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Abstract 

 
In this paper we present results of experimental 

investigation into the performance of three audio 
codecs (ITU-T G.711, G.723.1, and G.729A) under 
varying load conditions on a Voice over WLAN system 
utilizing the IEEE 802.11b wireless LAN standard. The 
analysis is based upon a new technique for estimating 
user satisfaction of speech quality calculated from 
packet delay and packet loss/late measurements. We 
also demonstrate the importance of the de-jitter buffer 
playout scheme for insuring speech quality. From our 
results we conclude that the use of the G.711 audio 
codec in conjunction with the new adaptive playout 
scheme gives the highest user satisfaction of the Voice 
over WLAN schemes considered. 
 
1. Introduction 
 

As VoIP spreads from the wireline to the wireless 
world, performance issues arise because the 
characteristics of wireline and wireless networks 
differ. Delay, jitter and packet loss, the key factors that 
impact packet voice quality in the fixed Internet, are 
further magnified in a WLAN environment.  Due to 
access point congestion and poor link quality high 
delay variation is not unusual in an 802.11b network. 
Such a high jitter complicates proper reconstruction of 
the speech signal at the receiver and packet voice 
quality in WLAN environment can be severely 
degraded. 

To compensate for jitter a typical voice over IP 
application buffers incoming packets in the jitter buffer 
before playing them out. This allows slower packets to 
arrive on time to be played out. The buffering delay 
cannot be too long or too short. If the buffering delay 
is too short, "slower" packets will not arrive before 
their designated playout time and voice quality suffers. 

If the buffering delay is too long, it noticeably disrupts 
interactive communications. It is not possible to find 
an optimum fixed buffer size when network conditions 
vary in time. Playout buffers with dynamic size 
allocation, so called adaptive playout buffers, are 
becoming more and more popular.  A good playout 
algorithm should be able to keep the buffering delay as 
short as possible while minimizing the number of 
packets that arrive too late to be played out.   

The two conflicting goals of minimizing buffering 
delay and minimizing late packet loss have led to 
various adaptive playout algorithms: 

 
- Histogram-based algorithms as “Concord” [1] or 

Moon’s [2] are not capable of very rapidly increasing 
the buffering delay during congestion and quickly 
reducing it when congestion has passed. 

 
- Reactive algorithms as Ramjee’s [3] or Bolot’s 

[4],  that rely on estimates of network delays, either 
react too quickly to transient noise conditions (when 
the estimator gain is small) or ignore persistent 
changes in performance (when the estimator gain is 
high), but cannot do both [5]. 

 
A new playout buffer algorithm was proposed in 

[6][7][8] that extends the reactive approach. In that 
solution the estimator gain is updated with each 
incoming packet according to the observed delay 
variations. When variations in network delays are high 
(which implies that network conditions are rapidly 
changing), the value of gain is set low, and vice-versa. 
With higher-quality estimates of network delays, the 
new algorithm adapts quickly to changing network 
conditions, which reduces the frequency of late packets 
and the amount of buffering delay. 

In this paper we compare the performance of 
reactive and histogram-based algorithms with the 



proposed solution in an 802.11b WLAN environment. 
A number of connections  through one access point 
were used to emulate different network conditions (e.g. 
UDP background traffic). The experimental results 
show that the new algorithm predicts and follows 
network delays more efficiently that traditional 
algorithms. We also compared the performance of 
three audio codecs (ITU-T G.711, G.723.1, and 
G.729A) under varying load conditions using the ITU-
T E-model methodology. From our results we 
conclude that the use of the G.711 audio codec in 
conjunction with the new adaptive playout scheme 
gives the highest user satisfaction of the Voice over 
WLAN schemes considered. 
 
2. New playout algorithm 
 

Most of the adaptive playout algorithms described 
in the literature depend on estimates of network delays 
to calculate playout deadlines of already received 
packets. Good network estimators should ignore 
transient noise conditions, but react quickly to 
persistent changes in performance. Typically, network 
estimators in the form of exponentially weighted 
moving average (EWMA) filters provide one of these 
properties, but not both [5]. This is because they are 
constructed with static gain: the smoothing parameter 
α that determines how aggressively an EWMA filter 
will track changing network conditions. This gain 
biases the estimator either towards past history (when 
α is high) or current observations (when α is low).  

 
The basic adaptive playout algorithm [3] estimates 

two statistics; the delay itself and its variance: 
 

inidid ⋅−+−
∧

⋅=
∧

)1(1 αα               (1) 

||)1(1 iiii ndvv −⋅−+⋅=
∧

−
∧∧

αα           (2) 
 

where 
∧

id and 
∧

iv are the ith estimates of delay and its 
variance respectively, while in  is the ith packet delay.  

According to [3], the weighting parameter α should 
be fixed at a high value, e.g. α = 0.998002. This was 
motivated by the work on TCP roundtrip time 
estimation, and assumed slow changes in roundtrip 
time. 

