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§2 Definitions and known results

We now present basic definitions and well -known results which will be
used in the following chapters. Firstly we recall definitions and results

regarding endomorphisms.

Definition 2.1 Let G be a group and ¢ an endomorphism of G. If, for
each g € (i, there is some n € N, n depending on g, such that g = (

then ¢ is said to be locally nilpotent.

There are certain useful kinds of endomorphisms of free modules. Recall
that M is a free module if M is generated by a linearly independent set
of elements, called a basis of M; that is M = P Re; for some index set
e _
I 'where | I | is the rank of M. Lurthermore we define the support of
elements m = 3" rie; of M by [m] = {i € [ | 7; # 0} and the support of
e f

0 € M s the empty-set . Note that the support depends on the choice

of basis and that [m] is finite for any m € M.

Definition 2.2 Let R be ¢ commutative ring and M = @ Re; a free
el
R-module of arbitrary rank with [ a linearly ordered set and ¢ an endo-

morphism of M. We define

(1) ¢ is an a-endomorphism of M if leid) € {5 € Ifj > i}, for each



re [

(i) ¢ is a B -endomorphism of M if [e;] C {j € I|j < i}, for each

1€ 1.
(iii) ¢ is an d-endomorphism of M if [e.d] C {i}, for eachi € I.

Note, if ¢ is represented as a matrix then an a-endomorphism has non-
zero entries only in the upper triangle, a 3-endomorphisin has non-zero
entries only in the lower triangle and a d-endomorphism has non-zero

entries only on the diagonal.

Lemma 2.3 Let R be a commutative ring and M = P Re; (n <w)a
i<n

free R-module. If ¢ is a 3-endomorphism of M then ¢ is locally nilpotent.
Proof: Consider any arbitrary basis element e, & < n. Since @ is
a J-endomorphism of M we have [ey¢] C {0,...,k — 1}, lered®] C
{0,.... k =2}, ..., [exgd®] C {0}, and so it is clear that er ™l = 0.

Therefore ¢ is locally nilpotent. &

Theorem 2.4 (Wans [29]) If R is « PID and F is a free R-module of

finite rank n > 1, then vsn(F) = 2.



Proof: As above let ' be a free module with tk(F}=n > 1, say
F = @ Re;. Further, let ¢ be an arbitrary endomorphism of F. Then
i<n

there are two automorphisms 7,¢ € Aut(F) such that ¢' = 9¢( acts ‘di-

agonally’, that is e;¢' = s;e; for some s; € R, for each 7 < n.

(This is the so-called Smith Normal Form, see [4, page 279)).

Next decompose I as F = 69 F; where each F; is generated by a distinct

J

pair e; ,e;, of the original generators except, where n 1s odd. for F; in

which case F is generated by the triple eg, ey, e1.

Clearly F;¢' C F; and ¢’ decomposes into a direct sum ¢’ = Z #; where

J

g’)} = ¢ fr,, for each j.

Now, if rk (F}) = 2, write ¢ = ajy + oy with
it =856t e,a; = —€

and ej a0 = —¢;,, ej,a,5 = €, + 55,6,

We show that a;; and a0 € Aut(F;): Since e;, = (—ejaj,) and e, =

(e, +55,¢5 ), we have that @;11s onto Iy Let (ae;, +bej,)a;, = 0, for

some a,b € R. Then —be;, + as, e; +ac,, = 0 which, of course, implies

a =0,b=0. 50 a;; is injective. Therefore aj € Aut(F)). A similar

argument applies for ;.

I rk{#y) = 3, then write ¢y = @y + ay s where €n, Q.1 = Sy, €, + €y, ,



€, Q0,1 = €y, €001 = Sp,€0, — €y, and eg, gy = —eq,,

€, 0.2 = —€g, + Sp,€0,, €0,002 = €p,-
We show aq and @gs € Aut(F)): Since we may write eg, = eg, g, and
eo, = (—en, + S0,€0, — S0,50, €0, )01 and e, = (eg, — 80, €0, )x9,1 we have
that oy is onto. Let 0 = aey, + bey, + ceg,, where a,b,c € R. Then
0 = a(sg,en, +eo,) + bleg,) + clen,) = (asy, + bleg, + cey, + aeqy,. It is
easily seen that a = b = ¢ = 0. So ay is injective and ap, € Aut{F,).
A similar argument applies for ay.,.
Clearly, a1 = Y a;, and ay = Y. ;2 are automorphisms of F with

i J

¢ = a4+ arand so ¢ = g7 a4 g el a sum of two automor-
phisims. d

For a free module of countably infinite rank the following has been shown

by Wans[29].

Theorem 2.5 Let R be a PID and let M be a free R-module of count-
ably infinite rank. Then every endomorphism of M can be written as a

sum of three automorphisms of M.

