324 324 268 251 37,8
s5 1164 283 464 460 421 26,9 799 421 567 564 530 19,4
s6 1159 298 331 282 324 35,1 378 263 378 267 230 32,1
s7 585 313 477 403 333 25,5 750 264 458 418 416 25,3
s8 723 288 723 557 476 31 957 322 459 592 532 30,6
s9 303 261 303 197 179 46,6 248 248 248 241 201 48,6

s10 288 288 288 213 207 50,5 348 299 348 256 235 40,6
s11 795 311 372 405 468 41,1 470 223 470 256 242 37,5
s12 425 326 425 293 275 36,1 483 323 483 356 348 42,3
s13 375 342 375 300 281 48,5 279 240 279 238 189 58,8
s14 442 289 365 286 261 31,3 349 290 349 276 210 27,9
ms1 668 310 668 548 477 54,4 1148 292 767 960 852 12,8
ms2 683 371 537 552 365 35,8 1114 293 718 664 630 28,6
ms3 512 242 512 320 333 37 536 337 455 320 341 23,5
ms4 779 299 478 453 433 37,3 802 267 544 506 452 34,4
ms5 783 293 652 616 493 7,5 711 347 578 473 544 7,5
ms6 531 310 484 373 367 36,9 434 332 434 344 316 29,7



ms7 815 263 584 503 390 35,6 862 265 554 564 433 39,1
ms8 646 304 612 520 382 29,1 425 231 392 249 237 46,2
u1 179 179 179 152 125 64,9 371 323 371 256 231 50,8
u2 310 227 310 206 201 39,5 396 340 396 269 285 51,3
u3 244 213 244 176 167 51,9 286 255 286 192 191 64,4
u4 266 266 266 176 131 62,5 150 150 150 120 129 56
u5 382 339 382 320 275 44,4 259 226 259 193 163 34,6

APL: Average switch pause length (arithmetic mean of original switch pause duration distribution) 
d<1: Distribution skewness corrected by applying a duration threshold of 1 seconds
d<2: Distribution skewness corrected by applying a duration threshold of 2 seconds
APL median: Distribution skewness corrected by taking median value instead of arithmetic mean
APL log: Distribution skewness corrected by taking the arithmetic mean of a log transformed distribution (mean transformed back to ms)
OR: Overlap rate (percentage of speaker turns initiated during partner vocalization)



TABLE A.5 – Switch pause and overlap rate cross-correlation (60/30)

Frame length: 60   Time step: 30 
Dialogue APL 

(ms)

APL
d<1
(ms)

APL
d<2
(ms)

APL
median

(ms)

APL
log

(ms)

OR

(%)
s1 0,44* - - - - -
s2 - - - - - -
s3 - 0,41* - - - -
s4 - - - 0,74 0,78 -
s5 - - - - - -
s6 - - - - - 0,7
s7 -0,47 - - -0,41 -0,49 0,58
s8 - - - - - -
s9 - - - - - 0,46

s10 - - - - - -
s11 - - - - - -0,39
s12 - - - - - 0,78
s13 0,6 - 0,6 0,51* 0,54* -
s14 0,71 - - - - 0,65
ms1 - - - - - -0,52*
ms2 - - - - - -
ms3 - - - - - -
ms4 0,73 - 0,43* 0,64 0,64 -
ms5 - - - - - -
ms6 - - - -0,69 - -
ms7 - -0,6 - - - -
ms8 - - - - - -
u1 - - - - - -
u2 - - - - - -
u3 - - - - 0,42 -
u4 - - - - - -
u5 - - - -0,31 - -

* p<0.10 all other coefficients significant at p<0.05
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TABLE A.6 – Switch pause and overlap rate cross-correlation (30/20)

Frame length: 30   Time step: 20 
Dialogue APL 

(ms)

APL
d<1
(ms)

APL
d<2
(ms)

APL
median

(ms)

APL
log

(ms)

OR

(%)
s1 0,37* - - - - 0,66
s2 - 0,36* - - - -
s3 - - - - - -
s4 - - - - - 0,48*
s5 - - - - - -
s6 - - - - - 0,66
s7 - -0,32 -0,34* - - -
s8 - - - - - -
s9 - - - - - 0,6

s10 - - - - - -
s11 - - - - - -
s12 - - - - - 0,71
s13 - - - - - -
s14 0,82 0,59 - 0,78 0,6 -
ms1 - - - - - -0,72
ms2 - - - - - -
ms3 - - - - - -
ms4 0,33* - - 0,44 0,30* -
ms5 - - - -0,3 - -
ms6 - - - - - -
ms7 - - - - - -
ms8 - - - - - -
u1 - - - - - -
u2 - - - - - -
u3 - - - - - -
u4 0,83 0,83 0,83 0,83 0,85 -
u5 - - - - - 0,41

* p<0.10 all other coefficients significant at p<0.05
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TABLE A.7 – Switch pause and overlap rate cross-correlation (20/10)

Frame length: 20   Time step: 10 
Dialogue APL 

(ms)

APL
d<1
(ms)

APL
d<2
(ms)

APL
median

(ms)

APL
log

(ms)

