Sound Source Separation: Azimuth Discrimination and Resynthesis

Dan Barry
Technological University Dublin, dan.barry@tudublin.ie

Robert Lawlor
National University of Ireland, Maynooth

Follow this and additional works at: https://arrow.tudublin.ie/argcon

Part of the Engineering Commons

Recommended Citation
SOUND SOURCE SEPARATION:
AZIMUTH DISCRIMINATION AND RESYNTHESIS

Dan Barry
Dept. of Control Systems and Electrical Engineering,
Dublin Institute of Technology,
Kevin St, Dublin, Ireland.
barrydn@eircom.net

Bob Lawlor
Dept. of Electronic Engineering,
National University of Ireland,
Maynooth, Ireland
rlawlor@eeng.may.ie

Eugene Coyle
Dept. of Control Systems and Electrical Engineering,
Dublin Institute of Technology,
Kevin St, Dublin, Ireland.
eugene.coyle@dit.ie

ABSTRACT
In this paper we present a novel sound source separation algorithm
which requires no prior knowledge, no learning, assisted or other-
wise, and performs the task of separation based purely on azimuth
discrimination within the stereo field. The algorithm exploits the
use of the pan pot as a means to achieve image localisation within
stereophonic recordings. As such, only an interaural intensity
difference exists between left and right channels for a single
source. We use gain scaling and phase cancellation techniques to
expose frequency dependent nulls across the azimuth domain,
from which source separation and resynthesis is carried out. We
present results obtained from real recordings, and show that for
musical recordings, the algorithm improves upon the output qual-
ity of current source separation schemes.

1. INTRODUCTION
Our research is concerned with extracting sound sources from
stereo music recordings for the purposes of audition and analysis.
This is termed sound source separation and has been the topic of
extensive research in recent years. In general, the task is to extract
individual sound sources from some number of source mixtures.
Currently, the most prevalent approaches to this problem fall into
one of two categories, Independent Component Analysis, (ICA)
[1],[2] and Computational Auditory Scene Analysis, (CASA) [3].
ICA is a statistical source separation method which operates under
the assumption that the latent sources have the property of mutual
statistical independence and are non-gaussian. In addition to this,
ICA assumes that there are at least as many observation mixtures
as there are independent sources. Since we are concerned with
musical recordings, we will have at most only 2 observation mix-
tures, the left and right channels. This makes pure ICA unsuitable
for the problem where more than two sources exist. One solution
to the degenerate case where sources out number mixtures is the
DUET algorithm [4], [5]. Unfortunately this approach has restric-
tions which make it unsuitable for use with music. CASA methods
on the other hand, attempt to decompose a sound mixture into
auditory events which are then grouped according to perceptually
motivated heuristics [6], such as common onset and offset of har-
monically related components, or frequency and amplitude co-
modulation of components. We present a novel approach which
we term Azimuth Discrimination and Resynthesis, (ADRess). The
approach we describe is a fast and efficient way to perform sound
source separation on the majority of stereophonic recordings.

2. BACKGROUND
Since the advent of multi-channel recording systems in the early
1960’s, most musical recordings are made in such a fashion
whereby N sources are recorded individually, then electrically
summed and distributed across 2 channels using a mixing console.
Image localisation, referring to the apparent position of a particu-
lar instrument in the stereo field, is achieved by using a panoramic
potentiometer. This device allows a single sound source to be
divided into two channels with continuously variable intensity
ratios [7]. By virtue of this, a single source may be virtually posi-
tioned at any point between the speakers. So localisation is
achieved by creating an interaural intensity difference, (IID). This
is a well known phenomenon [8]. The pan pot was devised to
simulate IID’s by attenuating the source signal fed to one repro-
duction channel, causing it to be localised more in the opposite
channel. This means that for any single source in such a recording,
the phase of a source is coherent between left and right, and only
its intensity differs. It is precisely this that allows us to perform
our separation. A similar mixing model is assumed in [9] and [10].
It must be noted then, that our method is only applicable to re-
cordings such as described above. Binaural, Mid-Side, or Stereo
Pair recordings will not respond as well to this method although
we have had some success in these cases also.

