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OSM-GAN: Using Generative Adversarial Networks for Detecting Change in 

High-Resolution Spatial Images  

 

Lasith Niroshan 

Technological University Dublin, d19126805@mytudublin.ie  

James D. Carswell 

Technological University Dublin, james.carswell@tudublin.ie  

 

Detecting changes to built environment objects such as buildings/roads/etc. in aerial/satellite 

(spatial) imagery is necessary to keep online maps and various value-added LBS applications up-

to-date.  However, recognising such changes automatically is not a trivial task, and there are many 

different approaches to this problem in the literature.  This paper proposes an automated end-to-end 

workflow to address this problem by combining OpenStreetMap (OSM) vectors of building footprints 

with a machine learning Generative Adversarial Network (GAN) model - where two neural networks 

compete to become more accurate at predicting changes to building objects in spatial imagery.  

Notably, our proposed OSM-GAN architecture achieved over 88% accuracy predicting/detecting 

building object changes in high-resolution spatial imagery of Dublin city centre. 

Keywords: Change Detection, Remote Sensing, OpenStreetMap, Generative Adversarial Networks 

1 INTRODUCTION 

At present, various approaches have been employed to automatically recognise changes in spatial 

imagery over time.  These range from basic statistical implementations to traditional image 

processing techniques to more complex Deep Learning approaches. In any case, to successfully 

obtain accurate change detection results requires processing high-resolution imagery, as lower 

resolution images (>0.5m/pixel) obfuscates a significant amount of important ground object detail – 

e.g., the precise edges and intersections of buildings.  Such change detection functionality is an 

acknowledged part of many practical and everyday geospatial applications, for example, urban 

planning, natural disaster prediction, land resource utilisation, and agricultural monitoring.   

 

However, detecting feature/object changes in aerial/satellite (spatial) imagery is a challenging task 

due to many factors – e.g., automating the complex object (e.g., building) extraction process, a 

general lack of freely available high-resolution spatial imagery, and the comparatively modest 

mailto:d19126805@mytudublin.ie
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accuracy (+/- 80%) of current change detection algorithms when applied to this domain.  In support 

of this study, a customised spatial image crawler was developed to search for freely available Google 

Earth and Bing Maps satellite images from various sources at different spatial resolutions.  Once 

obtained, this raster data is merged with OSM vectors to train the novel OSM-GAN change detection 

mechanism described in this paper. 

  

Convolutional Neural Network (CNN) models are used a great deal in Artificial Intelligence (AI) 

applications for resolving general image processing and classification tasks.  Among the various 

Deep Learning (a type of Machine Learning in AI) methods, Generative Adversarial Networks (GAN) 

have recently been developed to learn (train) a function (model) that maps (translates) an input 

image to an output image.  Over the past five years, the task of translating one possible 

representation of data into another, such as image-to-image translation, has become a common 

application for GANs.  As an example, Isola et al. proposed a general-purpose adversarial network 

solution in 2017 for image-to-image translation named Pix2Pix [1].    

 

Our approach applies the Pix2Pix image translation technique to predict/identify possible changes 

to building objects in high-resolution (<0.5m/pixel) satellite images.  To begin, we must first convert 

the OSM building footprint data (vector) to raster format for use as an output image - since Pix2Pix 

image translation expects both input and output images in raster format for training purposes.   

Figure 1 shows one real-world example of a Pix2Pix training set used to train our OSM-GAN model. 

 

 
 

Figure 1: A joined Pix2Pix raster training sample used for learning the OSM-GAN model. The left side is the 
input Google satellite image – the right side is the current OSM building footprint output image (feature-map) of 
the area. 

 

This paper describes how online crowdsourced spatial data can be utilised successfully in state-of-

the-art Machine Learning applications.  In it, we propose an automated change detection framework 
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for OSM buildings that exploits GAN image-to-image translation techniques.  The paper is organised 

as follows:  Section 2 covers some background and related work on this topic; Section 3 explains 

our proposed OSM-GAN methodology in some detail; Section 4 concludes by reporting on 

experimental results, including a brief discussion on future work.  

2 BACKGROUND AND RELATED WORK 

This section reviews some related background work relevant to our approach, including an overview 

of GANs, Conditional GANs, and other noteworthy change detection mechanisms in the literature.  

