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ABSTRACT 

The operation and performance of a solid oxide fuel cell (SOFC) stack on biomass syn-gas from a biomass 

gasification combined heat and power (CHP) plant is investigated. The objective of this work is to develop a model 

of a biomass-SOFC system capable of predicting performance under diverse operating conditions. The tubular 

SOFC technology is selected. The SOFC stack model, equilibrium type based on Gibbs free energy minimisation, is 

developed using Aspen Plus. The model performs heat and mass balances and considers ohmic, activation and 

concentration losses for the voltage calculation. The model is validated against data available in the literature for 

operation on natural gas. Operating parameters are varied; parameters such as fuel utilisation factor (Uf), current 

density (j) and steam to carbon ratio (STCR) have significant influence. The results indicate that there must be a 

trade-off between voltage, efficiency and power with respect to j and the stack should be operated at low STCR and 

high Uf. Operation on biomass syn-gas is compared to natural gas operation and as expected performance degrades. 

The realistic design operating conditions with regard to performance are identified. High efficiencies are predicted 

making these systems very attractive. 
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Nomenclature 

 

Roman letters 

A = constant used in Eqs. (9) and (10) 

B = constant used in Eq. (10) 

D = diffusion coefficient, m
2
/s 

DAn(eff) = anode effective diffusion coefficient, m
2
/s 

DCat(eff) = cathode effective diffusion coefficient, m
2
/s 

Dm = cell mean diameter, m 

E = activation energy, J/mol 

F = Faraday constant, C/mol 

I = current, A 

LHVbiomass = lower heating value of biomass, kJ/kg 

LHVfuel = lower heating value of fuel, kJ/kmol 

M = molecular weight, kg/kmol 

P = pressure, atm 

Pcomp = electrical power requirement of compressors, kW 

Pel,AC = electrical AC power, kW 

Pel,DC = electrical DC power, kW 

Pi = partial pressure of gaseous component i, bar 

PSOFC = SOFC operating pressure, Pa 

Psyngas = input fuel pressure, Pa 

P
0
 = reference pressure, bar 

Q  = useful heat, kW 

RAct = specific resistance, m
2
 

Rg = molar gas constant, J/mol
 
K 

S = active area, m
2
 

Tavg = average temperature, K 

Top = SOFC operating temperature, K 



Ua = air utilisation factor 

Uf = fuel utilisation factor 

V = voltage, V 

j = current density, A/m
2
 

k = pre-exponential factor Eqs. (13) and (14), A/m
2
 

m = slope Eqs. (13) and (14) 

biomassm  = biomass mass flow rate, kg/s 

n = molar flow rate, kmol/s 

r = electrode pore radius, m 

t = cell component thickness, m 

v = Fuller diffusion volume 

w = cell component width, m 

yi = molar fraction of gaseous component i 

y
0
i = molar fraction of gaseous component i in bulk flow 

 

Greek letters 

fg  = molar Gibbs free energy of formation, J/mol 

O2 = constant in Eq. (16) 

 = electrode porosity 

CHP,gross = plant gross CHP efficiency 

el,gross = gross AC efficiency 

el,net = net AC efficiency 

 = electrode tortuosity 

 = resistivity, m 

 

Subscripts 

A = anode 

Act = activation 



C = cathode 

Conc = concentration 

E = electrolyte 

Int = interconnection 

K = Knudsen 

N = Nernst 

Ohm = ohmic 

(eff) = effective 

i = gaseous component 

k = second gaseous component in a binary mixture 

 

1. Introduction 

 

 In the context of both climate change mitigation and energy security biomass is among the most promising 

renewable energy sources. Traditionally, energy is recovered from biomass through combustion at low electrical 

efficiency (20-25%). Biomass gasification coupled with advanced power generation technologies such as fuel cells 

offer much higher efficiencies. Reported electrical efficiencies for biomass gasification-solid oxide fuel cell (SOFC) 

systems range from 23-50% [1]. These systems offer highly efficient renewable energy and are modular in nature 

making them ideal for decentralised combined heat and power (CHP) applications and as a result have recently 

gained much attention [2-9]. 

Gasification occurs when a controlled amount of oxidant (pure oxygen (O2), air, steam) is reacted at high 

temperatures with available carbon in biomass or other carbonaceous material within a gasifier, producing a 

combustible gas (syn-gas). Syn-gas typically contains hydrogen (H2), carbon monoxide (CO), methane (CH4), 

carbon dioxide (CO2), water (H2O), nitrogen (N2) and other components such as higher hydrocarbons. Air 

gasification produces a poor quality gas with regard to heating value, around 4-7 MJ/m
3
 higher heating value 

(HHV), while O2 and steam blown processes result in a syn-gas with a heating value in the range of 10-18 MJ/m
3
 

(HHV) [10-12]. A biomass syn-gas composition typical of the dual fluidised bed (DFB) steam gasification 

technology currently in operation at the Güssing demonstration biomass gasification CHP plant in Austria was used 

in this study. 



The SOFC is a highly efficient energy conversion device due to the fact that it converts the chemical energy 

contained in a fuel gas directly to electrical energy by means of electrochemical reactions. SOFCs can utilise a wide 

spectrum of fuels (natural gas, coal and biomass syn-gas, liquid fuels including methanol and kerosene [13]) due to 

their high operating temperatures. The tubular SOFC technology, developed by Siemens Power Generation Inc 

(SPGI) is considered to be the most advanced and is approaching commercialisation; therefore it was selected for 

this study. Various models have been developed previously to simulate tubular SOFC performance, many of them 

for operation on humidified H2 or natural gas [14-20]. A review of SOFC models can be found in the literature [21]. 

There is a need for SOFC models with short computational times that are easily calibrated to match the 

continuous and rapid technological advances in the field. In the present study the operation and performance of a 

tubular SOFC stack (SPGI design) on biomass syn-gas was investigated. The objective of this work was to develop 

a model of a biomass-SOFC system capable of predicting performance under diverse operating conditions. 