3. METHOD
Gain-scaling is applied to one channel so that one source’s inten-
sity becomes equal in both left and right channels. A simple sub-
traction of the channels will cause that source to cancel out due to phase cancellation. The cancelled source is recovered by first creating a “frequency-azimuth” plane, figure1 and 2, which is then analyzed for local minima along the azimuth axis. These local minima represent points at which some gain scalar caused phase cancellation. It is observed that at some point where an instrument cancels, only the frequencies which it contained will show a local nulls. The magnitude and phase of these minima are then estimated and an IFFT in conjunction with an overlap add scheme is used to resynthesise the cancelled instrument.

3.1. Azimuth Discrimination

The mixing process we have described can be expressed as,

\[L(t) = \sum_{j=1}^{J} P_{Lj} S_{j}(t) \] \hspace{1cm} (1a)

\[R(t) = \sum_{j=1}^{J} P_{Rj} S_{j}(t) \] \hspace{1cm} (1b)

where \(S_{j} \) are the \(J \) independent sources, \(P_{Lj} \) and \(P_{Rj} \) are the left and right panning co-efficients for the \(j^{th} \) source, and \(L \) and \(R \) are the resultant left and right channel mixtures. Our algorithm takes \(L(t) \) and \(R(t) \) as its inputs and attempts to recover \(S_{j} \), the sources. We can see from equation 1a and 1b that the intensity ratio of the \(j^{th} \) source, \(g(j) \), between the left and right channels can be expressed as,

\[g(j) = \frac{P_{Lj}}{P_{Rj}} \] \hspace{1cm} (2)

This implies that \(P_{Lj} = g(j)P_{Rj} \). So, multiplying the right channel, \(R \), by \(g(j) \) will make the intensity of the \(j^{th} \) source equal in left and right. And since \(L \) and \(R \) are simply the superposition of the scaled sources, then \(L - g(j)R \) will cause the \(j^{th} \) source to cancel out. In practice we use \(L - g(j)R \), if the \(j^{th} \) source is predominant in the right channel and \(R - g(j)L \), if the \(j^{th} \) source is predominant in the left channel. This serves two purposes, firstly it gives us a range for \(g(j) \) such that: \(0 \leq g(j) \leq 1 \). Secondly, it insures that we are always scaling one channel down in order to match the intensities of a particular source, thus avoiding distortion caused by large scaling factors.

So far we have only described how it is possible to cancel a source assuming the mixing model we have presented. Next we will deal with recovering the cancelled source. In order to this we must move into the frequency domain. We divide the stereo mixture into short time frames and carry out an FFT on each:

\[Lf(k) = \sum_{n=0}^{N-1} L(n)W_{n}^{kn} \] \hspace{1cm} (3a)

\[Rf(k) = \sum_{n=0}^{N-1} R(n)W_{n}^{kn} \] \hspace{1cm} (3b)

where \(W_{n} = e^{-j2\pi n / N} \) and \(Lf \) and \(Rf \) are short time frequency domain representations of the left and right channels respectively. In practice we use a 4096 point FFT with a Hanning window and an analysis step size of 1024 points. We create a frequency-azimuth plane for left and right channels individually, see figure 2. The azimuth resolution, \(\beta \), refers to how many equally spaced gain scaling values of \(g \) we will use to construct our frequency-azimuth plane. We relate \(g \) and \(\beta \) as follows,

\[g(j) = i \times \frac{1}{\beta} \] \hspace{1cm} (4)

for all \(i \) where, \(0 \leq i \leq \beta \), and \(i \) and \(\beta \) are integer values.

Large values of \(\beta \) will lead to more accurate azimuth discrimination but will increase the computational load. Assuming an \(N \) point FFT, our frequency-azimuth plane will be an \(N \times \beta \) array for each channel. The right and left frequency-azimuth plane are then constructed using,

\[AzR(k, i) = |Lf(k) - g(i)Rf(k)| \] \hspace{1cm} (5a)

\[AzL(k, i) = |Rf(k) - g(i)Lf(k)| \] \hspace{1cm} (5b)

for all \(i \) and \(k \) where, \(0 \leq i \leq \beta \), and \(1 \leq k \leq N \).