OR

(%)
s1 - - - 0,36 0,38 0,63
s2 - - - - - -
s3 - - - - - -
s4 - - - - - -
s5 - - - - - -
s6 - - - 0,31* - 0,78
s7 - - - - - -
s8 - - - - - -
s9 - - - - -0,29*

s10 - - - - - 0,33*
s11 - - - - - -
s12 - - - - - 0,56
s13 - - - - - -
s14 0,7 - - 0,6 0,41
ms1 - - - - - -0,61
ms2 - - - - - -
ms3 - - - - - -0,31*
ms4 - - - - - -
ms5 - - - - - -
ms6 - - - - - -
ms7 - - - - - -
ms8 - - - - - -
u1 -0,26 - - -0,23* -0,24* 0,18*
u2 - - - - - -
u3 0,30* - - - 0,27
u4 - - - - - -
u5 - - - - - 0,49

* p<0.10 all other coefficients significant at p<0.05
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APPENDIX B: Vowel detection and speech rate estimation
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This appendix presents the results of a performance test which was carried out in order to evaluate 

the  accuracy of  four  different  syllable/vowel  detection  methods for  the  purpose  of  speech rate 

estimation (see section 6.5.3). All four methods were implemented as Praat scripts. 

The criteria of selection for these methods were (a) ASR independency, (b) language independency, 

(c) non-requirement of training data, enabling online estimation, and (d) low computational cost. 

Thus the following four methods were selected for testing:

Method 1: Modified beat extractor

(Cummins and Port 1998) presented a “beat extractor” software, with beats being “very close to” 

vowel onsets. The process comprised a filter bank of 6 gammatone filters in the range 300 to 2000 

Hz. The purpose of accentuating energy in this region is to amplify the effects  of the first  two 

formants,  while F0 and high-frequency energy -  which is typically the result  of frication – are 

mostly filtered out. The six energy contours are smoothed and summed, yielding a single energy 

measure  which  is  low-passed  filtered  (20 Hz).  (Cummins  and Port  1998) defined  beats  as  the 

medium points between dips and peaks in this smoothed energy contour, and noted that they occur 

very closely to vowel onsets. 

Since the purpose of the definition of beats was not to enumerate them, (Cummins and Port 1998) 

did not report performance test results. (Barbosa 2009) reported using a modified version of this 

method for vowel onset detection in combination with manual corrections, and also did not report 

performance test results of detection accuracy. 

The method implemented here is an unpublished modification of the beat extractor, implemented as 

a  Praat  script.  This  script  was developed by Hugo Quené and is  available  online28.  It  uses  the 

derivative of the intensity contour to identify steep rises in the intensity contour of a filtered speech 

signal, which typically coincide with vowel onsets. The filter is a pass-band in the range 500-1000 

Hz. Steep rises in intensity are identified as local maxima in the derivative of intensity contour. The 

vowel  onsets  are  assumed  to  be  “half-way”  between  the  local  maximum and  the  moment  of 

maximum intensity. This method has been used for vowel detection in LinguaTag (Cullen 2008b), a 

multipurpose speech annotation tool developed in the SALERO project.

28 http://www.linguistics.ucla.edu/faciliti/facilities/acoustic/vowelonset_v3_praat.txt

188



Method 2: Syllable detection based on intensity contour

The syllable detection proposed in (deJong and Wempe 2007), implemented as a Praat script which 

is  available  online29.  Potential  syllables  are  detected  as  peaks  in  the  speech  signal's  intensity 

contour, with a peak threshold set at 0 or 2 dB over the median intensity of the signal (depending on 

whether the signal is pre-filtered). The preceding “dip” of the intensity contour, prior to the peak, is 

considered in order to discard peaks that are not 2 or 4 dB “louder” than the preceding dip (again 

depending  on  pre-filtering).  In  a  third  step,  peaks  that  are  located  outside  voiced  regions,  are 

discarded. All remaining peaks are considered as syllables and are annotated with a single boundary 

at the peak location. Using this method, (deJong and Wempe 2007) achieved a correlation of 0.7 

between automatically detected and hand-labeled syllable  rates  in  speech “spurts”  with a  fixed 

length of 5 seconds. Correlation was higher (0.8-0.88) for entire speech files. (deJong and Wempe 

2007) noted that the detection algorithm misses mostly unstressed syllables. The comparison of this 

method to the other 3 is based on the assumption of  a 1:1 syllable/vowel ratio. 

Method 3: Derivative of intensity in F1-F2 frequency band

This method is reported in (Barbosa 2009) and is implemented as a Praat script which was kindly 

provided  by  the  author  of  the  study,  Plinio  Barbosa.  This  method  uses  the  derivative  of  the 

smoothed energy contour of the beat extractor (Cummins and Port 1998) in order to locate steep 

rises in the energy of the F1-F2 frequency band. The method requires a setting for speaker gender 

(male or female). 

Method 4: Original beat extractor

The original beat extractor (Cummins and Port 1998), provided as an option is the script provided 

by Plinio Barbosa (see method 3 above). 

