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Automatic Annotation of Referring Expression
in Situated Dialogues

Abstract. To apply machine learning techniques to the production and
interpretation of natural language, we need large amounts of annotated
language data. Manual annotation, however, is an expensive and time
consuming process since it involves human annotators looking at the
data and explicitly adding information that is implicitly contained in
the data, based on their judgment. This work presents an approach to
automatically annotating referring expressions in situated dialogues by
exploiting the interpretation of language by the participants in the dia-
logue. We associate instructions concerning objects in the environment
with automatically detected events involving these objects and predict
the referents of referring expressions in the instructions on the basis of
the objects affected by the events. We judge the reliability of these pre-
dictions based on the temporal and textual distance between instruction
and event. We apply our approach to an annotated corpus and evalu-
ate the results against human annotation. The evaluation shows that
the approach can be used to accurately annotate a large proportion of
the utterances in the corpus dialogues and highlight those utterances for
which human annotation is required, thus reducing the amount of human
annotation required.

Keywords: reference resolution, situated dialogue

1 Introduction

We present an approach to automatically annotating referring expressions in
situated dialogues. A referring expression [1, Ch. 18] is an expression that occurs
in natural language that is used to denote some kind of object that is discussed.
For example in the sentence “Bob ate an apple”, “Bob” is a referring expression
that denotes some person named Bob, and “an apple” is a referring expression
that denotes some apple.

The object that is being referred to is called the referent of the referring ex-
pression. An anaphoric referring expression is a referring expression that refers
back to an object that has already been mentioned in the dialogue and is there-
fore in the linguistic context of the dialogue. An exophoric referring expression
is a referring expression that refers to an object that has not previously been
mentioned in the dialogue but that exists in some other context of the dialogue
(e.g. the visual context). The process of referring expression resolution is the
process of identifying the referents of referring expressions.

A situated dialogue is a conversation between at least two participants that
takes places in an environment that is actively discussed as part of the dia-
logue. A typical example a of situated dialogue is a navigation task where one



participant has to give instructions to a second participant to move through
the environment the dialogue is situated in. Exophoric referring expressions are
particularly common in this domain.

A computer system that participates in situated dialogues has to be able to
resolve and produce exophoric referring expressions. There exist a number of
approaches to this problem that can broadly be categorized as rule-based ap-
proaches and machine-learning (ML) based approaches. Rule-based approaches
use a number of (generally hand crafted) rules to to perform the task. Salmon-
Alt and Romary [6] describe a rule-based approach to resolving reference in
purely linguistic domains. They also present a rule-based approach to resolving
reference in a multimodal domain [3].

ML based approaches on the other hand do not rely on prefabricated rules but
set out to learn behaviour that is presented in the form of examples. Using ML
is particularly attractive for dealing with referring expressions because using ML
opens up the possibility to learn and discover strategies used by humans directly
from data, which may be difficult to identify by introspection or manual analysis.

Supervised ML is a form of ML where algorithms learn a function that maps
from inputs to outputs. Such algorithms require as training data a set of exam-
ples in which inputs are associated with the expected output. Consequently, in
order to train a ML algorithm to interpret or produce referring expressions, the
algorithm requires a training set of examples that link spoken references to their
intended referents in the world and that, furthermore, describe the conditions
under which the reference was produced. These conditions may for example in-
clude the set of visible objects, the spatial relation of the speaker towards those
objects and a records of previous references made by the speaker.

These training sets often have to be created manually by taking a set of inputs
and annotating the expected outputs based on human judgment. This process is
expensive and time consuming because it requires one or more human annotators
to screen all of the examples and make a decision for each case. It is therefore
desirable to find methods that can automatically perform at least parts of this
process. This problem can be understood as a problem of information retrieval
since the reference information must be (implicitly) contained in the data if
human annotators are able to reproduce it.