For example, applications and improvements to the GAN methodology have increased significantly 

over time, with different types of GAN frameworks developed for various purposes: 

• CapsGAN to generate 3D images with various geometric transformations [3] 

• GANSynth to produce audio streams [4] 

• GauGAN to transform doodles into highly realistic landscapes [5] 

• StyleGAN to generate more realistic images (e.g., human faces, cars, and rooms) [6] 

• ChemGAN for drug discovery [7] 

2.1 Generative Adversarial Networks (GAN) 

Generative Adversarial Networks were proposed by Goodfellow et al. in 2014 as a new class of 

Machine Learning models where two separate models compete against each other as if in a game, 

e.g., chess/backgammon/etc. [2].  The basic GAN works like a minimax recursive algorithm to find 

the optimal move for a player.  One model is called the Generator (G), and the other is called the 

Discriminator (D).  Once the Generator maps a random noise vector (Z) to input data (x), the 

Discriminator classifies whether the prediction is fake or real. (Equation 1) 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))]  (Equation 1) 

Where 𝑉(𝐷, 𝐺)  is the entropy (measure of impurity in a class) in the function,  𝑝𝑑𝑎𝑡𝑎(𝑥)  is the 

distribution of the data, (𝑧) is the random noise vector, and 𝑝𝑧(𝑧) denotes the distribution of the 

Generator.  Altogether, the term 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥)] denotes the probability of the Discriminator 

predicting that the given data is genuine (real), and the term  𝐸𝑧~𝑝𝑧(𝑥) [log (1 − 𝐷(𝐺(𝑧)))] represents 

the probability that the Discriminator is predicting that the G's generated data is not genuine (fake).   

 

Figure 2 illustrates a high-level system architecture diagram of the GAN model.  Briefly, the 

Generator trains a generative model to synthesise data similar to the feature-map (i.e. right side of 

the training set image) from a random noise vector as input. Conversely, the adversary Discriminator 

is trained to classify/distinguish between the generated (fake) feature-map and the ground truth (real) 

feature-map.  
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Figure 2: A high-level illustration of GAN architecture1.  Train a Generative model G(z) to create a fake image 
(synthesised data) from a random noise vector (array of 0s and 1s), and input along with a satellite image to 
the adversary component (Discriminator) trained to distinguish between generated (fake) or genuine (real) data. 

2.2 Conditional Generative Adversarial Networks 

Mirza and Osindero introduced Conditional Generative Adversarial Networks (CGAN) also in 2014 

[8].  The significant improvement of CGAN over GAN is the addition of a conditional state to the 

output generation, as usually there is no control over generating output in a GAN.  CGAN includes 

a condition (uses both left and right sides of the training sample simultaneously) as input to the 

Generator and Discriminator to help resolve the issue of an image being real or fake.   

Figure 3 displays the system architecture diagram of a Conditional GAN (CGAN). 

 

 
 

Figure 3: System architecture diagram for Conditional GAN showing where the condition gets applied to the 
Generator and Discriminator to effect decision making. 

 

                                                           
1 https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/gan-foundations.pdf 

https://www.cs.toronto.edu/~duvenaud/courses/csc2541/slides/gan-foundations.pdf
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The loss function (method to calculate prediction error) of the Conditional GAN is similar to the GAN, 

and the modification shows the conditional step.  The loss function 𝑉(𝐷, 𝐺) is shown in Equation 2 

below. 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log 𝐷(𝑥|𝑦)] + 𝐸𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧|𝑦)))]   (Equation 2) 

Where y is the Condition, D is the Discriminator, G is the Generator, and x is the input satellite image.  

Note that 𝐷(𝑥|𝑦)  indicates two inputs (x and y) that pass into the Discriminator and apply the 

discriminative function.  As it happens, including a Condition y (feature-map) in the training sample 

input to the Discriminator function results in a more accurate method for identifying real images – if 

there is a building in the satellite image, there should also be a predicted building in the feature-map.   

2.2.1 Image-to-Image Translation 

The main idea behind image-to-image translation is that a given input image (e.g., a sketch/outline 

of an object) translates or transforms into another higher-level representation (e.g., a photo-realistic 

image) of the set of input information.  Therefore, many computer vision and image processing 

problems (e.g., edge detection, object localisation, sketch-to-photo translation, etc.) can be 

interpreted as a form of "image-to-image translation."  