Aspen Plus was used to model the SOFC stack. There is no built in model that can represent a SOFC. A 

common approach is to develop a complete SOFC stack model in a programming language and link it to Aspen Plus 

as a subroutine [22]. The subroutine must incorporate complex phenomena such as chemical/electrochemical 

reactions and heat and mass transfer, making them difficult and time consuming to develop and use. This type of 

model would not achieve the objectives of this work. An alternative method proposed by Zhang et al. [22], using 

existing Aspen Plus unit operation blocks with minimum requirements for linking of a subroutine was used. The 

equilibrium model, which is based on Gibbs free energy minimisation, performs heat and mass balances and 

considers the ohmic, activation and concentration losses for the voltage calculation. Equations reported by Song et 

al. [23] were used to calculate ohmic loss. Achenbach’s semi-empirical correlations were implemented to determine 

the activation loss [24]. The equations derived by Chan et al. [25] were used for the calculation of the concentration 

loss. 

 

2. System description and software 

 

2.1. SOFC stack 

 



The 100 kW CHP tubular SOFC stack developed by SPGI was selected and modelled. This unit was chosen 

as it has been operated for over 36000 hours on natural gas [26] and there is a wealth of published data available that 

may be used for model validation. The operation of the stack is as follows: 

 

 

Fig. 1. SOFC stack flow diagram. 

 

With reference to Fig. 1, the oxidant stream is fed via injector tubes, placed centrally in each SOFC, to the 

closed end of the cells. The oxidant then flows back through the annular space formed by the cathode surface and 

the injector tube to the open end. The oxidant is electrochemically reacted with the fuel supplied to the anode as it 

flows over the cathode surface. Cleaned fuel gas is supplied to the ejector where it is mixed with depleted fuel from 

the recirculation plenum. This anode recycle loop provides the steam and heat required for the steam reforming 

process. The mixed fuel then passes through the pre-reformers which convert the higher hydrocarbons and a small 

portion of the CH4 adiabatically to H2 and CO. The partially reformed fuel enters the internal reformers and using 

the heat generated by the exothermic electrochemical reactions occurring in the SOFC stack it is reformed further. 

The fuel then flows along the anode surface from the closed end to the open end, parallel to the direction of the 

oxidant flow and is electrochemically oxidised, generating electricity and increasing the temperature of both 

streams. A portion of the depleted fuel is recycled, the quantity of which depends on the required steam to carbon 

ratio (STCR) and the remainder is reacted with the depleted oxidant in the combustion plenum. The generated heat 

serves to preheat the incoming oxidant stream in the injector tubes. The high temperature exhaust gas may then be 

utilised in a district heating system. 

 



2.2. Güssing CHP plant 

 

The Güssing CHP plant has been in operation since 2001 and utilises 8 MW of wood chip fuel to produce 2 

MWe of electricity by means of a gas engine (GE Jenbacher J620) and 4.5 MWth of heat. The configuration of the 

plant is shown in Fig. 2. The biomass syn-gas is produced using a DFB steam gasifier. This type of gasifier operates 

with two separate zones, the combustion zone (CZ) and gasification zone (GZ). Residual char is combusted with air 

in the CZ and the heat is transferred to the GZ via circulating bed material. This heat drives the endothermic steam 

gasification reactions which produce the syn-gas. The raw syn-gas is cooled and then passed through a filter. Tar 

along with NH3 and HCl are removed by means of a rapeseed oil methyl ester (RME) scrubber after which the cold 

clean syn-gas is mixed with air and fed to the gas engine. The DFB gasifier CZ flue gas is cooled then filtered to 

remove fly ash and then mixed with the cooled gas engine flue gas. The mixed flue gas is directed to the plant stack. 

Heat is recovered at all stages of cooling to cover the plant air preheating, steam generation and district heating 

requirements. A more detailed description of the process can be found in the literature [5, 10, 27]. 

 

 

Fig. 2. Güssing CHP plant flow diagram. 

 

2.3. Simulation software 

 

Aspen Plus was selected for modelling the SOFC. This simulation package has been used for modelling fuel 

cell power generation systems in many studies [3, 4, 7, 8, 22, 28-30]. It is a steady state chemical process simulator, 



which was developed at Massachusetts Institute of Technology for the US Department of Energy, to evaluate 

synthetic fuel technologies. It uses unit operation blocks, which are models of specific process operations (reactors, 

heaters, pumps etc.). The user places these blocks on a flowsheet, specifying material and energy streams. An 

extensive built in physical properties database is used for the simulation calculations. Aspen Plus has the capability 

to incorporate Fortran code, written by the user, into the model. 

 

3. SOFC stack modelling 

 

3.1. Model flowsheet 

 

The Aspen Plus flowsheet of the SOFC stack is depicted in Fig. 3. Table 1 presents a brief description of the 

unit operation blocks shown in Fig. 3.  It gives the Aspen Plus name, that is the name given to each unit operation 

block by the software developers, the block ID, which is the name given to each block by the user and a short 

description. 

 

 

Fig. 3. SOFC stack Aspen Plus flowsheet. 

 

 

 



Table 1 

Description of Aspen Plus flowsheet unit operation blocks presented in Fig. 3. 

