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ABSTRACT 

Coenzyme A (CoASH) is an obligate cofactor for lipids undergoing β-oxidation in 

peroxisomes. Although the peroxisomal membrane appears to be impermeable to 

CoASH, peroxisomes contain their own pool of CoASH. It is believed that CoASH enters 

peroxisomes as acyl-CoAs, but it is not known how this pool is regulated. The mouse 

nudix hydrolase 7 (NUDT7α) was previously identified in peroxisomes as a CoA-

diphosphatase, and therefore suggested to be involved in regulation of peroxisomal 

CoASH levels. Here we show that mouse NUDT7α mainly acts as an acyl-CoA 

diphosphatase, with highest activity towards medium chain acyl-CoAs, and much lower 

activity with CoASH. Nudt7α mRNA is highly expressed in liver, brown adipose tissue 

and heart, similar to enzymes involved in peroxisomal lipid degradation. Nudt7α mRNA 

is downregulated by Wy-14,643, a peroxisome proliferator-activated receptor alpha 

(PPARα) ligand, in a PPARα dependent manner in mouse liver. In highly purified 

peroxisomes, nudix hydrolase activity is highest with C6-CoA and is decreased by fibrate 

treatment.  Under certain conditions, such as treatment with peroxisome proliferators or 

fasting, an increase in peroxisomal CoASH levels has been reported, which is in line with 

a decreased expression/activity of NUDT7α. Taken together these data suggest that 

NUDT7α function is tightly linked to peroxisomal CoASH/acyl-CoA homeostasis. 

 

Key words: peroxisomes, acyl-CoA thioesterase, peroxisome proliferator-activated 

receptor alpha, nudix hydrolase, coenzyme A. 
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INTRODUCTION 

 

Coenzyme A (CoASH) is involved in over 100 different reactions in intermediary 

metabolism and is indispensable in living organisms (for review see (1)). CoASH is an 

obligate co-factor in the degradation of lipids in mitochondria and peroxisomes since the 

β-oxidation of fatty acids requires their activation to the corresponding CoA ester before 

β-oxidation can proceed. This activation is catalyzed by a large family of acyl-CoA 

synthetases with multiple localizations in the cell (for review, see (2)). Intracellular levels 

of CoASH depend on the metabolic state, and CoASH is compartmentalized in cytosol, 

mitochondria and peroxisomes, with each organelle suggested to contain its own pool of 

CoASH. However, the peroxisomal membrane is impermeable to ‘bulky’ solutes (over 

300 Da) including cofactors such as CoASH, NAD(H), NADP(H), together with CoA 

esters of fatty acids (3). Several studies suggest that fatty acids are activated on the 

outside of the peroxisomal membrane, and therefore fatty acids enter peroxisomes in the 

form of the CoA ester (4), thus bringing CoASH into the peroxisomal lumen. Acyl-CoAs 

are believed to be transported across the peroxisomal membrane by a family of ATP-

binding-cassette transporters (ABC transporters), and to date four ABC transporters have 

been identified in mammalian peroxisomes, ABCD1-ABCD4 (for review see (4)). 

Peroxisomes are estimated to contain approximately 0.23-0.7 mM CoASH (5,6), which 

can be used for the various oxidation reactions (for review see (7)). In particular, a pool 

of CoASH is required for the final step in β-oxidation to proceed, catalyzed by the 3-

ketoacyl-CoA thiolases or the sterol carrier protein x, where a molecule of free CoASH is 
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required to form a chain-shortened acyl-CoA, with the concomitant release of acetyl-CoA 

or propionyl-CoA (depending on the substrate oxidized).  

 CoASH levels in peroxisomes can portentially be regulated by members of 

three enzyme families, the acyl-CoA thioesterases (ACOTs), the nudix hydrolases 

(NUDTs), and the carnitine acyltransferases. The ACOTs catalyze the hydrolysis of acyl-

CoAs to the free fatty acid and CoASH (for review see (8)), while the nudix (nucleoside 

diphosphate linked to another moiety X) hydrolases are active on CoASH and cleave 