 

Isola et al. [1] presented several generalised uses of Conditional GAN based image-to-image 

translation such as labels-to-street scenes, black&white images-to-colour images, sketches-to-

photos, style transfer applications, and especially aerial images-to-maps, the main focus of this 

study.  Pix2Pix is their implementation of image-to-image translation, which is freely available for 

use in GitHub2.  We use an updated version of Pix2Pix in the OSM-GAN experiments reported on in 

this paper. 

2.3 Detecting spatial changes in spatial images 

An accurate change detection mechanism can initiate many other advanced geo-analytic research 

applications in the geoscience domain – where the challenge of change detection has been 

investigated many ways over the years to address various mapping problems.  For example, a 

considerable number of image processing and computer vision approaches have been introduced 

for temporal change detection in spatial images, such as Markov random fields [9], Principal 

Component Analysis [10], CNN based difference image approach [11], and Recurrent neural 

network-based U-Net models [12].    

 

More recently, Albrecht et al. presented a method to programmatically identify outdated map regions 

from current OSM data [13].  This work introduced the use of GAN's, namely Feature-Weighted 

CycleGAN (fw-CycleGAN), to identify any changes in a given geographic area.  Although this 

approach focused on finding changed areas to produce a heat map, it does not explicitly 

identify/obtain the changed objects themselves, such as a specific newly built building, along with its 

                                                           
2 https://github.com/phillipi/pix2pix 

https://github.com/phillipi/pix2pix
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ePix2Pix proposed adding a Controller to the model – which now consists of three parts; Generator, 

Discriminator, and Controller.  The Controller allows a relationship between classification and 

reconstruction, an additional step to improve classification accuracy.  Experimental results indicate 

that ePix2Pix scored higher compared to Support Vector Machines (SVM), Artificial Neural Networks 

(ANN), CycleGAN, and Pix2Pix. 

 

In 2018, Lebedev et al. carried out an experiment on conditional adversarial networks to detect 

changes in season-varying remote sensing images [16].  Their approach presented three types of 

tests on synthetic and actual images [16].  In their approach, the Discriminator required three input 

images to perform the classification (two images for comparison and one for the difference map) - 

otherwise, the network structure is the same as the Pix2Pix structure.  Even though the proposed 

methodology delivered accurate results, changes to mutable objects (e.g., vehicles) were also 

identified as a change in the map (Figure 6).  Although mutable objects should not be considered as 

a "change in a map," this idea can be utilised to detect changes to immutable objects as well (e.g., 

buildings, roads, bridges). 

 
Figure 6: Appearance of vehicles detected as a change. However, in reality, there is no such map change. (left 
- latest input image , middle - older input image, right - predicted changes) 

3 OSM-GAN METHODOLOGY 

Our OSM-GAN mechanism integrates many incremental improvements noted in the above 

strategies for detecting changes in high-resolution spatial images.  For example, it targets changes 

to immutable objects only (i.e., buildings) within a user-defined geographic area manually digitised 

on an aerial/satellite image.  The designated polygonal Area of Interest (AoI) is reduced to its 

minimum bounding rectangle (MBR) coordinates to facilitate further processing operations.  We 

consider the appearance of a new building object or the disappearance of an old object as a change 

when compared to the current state of the OSM database.  For example, if a new building appears 

in a raster satellite image but is not evident in the OSM vector database, that building is considered 

a potential changed object within the given AoI.   
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The following system architecture diagram (Figure 7) illustrates the overall workflow of our 

automated OSM-GAN approach, and the following sections describe each step in more detail.  

 
Figure 7: System architecture diagram of proposed OSM-GAN methodology.  First, an Area of Interest (AoI) is 
manually digitised to begin the change detection process.  Then, raster and vector data crawling processes 
launch automatically to download relevant satellite/OSM data.  The feature-map prediction phase then starts 
by using a pre-trained OSM-GAN model. Simultaneously, an OSM feature-map containing buildings is 
generated.  Once both processes complete, feature-map comparisons (OSM to OSM-GAN), extent filtering, 
and post-processing is applied to each predicted feature-map. 

3.1 Spatial Data Crawling and Processing 

Data is the most valuable resource for any Machine Learning task, and our AI application requires 

several spatial data sources for input.  As a result, specialised data-mining programs (raster/vector 

data crawlers) were developed to address our spatial data needs.  The below sections describe how 

our necessary data requirements are fulfilled, with further data processing steps described thereafter.  

