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A Review of Parallel Mappings for Feed Forward Neural
Networks using the Backpropagation Learning Algorithm

Stephen Sheridan
School of Informatics and Engineering, ITB

1.1 Introduction

The Back-Propagation (BP) Neural Network (NN) is probably the most well known of all

neural networks.  Many mappings of the BP NN have been implemented for both special

purpose and general-purpose computers.  This mapping process can fall into one of two

categories: heuristic mapping and algorithmic mapping.  Heuristic mapping concentrates on

the architecture and behaviour of the network as it trains whereas algorithmic mapping

concentrates on the parallelization of the learning algorithm.  Mappings in the heuristic

category tend to take a trial and error approach based on the understanding of the network

and of the target machine.  In comparison mappings in the algorithmic category tend to take a

more theoretical approach to the parallelization process.  A number of heuristic mapping

schemes exist for BP networks so it is worthwhile to investigate their strengths and

weaknesses.

1.2 Useful terminology

The following is a brief introduction to some useful terminology that can be used in

describing the different parallel implementations of BP networks.

Training Set

Consists of a number of training patterns, each given by an input vector and the

corresponding output vector.

Network Size

The Network Size for a network of iN input units, hN  hidden units, and oN  output units,

can be written as iN  x hN  x oN .

Training Iteration

Denotes one complete presentation of the training data.
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Weight Update Strategy

Three different approaches can be used:

•  Learning by pattern (lbp): updates the weights after each training pattern has been

presented.

•  Learning by block (lbb): updates the weights after a subset of the training data has been

presented.

•  Learning by epoch (lbe): updates the weights after each training iteration.

Weight update interval

The number of training patterns that are presented between weight updates is termed µ .  For

lbp, µ  = 1, whereas for lbe µ  = P, where P is the number of training patterns in the training

set.

1.3 Possible parallel implementations for the BP algorithm

Research into the BP network has revealed three possible parallel implementations as

described below.

Training set parallelism

This approach splits the training set across the processing elements.  Each element has a local

copy of the complete weight matrix and accumulates weight changes for the given input

patterns.  The weights can be updated using lbe/lbb.

Pipelining

This approach allows the training patterns to be “pipelined” between the layers of the

network.  This means that the output and hidden layers are computed on different processors.

So while the output layer calculates error values for the present pattern the input and hidden

layers processors can process the next pattern. Pipelining requires a delayed weight update

scheme, lbb or lbe.

Node parallelism

Node parallelism computes the neurons within a layer in parallel (Neuron Parallelism).

Furthermore the computation within each node can also run in parallel.  This method is also

referred to as synapse or weight parallelism, Nordström [1].
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2.1 Partitioning computation for each type of BP Parallelism

This section describes ways in which each type of BP parallelism can be distributed across a

number of processors.

2.2 Training Set Parallelism

Training set parallelism is often referred to as data set parallelism as the training set data is

distributed across a number of processors.  An example is this type of distribution can be

seen in Figure 2.1.

Each processing element (PE) has a local copy of the complete weight matrix and makes

weights changes based on its range of input patterns.  A global weight change operation is

performed when each copy of the network has processed its current input pattern.  This

ensures that the weights remain consistent across each copy of the network.  Therefore the

global weight change operation must employ lbb or lbe.  Each local copy of the weight matrix

is updated by summing the weight change values for each PE.

So for example:

PE1 processes the letter A, and computes weight change iwPE ∆1
PE2 processes the letter I, and computes weight change iwPE ∆2
PE3 processes the letter R, and computes weight change iwPE ∆3

where i is the current training set iteration for that copy of the network.

Therefore each local weight matrix must be updated with a weight change value of
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where (0>=j<= Num_Processors) and (0>=i<=Training_set_size).
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2.3 Pipelining

In pipelining the computation for each layer is carried out by a separate PE.  Figure 2.2 shows

a pipelining example for a network with one hidden layer.  NOTE: A separate PE is not

required for the input layer as it merely presents patterns and does little computation.

Using this approach processing interleaves between the forward and backward passes of the

BP learning algorithm.  Figure 2.3 shows how this interleaving occurs.

So for example Figure 2.3 represents the following processing sequence:

1. Hidden layer computes output for letter A

2. Output layer reads values for letter A and computes error values

3. Hidden layer concurrently computes values for the next input pattern, B.

4. Hidden layer reads weight change for letter A and both processors accumulate weight

change values for A.

5. Output layer reads values for letter B and computes error values.

6. Hidden layer concurrently computes values for the next input pattern, C.

…
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2.4 Node Parallelism

Node parallelism can be split into two subclasses, neuron parallelism, and synapse

parallelism.

2.4.1 Neuron Parallelism (Vertical Slicing)

Using this approach all incoming weights to one hidden and one output neuron are mapped to

a PE.  This vertical slicing corresponds to storing one row of the weight matrix in each PE.  A

matrix-vector product can be used to calculate the output of the neurons:

Figure 2.4 shows how a network with one hidden layer containing three nodes can be mapped

onto three different PE’s.

Each PE computes the value of a hidden node.  Then each PE exchanges its value over a

communications channel, and continues to calculate a value to be passed to the output layer.

Once the output layer has received a complete set of inputs from the hidden layer it can

calculate its error weight changes that are used to update the hidden layer weights.  The

output layer error can be calculated using a vector-matrix product:
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As the weight matrix is stored in row order the error must be calculated by summing partial

products.  Some networks actually store a copy of the weight matrix in column order so that

the summation is optimised for the backward pass.  Weight updates can be duplicated [2,3] or

communicated [4] to the other weight matrix.  Communication of weight updates has been

shown to be faster [4].

2.4.2 Synapse Parallelism

Synapse parallelism takes the opposite approach to Neuron Parallelism in that it takes

columns of nodes and maps them onto separate PE’s.  In this case each PE computes a partial

sum of a neurons output as shown in Figure 2.5.  Synapse parallelism uses a more fined

grained approach as each PE must broadcast its partial result to all other PE’s before the next

layer can compute.

Synapse parallelism does have one advantage over neuron parallelism as the hidden layer

error can be computed without communication:
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2.5 Concluding remarks

Each implementation has inherent limitations given by the following:

•  Training set parallelism: The number of patterns in the training set

•  Pipelining:  The number of weights layers

•  Neuron parallelism: The number of hidden units and output units

•  Synapse parallelism: The number of input units and hidden units

These limitations indicate the maximum amount of PE’s that can be assigned to each

implementation. Only a few networks and training sets will run optimally on fixed parallel

mappings. What should be considered is this: What degree of parallelism should be included

and how many PE’s should be assigned to each of them in order to reduce the total training

time?
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