CoASH to 4’-phosphopantetheine and 3’,5’-ADP (9,10) (see Fig. 1 for the site of 

hydrolysis by ACOTs and NUDT enzymes in an acyl-CoA molecule). Six ACOT 

enzymes have been identified in mouse peroxisomes: ACOT3-6, active on long chain 

acyl-CoAs, succinyl-CoA, medium chain acyl-CoAs, and branched chain acyl-CoAs 

respectively (11-14); ACOT8, active on a broad range of acyl-CoAs (15,16); and 

ACOT12, active on short chain acyl-CoAs (mainly acetyl-CoA) (17). Two nudix 

hydrolases active on CoASH or CoA derivatives have been identified in mammalian 

peroxisomes, the NUDT7 (18) and NUDT19 (RP2p) (19). These enzymes function as 

diphosphatases that can cleave CoASH or CoA esterified to a fatty acid, with the 

resulting products being 4’-phosphopantetheine or acyl-phosphopantetheine (a fatty acid 

backbone with a 4’-phosphopantetheine) and 3’,5’-ADP. The mouse NUDT7α was first 

characterized in 2001 and expression of recombinant protein showed that this enzyme 

hydrolyzed CoASH, 3’-dephospho-CoA, oxidized CoA (CoASSCoA), acetyl-CoA and 

succinyl-CoA, with the Km for these substrates ranging from 230 µM to 480 µM (18). 

Two isoforms of mouse Nudt7 have been identified, the Nudt7α and Nudt7β (18). The 

NUDT7α is a peroxisomal coenzyme A diphosphatase, while the Nudt7β is an inactive 
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splice variant. The Nudt19 was identified by proteomic analysis of mouse kidney 

peroxisomes as a CoA diphosphatase with activity towards CoASH, oxidized CoA and a 

wide range of CoA esters, including bile acid-CoAs and branched chain acyl-CoAs (19). 

Peroxisomes also contain two carnitine acyltransferases (carnitine acetyltransferase and 

carnitine octanoyltransferase) that transfer fatty acids from CoASH to carnitine for 

subsequent transport to mitochondria.  

There are some literature reports suggesting that the peroxisomal CoASH pool is 

increased in liver in response to peroxisome proliferator treatment and by fasting (5). 

This may be due to several factors, (a) an increase in uptake of acyl-CoAs into 

peroxisomes under these conditions (i.e increased peroxisomal β-oxidation activity), (b) 

changed activities of ACOTs and carnitine acyltransferases, and (c) regulation of nudix 

hydrolase activity that would regulate CoASH levels in peroxisomes. Since the activity of 

mouse NUDT7α was originally only characterized with CoASH and a very limited set of 

short-chain acyl-CoA’s (18), we therefore set out to perform a more in-depth study on the 

activity of NUDT7α. We have examined the substrate specificity of NUDT7α and show 

that this enzyme mainly hydrolyzes medium chain acyl-CoAs and bile acid-CoAs. We 

show that Nudt7α mRNA is mainly expressed in liver, brown adipose tissue and heart, 

tissues that also have high expression of the peroxisomal β-oxidation enzymes acyl-CoA 

oxidase 1 and multifunctional protein 2 (20). The Nudt7α mRNA is downregulated in 

liver during conditions that alter the metabolic status of peroxisomes, such as treatment 

with the peroxisome proliferator-activated receptor alpha (PPARα) ligand Wy-14,643. In 

line with this, nudix hydrolase activity was also downregulated in highly purified mouse 

liver peoxisomes following clofibrate treatment. Interestingly the highest nudix hydrolase 
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activity in peroxisomes is with C6-CoA which is about 12 times higher than the activity 

with CoASH. Our results show that NUDT7α is likely an important auxiliary enzyme in 

regulating peroxisomal acyl-CoA/CoASH levels, the latter being imperative for β-

oxidation to proceed.  

 

Materials and methods 

 

Cloning and expression of mouse Nudt7α-  

The open reading frame of mouse Nudt7α was amplified from mouse kidney total RNA 

using the following primers 5’- CATATGTCGCGACCTTGTGGAC-3’ and 5’-

CATATGGGGTCTTCACAACTTGCTTAAAG-3’, with NdeI sites indicated in bold. 

Reverse Transcriptase PCR was performed using the Takara One Step RNA PCR kit 

using the following program: 50ºC for 30 min, 94ºC for 2 min, followed by 30 cycles of 

94ºC for 30 sec, 55ºC for 30 sec and 72ºC for 2 min. The Nudt7α PCR product was 

cloned into the NdeI site in pET-16b vector (Novagen Corp) and fully sequenced. 