Test corpus

The  test  corpus  was  a  collection  of  speech  intervals,  taken  from one  of  the  dialogues  in  the 

“shipwrecked”  corpus  (s2  –  see  appendix  A).  The  dialogue  is  between  a  male  and  a  female 

participant. Approximately half of this dialogue was used for this comparison test. Speech intervals 

were automatically segmented and manually corrected following the method described in section 

6.5.1.  The  speech  intervals  were  manually  transcribed  and  the  number  of  syllables  in  each 

29 http://sites.google.com/site/speechrate/Home/praat-script-syllable-nuclei
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transcribed sentence was counted. Intervals which comprised nonsense words, laughing speech or 

voiceless speech (whisper) were excluded. The results of the manual vowel detection are shown in 

Table B.1 below: 

TABLE B.1 – Reference syllables from the “shipwrecked” corpus

Speaker Total number of 
speech intervals

Total duration 
(sec)

Total number 
of vowels

Male 62 63.43 349
Female 45 43.62 188

Vowels or syllables (in the case of method 4) were automatically detected using each of the four 

detection  methods.  The  results  are  shown in  Table  B.2.  It  is  evident  that  all  methods  miss  a 

significant number of vowels. The most poorly performing method in that regard is method 2, while 

the best performance is obtained using method 1 (LinguaTag). 

TABLE B.2 – Comparison performance of the four automatic syllable/vowel detection 
methods

Speaker Method Number of 
detected vowels

Error
(%)

Correlation

Male
 

ref 349 - -
1 258 26 0.89
2 185 47 0.95
3 250 28 0.86
4 241 31 0.92

Female ref 188 - -
1 169 10 0.95
2 96 49 0.95
3 150 20 0.74
4 152 19 0.92

However, method 2 shows the best correlation to the reference syllable count for both male and 

female speakers: it consistently detects approximately half of the manually labeled syllables and can 

therefore be used as an estimate of speech rate. The actual number of vowels can be calculated by 
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the detected vowels using a linear regression model, as shown in Figure B.1 below: 

FIGURE B.1 – Scatter plot of labeled vs detected vowels

An estimate of speech rate is then calculated using the value derived from the regression model. 

The correlation of the estimate with the reference measure (derived from the hand-labeled vowels) 

is equal to 0.69.

FIGURE B.2 – Speech rate estimation using syllable detection and linear regression

Method 3 has the poorest correlation to the reference vowel count and is thus the least suitable 
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method for speech rate estimation. Finally, method 4 is performing quite well both in number of 

vowels  detected as  well  as  correlation  to  the reference  count.  Both  this  method and method 1 

(LinguaTag) are based on taking the derivative of the energy contour in order to identify steep rises 

adjacent  to  peaks.  Their  performance  can  be  further  optimized  by  adjusting  their  threshold 

parameters.

In conclusion, the vowel detection method used in LinguaTag (method 1) has the best performance 

(smallest  % error of detected vowels), while yielding a high correlation to the reference vowel 

count, which also makes it a good estimate of speech rate, with results comparable to those of 

(deJong and Wempe 2007) (method 2). Thus, this method was chosen for speech rate estimation in 

the feature extraction phase described in section 6.5.3. 
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APPENDIX C: Code implementations
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This appendix provides the listings of several Praat and MATLAB scripts and commands which 

implement  the  feature  extraction  and  analysis  procedures  described  in  this  dissertation.  The 

presentation order follows a step-by-step analysis of a recorded dialogue using Praat and MATLAB 

software. 

1. Segmentation and annotation

As mentioned in section  6.5.1,  automatic speech/silence segmentation is a built-in command in 

recent versions of Praat:

annotate → to textgrid(silences)

The command is  available  on the dynamic menu only if  a  Sound object is  selected.  The input 

parameters are: (1) the  silence threshold (in dB relative to the maximum intensity and therefore 

always negative), (2) the  minimum silent interval duration (in seconds), the  minimum sounding 

interval  duration  (in  seconds),  (3) the  silent  interval  marker and the  sounding interval  marker 

(preferred  strings),  (4)  the  minimum  pitch (in  Hz,  which  is  required  for  the  signal  intensity 

calculation) and (5) the  time step  (in seconds, which can be used to adjust the resolution of the 

intensity analysis). The output of this command is a TextGrid object which contains boundaries of 

sounding/silent regions of the signal. This object can be edited in combination with the sound file 

(Sound object) in the Praat environment in order to perform manual corrections to the segmentation 

and set appropriate labels to the non-speech intervals (see section 6.5.2).  

However, the definition of the silence threshold relative to the maximum is problematic for long 

sound files (such as entire dialogues), since a single global maximum is not the best reference value 

for all the various portions of the dialogue with varying intensity. In addition, if the sound object 

contains only silence, the command recognizes it as speech (intensity is roughly constant near the 

maximum  throughout).  This  especially  problematic  for  online  analysis  of  TAMA frames  as 

described in section 9.3, where it is possible that frames are void of speech. 