Aspen Plus name Block ID Description 

Compr COMP1 Compressor – increases the pressure of the input fuel to a sufficient level 

to drive the ejector process 

 COMP2 Compressor – increases the pressure of the input oxidant slightly above 

atmospheric pressure 

Heater FUELHEAT Heater – preheats the incoming fuel 

 AIRHEAT Heater – preheats the incoming air 

 COOLER1 Cooler – decreases the temperature of the mixed fuel to the calculated 

pre-reforming temperature 

 HEATER1 Heater – increases the temperature of the combustion plenum products 

 HEATER2 Heater – increases the temperature of the depleted oxidant stream to the 

SOFC operating temperature 

Mixer EJECTOR Mixer – simulates mixing of the recycled depleted fuel with fresh fuel in 

the ejector 

RGibbs PREREFOR Gibbs free energy reactor – simulates steam reforming of higher 

hydrocarbons and CH4 and the shifting of CO to H2 

 ANODE Gibbs free energy reactor – simulates the reactions occurring at the anode 

FSplit SPLIT Splitter – splits the depleted fuel into a recycle stream sent to the ejector 

and a stream sent to the combustion plenum 

RStoic POSTCOMB Stoichiometric reactor – simulates the complete combustion of the 

remaining fuel with the depleted oxidant 

HeatX HEATX1 Heat exchanger – simulates preheating of the oxidant through the injector 

tube wall by the combustion of the depleted fuel 

Sep CATHODE Separator – separates the O2 required by the electrochemical reaction 

 
 

3.2. Model description 

 

The model is based on the following main assumptions: isothermal and steady state operation; zero-

dimensional; all working fluids treated as ideal gases; pressure drops are neglected; adiabatic pre-reformers; 

reforming and shift reactions reach chemical equilibrium; ion cross over through the electrolyte cannot be modelled 

in Aspen Plus, therefore the overall oxidation of H2 (Eq. (3)) was considered instead of the cell half reactions; and 

only H2 is reacted electrochemically, it is assumed that CO is shifted to H2 and CH4 is reformed to H2 [4, 22, 31, 32]. 

Referring to Fig. 3, the stream ‘SYN-GAS’ is fed to the ‘COMP1’ block, simulating syn-gas compression. 

The discharge pressure was calculated using a pressure ratio: Psyngas/PSOFC = 3 [16]. The syn-gas composition, 

temperature and pressure were entered; its mole flow rate is set by a design specification block and depends on the 

specified stack power (or for variable power a calculator block sets the mole flow depending on the specified j). The 

pressurised syn-gas is brought up to the preheat temperature in the block ‘FUELHEAT’ and its exit stream enters the 

‘EJECTOR’ block, where it is mixed with the recycled depleted fuel (stream 8). The blocks ‘COOLER1’ and 

‘PREREFOR’ represent the stack pre-reformers. The purpose of ‘COOLER1’ is to set the pre-reforming 



temperature. It is calculated by means of a design specification block, which varies the temperature of ‘COOLER1’ 

until the net heat duty of ‘PREREFOR’ equals zero (adiabatic). As a result, the gas is cooled simulating the 

endothermicity of the steam reforming process. The following reactions (Eqs. (1) and (2)), assumed to reach 

equilibrium at the pre-reforming temperature, were specified in the ‘PREREFOR’ block: 

 

Steam reforming:  CxHy + xH2O ↔ (y/2 + x)H2 + xCO       (1) 

Water-gas shift:  CO + H2O ↔ CO2 + H2        (2) 

Overall reaction:  H2 + 0.5O2 → H2O         (3) 

 

The pre-reformed fuel (stream 6) is fed to the ‘ANODE’ block, where the remaining CH4 is reformed, CO is 

shifted and H2 is oxidised. The transfer of ions cannot be modelled in Aspen Plus; therefore the overall reaction (Eq. 

(3)) instead of the cell half reactions was used in the model. Although it is possible to directly oxidise CH4 and CO 

in a SOFC at its high operating temperature, it is common to assume that the CH4 is reformed and the CO is shifted 

to H2 and therefore only H2 participates in the electrochemical reaction. Equations (1), (2) and (3) were specified in 

the ‘ANODE’ block and it was assumed that they reach equilibrium at the block temperature (Top = 1183.15 K). The 

stream ‘AIR’ is fed to the ‘COMP2’ block, the air compressor and its discharge pressure was set as slightly above 

atmospheric pressure (PSOFC). The air stream composition, temperature and pressure were entered. The molar flow 

rate is set using a design specification block that varies the air flow until the air utilisation factor Ua = 16.7% [7]. 

The compressed air is brought up to the air preheat temperature in the block ‘AIRHEAT’ and its exit stream enters 

‘HEATX1’ where it is preheated further by the hot combustion plenum products. The compressed and preheated air 

(stream 15) enters the ‘CATHODE’ block, whose function is to separate out the O2 required for the electrochemical 

reaction (nO2,consumed). The ‘CATHODE’ block O2 split fraction (O2,split) is set by a calculator block using the 

following equations: 

 

    ...41 ,4,2,2   gassyngassyngassynin nCHnCOnHnH         (4) 

in

consumed

f
nH

nH
U

,2

,2
              (5) 

consumedconsumed nHnO ,2,2 5.0             (6) 



in

consumed

split
nO

nO
O

,2

,2

,2               (7) 

 

nH2,in is calculated, where nH2,syn-gas is the molar flow rate of H2 contained in ‘SYN-GAS’; 1(nCOsyn-gas) is the 

molar flow rate of H2 that could be produced from the CO in ‘SYN-GAS’; 4(nCH4,syn-gas) is the molar flow rate of H2 

that could be produced from the CH4 in ‘SYN-GAS’ and the same applies to the higher hydrocarbons. Next 

nH2,consumed is determined with known Uf (typical value 0.85). nO2,consumed is then found using Eq. (6) and finally 

O2,split is calculated using Eq. (7). It is worth noting that O2,split is equivalent to Ua. The required O2 is directed to the 

‘ANODE’ block (stream 16). The temperature of the depleted air (stream 17) must be increased to Top. The heat 

needed to do this is supplied by the electrochemical reaction and this process was simulated by taking a heat stream 

(Q3) from ‘HEATER2’ to ‘ANODE’. The temperature of the ‘HEATER2’ block was specified as 1183.15 K (Top). 