Contribution: In this work we present an approach to automatically gen-
erating annotations for exophoric referring expressions in a situated task-based
dialogue. We focus on identifying the referent of a referring expression, as this is
a task that (unlike the determination of the set of visible objects for example),
cannot be performed automatically in a straightforward manner and generally
requires the attention of a human annotator. We predict the referent of a refer-
ring expression based on the interpretation of that expression in the dialogue.
This is only possible if the referring expression can be related to some detectable
action. We therefore only consider referring expressions in utterances that in-
struct the hearer to perform some specific task. In the experiments described
in this work we focus on one specific kind of instruction, namely instructions to
pass through a door.



Overview: In Section 2 we discuss corpora that are possible fields of appli-
cation for our approach and introduce the corpus that is used in the example
presented in this work. In Section 3 we present our approach to detecting the
referents of referring expressions. In Section 4 we present the evaluation of the
application of our approach to test data. Finally, in Section 5 we discuss these
results and possible extensions of this work.

2 Data

For this experiment we were interested in corpora featuring situated dialogue. In
addition to information immediately related to the dialogue, such as transcrip-
tions and annotations, we were also interested in additional data related to the
environment, such as maps and recordings of the actions of the participants.

There exist a number of freely available situated dialogue corpora. The
TRAINS corpus [7], which contains dialogues between two participants plan-
ning train routes on a map, is an example of a corpus that incorporates the
visual modality, and has transcriptions, but does not feature reference annota-
tions. In addition to that, the corpus works with a static map, which is not
dynamically updated, which makes it difficult to annotate referring expressions,
because participants frequently talk about hypothetical scenarios. In addition to
this, it also lacks a record of the planned routes.

Another visually situated corpus is the MAPTASK corpus [2]. This corpus
is based on an experiment where one participant describes a route in a map
to a second participant, who has access to a slightly different map. Navigation
takes place at an abstract level which makes it hard to identify events at a level
that would be relevant to this experiment. In addition, both of these corpora
are based on tasks that feature a setup where the participants are looking onto
a scene that is displayed on a flat surface on a desk. As such, the participants
are not inside the scene, but have an external perspective on it.

The corpus considered in this work is the SCARE corpus [4]. This corpus
consists of dialogues between two participants in a navigation task where the
environment is perceived from a first person perspective. It contains transcrip-
tions and reference annotations and is therefore a good example for learning
referring expression resolution. Moreover, unlike the TRAINS and MAPTASK
corpus, the SCARE corpus features recordings of all navigation steps, thereby
enabling us to reconstruct actions performed by the player.

What differentiates the SCARE corpus and makes it particularly interesting
to us, is that it does not take a remote approach with an external perspective, but
is very situated, by putting the participant inside the environment. The corpus
was created in an experiment focusing on situated task-based dialogues. In this
experiment one participant, the direction follower (DF), had to navigate through
an environment simulated in a game engine, while the second participant, the
direction giver (DG), had to give directions to the first participant to help them
to fulfil a given task. The details of the task and the layout of the world were
known only the the DG. The DF navigated through the environment in a first



Fig. 1. Screenshot of a video recording from the SCARE corpus.

person perspective, of which a live video feed was shown to the DG. Therefore
both participants had the same perspective on the environment. The participants
communicated through a voice connection.

The corpus comprised video and audio recordings of the dialogues, as well as
transcriptions of the audio files that were annotated for reference, i.e. referring
expressions that referred to objects in the environment were annotated which
object the expression referred to. In addition to that, demo files were provided
that could be replayed in the game engine, thereby recreating the navigation
movements in each dialogue.

3 Extending the SCARE Corpus

As noted in Section 2, the SCARE corpus contains annotated dialogue transcrip-
tions and a record of the player movement. In order to automatically annotate
referring expressions, we needed to create new data from the corpus. In partic-
ular, we had to identify a set of referring expressions and then determine the
referent for each expression. We did this by establishing a correspondence be-
tween instructions that contain a referring expression in the dialogue and events
in the world that could be caused by these instructions. The events we wanted
to consider were not explicitly contained in the data, so we had to reconstruct
them. Consequently, establishing a correspondence between instructions in the
dialogue and events in the world involved 3 steps:

1. We detected a set of instructions.
2. We detected a set of events.
3. We established a correspondence between instructions and events and recorded

values for different distance metrics between instructions and events.