The following script (Listing C.1) overcomes these problems by implementing the same method as 

the built-in command, but defining the intensity threshold as an absolute value (in dB). This should 

be set at 1-3 dB over the background noise intensity. All other parameters and output are the same 

as in the built-in command.
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Listing C.1: Speech/silence segmentation script

#segmentation of signal into speech/silence
form Annotate Silences

real minimum_pitch_(Hz) 75
real time_step_(s) 0.0 (=auto)
real Background_noise_threshold_(dB) 35
real Minimum_sounding_duration_(s) 0.25
real Minimum_silent_duration_(s) 0.1
sentence sounding_marker s
sentence silent_marker p

endform

minpitch= minimum_pitch
tstep = time_step
nthresh = background_noise_threshold
minsound = minimum_sounding_duration
minpause = minimum_silent_duration
smark$ = sounding_marker$
pmark$ = silent_marker$

sound = selected("Sound")
stime = 0
etime = Get total duration

#intesity analysis
To Intensity... 'minpitch' 'tstep' no
intensity = selected("Intensity")
numframes = Get number of frames

#create a textgrid
Create TextGrid...   'stime' 'etime' sounds 
textgrid = selected("TextGrid")
Set interval text... 1 1 p

clearinfo

#initially mark each frame as silent or speech
for i from 1 to numframes

select intensity
value = Get value in frame... 'i'
time = Get time from frame number... 'i'
select textgrid
Insert boundary... 1 'time'

interval = Get interval at time... 1 'time'
if value > nthresh

label$ = smark$
else

label$ = pmark$
endif
Set interval text... 1 'interval' 'label$'

endfor

select intensity
Remove
#connect adjacent intervals
call joinadjacent
printline 1

#now eliminate sounds shorter than the threshohld
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call eliminate 'smark$' 'pmark$' 'minsound'
#connect adjacent intervals
call joinadjacent
printline 2

#and finally eliminate pauses shorter than the threshold
call eliminate 'pmark$' 'smark$' 'minpause'
#connect adjacent intervals
call joinadjacent
printline 3

select textgrid

procedure joinadjacent
select textgrid
Duplicate tier... 1 2 sounds
numintervals = Get number of intervals... 1
for i from 2 to numintervals

lab1$ = Get label of interval... 1 'i'-1
lab2$ = Get label of interval... 1 'i'
if lab1$ = lab2$

btime = Get starting point... 1 'i'
Remove boundary at time... 2 'btime'
interval = Get interval at time... 2 'btime'
label$ = Get label of interval... 2 'interval'
label$ = left$(label$,1)
Set interval text... 2 'interval' 'label$'

endif
endfor
Remove tier... 1

endproc

procedure eliminate mark1$ mark2$ thresh
select textgrid
numintervals = Get number of intervals... 1
for i from 1 to numintervals

label$ = Get label of interval... 1 'i'
if label$ = mark1$

istart = Get starting point... 1 'i'
iend =  Get end point... 1 'i'
idur = iend - istart
if idur < thresh

Set interval text... 1 'i' 'mark2$'
endif

endif
endfor

endproc
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2. A/p feature extraction (first stage)

The first stage of a/p feature extraction is performed as a batch process over intervals marked as 

speech. The implementation comprises two scripts. The first script (batch script – Listing C.2) loops 

through the textgrid intervals in order to identify which ones are to be analyzed based on the labels. 

The second script (library script – Listing C.3) contains feature extraction procedures that are called 

from the batch script. The inputs to this script are (1) interval selection parameters (interval markers 

in order to selectively analyze desired labels and interval range in order to analyze only a part of a 

large file) and (2) a/p feature analysis parameters (pitch detection and intensity analysis parameters 

are gender-specific). The output of the batch script is a Table object with the intervals and vowels in 

each interval (detected automatically with the method described in appendix B) as rows and various 

prosodic features as columns. In order for the batch script to be executed, the sound file must be 

loaded as a LongSound object and the TextGrid must be converted into a Table object. Both the 

LongSound and Table objects must be selected together in the Praat object window. 

Figure C.1 – Feature extraction input parameters window
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Listing C.2: Batch script

include analyzer3.praat
form Analysis Settings

optionmenu Audio_channel: 1
option Left
option Right

natural First_interval 1
integer Last_interval 0 (=the very last interval)
boolean Analyze_only_marked_intervals: 1
sentence Interval_markers
optionmenu Preserve_times_when_extracting_clips: 1

option yes
option no

comment Pitch analysis settings
natural Pitch_floor_(Hz) 75
natural Pitch_ceiling_(Hz) 250
real time_step_(s) 0.005
comment Intensity Analysis Settings
natural Intensity_pitch_floor_(Hz) 75
real Intensity_time_step_(s) 0.005

endform

#assign values to params
channel$ = audio_channel$
fint = first_interval
lint = last_interval
imark = analyze_only_marked_intervals
if imark = 1

markers$ = interval_markers$
endif
tstamp$ = preserve_times_when_extracting_clips$
pfloor = pitch_floor
pceil = pitch_ceiling
tstep = time_step
ifloor = intensity_pitch_floor
istep = intensity_time_step

#show the info window
clearinfo
printline channel 'channel$'
printline tier 'tier'
printline intervals 'fint' to 'lint'
if imark = 1

printline interval markers: 'markers$'
endif
printline Preserve times when extracting clips: 'tstamp$'
printline pitch range 'pfloor' - 'pceil' Hz every 'tstep' seconds
printline intensity frame pitch floor 'ifloor' every 'istep' seconds
pause

#start extracting sounds and analyzing
longsound = selected ("LongSound")
labeltable=selected("Table")
select labeltable
Append column... nclip
select all
minus longsound
minus labeltable
nocheck Remove
select labeltable
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Create Table with column names... table 1 clip vowel text start end pmin tpmin
   pmax tpmax pmean pstd imin timin imax timax imean istd jitter shimmer hnr vbr
data = selected("Table")
crow = Get number of rows
select labeltable
intervals = Get number of rows
if lint > intervals

lint=intervals
elsif lint <= 0

lint = intervals
endif
intervals = lint-fint+1
printline analyzing 'intervals' intervals