Alternatively, the Nudt7α was cloned into the pMal-C2X vector (New England Biolabs) 

to express NUDT7α as a fusion protein with the maltose binding protein (MBP). The 

Nudt7α plasmid was then used to transform BL21(DES3)pLysS cells (Novagen Inc). For 

expression of NUDT7α, bacteria were cultured in Luria-Bertani medium at 37ºC, in the 

presence of 50 µg/ml ampicillin and 34 µg/ml chloramphenicol until an A600 of 

approximately 0.6 was reached. Protein expression was induced by the addition of 1 mM 

isopropyl-1-thio-β-D-galactopyranoside and growth was continued for 3 hours. The 

bacteria were collected and frozen at -20°C.  
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 Bacterial pellets were thawed and resuspended in Bug BusterTM protein 

extraction reagent (Novagen Inc) with the addition of Benzonase (Novagen Inc.), 

incubated at room temperature for 20 minutes and centrifuged at 4,200 x g for 20 min at 

4oC. The supernatants were then used for purification of his-tagged NUDT7α on a His-

TrapTM column (Amersham Biosciences) or purification of the MBP-fusion protein on 

amylose resin as described by the manufacturer (New England Biolabs). These purified 

fractions were subsequently used for activity measurements. Protein concentration was 

determined using the Bradford assay (21). 

 

Determination of recombinant nudix hydrolase activity-  

NUDT7α activity was measured using two different assays. For the HPLC-based assay, 

NUDT7α activity was measured in 100 mM Tris/HCl buffer, pH 9.0, 10 mM MgCl2, 

using 200 µM acyl-CoA substrates in a final volume of 125 µl. 10 mM dithiothreitol 

(DTT) was added to incubations with CoASH to maintain it in a reduced form. Reactions 

were started by adding 0.8 µg NUDT7α and incubated for 15 min at 37°C. Reactions 

were terminated by addition of 25 µl of 2 M perchloric acid and neutralized with 

potassium carbonate. Samples were centrifuged at 12,000 x g for 10 min at 4°C. Samples 

were diluted with an equal volume of 100 mM ammonium phosphate (buffer A).  and 

metabolites were analyzed on a HPLC system using a 250 mm x 4.6 mm Supelcosil LC-

18-S column equilibrated with buffer A at a flow rate of 1 ml/min as described in (19). 

The metabolites were eluted from the column with a linear gradient of 20 min changing 

from 100% buffer A to 100% buffer B (buffer A/acetonitrile 50:50). Absorption was 

measured at 260 nm using Chromeleon software. The specific activity was calculated 
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based on measurement of 3’,5’-ADP produced, using two separate NUDT7α protein 

preparations. 

 For the determination of Km and Vmax with different substrates, NUDT7α 

activity was measured using an assay that is based on quantitation of released phosphate 

by co-incubation with alkaline phosphatase in principal as described earlier (22,23). 

CoASH and acyl-CoAs (in the range 10-350 µM) were incubated with 0.5-2 µg of 

purified recombinant NUDT7α and calf intestine alkaline phosphatase (2 U) in 100 mM 

Tris/HCl, pH 8.0, 5 mM MgCl2, in a final volume of 200 µl at room temperature for 20 

minutes. In the case of CoASH measurements, 10 mM DTT was added. The incubations 

were terminated by addition of 700 µl of a mixture containing ascorbic acid and 

ammonium molybdate in H2SO4 and incubated at 37oC for more than one hour, and the 

absorbance was measured at 820 nm. The amount of free phosphate was calculated using 

A820=0.260 is equivalent to 10 nmol of inorganic phosphate (Pi) (23). Control reactions 

without NUDT7α protein were carried out for each individual substrate at each 

concentration to determine the NUDT7α independent release of Pi by the alkaline 

phosphatase due to its activity towards the 3’-phosphate in CoASH (see *** in Fig.1). 