Each of these steps is described in detail below. We then evaluated the cor-
respondence against gold standard manual annotations. This evaluation is de-
scribed in Section 4.

3.1 Detecting the Instructions

In this experiment we were interested in referring expression that caused events
we could detect by looking at the movement of the player in the environment.
One class of such events is passing through doors. We therefore detected instances
of the DG telling the DF to go through a door. We did this using a regular
expression of this form1:

[go|pass]through.*[door|one|that]

This expression fit instructions such as “go through the right door” or “pass
through the next one”. We collected instructions up to a length of seven words.
The regular expression was defined by examining a small number of the dialogues
in the SCARE corpus. In total we detected 135 referring expressions using this
regular expression. This approach probably did not capture all instructions, but
served as a good starting point.

3.2 Detecting Events

Once we had detected the set of instructions that we would use in our experiment
we then had to detect the set of relevant events to match against the instructions.
We did this by replaying the demo files in the game engine and recorded the
position and orientation of the player and aligned this information with time.
By comparing this information with geometric information about the layout of
the rooms, we were able to detect the moments when the player left a room
and entered another room. This in turn enabled us to determine which door the
player had passed at what point in time. Each passing of a door formed an event.

3.3 Establishing the Correspondence

In this step we determined a correspondence between instructions and events
for our example corpus. We aimed to identify for each instruction the event that
occurred when the DF fulfilled the instruction. Events naturally occur slightly
after the instruction has been produced because the DF needs time to interpret
the instruction and to navigate into a position where it is possible to perform
the required action. However, not every instruction is immediately succeeded by
an event that fulfils the instruction. We see two main reasons for this:

1. The DF may misunderstand the instruction and perform a different action.

1 .∗ matches any sequence of characters, [x|y] matches the sequence x or y.



2. The DF may not understand an instruction or find it ambiguous and ask the
DG to clarify. In this case, the next event may follow after a longer delay,
during which the participants come to an agreement about the next action,
and may actually not fulfil the original instruction because the participants
decided on a different course of action.

Also, a number of other events may occur between an instruction and the cor-
responding event because the DF has to fulfil a number of subgoals in order to
be able to fulfil the instruction.

At first glance, two approaches are apparent: we can either start with the
events and search for an instruction to match each event; or we can start out
with the instructions, and determine which event was caused by each instruction.
The first approach immediately appeared less favourable because in the example
dialogues, a great number of events are not directly caused by instructions. This
happens when the DF is exploring the map on their own, or if the DG gives
high level goals, such as returning to a previously visited room, which the DF
can fulfil without being instructed in every step. We therefore decided to use the
approach where we start with the instructions and then search for events that
match these instructions.

We processed each dialogue incrementally by going through it from the be-
ginning, picking up instructions and events as they occurred. An incoming in-
struction was processed by storing it on a FIFO queue. An incoming event was
processed by removing the oldest instruction from the queue and associating it
with the new event, and storing the resulting pair for later evaluation. This was
based on the assumption that events were preceded by instructions. Roughly
speaking this approach associates each instruction with the next event occurring
after it.

We collected instructions in a queue because that enabled us to correctly
interpret concatenated instructions (e.g. “go through this door and then go
through the next one”) as two instructions that had to be executed sequentially.

Events that occurred while the instruction queue was empty were discarded
as events that occurred without explicit instruction. Such events occurred often
in the dialogues when the DF was asked to move to a location that had previously
been visited. In this case, the DF often could find the way on their own without
having to be explicitly instructed for each step.

The matching process resulted in a set of pairs of instructions and events
which was the basis for our further work. The algorithm we used for this process
is presented as Algorithm 1.

Every time an instruction and an event were associated, we recorded the
distance in time between instruction and event, and the number of words spoken
between them to facilitate evaluation. We derived these values from the time
aligned dialogue transcriptions.

The output of the algorithm consists of a list of associated instructions and
events. Each pair represents a possible causal relationship between an instruction
and an event, which will be examined more closely in the next step.