#main loop
nsound=0
for n from 'fint' to 'lint'

if nsound >= 1
#pause Do you want to continue?
endif
select labeltable
intervlabel$=Get value... 'n' label
if imark = 0

call Newclip
else

if index(markers$,intervlabel$)>0
call Newclip

endif
endif

endfor

printline Analysis of 'intervals' intervals complete. Found 'nsound'clips.
if nsound > 0

select data
crow = Get number of rows
Remove row... 'crow'
Edit

endif

procedure Newclip
nsound=nsound+1
intervalstart = Get value... 'n' start
intervalend = Get value... 'n' end
duration = intervalend - intervalstart
select labeltable
Set numeric value... 'n' nclip 'nsound'
select data
Set numeric value... 'crow' clip 'nsound'
if duration < 0.25

Set numeric value... 'crow' vowel -1
else

Set numeric value... 'crow' vowel 0
endif
Set string value... 'crow' text 'intervlabel$'
Set numeric value... 'crow' start 'intervalstart' 
Set numeric value... 'crow' end 'intervalend'

      select longsound 
Extract part... 'intervalstart' 'intervalend' 'tstamp$'

      Rename... sound'nsound'
soundid = selected("Sound")
printline Analyzing clip 'nsound' ... 
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select data
vw = Get value... 'crow' vowel
if vw = 0

call Analyzer soundid data 'nsound'
endif
select soundid 
Remove
printline clip 'nsound' completed
select data
crow = Get number of rows
Append row
crow = crow+1

endproc
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Listing C.3: Library script

procedure Analyzer sound table clip
      #clearinfo

select table
row = Get number of rows

#Voice quality of whole clip
select sound
noprogress To Pitch (cc)... 'tstep' 'pfloor' 15 no 0.03 0.45 0.01 0.35
 0.14 'pceil'
pitchVQ = selected("Pitch")
select sound
plus pitchVQ
noprogress To PointProcess (cc)

   pointprocessVQ = selected("PointProcess")
call AnalyzeVQ 0 0 sound pitchVQ pointprocessVQ
#Update table
select table
if jitt = undefined 

#do nothing
else

jitt=round(jitt*100000)/100000
Set numeric value... 'row' jitter 'jitt'

endif
if shim = undefined

 #do nothing
else

shim=round(shim*100000)/100000
Set numeric value... 'row' shimmer 'shim' 

endif
if harm2noise = undefined

#do nothing
else

Set numeric value... 'row' hnr 'harm2noise' 
endif
if vbreaks = undefined

#do nothing
else

vbreaks = round(vbreaks*10000)/100
Set numeric value... 'row' vbr 'vbreaks'

endif
print VQ OK... 

 
#Pitch of whole clip
select sound
noprogress To Pitch... 'tstep' 'pfloor' 'pceil'

        pitchPI = selected("Pitch")
call AnalyzePI 0 0 pitchPI

        #Update table
select table
if min = undefined

#do nothing
else

min=round(min*10)/10
Set numeric value... 'row' pmin 'min' 

endif
if tmin = undefined

#do nothing
else

tmin=round(tmin*1000)/1000
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Set numeric value... 'row' tpmin 'tmin' 
endif
if max = undefined

#do nothing
else

max=round(max*10)/10
Set numeric value... 'row' pmax 'max'

endif
if tmax = undefined

#do nothing
else

tmax=round(tmax*1000)/1000
Set numeric value... 'row' tpmax 'tmax'

endif
if mean = undefined

#do nothing
else

mean=round(mean*10)/10
Set numeric value... 'row' pmean 'mean'

endif
if std = undefined

#do nothing
else

std=round(std*10)/10
Set numeric value... 'row' pstd 'std' 

endif
print PI OK...  

#Intensity of whole clip
select sound
To Intensity... 'ifloor' 'istep'
intensityPI = selected("Intensity")
call AnalyzeINT 0 0 intensityPI
#Update table
select table
if min = undefined

#do nothing
else

min=round(min*10)/10
Set numeric value... 'row' imin 'min'

endif
if tmin = undefined

#do nothing
else

tmin=round(tmin*1000)/1000
Set numeric value... 'row' timin 'tmin' 

endif
if max = undefined

#do nothing
else

max=round(max*10)/10
Set numeric value... 'row' imax 'max'

endif
if tmax = undefined

#do nothing
else

tmax=round(tmax*1000)/1000
Set numeric value... 'row' timax 'tmax' 

endif
if mean = undefined

#do nothing
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else
mean=round(mean*10)/10
Set numeric value... 'row' imean 'mean'

endif
if std = undefined

#do nothing
else

std=round(std*10)/10
Set numeric value... 'row' istd 'std' 

endif
print INT OK... 
# Detect Vowels 
call DetectVowels sound table clip
printline number of vowels: 'nvowels'