3.1.1 Crawling Vector Data 

OpenStreetMap [17] is the primary vector data source for this work since OSM vector data (e.g., 

building footprints) in GeoJSON format is relatively easy to handle by post-processing programs [18].  

The vector data crawler starts by parsing an OSM Overpass query - "a read-only API that serves up 

custom selected parts of the OSM map data"3 - into the program.  One practical advantage of using 

the Overpass query is an unlimited freedom to change the OSM feature type (e.g., building, road, 

river, etc.), the geographic area, and many other OSM attributes by just updating the query without 

updating the code.  The OSM feature extractor and mining program downloads and saves the vector 

data (within the AoI) into GeoJSON formatted files.  An example of one extracted OSM GeoJSON 

building object is displayed in Figure 8. 

                                                           
3 https://wiki.openstreetmap.org/wiki/Overpass_API  

https://wiki.openstreetmap.org/wiki/Overpass_API
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The main contribution of this OSM data is to create building object mask images (called feature-

maps) for use in the training process.  Reducing the effect of shadows is another partial benefit of 

using this object-mask method - since shadows of buildings can affect Mask-RCNN and other 

traditional image processing techniques. Pix2Pix predictions trained using object masks show that 

the effect of shadows does not significantly affect the accuracy of the OSM-GAN change detection 

mechanism. 

 

Initially, OSM crawled data is stored in one large GeoJSON file.  The main disadvantage of this 

single file setup is the difficulty of extracting relevant building objects afterwards.   Therefore, this 

large file gets automatically separated into a "one-object-one-file" format and subsequently stored 

as many individual building object files. This modification results in a significant acceleration of 

subsequent processes.   

Figure 8: A single GeoJSON building object (key:value pairs) crawled automatically from OSM using the vector 
data crawlers developed for this project. 

 

To use GeoJSON objects effectively, a translating program first converts them into binary images 

and stores them in separate directories based on their ground coordinates.  Once this process 

completes, a merging process overlays each of these masks into a single 256x256 pixel sized 
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feature-map containing all buildings, and used for generating the training images.  Figure 9 illustrates 

an example of separated building objects and the result of the merging process. Note that the white 

blobs in the figure indicate the relevant building objects converted to raster from OSM vector data. 

 

  

Separated objects (buildings) Merged objects (feature-map) 
 
Figure 9: An example of separated building objects and merged objects.  The separated objects were created 
from the GeoJSON data crawled from OSM using the Overpass API. 

3.1.2 Crawling Raster Data 

A raster data crawler was developed for downloading the most up-to-date, freely available satellite 

imagery related to the same Overpass query AoI.   Once the vector crawling process completes, 

raster data mining initiates.  There are two main raster mining sub-programs: 1) Bing imagery 

crawler; 2) Google imagery crawler – both instructed to apply the relevant crawler at the resolution 

required for a given task.  In this experiment, we chose Google Earth images due to their higher 

quality 30cm pixel resolution.  Also, the downloaded images get automatically cropped (into 256x256 

pixel tiles), stored, and indexed in a quadtree-based directory structure to make them easier to 

process in subsequent phases.  

3.1.3 Combining and Filtering 

Once the data crawling programs complete successfully, a data processing phase begins to 

assemble the acquired data according to the requirements of the Deep Learning algorithm.  The 

OSM-GAN training process requires two input images - a satellite image and its conjugate OSM 

generated feature-map image.  As the Pix2Pix program is pre-configured to use 600x300 pixel input 
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images, both the satellite image and its conjugate feature-map are re-scaled (using OpenCV4) into 

300x300 pixel tiles and joined together - resulting in the overall 600x300 pixel training image sample 

shown in  

Figure 1.  However, it was found that low object-dense training images can increase the number of 

false positives predicted by the model.  Therefore, feature-map images that do not contain objects 

present in their conjugate satellite image are eliminated from the training phase to achieve a higher 

Pix2Pix prediction accuracy.   

 

Spatial object density is defined as "the ratio of objects present in a feature-map over the number of 

buildings present in a particular spatial image."  We modify the object density calculation to equal 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝒘𝒉𝒊𝒕𝒆 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒−𝑚𝑎𝑝

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠
 and apply this modified version to datasets of urban areas 

specifically - since the number of building objects is higher for any given image than other non-built 

environment objects such as fields, forests, etc.  In order to reduce the false-positive effect of low 

object-dense images, two threshold values are used, one lower and one higher.  Figure 10 shows 

the resulting high/low object density samples related to the above object density calculation. 