The depleted fuel (stream 7) enters the block ‘SPLIT’, whose function is to split the stream into a recycle (stream 8) 

and a stream directed to the combustion plenum. The split fraction of the block is set using a design specification 

block where it is determined by a specified STCR, defined as the molar ratio of steam to combustible carbon [13], a 

typical value being 2.5. The depleted fuel and oxidant are fed to ‘POSTCOMB’ where complete combustion of the 

remaining fuel occurs. The heat generated by the combustion reactions is represented by the heat stream Q5, which 

is fed to the block ‘HEATER1’, whose function is to calculate and set the combustion products temperature. Finally, 

the high temperature combustion products (stream 11) exchange heat with and serve to preheat the incoming air in 

the ‘HEATX1’ block. The temperature of the SOFC stack exhaust (stream 12) is also determined. 

 

3.3. Voltage calculation 

 

The voltage was calculated by first applying the widely known Nernst equation (Eq. (8)) to determine the 

reversible Nernst voltage (VN) and then subtracting the various losses, including ohmic, activation and concentration 

losses. In Eq. (8) 
fg  is the molar Gibbs free energy of formation (J/mol) at standard pressure (1 bar), 2 represents 

the number of electrons produced per mole of H2 fuel reacted, F is the Faraday constant (96485 C/mol), Tavg is the 

average temperature between the SOFC inlet and outlet streams (K), Rg is the molar gas constant and was taken as 

8.314 J/mol
 
K and Pi is the partial pressure (in bar) of gaseous component i. The partial pressures were taken as 

average values of the anode and cathode inlet and outlet streams. 



OH

OHavggf

N
P

PP

F

TR

F

g
V

2

22

5.0

ln
22











           (8) 

 

The ohmic loss, which is the voltage loss due to the resistance to electron flow through both electrodes and 

the interconnection and the resistance to ion flow through the electrolyte, was calculated using Eqs. (9) – (12), 

shown in Table 2. These equations developed by Song et al. [23] take into account realistic electron/ion paths in a 

tubular SOFC and they have been used in many studies to simulate the ohmic loss for SPGI tubular SOFC systems 

[6, 23, 33]. They assumed uniform current density in the circumferential direction and uniform ionic flux in the 

electrolyte in the radial direction. The angle related to the extent of electrical contact is A radians while the angle 

B radians is related to the interconnection. The resistivity terms (A, C,E and Int) were determined using the 

temperature dependent relations proposed by Bessette et al. [14], given in Table 3. Other terms that appear in Eqs. 

(9) – (12) include Dm, which is the mean diameter of a cell (m), calculated from the geometry parameters given in 

Table 3, the cell component thickness t (m) and the interconnection width wInt (m). The ohmic loss is especially 

important for tubular SOFCs as it is the dominant loss due to long current flow paths. 

 

Table 2 

Voltage loss equations. 

Ohmic loss   

Anode  

A

mA

AOhm
t

DAj
V




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Activation loss   
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Concentration loss   
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(16) 

 
 



The activation loss due to slow or sluggish kinetics of the electrochemical reaction taking place on the 

electrodes was determined using the semi-empirical correlations proposed by Achenbach [24], Eqs. (13) and (14). It 

is the voltage lost as a result of the energy barrier that must be overcome by the reacting species. In Eqs. (13) and 

(14) the RAct terms represent specific resistance (m
2
) at both anode and cathode. The activation voltage loss VAct 

was evaluated by multiplying the specific resistance terms by j (A/m
2
). The pre-exponential factors kA and kC are 

listed in Table 3. The partial pressures Pi (bar) were taken as average values of the anode and cathode inlet and 

outlet streams. P
0
 is a reference pressure and was taken as 1 bar; the influence of partial pressure is accounted for by 

the slope m. The E terms are activation energies and are listed in Table 3. The activation voltage loss is less 

significant in SOFCs compared to other fuel cells due to the high operating temperature. 

 

Table 3 

Model input parameters. 

Geometry [19, 34-36]  

Cell length / diameter (m) 1.5 / 0.022 

Anode thickness tA (m) 0.0001 

Cathode thickness tC (m) 0.0022 

Electrolyte thickness tE (m) 0.00004 

Interconnection  

thickness tInt (m) 

0.000085 

Interconnection width wInt (m) 0.009 

  

Material properties  

Anode resistivity  

A (m) [14]  

2.9810
-5  

exp(-1392/Top) 

Cathode resistivity  

C (m) [14] 

8.11410
-5 

exp(600/Top) 

Electrolyte resistivity  

E (m) [14] 

2.9410
-5 

exp(10350/Top) 

Interconnection resistivity  

Int (m) [19] 

0.025 

  

Ohmic loss [23]  

A / B 0.804 / 0.13 

  

Activation loss [24, 32]  

Pre-exponential factor kA / kC 

(A/m
2
) 

2.1310
8
 / 

1.4910
10

 

Slope m 0.25 

Activation energy EA / EC (J/mol) 110000 / 160000 

  

Concentration loss  

Electrode pore radius r (m) [25] 510
-7

 

Electrode porosity  /  

tortuosity  [37] 

0.5 / 5.9 

 



The concentration loss due to mass transfer limitations in the porous electrodes was modelled using Eqs. (15) 

and (16) [25]. Diffusion transport in the electrodes (gases in pores) was considered with convection in the gas 

channel neglected. Equations (15) and (16) were derived using Fick’s law of diffusion and both ordinary and 

Knudsen diffusion were considered. Ordinary diffusion occurs when the pore diameter of the material is large in 

comparison to the mean free path of the gas molecules, whereas Knudsen diffusion occurs when the pores are small 

[25]. Both types of diffusion were accounted for by calculating effective diffusion coefficients for the anode and 

cathode. The following equations were used to determine the Knudsen diffusion and effective Knudsen diffusion 

coefficients for the anode and cathode gases: 

 

  5.0

, /97 iopiK MTrD               (17) 

  /,)(, iKeffiK DD               (18) 

 

where subscript i represents the gaseous component (H2, H2O, O2 or N2), r is the electrode pore radius (m) given in 