 
select pitchVQ
plus pointprocessVQ
plus pitchPI
plus intensityPI
Remove

endproc

procedure AnalyzePI t1 t2 pitch
select pitch
min = Get minimum... 't1' 't2' Hertz Parabolic
tmin = Get time of minimum... 't1' 't2' Hertz Parabolic
max = Get maximum... 't1' 't2' Hertz Parabolic
tmax= Get time of maximum... 't1' 't2' Hertz Parabolic
mean = Get mean... 't1' 't2' Hertz(logarithmic)
std = Get standard deviation... 't1' 't2' Hertz(logarithmic)

endproc

procedure AnalyzeINT t1 t2 intensity
select intensity
min = Get minimum... 't1' 't2' Parabolic
tmin = Get time of minimum... 't1' 't2' Parabolic
max = Get maximum... 't1' 't2' Parabolic
tmax = Get time of maximum... 't1' 't2' Parabolic
mean = Get mean... 't1' 't2' energy
std = Get standard deviation... 't1' 't2'

endproc

procedure AnalyzeVQ t1 t2 sound pitch pointprocess
select sound
plus pitch
plus pointprocess
voicereport$ = Voice report... 't1' 't2' 75 600 1.3 1.6 0.03 0.45
jitt = extractNumber (voicereport$,"Jitter (local): ")
shim = extractNumber (voicereport$,"Shimmer (local): ")
harm2noise = extractNumber(voicereport$,"Mean harmonics-to-noise ratio: ")
vbreaks = extractNumber (voicereport$,"Degree of voice breaks: ")

endproc

procedure DetectVowels*

endproc

* Procedure DetectVowels  is  the method described  in  appendix  B and is  available  online as  a 

separate script (see appendix B)
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3. A/p feature extraction (second stage)

The output of the first stage is raw data in the form of a table as shown below. The second stage 

processes this table in order to extract summary information on each speech interval in a more 

presentable form. This script takes no input arguments. The raw table from the first stage must be 

selected in the Praat object window. 

FIGURE C.2 – Raw feature extraction data

Script functions:

1) Vowel enumeration: The script enumerates the vowels in each speech interval

2) Duration: The script calculates the duration of each speech interval

3) Speech rate: speech rate is estimated as number of vowels/min (see appendix B)

4) Pitch range: the script calculates the pitch range (see section 6.5.3)

5) Vowel-only  based  a/p  measurements  (experimental  feature).  The  script  calculates  the 

average pitch, intensity, pitch range based on the vowels only (using Equation 7.3)

6) Vowel duration based speech rate estimation (experimental feature): The script calculates the 

average vowel duration of an interval as an additional estimate of speech rate

The output of the script(Listing C.4) is a new table which contains the above measurements. 

204



Listing C.4: Table process script
clearinfo
tablein = selected("Table")
Copy...  newtable
tableout = selected("Table")
Append column... duration
Append column... prange
Append column... speed
Append column... vpmean
Append column... vprange
Append column... vimean
Append column... avd
select tablein
rows = Get number of rows
for i from 1 to 'rows'

select tablein
nv = Get value... 'i' vowel
if nv = 0

clip = Get value... 'i' clip
start = Get value... 'i' start
end = Get value... 'i' end
pstd = Get value... 'i' pstd
#pmean = Get value... 'i' pmean
#imean = Get value... 'i' imean
duration = end-start
duration = round(duration*1000)/1000
prange = 2*pstd
select tableout
Set numeric value... 'i' duration 'duration'
if prange = undefined

prange=0
else

prange=round(prange*10)/10
endif
Set numeric value... 'i' prange 'prange'
select tablein
Extract rows where column (text)... clip "is equal to" 'clip'
tabletemp1=selected("Table")
nvowels=Get number of rows
nvowels=nvowels-1
if nvowels>0

Extract rows where column (number)... vowel "greater than" 0
tabletemp = selected("Table")
nvowels = Get number of rows
vpmean=0
vprange=0
vimean=0
vtdur=0
for j from 1 to nvowels

vstart=Get value... 'j' start
vend=Get value... 'j' end
vdur=vend-vstart
vdur=round(vdur*1000)/1000
vtdur=vtdur+vdur
vpm=Get value... 'j' pmean
if vpm = undefined

#do nothing
else

vpmean=vpmean+vpm*vdur
endif
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vpmin=Get value... 'j' pmin
vpmax=Get value... 'j' pmax
if vpmin = undefined or vpmax = undefined

#do nothing
else

vprange=vprange+(vpmax-vpmin)*vdur
endif
vim=Get value... 'j' imean
if vim = undefined

#do nothing
else

vimean=vimean+vim*vdur
endif

endfor
vpmean=vpmean/vtdur
vpmean=round(vpmean*10)/10
vimean=vimean/vtdur
vimean=round(vimean*10)/10
vprange=vprange/vtdur
vprange=round(vprange*10)/10
avd=vtdur/nvowels
avd=round(avd*1000)/1000
select tabletemp
plus tabletemp1
Remove

else
select tabletemp1
Remove

endif
speed = 60 * (nvowels / duration)
speed=round(speed*10)/10
select tableout
Set numeric value... 'i' vowel 'nvowels'
Set numeric value... 'i' speed 'speed'
if vpmean = undefined

vpmean=0
endif
Set numeric value... 'i' vpmean 'vpmean'
if vimean = undefined

vimean=0
endif
Set numeric value... 'i' vimean 'vimean'
if vprange = undefined

vprange=0
endif
Set numeric value... 'i' vprange 'vprange'
if avd = undefined

avd=0
endif
Set numeric value... 'i' avd 'avd'
printline 'i' 'duration' 'nvowels' 'pmean' 'imean' 'prange' 'speed'
 'vpmean' 'vprange' 'vimean'  'avd'

elsif nv=-1
select tableout
Set numeric value... 'i' vowel 0
start = Get value... 'i' start
end = Get value... 'i' end
duration = end-start
duration = round(duration*1000)/1000
select tableout
Set numeric value... 'i' duration 'duration'
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else
select tableout
Set numeric value... 'i' vowel -1

endif
endfor

select tableout
Extract rows where column (number)... vowel "greater than or equal to" 0
finaltable = selected("Table")
select tableout
Remove