Algorithm 1 The algorithm for associating instructions and events.
Input: dialogue: temporally ordered set of events and instructions.
Data Structures: instructionQueue: A queue for storing incoming instructions, ini-

tially empty.
correspondences: A list of instructions-event pairs.

Output: A list of instructions-event pairs which may be related.

FOR the length of the dialogue

e := select the next event or instruction

IF e is an instruction

push(e, instructionQueue)

ELSE

IF e is an event

IF empty(instructionQueue)

discard e

ELSE

i := pop(instructionQueue)

a := associate(i,e)

append(correspondences,a)

ENDIF

ENDIF

ENDIF

RETURN correspondences

Figure 2 illustrates the approach. Intervals of speech are represented as blocks
below the time axis. Dark blocks represent instructions, while bright block rep-
resent speech that is not an instruction. Stars on the time axis represent events.
The horizontal brackets delineate the intervals between the end of an instruction
and the next event. The dashed vertical lines cut out intervals on the the time
axis and pieces of the speech blocks, which form the distance values.

4 Evaluation

As mentioned in Section 2, referring expressions in the original corpus were
annotated for reference. We therefore knew for each referring expression to which
object it actually referred. This information formed the gold standard for the
evaluation of our approach to reference resolution.

Once we had processed all the dialogues in the corpus we used the unmodified
set of instruction/event pairs we had identified as the baseline for our experiment.
Using this set of data as a prediction function for causal relation corresponds
to assuming that the referring expressions in each instruction referred to the
object that was concerned in the next event that occurred. Conversely, this would
assume that each instruction was perfectly interpreted and fulfilled directly after
the instruction.



Fig. 2. Illustration of the instruction-event association and distance measuring process.
Blocks represent intervals of speech, stars represent events.

This appeared a very strong assumption, since misunderstandings between
human communicators frequently occur. We therefore utilized different ways
of measuring the distance between an instruction and an event and used this
distance measure to judge the reliability of the original pairing. We measured
the distance in time (i.e. the number of seconds that passed between instruction
and event), and words (i.e. the number of words that were spoken between the
instruction and the event). We experimented with a number of different distance
values as cut-off points. If the distance between an instruction and the following
event was too large, we would refuse to rate it, leaving the decision up to a
human annotator.

We ran the association algorithm (Algorithm 1) to create a set of instruction-
event pairs. We subsequently judged the results by a number of different dis-
tances. The time distances we used were 5, 7.5, 10, 15 and 20 seconds, the word
distances were 5, 10, 20, 40, 50 and 60 words. The results for the time distances
are presented in Table 4, the results for word distances in Table 4. They show:

– the total number of cases (Column 1)
– the number of cases that were removed because the distance between in-

struction and event exceeded the boundary of this instance (Column 2).
This row is illustrated in Figure 3 for time distances and in Figure 4 for
word distances.

– the percentage of removed cases (Column 3)
– the number of remaining cases (Column 4)
– the number of cases where the association between instruction and event

was correct according to the baseline (Column 5). This row is illustrated in
Figure 5 for time distances and Figure 6 for word distances.

– the percentage of correct cases among the cases that were not removed (Col-
umn 6)

– the overall percentage of the correctly associated cases among the number
of total cases (Column 7)

To give an intuition about the significance of the different columns: Column
(3) tells us for what fraction of the cases the algorithm refused to make a judg-
ment. The figure basically tells us what how much work is left for the human



Total Removed Remaining Correct Total correct

# # % # # % %

Col. Nr. (1) (2) (3) (4) (5) (6) (7)

Baseline 135 0 0.0 135 93 68.9 68.9
Time 5s 135 88 65.2 47 34 72.3 25.2

Time 7.5s 135 61 45.2 74 61 82.4. 45.2
Time 10s 135 40 29.6 95 80 84.2 59.3
Time 15s 135 34 25.2 101 84 83.2 62.2
Time 20s 135 26 19.3 109 88 80.7 65.2

Table 1. Results for the different time distance values.