Table 3, Mi is the molecular weight (kg/kmol) of the gaseous component,  is porosity and  is tortuosity of the 

electrodes (Table 3). The most common method for theoretical estimation of ordinary binary diffusion coefficients is 

the one developed independently by Chapman and Enskog [38]. Todd and Young [39] investigated the performance 

of four of the most used ordinary binary diffusion coefficient estimation techniques, the Chapman-Enskog and 

Fuller et al. [40] methods among them. From comparing predictions with available experimental data they 

concluded that the Fuller et al. [40] method, which is by far the simplest, performs best with an estimated mean error 

of 5%. Based on these findings the Fuller et al. [40] method (Eq. (19)), which is based on the kinetic theory of gases 

was used to calculate the ordinary binary diffusion coefficient for both anode and cathode. 
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where subscripts i and k represent the gaseous components that make up the binary gas mixture (H2-H2O at the 

anode and O2-N2 at the cathode), P is pressure in atmospheres and v is the Fuller diffusion volume, taken as 7.07, 

12.7, 16.6 and 17.9 for H2, H2O, O2 and N2 respectively [40]. Similar to the case of Knudsen diffusion, the effective 



ordinary diffusion coefficient is given by Eq. (20). The overall effective diffusion coefficient for each gas was then 

calculated using Eq. (21). 

 

  /)( ikeffik DD               (20) 

)(,)()( /1/1/1 effiKeffikeffi DDD             (21) 

 

Finally, the anode and cathode diffusion coefficients were calculated using Eqs. (22) and (23) and O2 in Eq. 

(16) was found using Eq (24). 
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The y
0
i terms in Eqs. (15) and (16) are the gas molar fractions in the bulk flow, taken as the average values of 

the anode and cathode inlet and outlet streams. The concentration loss is low unless the current density is high and 

the fuel and air concentrations are low, caused by high utilisations (Uf and Ua). Under these conditions the limiting 

current may be reached reducing the fuel cell voltage to very low levels. 

The actual voltage V was calculated using Eq. (25), which is simply the Nernst voltage less the sum of the 

voltage losses. 

 

 ConcActOhmN VVVVV             (25) 

 

The calculations described above are carried out using a design specification block, which varies the input 

fuel flow until the SOFC stack DC power (Pel,DC = VI) equals a specified value (base case: 120 kW). However, for 

known current (I), as was the case for the current density sensitivity analysis (section 4.2), a calculator block 

determines and sets the input fuel flow using: 
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where nFuelin is the input fuel flow (kmol/s) and yi is the molar fraction of gaseous component i in the input fuel. 

The voltage and DC power are then calculated. 

 

3.4. Model validation 

 

3.4.1. Validation: fuel number one 

 

The model was validated against published data for the SPGI 100 kW CHP SOFC stack operating on natural 

gas. The model inputs were as follows [16, 22]: 

 

 Natural gas composition (mole fraction): CH4 0.813, C2H6 0.029, C3H8 0.004, C4H10 0.002, N2 0.143, CO2 

0.009. 

 Operating pressure (PSOFC) / ejector pressure ratio: 109431 Pa / 3. 

 Active area (S): 96.0768 m
2
 (1152 cells). 

 Operating / electrodes exhaust temperature (Top): 1183.15 K. 

 Input air / fuel temperature: 630 / 200 °C. 

 Uf / Ua / STCR: 0.85 / 0.19 / 1.8. 

 Cold and hot stream temperature difference (recuperator ‘HEATX1’): 10 °C. 

 DC power (Pel,DC): 120 kW. 

 DC to AC inverter efficiency: 92%. 

 

Table 4 

Model results compared to literature (validation: fuel number one). 

 Literature [22] Model results 

Voltage (mV) 700 683 

Current density (mA/cm
2
) 178 182.86 



   

Pre-reforming temperature (K) 809.15 808.25 

Pre-reformer CH4 conversion (%) 25.9 25 

   

Cathode inlet temperature (K) 1094.47 1096.85 

Combustion products temperature (K) 1285.5 1285.45 

Stack exhaust temperature (K) 1107 1106.85 

   

Anode inlet gas composition 

(mole %) 

H2 27, CO 5.6, CH4 10.1, 

H2O 27.9, CO2 23.1, N2 6.2 

H2 26.9, CO 5.6, CH4 10.4, 

H2O 27.8, CO2 23.1, N2 6.2 

Anode exhaust gas composition 

(mole %) 

H2 11.6, CO 7.4, H2O 50.9, 

CO2 24.9, N2 5.1 

H2 11.6, CO 7.4, H2O 50.9, 

CO2 24.9, N2 5.1 

Cathode exhaust gas composition 

(mole %) 

O2 17.7, N2 82.3 O2 17.7, N2 82.3 

Stack exhaust gas composition 

(mole %) 

H2O 4.5, CO2 2.3, 

O2 15.9, N2 77.3 

H2O 4.5, CO2 2.3, 

O2 15.9, N2 77.3 

   

Gross AC efficiency (LHV) (%) 52 51.28 

Net AC efficiency (LHV) (%) nr
a
 49.15 

a
 nr = not reported. 

 

As seen in Table 4, the model results are in good agreement with published work. There is only a slight 

difference for voltage, current density and efficiency. The reader should note that Zhang et al. [22] used a very 

different method for calculating the voltage to the one applied in this work. They used semi-empirical correlations 

developed using a reference polarisation curve. It has been reported that these correlations may not be valid for other 

fuels [41]. The method of voltage calculation applied in this work is considered to be more rigorous as the equations 

employed consider changes in temperature, pressure, gas molar fractions, cell geometry and material properties and 

therefore they may be applied to diverse fuels. Some other differences in comparison with the work of Zhang et al. 