This background activity was subtracted from the test reaction containing NUDT7α to 

establish the amount of NUDT7α-dependent Pi generated from the production of acyl-

phosphopanthetheine (one phosphate per molecule) and 3’,5’-ADP (one phosphate per 

molecule). The activity measurements were performed using three separate preparations 

of recombinant NUDT7α and enzyme kinetics were calculated using Prism Enzyme 

Kinetics software. 
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Determination of nudix hydrolase activity in purified peroxisomes- 

Nudix hydrolase activity was determined in mouse liver peroxisomes from control 

animals or animals treated with 0.5% clofibrate for one week, isolated as described in 

(13). Activity was determined by incubating 50 µg purified liver peroxisomes with 150 

µM C14-CoA thioether (Avanti Polar Lipids), or 250 µM C6-CoA or 250 µM CoASH in 

100mM Tris/HCl pH8, with or without the addition of 5mM MgCl2. Reactions were 

terminated by adding 50 µl of 0,5M perchloric acid to each incubation, followed by 

neutralization with 2 M KOH/10 mM MES buffer until a pH of 6-7 was reached. Samples 

were then centrifuged at 14,000 rpm for 10 min at 4°C and the supernatant was removed. 

20 µl of the supernatant was analyzed on a HPLC system using a 250mm x 4.6 Beckman 

Ultrasphere C-18 analytical column, as described above. 

 

 

Animals and treatments-  
 
Tissues were excised from adult male wild-type (+/+) mice or PPARα null (-/-) mice on a 

pure Sv/129 background (24). The mice were fed either a standard chow diet or diets 

containing 0.1% Wy-14,643 (Calbiochem-Novabiochem International) or 0.5% (w/w) 

clofibrate (ICI Pharmaceuticals, Macclesfield, Cheshire, UK) for 1 week before sacrifice.  

Animals were sacrificed by CO2 asphyxiation followed by cervical dislocation. Tissues 

were excised and stored at –70oC for preparation of total RNA. All animal experiments 

were carried out with ethical permission obtained from the Animal Experimental Ethical 

Committee, Stockholm.  
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RNA isolation and cDNA synthesis-  

Total RNA was isolated from various mouse tissues using Trizol reagent (Invitrogen 

Corporation, CA, USA). Total RNA was treated with DNase I (Promega Corporation, 

Madison, WI, USA) prior to cDNA synthesis and the quality of RNA was analyzed on a 

1% agarose/formaldehyde gel. For the tissue expression studies RNA from three 

individual animals was pooled. For the regulation studies by Wy-14,643, three individual 

animals in each group were used. cDNA synthesis was performed using 1 µg of total 

RNA using Taqman Reverse Transcription reagents (Applied Biosystems Inc). The 

following primers were used: Nudt7α - Fwd 5’- CCGAAGTCTCCTGCTGCTAGTA -3’, 

Rev 5’- AGCCTTGGCATCATCTATCAGA-3’; NUDT7γ - Fwd 5’-

TACAGTCCCTTGAGCTGCCACA -3’, Rev 5’-TTCCCAAAACCTGACTCGGTG-3’; 

β-actin - Fwd 5’-GCTTCTTTGCAGCTCCTTCGT -3’, Rev 5’-

CGTCATCCATGGCGAACTG -3’. Quantitative PCR was performed in single-plex in 

triplicate using SYBRgreen Power master mix (Applied Biosystems Inc.) in an ABI 

Prism 7000 sequence detection system, using β-actin as a control, The PCR products 

were checked by agarose gel electrophoresis. The efficacy of all primer pairs was 

checked by running quantitative PCR on dilutions of template cDNA, verifying that 

tissue expression was analyzed in the linear range of the PCR. The average threshold 

(CT) values in triplicate were used to calculate the relative amounts of mRNA using the 

2-ΔΔCT method.  

 

RESULTS 
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The Nudt7 gene is alternatively spliced to encode three possible open reading frames 

We performed searches in the Expressed Sequence Tag (EST) database, which indeed 

revealed the existence of both Nudt7α and Nudt7β (although Νudt7α  is the dominating 

isoform  with 43 of 51 ESTs corresponding to Nudt7α). However, these searches also 

identified a further splice variant (designated Nudt7γ), which would result in an in-frame 

open reading frame that is 24 amino acids longer than Nudt7α. Translation of NUDT7α 

begins at an ATG, which results in a protein of 236 amino acids, however, NUDT7γ is 

translated from an alternative ATG start site, which is spliced out in NUDT7α, resulting 

in a protein of 260 amino acids (Fig. 2a and 2b). Again, database searches of EST clones 

revealed that out of 55 ESTs, only 4 corresponded to the Nudt7γ.  

 

The Nudt7 isoforms are mainly expressed in liver, brown adipose tissue and heart 

The tissue expression of both Nudt7α and Nudt7γ was examined using real-time PCR. 