It must be stated that we are using the term “azimuth” loosely. We are not dealing with angles of incidence. The azimuth we speak of is purely a function of the intensity ratio, created by the pan pot during mix down.

In order to illustrate how this process reveals frequency dependent nulls, we generated two test signals, each with 5 unique partials. A stereo mix was created such that both sources were panned to the right, but each with a different intensity ratio. Using this test signal, the frequency-azimuth plane in figure 1 was created using equation 5a, with, \(\beta=100 \), and \(N=1024 \) point FFT. It can clearly be seen that partials from each source are at a minimum at the same point along the azimuth axis as in figure 1 and figure 2.

![Figure 1: The Frequency-Azimuth spectrogram for the right channel. We used 2 synthetic sources each comprising of 5 non-overlapping partials. The arrows indicate frequency dependent nulls caused by phase cancelation.](image)
In order to estimate the magnitude of these nulls we redefine equation 5a and 5b as 6a and 6b:

\[
A_z^R(k, i) = \begin{cases}
A_z^R_{\text{max}} - A_z^R_{\text{min}} & \text{if } A_z^R(k, i) = A_z^R_{\text{min}} \\
0 & \text{otherwise.}
\end{cases}
\] (6a)

\[
A_z^L(k, i) = \begin{cases}
A_z^L_{\text{max}} - A_z^L_{\text{min}} & \text{if } A_z^L(k, i) = A_z^L_{\text{min}} \\
0 & \text{otherwise.}
\end{cases}
\] (6b)

Effectively, we are turning nulls into peaks as can be seen in figure 2. However, the test signal described, represents the ideal case where there is no harmonic overlap between 2 sources. This is almost never the case when it comes to tonal music. Harmony is one of the fundamentals of music creation, and as such instruments will more often than not be playing harmonically related notes simultaneously which implies that there will be significant harmonic overlap with real musical signals. The result of this, is that frequencies will not group themselves as neatly across the azimuth plane as in figure 2. We have observed “frequency-azimuth smearing”. This is caused when two or more sources contain energy in a single frequency bin. The apparent frequency dependent null drifts away from a source position and may be at a minimum at a position where there is no source at all. For instance, if two sources in different positions, contained energy at a particular frequency, the apparent null will appear somewhere between the two sources. To overcome this problem, we define an “azimuth subspace width”, \(H\), such that \(1 \leq H \leq \beta\). This allows us to recover peaks within a given neighbourho. These azimuth subspaces may overlap and often do. Nulls that drift away from their source positions can now be re-included for resynthesis. A wide azimuth subspace will result in worse rejection of nearby sources. On the other hand a narrow azimuth subspace will lead to poor resynthesis and missing frequency information. This parameter is varied depending on source proximity. Figure 3 shows the same test signals as before only each includes one extra partial of the same frequency. It can clearly be seen that the common partial is now apparent between the two sources. In order to recover it, the azimuth subspace boundary of the source must extend beyond it. This is shown for source one. At this point we introduce the “discrimination index”, \(d\) where, \(0 \leq d \leq \beta\). This index, \(d\), along with the azimuth subspace width, \(H\), will define what portion of the frequency-azimuth plane is extracted for resynthesis.

3.2. Resynthesis

In order to resynthesise only one source, we set the discrimination index, \(d\), to the apparent position of the source. In figure 3, there are 2 sources, one at approximately 85 points along the azimuth axis, and the other at 33. The azimuth subspace width, \(H\), is then set such that the best perceived resynthesis quality is achieved. In practice, we centre the azimuth subspace over the discrimination index such that the subspace spans from \(d-H/2\) to \(d+H/2\). The peaks for resynthesis are then extracted using eq 7a and 7b,

\[
Y_R(k) = \sum_{i=d-H/2}^{i=d+H/2} A_z^R(k, i) \quad 1 \leq k \leq N
\] (7a)

\[
Y_L(k) = \sum_{i=d-H/2}^{i=d+H/2} A_z^L(k, i) \quad 1 \leq k \leq N
\] (7b)

The resultant \(Y_R\) and \(Y_L\) are \(1 \times N\) arrays containing only the bin magnitudes pertaining to a particular azimuth subspace as defined by \(d\) and \(H\). More specifically, \(Y_R\) and \(Y_L\) contain the short time power spectrum of the separated source. At this point it should be noted that, if two sources have the same intensity ratio, i.e. they share the same pan position, both will be present in the extracted subspace. This is particularly true of the “centre” position. It is common practice in audio mix down to place a number of instruments here, usually voice and very often bass guitar and elements of the drum kit too. In this instance, band limiting can be used to further isolate the source of interest.