[22] include the manner in which the oxidant flow rate is set, in this work it is set using a specified Ua whereas in 

Zhang et al. [22] they apply a heat balance assuming a certain amount of heat loss. Finally, in this work the fuel and 

air compressors are modelled, which permits the calculation of the stack parasitic power requirement and the net AC 

efficiency. For comparison, Campanari [16] reports a voltage and current density of 690 mV and 180 mA/cm
2
 and a 

net AC efficiency of 48.5%. These results compare well with this work. The gross and net AC efficiencies are 

defined as: 
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where Pel,AC is the AC power (kW), nFuelin is the molar flow rate of input fuel (kmol/s), LHVfuel is the lower heating 

value of the input fuel (kJ/kmol) and Pcomp is the electrical power requirement of the fuel and air compressors (kW). 

 

3.4.2. Validation: fuel number two 

 

A second validation of the model was conducted using published data for the SPGI 100 kW CHP SOFC 

stack operating on natural gas of different composition and with the stack operating at different conditions compared 

to the first validation. The model inputs for this validation run were as follows [16, 17, 22, 42]: 

 

 Natural gas composition (mass fraction): CH4 0.938, N2 0.038, CO2 0.024. 

 Operating pressure (PSOFC) / ejector pressure ratio: 109431 Pa / 3. 

 Active area (S): 96.0768 m
2
 (1152 cells). 

 Operating / electrodes exhaust temperature (Top): 1193.15 K. 

 Input air / fuel temperature: 20 / 200 °C. 

 Uf / Ua / STCR: 0.85 / 0.2 / 2. 

 DC power (Pel,DC): 127.4 kW. 

 DC to AC inverter efficiency: 92%. 

 

Table 5 

Model results compared to literature (validation: fuel number two). 

 Literature [17, 42] Model results 

Voltage (mV) 661 662.8 

Current density (mA/cm
2
) 200.6

a
 200.62 

   

Pre-reforming temperature (K) 851.15 815.35 

Pre-reformer CH4 conversion (%) 40 35 

   

Cathode inlet temperature (K) 1155.15 1155.15 

Combustion products temperature (K) 1374.15 1299.65 

Stack exhaust temperature (K)
b
 552.15 512.85 

   

Anode inlet gas composition 

(mass %) 

H2 3.16, CO 11.2, CH4 5.81, 

H2O 27.3, CO2 51.29, N2 1.24 

H2 2.9, CO 8.3, CH4 7.4, 

H2O 27.4, CO2 52.8, N2 1.3 

Anode exhaust gas composition 

(mass %) 

H2 1.39, CO 11.91, H2O 39.88, 

CO2 45.88, N2 0.94 

H2 1.0, CO 9.2, H2O 41.2, 

CO2 47.7, N2 0.9 

Cathode exhaust gas composition 

(mass %) 

nr
c
 O2 19.6, N2 80.4 



Stack exhaust gas composition 

(mass %) 

H2O 3.14, CO2 3.87, 

O2 17.38, N2 75.62 

H2O 3.0, CO2 3.7, 

O2 17.6, N2 75.7 

   

Gross AC efficiency (LHV) (%) 48
d
 49.8 

Net AC efficiency (LHV) (%) nr 47.8 
a
 Calculated assuming an active area of 96.0768 m

2
. 

b
 Stack exhaust temperature after preheating cathode air to high level (1155.15 K). 

c
 nr = not reported. 

d
 Calculated using Eq. (28). 

 

The reader should note that the temperature and gas composition data (Table 5) utilised for the second 

validation were obtained using a 1-D model [42]. It is reported that this model was validated against experiments 

carried out on a SPGI 100 kW CHP SOFC stack in Torino, Italy as part of the EOS project. The model predictions 

are in good agreement with the literature data. The largest discrepancies exist for the combustion products 

temperature and the stack exhaust temperature. Both of these temperatures were taken from the model predictions 

reported in Verda and Quaglia [42]. The actual experimental temperatures presented in that article [42] match this 

works model predictions more closely. The measured average combustion products temperature and stack exhaust 

temperature were 1297.15 K and 519.15 K respectively, which compare very well with this work. 

 

4. Results and discussion 

 

The validated model was run using the following syn-gas composition: 45.8% H2, 21.6% CO, 10.0% CH4, 

21.2% CO2, 1.4% N2 (volume %, dry basis) and 25.7% H2O (volume %, wet basis) [5]. This syn-gas composition is 

typical of the Güssing DFB gasifier operating at 850 °C with a steam/fuel ratio of 0.75 and after gas cleaning. 

Comparing operation on Güssing biomass syn-gas to natural gas operation (see section 3.4.1) at j = 182.86 mA/cm
2
, 

voltage decreased by 14 mV to 669 mV, DC power dropped 2.43 kW to 117.57 kW and the gross and net AC 

efficiency reduced 8.28% and 11.63% to 43% and 37.52% respectively. The relatively large drop in efficiency is 

attributed to increased input fuel and air flow, which is due to the lower quality of the fuel gas. Even with this 

performance decrease the efficiency achieved is much higher than traditional biomass systems, making this 

technology very promising. 

For a required DC power of 120 kW using base case data (the same as for model validation with the 

following exceptions: input fuel temperature = 300 °C, Ua = 16.7% and STCR = 2.5) and biomass syn-gas fuel the 

SOFC stack performance was as follows: j = 188.7 mA/cm
2
, V = 662 mV, el,gross = 42.53% and el,net = 37.04%. 

These have been identified as realistic design operating conditions with regard to stack performance for operation on 



Güssing biomass syn-gas. The detailed stream results for these operating conditions are presented in Table 6. In 

addition, the power requirement of the fuel and air compressors was 10.56 kW and 3.69 kW respectively. The 

developed model was used to perform sensitivity analyses in order to give insight into the influence of the main 

variables on the system and to investigate off-design performance. The effects of varying Uf, j and STCR on SOFC 

stack performance were investigated. 

 

Table 6 

Detailed stream results for realistic design operating conditions on biomass syn-gas (streams presented in Fig. 3). 