Nudt7α showed highest expression in liver, followed by brown adipose tissue, heart and 

white adipose tissue (Fig. 3a). An amplicon at the 5’-end of Nudt7γ could be amplified 

and real-time PCR was used to examine the expression levels of the two variants relative 

to each other in the tissues in which Nudt7α is most highly expressed. The levels of 

Nudt7γ are approximately 20 times lower than Nudt7α, although the pattern of tissue 

expression was similar (Fig. 3b). Due to the very weak expression of Nudt7γ , this protein 

was not further characterized in this study.  

 

Peroxisomal nudix hydrolase Nudt7α  is regulated via the PPARα  
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As stated previously, it has been reported that the peroxisomal CoASH pool is increased 

in liver in response to treatment by peroxisome proliferators. As a downregulation of 

nudix hydrolase activity should result in an increase in CoASH pools, we therefore 

examined the nudix hydrolase activity in purified peroxisomes, together with mRNA 

expression of Nudt7α, in response to peroxisome proliferators. Interestingly, treatment 

with the PPARα activator Wy-14,643 resulted in a decrease in Nudt7α mRNA in mouse 

liver (Fig. 4a). This downregulation at mRNA level was not evident in the PPARα 

knockout mouse model, showing that it is a PPARα dependent effect. Keeping in mind 

that the cytoplasmic area of the peroxisome is increased by peroxisome proliferators (5-8 

fold) (25,26), it is likely that NUDT7α activity is strongly decreased in relation to 

peroxisomal β-oxidation, which would preserve CoASH and may explain the increased 

CoASH levels seen in peroxisomes in response to peroxisome proliferator treatment. 

To confirm that the decreased expression of Nudt7α mRNA is reflected in 

decreased nudix hydrolase activity, the activity was measured in highly purified 

peroxisomes isolated from control and clofibrate treated mouse liver, using CoASH, C6-

CoA and a C14-CoA thioether (the use of the C14-CoA thioether circumvents any possible 

interference by ACOTs when measuring nudix hydrolase activity). Interestingly, nudix 

hydrolase activity in peroxisomes was highest with C6-CoA (a medium chain acyl-CoA), 

followed by C14-CoA, and much lower with CoASH (Fig. 4b). The activity towards C6-

CoA and C14-CoA were reduced 70% and almost 40% respectively, following clofibrate 

treatment. Nudix hydrolase activity towards CoASH was however not changed in 

peroxisomes following clofibrate treatment.    
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NUDT7α  is a medium chain acyl-CoA diphosphatase 

The co-expression of Nudt7α with straight-chain β-oxidation enzymes in liver and brown 

adipose tissue, together with the regulation by PPARα points to a role for this enzyme as 

an auxiliary enzyme in β-oxidation, likely in regulating CoASH homeostasis. The 

observation that nudix hydrolase activity in isolated peroxisomes is considerably higher 

with acyl-CoAs than with CoASH suggests that acyl-CoAs may be the preferred 

substrates for NUDT7α. We therefore expressed recombinant mouse NUDT7α and re-

investigated the activity towards longer chain acyl-CoAs. The recombinant protein was 

very easily produced in good amounts of high purity (data not shown). Activity 

measurements with CoASH and various acyl-CoAs at a fixed concentration of 200 µM  

(using the HPLC method) showed a very broad specificity, with lower enzyme activity 

with longer chain acyl-CoAs, and the best substrates being medium chain acyl-CoAs, 

choloyl-CoA and trihydroxycoprostanoyl-CoA (THCA-CoA) (Fig. 5a).  

In order to determine the kinetic parameters (Vmax and Km) of NUDT7α we used a 

method based on quantitation of inorganic phosphate released by co-incubation with 

alkaline phosphatase.  Parallel incubations were carried out for each substrate and 

substrate concentration ± NUDT7α protein in order to determine the amount of inorganic 

phosphate released by alkaline phosphatase due to the NUDT7α reaction. The Km values 

are in the range of 22 to 242 µM, and Vmax values between 0.13 to 1.8 µmol/min/mg. The 

kinetics curves for CoASH, C6-CoA and C12-CoA are shown in Fig. 5b, demonstrating 

proper Michelis Menten kinetics, and that the method is appropriate for these 

measurements. Table 1 summarizes the kinetic characterization with a number of 

substrates, which shows that the Km values are highest with CoASH and short-chain acyl-
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CoAs, with substantially lower Km for medium to long chain acyl-CoAs, with the 

exception of C10-CoA. The reason for the higher Km with C10-CoA is not clear, but was 

consistent between enzyme preparations and using two different commercial batches of 