The bin phases could be estimated using a technique such as ‘magnitude only reconstruction’ but we have found that using the original bin phases is adequate, equation 8a and 8b. Once we have bin phases and magnitudes we can convert from polar to complex form using equation 9. The azimuth subspace is then resynthesised using the IFFT, equation 10.
\[\Phi_{R_k} = \angle (Rf_k) \] (8a)
\[\Phi_{L_k} = \angle (Lf_k) \] (8b)

Polar to rectangular conversion is then carried out using eq. 9.

\[X_k = \begin{cases} \Re X_k = Y_k \cos \Phi_k \\ \Im X_k = Y_k \sin \Phi_k \end{cases} \] (9)

We resynthesise our short time signal using the IFFT,

\[X_k = \frac{1}{N} \sum_{n=1}^{N} X_{k_n} W_k^{-ln} \] (10)

Where \[W_n = e^{j2\pi k/n} \]

The resynthesised time frames are then recombined using a standard overlap and add scheme. This algorithm has been implemented to run in real-time and it is the case that the control parameters \(d \) and \(H \) be set subjectively until the required separation is achieved. In effect, the user sweeps through the stereo space from left to right until the desired source is encountered. In much the same way as a pan pot places a source at some position between left and right, the ADRess algorithm will extract a source from some position between left and right.

4. RESULTS

We have applied the ADRess algorithm to a number of commercial recordings. The degree of separation achieved depends on the amount of sources, the source proximity and the source level. If sources are proximate, it is likely that multiple sources may get extracted. If there is a large number of sources, partials may go missing. If the source level is too low, the resynthesis may have a bad signal to noise ratio. In general though, some degree of separation is possible. In order to illustrate this, we generated a synthetic stereo signal, using 5 general midi instruments: bass, piano, drums, vibraphone and French horn. They were panned to 5 unique positions as in figure 4.

![Figure 4: 5 sources panned to different positions. 1=bass, 2=vibraphone, 3=drums, 4=piano, 5=horn](image)

The piece of music in figure 5 was generated in a midi editor using these 5 instruments. The polyphony varies throughout the 2 bar segment with up to 9 notes sounding at once. In some cases 2 instruments are playing the same note at once.

![Figure 5: The score which was generated for the 5 instruments.](image)

A stereo wave file, figure 6, was then created using the score, instruments and panning parameters from above. This file was then processed by ADRess, with the relevant parameters set. The azimuth resolution, \(\beta \), was set to 10 points for each side. The azimuth subspace width, \(H \), was set to 2 in all cases. The discrimination index, \(d \), was set for each source position. A high quality of separation was achieved for all sources.

![Figure 6: The Stereo Mixture containing 5 panned sources.](image)

The resulting separations are of reasonably high quality. There are some obvious visual differences between the input and output time domain plots and there are some obvious audible artifacts but the quality is significantly high. Furthermore when the separations are 'remixed', the resultant mixture is almost free from artifacts. These examples and others can be downloaded at:

5. CONCLUSIONS

We have presented an algorithm which is able to perform sound source separation by decomposing stereo recordings into frequency-azimuth subspaces. These subspaces can then be resynthesised individually, resulting in source separation. The only constraints are that the recording is made in the fashion described in section 2, and that the sources do not move position within the stereo field. We feel that ADRess is applicable to a large percentage of commercial recordings.

6. ACKNOWLEDGEMENTS

Many thanks to Derry Fitzgerald for knowledge imparted and also to Frank Duignan for work on the the real-time java implementation of ADRess.

7. REFERENCES