Figure 10: A graph of object density calculations based on real image samples of Dublin city centre.  The graph 
shows calculated object density values against image IDs.  Lower object-rich samples are removed from the 
OSM-GAN model training phase to reduce false-positve classifications. 

 

                                                           
4 https://docs.opencv.org/4.5.2/  

https://docs.opencv.org/4.5.2/
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The Python NumPy5 module is used to determine the number of white pixels, and the ratio is 

calculated from both the total number of pixels and the number of white (object) pixels.  Then the 

threshold phase determines if the given feature-mask is eligible for use in the training process. 

Currently, predefined (trial/error) threshold values of 0.25 (lower) and 0.75 (upper) are used, but 

adaptive thresholds are planned for in the next phase of development.  Figure 11 illustrates the 

process to find an acceptable feature-map to use for model training purposes. 

 

 

Figure 11: The process for eliminating low object-density images 

 

In the following examples (Figure 12), the feature-maps (generated from OSM vector data) do not 

include building objects present in their corresponding satellite images.  After calculating the object 

density value for each feature-map, a filtering mechanism removes them from the model training 

phase since these samples can serve to lower the final accuracy of OSM-GAN predictions. 

 

 

 

 

 

 

 

  

                                                           
5 https://numpy.org/  

https://numpy.org/
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Figure 11: Some 600x300 merged samples of low object density training data removed from the OSM-GAN 
training process. 

3.2 Training the OSM-GAN model  

After the above raster/vector data crawling and processing steps, the filtered data is forwarded to 

the training stage.  The PyTorch version of the Pix2Pix implementation [1] is used to build the OSM-

GAN model. The filtered data samples get split into a 3:2 ratio (train:validation), and fed into the 

Pix2Pix algorithm.  The OSM-GAN model was trained using an NVIDIA Ge-Force RTX 2060 GPU 

with CUDA.  With this configuration, the training process required 6 hrs to complete 400 epochs. 

Figure 12 illustrates the data flow diagram up to this stage.   
 

 

Figure 12: The fully automated input/output data pipeline for the OSM-GAN framework. 
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Figure 13 below illustrates some intermediate outputs from the training phase.  

 

 
 
Figure 13: Some intermediate outputs of the model training phase using satellite images with 30cm resolution.  
Note that shadows, water, and vehicles are not classified as buildings by this OSM-GAN approach. 

 

It was observed that the accuracy of predictions for OSM-GAN models increased with higher 

resolution imagery – but only up to a certain zoom level, after which prediction accuracy starts to 

decrease.  A series of experiments to discover the best image resolution for training OSM-GAN 

models revealed that prediction accuracy begins to decrease after 0.14m/pixel (zoom level 20) 

resolution.  For example, it was found that OSM-GAN predictions on a 10cm resolution dataset 

classified water bodies and fields as buildings.  As such, 30cm resolution images were committed to 

the qualitative phase of OSM-GAN model predictions.  

3.3 Detecting changes 

The process of detecting actual object changes in the resulting images is relatively straightforward 

when compared to previous steps.  Once the Pix2Pix prediction is performed on a given satellite 

image, the current raster view of the predicted image is reconstructed using the current raster data 

converted from OSM.  Figure 14 compares the satellite image, current OSM data, and the prediction 

image. 
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Satellite image OSM feature-map OSM-GAN prediction 

   

Figure 14: The OSM-GAN prediction detects building object changes in a spatial image. 

 

Then the separate objects (buildings) are extracted from the prediction results using an "Object 

Extraction" module (Figure 15).  As the predicted result is a simple binary image, this process uses 

a conventional contour finding algorithm to perform this operation.   

 

 

0 1 2 3 4 5 
Figure 15: Six possible building objects identified by the "Object Extraction" module. 

 

In order to filter true object changes from the OSM-GAN prediction, the concept of an "Overlap 

Score Matrix" was introduced to contain the percentage of overlapping pixels between an OSM map 

object and an object from the GAN prediction.   