C10-CoA. In contrast, Vmax values are much higher with medium-chain acyl-CoAs (C6-

C12-CoA), suggesting that these acyl-CoAs are the best substrates for NUDT7α. It should 

be noted that the activity with CoASH reported here is much lower than the activity 

reported previously (18), however the reason for this difference is not clear. The 

consistently higher activities with increasing acyl chain length suggests that acyl-CoAs 

are the preferred substrates and the kcat and kcat/Km values obtained with medium chain 

acyl-CoAs support this notion. Thus, NUDT7α is a CoA diphosphatase, but the enzyme 

preferentially hydrolyzes medium chain acyl-CoAs and bile acid-CoAs, suggesting a role 

mainly in acyl-CoA metabolism.  

 

DISCUSSION 

 

Peroxisomes contain their own pool of CoASH, but at present intraperoxisomal CoASH 

homeostasis is poorly understood. The current view is that the peroxisomal membrane is 

impermeable to CoASH, and no CoASH-transporter has been identified to date. 

Therefore it appears that CoASH enters peroxisomes via ABC-transporters in the form of 

acyl-CoAs, and with no known mechanism of transport of CoASH out of the 

peroxisomes, the fate of intraperoxisomal CoASH remains unknown. There are however 

a number of enzymatic systems within the peroxisome that could be involved. 

Peroxisomes have long been known to contain short- and medium-chain carnitine 
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acyltransferases that convert the CoA-ester of fatty acids to the corresponding carnitine 

ester for transport to mitochondria, leaving CoASH in the peroxisomal lumen. Similarly, 

recently identified ACOTs are likely involved in release of non-esterified fatty acids for 

exit out of the peroxisome, also leaving CoASH in the peroxisomal lumen (for review, 

see (8)). However, the recent identification of two CoASH metabolizing enzymes, 

NUDT7 and NUDT19, provided a very promising, and seemingly simple, explanation for 

metabolism of CoASH in peroxisomes. Nevertheless, this is complicated by the finding 

that in fact both NUDT19 (19) and NUDT7α  (this study) are much more active on acyl-

CoAs rather than CoASH. Although nudix hydrolase activity in purified peroxisomes was 

tested on a limited number of substrates in this study, the activity pattern reveals much 

higher activity with medium chain acyl-CoAs (C6-CoA) and longer chain (C14-CoA) 

acyl-CoAs than with CoASH. This is supported by the kinetics of the recombinant 

Nudt7α protein, with highest kcat/Km values with medium to long chain acyl-CoAs. This 

combined data supports that NUDT7α is mainly an acyl-CoA diphosphatase. Therefore, a 

possible function for the NUDT enzymes could be to metabolize CoA esterified to fatty 

acids, and thereby terminate β-oxidation. As NUD7α is mainly active on medium-chain 

acyl-CoAs, this would allow longer-chain acyl-CoAs to undergo more cycles of β-

oxidation than medium-chain acyl-CoAs and may provide an explanation as to the 

previously reported “function” of peroxisomal β-oxidation to act as a chain-shortening 

system.  

 

The PPARα is a key nuclear receptor involved in the regulation of lipid metabolism and 

many genes in peroxisomal β-oxidation are targets of this nuclear receptor (27). 
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Conditions such as fasting and fibrate treament, which activate the PPARα (24,28,29), 

result in an increase of peroxisomal total and free CoASH levels (5). While little is 

known about the regulation of nudix hydrolases under these or other conditions, 

microarray expression analysis shows that Nudt7α is downregulated by fasting for 24 and 

48 hr in mice (30) and is also strongly upreglated by thyroid hormone (31). We now 

show that the Nudt7α is downregulated by Wy-14,643 treatment, in a PPARα-dependent 

manner in mouse liver. Analysis of the promotor region of Nudt7α reveals a direct repeat 

1 (DR1 - TGACCTGTGACCT) at -959 to -971 upstream of the ATG start site, which 

could potentially bind the PPARα/RXR heterodimer. As this is a ‘perfect ‘ DR1 

sequence, it is likely to be promiscuous in binding PPARα/RXR heterodimers and other 

candidate nuclear receptors such as HNF-4α, COUP/TF/RXR, and RAR/RXR. Further 

work is however required to characterize this promotor element which is likely involved 

in the PPARα agonist effects seen in this study. In conclusion therefore, during 

conditions of high requirement for CoASH in peroxisomes (when β-oxidation activity is 

high), Nudt7α is downregulated to preserve CoASH in peroxisomes, which can be used 

in the thiolase reaction of β-oxidation.  