#replace NaN with 0s
select finaltable
n=Get number of rows
for i from 1 to n

nv = Get value... 'i' vowel
if nv = 0

for j from 6 to 28
col$ = Get column label... 'j'
value = Get value... 'i' 'col$'
if value = undefined

Set numeric value... 'i' 'col$' 0
endif

endfor
endif

endfor
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4. TAMA  analysis

TAMA analysis (see chapter 7) is performed in MATLAB software. The output tables of the feature 

extraction (for each of the two speakers) are imported into MATLAB as tab-delimited table files. In 

MATLAB,  these  are  represented  as  matrices  of  numbers,  in  which  rows correspond to  speech 

intervals and columns correspond to prosodic features. The first step in TAMA analysis is to acquire 

TAMA feature  vectors,  which  are  essentially  the  univariate  time  series  used  in  the  statistical 

analysis. The tamaframe function (Listing C.5) takes an imported data table as input and outputs a 

TAMA vector of the desired a/p feature (column). 

The inputs to this function are (1) the input matrix (Praat imported table), (2) the column number 

(desired a/p feature), (3) TAMA frame length and time step (see section  7.3.1), and (4) duration 

limits (minimum and maximum) if it is desirable to ignore intervals above/below a certain duration. 

The function outputs a new 4-column matrix. The first two columns are the start and end times of 

the frames, which can be used as indices in TAMA plots. The third column is the a/p feature vector, 

and  the fourth column contains the relative duration for each frame (see section 7.3.1). 

Setting the frame length and time step equal to or greater than the duration of the dialogue yields the 

grand mean of the desired feature. Dividing a TAMA vector by this value yields the normalized 

values (with mean equal to 1) of that feature. 

The feature vector is then extracted from the output matrix and used as a component series in the 

statistical analysis (bi-variate time series), as described in section 7.4.
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Listing C.5: Function Tamaframe

%This function creates a TAMA frame vector based on the input parameters

function [TAMA] = 
tamaframe(matrix,columnnumber,framelength,timestep,mindur,maxdur)

%calculate number of frames
n = length(matrix);
lastend = matrix(n,2);
numberofframes = fix(lastend/timestep)+1;

% main loop
for i=1:numberofframes
    %calculate frame boundaries
    framestart=(i-1)*timestep;
    frameend = framestart + framelength;
    % set end of frame flag
    endofframe=0;
    k = 1;  %matrix row index
    wsum = 0;   %weighted sum initialization
    sdur = 0;   %duration sum initialization
    while endofframe==0
        %find clips within frame
        clipstart = matrix(k,1);
        if clipstart > frameend
            endofframe = 1;
        end
        clipend = matrix(k,2);

  %clip intervals at frame boundaries 
        if clipstart < framestart
            clipstart = framestart;
        end
        if clipend > frameend
            clipend = frameend;
        end
        duration = clipend-clipstart

  %is interval in the frame?
        if duration > 0
            %duration limits check
            if (matrix(k,19)>=mindur)&&(matrix(k,19)<=maxdur)
                %check for NaN
                if (isfinite(matrix(k,columnnumber))==1)

%add to weigthed sum
                wsum = wsum + matrix(k,columnnumber)*duration;

%add to duration sum
                sdur = sdur + duration;
                end
            end
        end
        k = k + 1;
        if k > n
            endofframe = 1;
        end
    end
    TAMA(i,1) = framestart;
    TAMA(i,2) = frameend;
    TAMA(i,3) = wsum/sdur;
    TAMA(i,4) = sdur;
end
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5. Acquisition of combined chronograph

The TextGrid objects acquired during the segmentation phase (manually corrected) are essentially 

the individual chronographs (see Figure 8.1) of the two speakers. In order to acquire the combined 

chronograph (Figure 8.2) of the dialogue, the two individual chronographs have to be superimposed 

on each other. This is performed by the following Praat script (Listing C.6). The input to this script 

are two Table objects, which can be easily obtained in recent Praat versions by selecting a TextGrid 

object and using the appropriate command from the dynamic menu. Both these tables have to be 

selected in the object list before the script is executed. The output of the script is a new textgrid with 

four different labels (speaker 1, speaker 2, pause, overlap). This textgrid is also converted to a table 

using the built-in command.  
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Listing C.6 - Chronograph script

table1=selected("Table",1)
table2=selected("Table",2)