 
The idea behind the new algorithm proposed in 

[6][7][8] is to adaptively adjust the value of α, every 
time a new packet arrives, depending on the variations 
in the network delays. When the variation in network 

delays is high (which implies that network conditions 
are rapidly changing) the value of α is set low and 
vice-versa: 

)ˆ( ii vf ′=α                            (3) 
 
where iv′ˆ  is a smoothed estimate of the variance of 

the end-to-end delay and the function )ˆ( ivf ′  was 
chosen experimentally to maximize the performance of 
the algorithm over a large set of network traces. This 
dynamic version of parameter α is used in the estimates 
of delay and variance: 
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The equation for the playout time of the first packet 

of a talkspurt is the same as in the basic adaptive 
algorithm: 

iiii vdtp
∧∧

⋅++= β                      (6) 
 

where it  is the generation time of the ith packet and 
parameter β controls the delay/packet loss ratio (the 
larger the value of β, the more packets are played out, 
at the expense of longer delays). Any subsequent 
packets of this talkspurt are played out with rate equal 
to their generation rate at the sender. 

We claim that under changing network conditions 
the accuracy of the estimate (and therefore the 
resulting VoIP playout quality) can be greatly 
improved by dynamically choosing the value of α.  

 
3. Experimental measurements 
 

An one-way VoIP session was established between 
two wireless hosts (VoIP SENDER and VoIP 
RECEIVER), via the Access Point (AP) in an 802.11b 
WLAN (Figure 1). 

 
 
 
 
 
 
 
 
 
 
 
 

  
           Figure 1: Measurement setup 



A number of wireless stations were used to generate 
background UDP traffic. This was accomplished using 
the MGEN traffic generator [9]. The stations generated 
UDP packets of length 1024 bytes at a transmission 
rate of 50 fps. Voice traffic was generated using 
RTPtools [10].  The VoIP sender sent voice packets of 
80 bytes every 10 ms (i.e. G.711 codec) during voice 
activity. No packets were generated during silence 
periods. A sequence of alternating active and passive 
periods was used following the ITU-T P.59 
recommendation [11] with an exponential distribution 
of talkspurts and gaps (with mean values of 1004ms 
and 1587ms respectively). The duration of the test was 
one hour during which time all experimental data 
(packet arrival times, timestamps, sequence numbers, 
and marker bits) were collected at the receiving 
terminal and processed later (off-line) with a program 
that simulated the behaviour of various playout 
algorithms. Since the terminal clocks were not 
synchronized, the clock skew was removed using 
Paxon’s algorithm [12]. The influence of the 
background traffic on the delay and delay variation is 
shown in Figure 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
4. Effects of the encoding scheme and 
playout mechanism on user satisfaction. 
 

To estimate the subjective quality of packet voice 
the E-Model (ITU-T Recommendation G.107 [13]) 
was used. The E-Model combines individual 

impairments (including loss, distortion, echo, delay, 
and noise) due to both the signal’s properties and the 
network characteristics into a single R-rating that 
ranges from 0 to 100. The rating factor R is a linear 
combination of the individual impairments: 

 
AIIIRR edso +−−−= )(                 (7) 

From our point of view, the delay impairment dI and 
equipment impairment eI  (which captures the effect 
of information loss due to encoding scheme and packet 
loss) are relevant. The other impairments: loud 
connection and quantization impairment SI , basic 
signal to noise ratio 0R , and the “advantage factor” A  
do not depend on the transmission over the network. 
Therefore, since values of R above 94.15 are 
unobtainable in narrowband (300 to 3400 Hz) 
telephony, we can write the R rating for G.711 audio 
as: 

ed IIR −−= 15.94                       (8) 
 
Based on R-rating, we assessed transmission quality 

and subjective user satisfaction over a one-hour period. 
First we calculated playout delays and packets loss for 
a given playout scheme. Then, for each 10 seconds of 
the session, we calculated delay impairments and 
equipment impairments according to the ITU-T E-
model recommendation. Equipment impairments as a 
function of information loss due to encoding scheme 
and packet loss (including loss due to late packet 
arrival) were calculated for each codec separately 
based on the ITU-T recommendation G.113 [14]. For 
calculating delay impairments we assumed echo loss 
TELR = 65dB.  After calculating delay impairments 
and equipment impairments we finally obtained the 
time varying quality of the call. 

 
Figures below show average playout delays (using 

logarithmic scale for the Y axis), average packet loss 
and corresponding rating factor R for different playout 
buffer algorithms calculated for the G.711 encoding 
scheme.  

 
We also took into account user satisfaction in terms 

of ranges of R [13] that was derivated from delay/loss 
distribution on the user perception quality plane. The 
quality plane shows how an average user rates the 
quality of a call, depending on packet loss and one-
way end-to-end delays for a given encoder and a given 
echo cancellation level (each dot corresponds to 
average playout delay and average late packet loss for 
10 seconds of the transmission) [15].   
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Figure 2: Influence of the background               

traffic on delay and jitter. 