 

 Apart from NUDT7α and NUDT19, a further nudix hydrolase has been 

identified in mammalian peroxisomes, named NUDT12, which is an NADH 

diphosphatase (32). As the peroxisomal membrane is impermeable to cofactors such as 

CoASH, NAD(H) and NADP(H), but allows free access of small hydrophilic molecules, 

it has been suggested by Antonenkov et al (3) that the peroxisomal nudix hydrolases 

cleave bulky cofactors into two smaller molecules of approximately equal size, which 
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provides a route for removal of these cofactors from peroxisomes. The role postulated for 

NUDT7α is in the cleavage of free CoASH to 4’-phosphopantetheine and 3’,5’-ADP, and 

thereby prevent accumulation of oxidized CoASH or CoASH in peroxisomes. The 

generation of 4’-phosphopantetheine in peroxisomes could theoretically be used for 

CoASH synthesis outside the peroxisome (for review see (1)). In mammalian cells, the 

first three steps of the CoA synthesis pathway are catalyzed by proteins located in the 

cytosol (33,34), while the last two reactions take place on the outer mitochondrial 

membrane (35). It is therefore possible that the 4’-phosphopantetheine could be exported 

from peroxisomes and reused in CoASH synthesis. The fate of the 3’,5’-ADP produced 

in peroxisomes is also unknown. In yeast and human peroxisomes, two adenine 

nucleotide transporters, Ant1 and PMP34, have been identified that transport adenine 

nucleotides across the peroxisomal membrane (36,37) and therefore 3’,5’-ADP may be 

transported out of the peroxisome lumen. Interestingly, ADP is also a potent inhibitor of 

ACOT12 (38), a peroxisomal short chain acyl-CoA thioesterase that can hydrolyze 

mainly acetyl-CoA (17,39,40), which suggests a role for nucleotides such as ADP in the 

regulation of acetate formation in peroxisomes. 

 ACOT enzymes in peroxisomes may act as a complementary system with 

NUDT7α and NUDT19 in regulation of acyl-CoA/CoASH levels (see Fig. 1). NUDT 

activity with acyl-CoAs will result in formation of acyl-phosphopanthetheine and 3’,5’-

ADP, which will be produced in parallel with ACOT enzyme products (CoASH and free 

fatty acids) in some tissues. This raises the question as to the fate of acyl-

phosphopanthetheine in peroxisomes. Interestingly, preliminary data suggests that 

ACOT3 and ACOT8 can in fact hydrolyze the acyl-phosphopanthetheine (the product of 
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the NUDT7α reaction), resulting in a free fatty acid and 4’-phosphopanthetheine. This 

may solve some of the mystery as to why both enzyme families would use the same 

substrate in peroxisomes. However, further work is underway to establish the role of the 

ACOTs and NUDTs in regulation of peroxisomal acyl-CoA/CoA levels. 
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Table 1. Kinetic characterization of NUDT7α .  
Diphosphatase activity of recombinant NUDT7α was measured on three protein 
preparations (shown as mean ± S.E.M.). Km and Vmax values were calculated using Prism 
Enzyme Kinetics software, and were used to calculate kcat and kcat/Km. 
 
 

Acyl-CoA Vmax 
(µmol/min/mg) 

Km  (µM) Kcat (1/s) kcat/Km 
(mM) 