Stream Temperature 

(°C) 

Pressure 

(bar) 

Mole flow 

(kmol/h) 

Mole fraction 

H2 N2 O2 H2O CO CO2 CH4 

SYN-GAS 200.0 1.013 4.986 0.340 0.010 - 0.257 0.160 0.158 0.074 

AIR 24.9 1.013 48.358 - 0.790 0.210 - - - - 

3 300.0 3.282 4.986 0.340 0.010 - 0.257 0.160 0.158 0.074 

4 573.3 1.094 8.397 0.227 0.010 - 0.391 0.112 0.215 0.044 

5 571.4 1.094 8.397 0.227 0.010 - 0.391 0.112 0.215 0.044 

6 571.4 1.094 8.531 0.294 0.010 - 0.331 0.072 0.258 0.036 

7 910.0 1.094 9.138 0.062 0.009 - 0.587 0.042 0.300 - 

8 910.0 1.094 3.41 0.062 0.009 - 0.587 0.042 0.300 - 

9 910.0 1.094 5.727 0.062 0.009 - 0.587 0.042 0.300 - 

10 910.0 1.094 52.096 - 0.734 0.157 0.071 - 0.038 - 

11 994.1 1.094 52.096 - 0.734 0.157 0.071 - 0.038 - 

12 829.7 1.094 52.096 - 0.734 0.157 0.071 - 0.038 - 

14 630.0 1.094 48.358 - 0.790 0.210 - - - - 

15 819.7 1.094 48.358 - 0.790 0.210 - - - - 

16 819.7 1.094 1.691 - - 1.000 - - - - 

17 819.7 1.094 46.667 - 0.819 0.181 - - - - 

18 910.0 1.094 46.667 - 0.819 0.181 - - - - 

 
 

4.1. Sensitivity analysis: fuel utilisation factor 

 

The influence of Uf on SOFC stack performance is depicted in Fig. 4. The cell voltage decreases slightly with 

Uf due to increased voltage losses (ohmic, activation and concentration). The current density increases slightly due 

to the higher amount of H2 consumed on the anode (I = 2FnH2,consumed). The fuel flow rate required to achieve the 

desired power (120 kW DC) decreases with Uf. This is because more of the energy contained in the fuel is converted 

to electricity rather than heat due to the higher H2 consumed by the electrochemical reaction. Efficiency was found 

to be very sensitive to changes in Uf, el,gross and el,net increase by 18.6 and 17.96 percentage points respectively 

over the Uf range. This is primarily due to the reduced fuel flow rate at high Uf. The decrease in cell voltage and 



strong influence on efficiency witnessed here is in good agreement with published work [43]. The amount of 

recirculated fuel decreases with Uf as less fuel needs to be recirculated to meet the specified STCR due to the 

increased H2O content in the depleted fuel. As a result of less high temperature depleted fuel being recirculated the 

pre-reformer/anode temperature drops and thus the CH4 conversion fraction is lowered (the effect of temperature on 

CH4 conversion is discussed in section 4.3). The cathode and stack exhaust temperatures are dependent on the 

combustion temperature, which is determined by the amount of fuel available to the combustion plenum. At low Uf 

more of the fuel is available for combustion therefore the temperatures are high and as Uf increases (more fuel 

energy converted to electricity as opposed to heat) the temperatures decrease. Considering the findings above it is 

recommended to operate the SOFC stack at high fuel utilisation but below the level where the concentration loss 

increases to a very high degree (typical Uf = 0.85). 

 

 

Fig. 4. Effect of fuel utilisation factor on (a) voltage, efficiency, fuel flow rate and current density and (b) pre-

reformer/anode temperature, cathode temperature, combustion temperature, stack exhaust temperature, recirculated 

fuel and methane conversion. 

 

 



4.2. Sensitivity analysis: current density 

 

Fig. 5 shows that varying j has significant influence on the system. Increasing j from 50 to 420 mA/cm
2
 

decreases both efficiency and voltage but increases power. Voltage is lowered significantly as a result of higher 

voltage losses. Efficiency decreases substantially (32 percentage points over the j range) due to higher parasitic 

power (fuel and air compressors) and energy input as a result of increased fuel and air flow rate. Stack power 

increases and reaches a peak at 330 mA/cm
2
 and then decreases. Fuel cells are usually operated to the left of this 

peak power. It is desirable with regard to operating costs, to operate the SOFC stack at a high voltage and efficiency; 

however it is also desirable with regard to capital costs, to operate the SOFC stack at high power (less SOFCs 

needed). Therefore there must be a trade-off between voltage, efficiency and power. These trends and the need for a 

compromise between efficiency and capital costs match results reported elsewhere [43]. A typical operating j range 

is 180 – 200 mA/cm
2
, corresponding to a cell voltage of 672.9 – 647.5 mV, el,gross = 43.2 – 41.6%, el,net = 37.8 – 

36.1% and Pel,AC = 107 – 114.5 kW. 

 

 

Fig. 5. Effect of current density on voltage, efficiency and power. 

 

4.3. Sensitivity analysis: steam to carbon ratio 

 

The effects of varying STCR are displayed in Figs. 6 and 7. From Fig. 6 it can be seen that STCR has a 

substantial impact on the pre-reformer, the inlet temperature increases from 681 to 1002 K over the STCR range due 

to the recirculation of more high temperature depleted fuel. As a result the anode temperature rises (831 to 906 K) 



and causes greater CH4 conversion (0 to 92.2%). The high temperature and greater amount of steam available 

promotes the steam reforming of CH4 via Eq. (1). This reaction is endothermic meaning the forward reaction is 

favoured as temperature increases. Increasing STCR has a negative impact on voltage and efficiency and increases j, 

this is due to the change in anode temperature and gaseous component partial pressures, which decreases the Nernst 

voltage and increases the voltage losses. It is therefore desirable to operate the stack at low STCR. Once again these 

results agree well with the literature [29, 43]. Fig. 7 displays how STCR affects the pre-reformer outlet or anode inlet 

gas composition. As expected increasing STCR causes the mole fraction of H2O and CO2 to rise, this lowers the 

mole fraction of H2 and CO negatively affecting stack performance. The CH4 content decreases over the STCR range 

due to the high temperature and greater amount of steam available for reforming. Considering the findings above it 

is recommended to operate the SOFC stack at low STCR but high enough to ensure no carbon formation problems. 