 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Figure 3: Time varying playout delay, packet loss 
and quality of the call with the Ramjee’s playout 

alg. (α=0.998002) 
 

 

 
 

Figure 4: Distribution of playout delays and 
packet loss on the quality plane with the 

Ramjee’s playout alg. (α=0.998002) and resulting 
user satisfaction. 

 

 
 

Figure 5: Time varying playout delay, packet loss 
and quality of the call with theRamjee’s playout 

alg. (α=0.9) 
 

 

 
 

Figure 6: Distribution of playout delays and 
packet loss on the quality plane with the 

Ramjee’s playout alg. (α=0.9) and resulting 
user satisfaction. 

 

 
 

Figure 7: Time varying playout delay, packet loss 
and quality of the call with the “Concord” alg.  

(desired loss 1%) 
 

 

 
 

Figure 8: Distribution of playout delays and 
packet loss  on the quality plane with  the 

“Concord”  alg. (desired loss 1%) and 
resulting user satisfaction 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

Figure 9: Time varying playout delay, packet loss 
and quality of the call with the Moon’s alg.  

(desired loss 1%, # samples 400) 
 

 

 
 

Figure 10: Distribution of playout delays and 
packet loss on the quality plane with  the 

Moon’s  alg. (desired loss 1%, # samples 400) 
and resulting user satisfaction 

 

 
 

Figure 11: Time varying playout delay, packet 
loss and quality of the call with the Bolot’s 

alg.  
 

 

 
 

Figure 12: Distribution of playout delays and 
packet loss on the quality plane with the 

Bolot’s alg.  and resulting user satisfaction 
  

 
 

Figure 13: Time varying playout delay, packet 
loss and quality of the call with the    

“dynamic α” alg. 
 

 

 
 

Figure 14: Distribution of playout delays and 
packet loss on the quality plane with  the 

“dynamic α”  alg.  and resulting user 
satisfaction 



Results above show that the new adaptive buffering 
scheme with dynamic α gave very good user 
satisfaction 67% of the time, compared to the basic 
algorithm with fixed α at 40% (α=0.998002), Bolot’s 
alg. 58%, Moon’s alg. 41% and Concord 1%. This 
indicates that the dynamic α approach responds well to 
the fast variations that are expected in a WLAN 
environment.  

 
In a similar way we also assessed the time varying 

quality of the call and overall user satisfaction taking 
into account two other popular audio codecs i.e. 
G.723.1 and G.729A.  

 
Table 1 shows user satisfaction for each of the 

buffering mechanisms and encoding scheme examined.  
 

 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From Table 1 it can be seen that user satisfaction is 
highly influenced by both encoding scheme and 
playout buffering mechanism at the receiver. For 
example, adaptive buffering scheme with G.711 
encoding gave very good user satisfaction 67% of the 
time. The same algorithm with G.723.1 or G.729A 
encoding couldn’t achieve very good user satisfaction. 

 
5 Conclusions 
 

We compared the performance of three audio 
codecs (ITU-T G.711, G.723.1, and G.729A) in a 
WLAN environment under varying load conditions 
using the ITU-T E-model methodology. Results show 
that the use of the G.711 audio codec in conjunction 
with the new adaptive playout scheme gives the 
highest user satisfaction of the Voice over WLAN 
schemes considered. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 USER SATISFACTION CATEGORIES 
CODEC PLAYOUT 

MECHANISM 
not 

recommended 
[% time] 

almost all 
dissatisfied 
[% time] 

many 
dissatisfied 
[% time] 

some 
dissatisfied 
[% time] 

 
satisfied 
[% time] 

very 
satisfied 
[% time] 

Ramjee’s alg. 
α=0.9980 

11 1 2 3 42 40 

Ramjee’s alg. 
α=0.9 

10 3 6 11 60 11 

Concord alg. 89 0 1 3 6 1 
Moon’s alg. 9 0 1 2 47 41 
Bolot’s alg. 10 1 2 4 26 56 

G.711 

dynamic α alg. 8 0 0 2 23 67 
Ramjee’s alg. 
α=0.9980 

15 2 11 72 0 0 

Ramjee’s alg. 
α=0.9 

18 10 35 37 0 0 

Concord alg. 90 2 2 5 0 0 
Moon’s alg. 10 2 8 80 0 0 
Bolot’s alg. 14 4 8 80 0 0 

G.723.1 

dynamic α 9 2 4 85 0 0 
Ramjee’s alg. 
α=0.9980 

12 3 4 45 36 0 

Ramjee’s alg. 
α=0.9 

15 6 19 50 10 0 

Concord alg. 89 1 3 6 1 0 
Moon’s alg. 9 1 4 49 37 0 
Bolot’s alg. 13 2 4 30 51 0 

G.729A 

dynamic α alg. 9 1 2 25 64 0 
 
 
 

Table 1. User satisfaction vs various encoding schemes and playout mechanisms 
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