CoASH    0.13 ± 0.08      157.0 ± 40.5 0.06 ± 0.04   0.48 ± 0.34 
Acetyl (C2-CoA)       0.27 ± 0.04      132.8 ± 15.9    0.12 ± 0.02  0.95 ± 0.05 
Propionyl (C3-CoA)    0.33 ± 0.04      221.4 ± 35 0.15 ± 0.02  0.73 ± 0.06 
Butyryl (C4-CoA)   0.49 ± 0.06      157.9 ± 34.4 0.23 ± 0.02  1.61 ± 0.32 
Hexanoyl (C6-CoA)      0.83 ± 0.144        92.6 ± 18.0 0.39 ±0.06  4.34 ± 0.75 
Octanoyl (C8-CoA)       1.08 ± 0.17        62.6 ± 9.6    0.51 ± 0.08  8.26 ± 0.92 
Decanoyl (C10-CoA)       1.84 ± 0.17      242.0 ± 10.0 0.87 ± 0.08  3.58 ± 0.17 
Lauroyl (C12-CoA)       1.06 ± 0.14        22.4 ± 2.3 0.50 ± 0.06 22.26 ± 1.51 
Myristoyl (C14-CoA)       0.41 ± 0.04        34.0 ± 13.2 0.19 ± 0.01  8.14 ± 3.49 
Palmitoyl (C16-CoA)       0.15 ± 0.10        28.7 ± 14.9 0.07 ± 0.04  6.85 ± 4.96 
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FIGURE LEGENDS 
 
 
Fig. 1. Reaction catalyzed by acyl-CoA thioesterases (ACOTs) and nudix hydrolases 

(NUDTs). The ACOTs hydrolyze acyl-CoAs to produce a free fatty acid and free 

CoASH, while NUDT7α will produce 4’-phosphopanthetheine or a fatty acid with a 

phosphopantetheine attached (4’-acyl-phosphopantetheine) and 3’,5’-ADP. The arrows 

indicate the sites of hydrolysis by ACOTs and NUDTs. The fatty acid (n) represents the 

acyl group. *** is the 3’ phosphate on the CoASH. 

 

Fig. 2. Structural organization of the mouse Nudt7 gene.  (a) Database searches in 

mouse identified a gene for Nudt7 that codes for 2 splice variants. The first variant 

Nudt7α contains the first in-frame ATG and results in a protein that is 236 amino acids. 

In the second alternatively spliced variant, Nudt7γ, the first ATG is spliced out and 

translation begins at position 1667 to produce a protein that is 260 amino acids. (b) 

Alignment of the amino acid sequences of NUDT7α and NUDT7γ. Identical amino acids 

are shaded. 

 

Fig. 3. Nudt7α is mainly expressed in liver and brown adipose tissue. 

(a) Tissue expression of Nudt7α was examined by single-plex Q-PCR in various tissues 

from male Sv/129 mice using β-actin as an endogenous control. Samples from three 

animals were pooled and run in triplicate and the relative amounts of mRNA were 

calculated using the 2-ΔΔCT method. (b) The expression levels of Nudt7α and Nudt7γ were 

compared by Q-PCR in liver, BAT, heart, WAT and kidney. β-actin was used as an 

endogenous control and the 2-ΔΔCT method was used to calculate the expression levels that 
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are presented as percentage of the Nudt7α expression in liver (the tissue with the highest 

expression). BAT; brown adipose tissue, WAT; white adipose tissue, Prox. I; proximal 

intestine (first 10 cm of the small intestine), Dist. I; distal intestine (last 10 cm of the 

small intestine). 

 

Fig. 4. The expression and activity of Nudt7α  is regulated by the PPARα . (a) 

Regulation of expression of Nudt7α mRNA by treatment of mice with 0.1% Wy-14,643 

for 1 week was examined in liver using wildtype (+/+) and PPARα-null mice (-/-) using 

single-plex Q-PCR. Samples were run in triplicate from three individual animals for each 

group, and the relative amounts of mRNA were calculated using the 2-ΔΔCT method. (b) 

Nudix hydrolase activity was measured in purified liver peroxisomes from control mice 

and mice treated with 0.5% (w/w) clofibrate for one week. Activity was measured using 

HPLC as described in experimental procedures, with 250 µM CoASH or C6-CoA or 150 

µM C14-CoA thioether. The data shown are the means of duplicate incubations with each 

substrate. 

 

Fig. 5. Kinetic characterization of NUDT7α . (a) NUDT7α was expressed in 

Escherichia coli, and the recombinant protein was used to measure the activity with 

CoASH, short-, medium- and long-chain acyl-CoAs, bile acid-CoA esters, and methyl 

branched CoA esters (at 200 µM) by HPLC as described in experimental procedures. 

Two different protein preparations (0.8 µg) were used to measure the activity, for which 

the mean values are shown. THCA, trihydroxycoprostanoyl-CoA. (b) NUDT7α activity 

was measured for CoASH (i), C6-CoA (ii) and C12-CoA (iii) at various substrate 
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concentrations. Enzyme kinetics were calculated using the Prism Enzyme Kinetics 

software. 
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