 

 

Fig. 6. Effect of steam to carbon ratio on (a) voltage, efficiency and current density and (b) pre-reformer inlet 

temperature, pre-reformer/anode temperature, recirculated fuel and methane conversion. 

 



 

Fig. 7. Effect of steam to carbon ratio on anode inlet/pre-reformer outlet gas composition. 

 

4.4. Performance comparison with Güssing CHP plant 

 

 Table 7 compares the performance of the SOFC system (realistic design operating conditions) with the 

performance of the Güssing CHP plant. It is difficult to compare the two systems as they are operating at very 

different power levels (difference in Pel,AC). The plant gross electrical efficiency given in Table 7 was determined as 

follows. For the Güssing CHP plant the electrical power (Pel,AC) was divided by the biomass input, 8000 kW [27] 

giving the gross electrical efficiency. For the SOFC system a simplification needed to be made as the overall plant 

has not yet been modelled. The work described in this article is part of on-going research which aims to simulate 

biomass gasification integrated with SOFC stacks and associated balance of plant components (cleaning and heat 

recovery). In order to compare the two systems it has been assumed that the DFB gasifier achieves a cold gas 

efficiency (CGE) of 78.4% [44]. This CGE multiplied by the standalone SOFC stack electrical efficiency (el,gross = 

42.53%) gives a good indication of the plant gross electrical efficiency (Table 7). From Table 7 it is noted that if the 

gas engine were replaced with a SOFC the plant electrical efficiency would increase by approximately 8 percentage 

points, which demonstrates the attractiveness of the SOFC technology. The two systems are also compared on a 

thermal basis. The useful heat ( Q ) for the SOFC system listed in Table 7 was determined assuming that the stream 

11 (Fig. 3) preheats the cathode air from 34.3 °C to 819.7 °C resulting in a stack exhaust (stream 12) temperature of 

321.4 °C. The plant gross CHP efficiency was then calculated using: 
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Equation 30 was used to determine the gross CHP efficiency for the Güssing plant (80.75%), which resulted 

in a CHP efficiency very close to reported efficiencies for the plant (81.3%) [45-47]. The reader should note that for 

the SOFC system, heat that could be recovered through syn-gas cooling and from the DFB gasifier combustion zone 

flue gas has not been considered as the overall plant has not been modelled. This explains the lower CHP efficiency 

for the SOFC system when compared to the Güssing system. It is expected that inclusion of this additional heat 

would raise the SOFC system CHP efficiency to a comparable level. Finally, the systems are compared on a power-

to-heat ratio basis, revealing a low ratio for the Güssing type system indicating a higher heat than electricity output 

and a much higher ratio for the SOFC system indicating that the quantity of electricity produced is closer to the level 

of useful heat. Depending on the requirements of the consumer the SOFC fuel utilisation factor could be adjusted in 

order to vary the power-to-heat ratio. 

 

Table 7 

Performance comparison between SOFC system and Güssing CHP plant. 

System Biomass 

input 

(kW) 

Pel,AC 

(kW) 

Plant gross elec- 

trical efficiency 

(%) 

Q  

(kW) 

Plant gross CHP 

efficiency 

(%) 

 Power-to- 

heat ratio 

(gross) 

SOFC 331.19 110.4 33.34 135.09 74.12  0.82 

Güssing CHP 8000
a
 1960

a
 24.5 4500

a
 80.75  0.44 

a
 Data from Pröll and Hofbauer [27]. 

 

5. Conclusions 

 

A computer model of the SPGI 100 kW AC CHP tubular SOFC stack was developed using Aspen Plus. The 

objective of the work, which was to develop a model of a biomass-SOFC system capable of predicting performance 

under diverse operating conditions, was achieved. The model uses existing Aspen Plus unit operation blocks with 

minimum requirements for linking of a subroutine thus reducing complexity and ensuring short computational 

times. It was validated against published data for the SPGI 100 kW CHP SOFC stack operating on natural gas. 

Sensitivity analyses were carried out in order to give insight into the influence of the main variables on the system. 

The effects of varying fuel utilisation factor, current density and steam to carbon ratio on SOFC stack performance 

were investigated for the stack operating on Güssing biomass syn-gas, the results of which revealed the following: 

 



 The efficiency gain with increasing Uf outweighs the reduction in voltage; therefore the stack should be 

operated at high Uf. 

 There must be a trade-off between voltage, efficiency and power with respect to j. For j = 180 – 200 mA/cm
2
, 

cell voltage = 672.9 – 647.5 mV, el,gross = 43.2 – 41.6%, el,net = 37.8 – 36.1% and Pel,AC = 107 – 114.5 kW. 

 The stack should be operated at a low STCR but high enough to ensure no carbon formation problems. 

 Stack operation on Güssing biomass syn-gas compared to natural gas at j = 182.86 mA/cm
2
: voltage decreased 

by 14 mV to 669 mV, DC power dropped 2.43 kW to 117.57 kW and the gross and net AC efficiency reduced 

8.28% and 11.63% to 43% and 37.52% respectively.  

 The realistic design operating conditions with regard to stack performance were identified: STCR = 2.5, Uf = 

0.85, DC power = 120 kW, j = 188.7 mA/cm
2
, V = 662 mV, el,gross = 42.53% and el,net = 37.04%. 

 

The reduction in efficiency seen for syn-gas operation is attributed to increased fuel and air flow rates due to 

the lower quality of the fuel gas. Even with this performance decrease the efficiency achieved is much higher than 

traditional biomass systems. The performance comparison presented in section 4.4 revealed that if the gas engine 

operating at the Güssing CHP plant were replaced with a SOFC the plant electrical efficiency would increase by 

approximately 8 percentage points, which demonstrates the attractiveness of the SOFC technology. 
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