Total Removed Remaining Correct Total correct

# # % # # % %

Col. Nr. (1) (2) (3) (4) (5) (6) (7)

Baseline 135 0 0.0 135 93 68.9 68.9
Words 5 135 122 90.4 13 4 30.8 2.9
Words 10 135 102 75.6 33 21 63.6 15.5
Words 20 135 62 45.9 73 59 80.8 43.7
Words 40 135 38 28.1 97 80 82.5 59.3
Words 50 135 31 23.0 104 85 81.7 63.0
Words 60 135 26 19.3 109 86 78.9 63.7

Table 2. Results for the different word distance values.

Fig. 3. Proportion of removed cases by time distance.

Fig. 4. Proportion of removed cases by word distance.



Fig. 5. Proportion of correct judgements by time distance.

Fig. 6. Proportion of correct judgements by word distance.

annotator. Column (6) tells us how many of the cases that were not refused
were judged correctly. This basically gives us a measure of the quality of the
predictions made.

Column (7) tells us which fraction of the total number of cases was correctly
annotated according to the manual annotations from the corpus.

As we can see, the baseline alone delivers somewhat acceptable results. How-
ever, if we were to use the baseline approach in an actual annotation task, we
would end up with false results with no indication of which results were doubtful
decisions.

Overall the figures show that taking the distance between instruction and
event does increase the quality of the judgments. For the approach using time
as a cut-off criterion, it appears that early cut-off points removes many cases
while later cut-off points retain more. The quality of judgments peaks around 10
seconds. Nonetheless, it might be more economical to choose a later cut-off point
to get more cases processed, while only incurring a small decrease in quality.

The picture using words as a cut-off criterion appears similar. A peak occurs
around 40 words. In this respect, both approaches show similar results, and it
does not appear that one of them is clearly preferable.



5 Conclusions and Future Work

We presented an approach towards automatically generating referring expres-
sions annotations for situated dialogues that exploits the interpretation of re-
ferring expressions by the participants of the dialogue. We demonstrated the
approach for a specific type of references in a specific corpus. The approach can
be generalized to other types of references in other corpora under two conditions:
(1) The references must be contained in instructions that cause events involving
the referents and (2) It must be possible to automatically detect these events.

On a conceptual level we can relate this approach to more general approaches
that are based on intention recognition and perceived affordances [9]. In [8] Gor-
niak et. al. describe using intention recognition to improve reference resolution in
the context of a game. In this work we somewhat reverse this approach: We take
actions in the game as hypotheses about the intention of instructions (quasi hi-
jacking the interpretation performed by the listener) and use the objects affected
by the action as the referent of referring expressions in the instruction.

We explored different cut-off values that give an indication for which sug-
gested linkings might be unreliable. Deciding on a particular cut-off point, allows
the algorithm to decide which cases are easy and reliably judged, and which cases
are hard to judge, and should rather be inspected by a human annotator. How-
ever, it is not immediately clear how to derive cut-off values for new domains. It
may be possible to directly transfer values between sufficiently similar domains.
Another approach would be to manually create a gold standard annotation for a
small subset of the domain and to determine values for this subset and transfer
them to the whole domain.

A different approach to judging reliability of associations would be to, instead
of rejecting associations, to integrate the data about the reliability of the different
cut-off points into a single confidence estimation function that directly signals
the reliability of a judgment based on the different distance measures.

The evaluation shows that taking cut-off points into account makes it possible
to automatically correctly annotate a nontrivial subset of the referring expres-
sions that were considered, while separating out cases where a human annotator
should be consulted. For future work it would be interesting to more closely
analyze the structure of the discourse between instruction and event. It might
be possible to discover confusion or discussion between the participants, and use
this as an additional distance measure. Possible indicators might be the word
rate or overlap between the utterances of the participants. Auditory features
such as the prosody of the utterances might also be significant indicators.

The GIVE corpus [5] comprises a data set, that is very similar to the one we
used, but is based on written instead of spoken language and features only mono-
logue. In further work we may investigate how well our approach can applied to
this corpus and in how far results are transferable.
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