Figure 16 shows the overlap score matrix corresponding to the above example.  
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Figure 16: The overlap score matrix represents possible changes (green) in a satellite image relevant to current 
OSM data. The column headers indicate the OSM object reference; the row headers indicate the predicted 
object number (starting from 0 in Figure 16).   
 

The overlap score matrix isolates any changed satellite image objects relevant to the OSM vector 

data.  After filtering and aggregating the changed object references, Figure 14 can now be extended 

to include one final image of detected building changes as the last image in Figure 17. 

 

 
 

Figure 17: Final results of key input/output stages in the OSM-GAN change detection process.  

3.4 Post-Processing  

After generating the final image of detected building changes, a post-processing mechanism 

activates to enhance the overall shape of the changed object(s).  First, a regularisation operation to 

reduce the number of vertices is applied to individual building objects to smooth/straighten building 

outlines.  The Lang Simplification algorithm [19], Ramer-Douglas-Peucker algorithm [20], Zhao-

Saalfed algorithm [21], Reumann-Witkam algorithm [22], Opheim Simplification algorithm [23], and 

Perpendicular Distance algorithm were all tested for this step.  

 

These experiments confirmed the perpendicular distance algorithm as the best for OSM-GAN 

predictions.  The regularisation phase is a critical step because the OSM code of conduct [24] 

requires that any objects input to the OSM database must contain a minimal number of nodes.  

Figure 19 compares a non-regularised polygon to a regularised polygon using perpendicular 

distance simplification.   
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Non-regularized polygon (contains 435 nodes) Regularized polygon (contains 7 nodes) 

 
Figure 19: A comparison of non-regularised and regularised polygons (building outlines) 

4 CONCLUSIONS 

This paper proposes an improved solution for detecting changes in spatial images based on 

combining the incremental developments found in previous work. The overall OSM-GAN system 

integrates raster/vector data crawling functionality with several other image processing operations, 

such as image-to-image translation, image difference calculation, and vector to raster conversions 

into a unified end-to-end workflow. 

 

However, it is acknowledged that to quantitatively evaluate a generated (synthesised) image is still 

an open and complex problem.  In the original GAN paper by Goodfellow et al., the "Average Log-

likelihood" method [2]  is proposed to determine the quality of generated images.  Moreover, Borji et 

al. analysed twenty-four quantitative techniques for evaluating GAN models, and presented 

strengths and weaknesses for each technique [25]. 

 

As mentioned in Section 3 (methodology), OSM building footprint data was utilised to create training 

datasets for OSM-GAN.  An advantage of using an OSM data-based approach is that it can also be 

used to calculate a confusion matrix (true/false positives/negatives) and to evaluate the accuracy of 

predicted images quantitatively based on the Object Overlap Matrix and corresponding OSM object 

labels (used as ground truth).   

 

Table 1 provides the results obtained from a preliminary analysis of the OSM-GAN model produced 

for this map-update problem.  Experimental results verify that the OSM-GAN approach for detecting 

changes to buildings in 30cm resolution satellite images is at least 88% accurate.  In addition to this, 

we propose using the inception score [26] and Frechet Inception Distance [27] measures in future 

analyses. 
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Table 1: Analysis of OSM-GAN Prediction Accuracy 

Accuracy 88.4% 

Recall 62.0% 

Precision 80.5% 

F1 score 76.6% 

 

This research investigates how to identify built environment changes within a given geographic area 

when compared to current OSM building footprint data.  It extends existing work by comparing and 

incorporating various approaches to GAN model creation,  data filtering, and polygon regularisation.  

Finally, it proposes an end-to-end workflow for identifying and visualising real-world changes to the 

built environment in online maps.   

 

The main contribution to the literature is an automated OSM change detection workflow using 

satellite images and state-of-the-art Deep Learning models.  Additionally, this paper provides some 

insight for those researchers wanting to minimise the cost of dataset creation by utilising freely 

available raster/vector data in Machine Learning tasks.   

 

The next phase of research plans to compare change detection results of various experimental 

combinations of 24-bit satellite images vs 8-bit (grayscale) imagery when applied to OSi6 and OSM 

building footprints.  Additionally, future experiments will be conducted using Kay7 - Ireland's national 

supercomputer for academic researchers.  Kay consists of a cluster of 336 nodes, each node having 

2x20-core 2.4 GHz Intel Xeon Gold 6148 processors; an enormous advantage to minimise model 

training times.     
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