#copy boundaries from both tabels into new textgrid
select table1
n1=Get number of rows
maxtime1=Get value... 'n1' end
select table2
n2=Get number of rows
maxtime2=Get value... 'n2' end
maxtime=max(maxtime1,maxtime2)
Create TextGrid... 0 'maxtime' interval
mtextgrid=selected("TextGrid")
call Table2textgrid table1 mtextgrid
call Table2textgrid table2 mtextgrid

clearinfo
printline copied boundaries

#compare labels and set new labels for combined chronograph 
select mtextgrid
n = Get number of intervals... 1
for i from 1 to n

start=Get start point... 1 i
end=Get end point... 1 i
dur=end-start
mid=start+dur/2
#Find the intervals in both label tables
call Fintv table1 'mid'
print 'mid','interval',
lab1$ = Get value... 'interval' label
call Fintv table2 'mid'
print 'interval'
printline
lab2$ = Get value... 'interval' label 
if lab1$="p"

lab1$=""
else 

lab1$="t1"
endif
if lab2$="p"

lab2$=""
else 

lab2$="t2"
endif
lab$=lab1$+lab2$
if lab$="" 

lab$="p"
endif
if length(lab$)>2 

lab$="o"
endif
select mtextgrid
Set interval text... 1 'i'  'lab$'

endfor

#connect neibhouring labels that are equal
select mtextgrid
Copy...  turndist
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turndist=selected("TextGrid")
endtime = Get end time
i=1
repeat

i=i+1
endinterval = Get end point... 1 i 
lab1$ = Get label of interval... 1 i
lab2$ = Get label of interval... 1 i-1
if lab1$=lab2$

Remove left boundary... 1 i

Set interval text... 1 i-1  'lab1$'
i=i-1

endif
until endinterval=endtime

print ok
select mtextgrid
Remove
select turndist
Rename... timeline

procedure Table2textgrid table textgrid
select table
.n=Get number of rows
for i from 1 to '.n'

select table
t=Get value... 'i' start
select textgrid
nocheck Insert boundary... 1 't'

endfor
endproc

procedure Fintv table time
interval=0
.i = 1
select table
while interval=0

t1=Get value... '.i' start
t2=Get value... '.i' end
if time>t1&&time<t2

interval='.i'
endif
.i=.i+1

endwhile
endproc
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6. Pause and overlap annotation algorithm

The algorithm for switch pause and overlap annotation described in section 8.2.1 is implemented as 

a  MATLAB script.  The chronograph tables  (individual  speaker  and combined)  are  imported as 

matrices  of  numbers,  in  which  rows  correspond to  the  table  rows (or  TextGrid  intervals).  The 

matrices have three columns. The first two contain the start and end time of each interval, and the 

the third column corresponds to the interval label. The following table shows the label-to-number 

conversion.

Table C.1 – Label-to-number conversion

Chronograph 
type

Individual Combined

Number Label Label 
1 - Speaker 1
2 - Speaker 2
3 - Overlap 
4 Speech -
5 - -
6 other other
7 Silence Silence

The individual chronograph tables are used to calculate the speakers' turn shares (see section 8.3.1), 

while the combined chronograph table is used to acquire the turn share distribution (section 8.3.1), 

as well as to implement the switch pause algorithm described in section 8.2.1, using the following 

MATLAB script (Listing C.7). The input to the script is the combined chronograph (labeltableTn), 

and the output comprises three two-column matrices. The first column in these matrices contains 

the time instant at which a turn-switch occurs, and the second column contains the duration of the 

preceding pause. Two of the three matrices correspond to speaker 1 and speaker 2, while the third 

matrix contains the ambiguous  cases (simultaneous starts after pauses) which are very rare. 
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Listing C.7: Switch pause detection script

%create switch pause tables from label table T

n = length(labeltableTn);
spauseL = [];
spauseR = [];
spauseamb = [];
for i = 2:(n-1)
    switch labeltableTn(i,3)
        case 7
            if labeltableTn(i-1,3)~=labeltableTn(i+1,3)
                switch labeltableTn(i+1,3)
                    case 1
                        k = length(spauseL);
                        k = k + 1;
                        spauseL(k,1) = labeltableTn(i,1);
                        spauseL(k,2) = labeltableTn(i,2)-labeltableTn(i,1);
                    case 2
                        k = length(spauseR);
                        k = k +1;
                        spauseR(k,1) = labeltableTn(i,1);
                        spauseR(k,2) = labeltableTn(i,2)-labeltableTn(i,1);
                    otherwise
                        k = length(spauseamb);
                        k = k +1;
                        spauseamb(k,1) = labeltableTn(i,1);
                        spauseamb(k,2) = labeltableTn(i,2)-labeltableTn(i,1);
                end
            end
        case 3
            if labeltableTn(i-1,3)~=labeltableTn(i+1,3)
                 switch labeltableTn(i+1,3)
                    case 1
                        k = length(spauseL);
                        k = k + 1;
                        spauseL(k,1) = labeltableTn(i,1);
                        spauseL(k,2) = 0;
                    case 2
                        k = length(spauseR);
                        k = k +1;
                        spauseR(k,1) = labeltableTn(i,1);
                        spauseR(k,2) = 0;
                    otherwise
                        k = length(spauseamb);
                        k = k +1;
                        spauseamb(k,1) = labeltableTn(i,1);
                        spauseamb(k,2) = 0;
                 end
            end
    end
end
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