Proof:  See Wans (29, Theorem 3.4]. O
Note that one of the important results of this thesis is an improvement of

the above Theorem: we will prove that usn{M)= 2 for any free R-module

oo



M of countably infinite rank over any PID, R.

We proceed with some definitions and results from abelian group theory.

We refer to the standard text books by Fuchs 7, 8].

Definitions 2.6

(i)

(ii)

(iii)

Let G be an abelian group and g any element of G'. The p-height
of g m G, written hy(g), isn € N if g € PG but g f pmHIG: we
put hy(g9)= 00 if g € p"G for all n € N,

Where we are refering to a p-group we talk of this as the height of
the element in the group and we write this as h(g). If necessary,
we write hf(g) or h%(g) to indicate that we are considering the

p-height of g within the group G.

Let (i be a torsion-free abelian group and x an element of G. Then
the characteristic of 2 in G2, written Xa(¢), is the sequence of p-

heights of « for each p € T, i.c. xalr) = (h.f(a'))!,&-n.

Fvery sequence (k,) -, where k, € NU{oo}, is a characteristic for
some lorsion-free abelian group. Let (kp)pen and (L,),en be char-
acteristics. These characteristics are said to be equivalent, written

(k)pert ~ (L)yen, if {p € I |k, # L.} is finite and wherever k, #1,



then both k, and I, are finite.
An equivalence class of characteristics with respect to this relation

15 called a type.

(iv) Let G be a torsion-free group and z an element of G. The type of
z € (G, a torsion-free group, written typeg(z), is the equivalence

class of x¢{x) with respect to the relation defined in (ii1).
(v} A rational group G is a torsion-free abelian group of rank 1.

(vi) If G is a rational group then all elements of G must be of the same
type (i.e. let 0 # z, y € G, then mz = ny for some #m,n € Z;
it w5 easily seen that x(z) ~ x(mz) = x(ny) ~ x(y)). So, we define

the type of G as type(G) = typeq(z) for any z € G.

Note that type(r) (or type((5)) may be represented by any characteristic

within typeg(z) (or type(()).

Remark 2.7 Let G and & be rational groups, and & and y arbitrary
non-zero elements of G and G, respectively. For any k € Z,
if xe (ke )= xei (y), then k divides y in (' uniquely. Moreover, for any

elements &,z € G if x(z)=x(z') then 2 =2’ or 2z = —2',

10



The next result is due to Baer [1].

Lemma 2.8 Let G and (' be rational groups.

Then G 1s isomorphic to G’ if and only if type(G) = type(G').

Proof: Let ¢ be an isomorphism from G onto G and let 0 # = € G then
he ()= hff'(:cqb) for each p € II since heights must be preserved under
isomorphisms. Thus yg{z)= ye(z¢) and therefore type(G)= type(G').
Conversely, let type(G)= type(G'). Firstly, fix non-zero elements a € G,
b € G' such that yg(a)= ye(b). This is possible since for any o' € G,
Y € G' we can find positive integers m,n with xva(ma')= yq(nb). Now,
let z be any non-zero element of G. Since rk(G)= 1 there are non-zero
integers r.s such that rz = sa and thus volray= yqlsa)= yq(sh). By
Remark 2.7 there is b, € (' such thal sb = rb,. Now we can define a
mapping ¥ : G — G" by z¥ = b, and O = 0. The mapping is well
defined since, if ¥’z = s'a and s'b = b, then we have rs' = r's and thus
r(s'0) = r'(sb) = vr'b = r'rb, le. b, = b

Clearly, b, is non-zero for any 0 # z € G as b is non-zero and hence o 15
injective,

Moreover, for 0 # y € G’ we can find non-zero integers r, s with ry = sb.

Using the same arguments as above we obtain 0 # r € G such that

11



sa = rz and so zy = b, with sb =7b, = ry, i.e. b, = y. Therefore ¥ is
a bijective mapping.

Finally it remains to show that ¢ is a homomorphism. Let 0 Fax, 22 €6
with riz, = sya and 7329 = s,a. Then riry(x1 +22) = (8172 -+ s971 )a and
therefore 7175b,, 12, = (5179 + 8971 )b = 72(510) + 1 (s9b) = rira(by, +5,,),
Le. (@y + o) = by gy, = b, + by, = 2y + 207 O

The following lemma gives us an easy representative for each type.

Lemma 2.9 FEvery rational group is isomorphic to a subgroup of the

rational numbers, (), containing 7,.

Proof: Let (¢ be an arbitrary rational group. Let z be any non-zero
element of G and let val(®)=(k,)pen. Choose that subgroup $ of I

containing Z where yg(1)=(k.),cn, i.e. S = <1+! | p e H> where we

mean by “ﬁ\f_” the set {Elﬂ n € w}. Since ys5(l)= vel(z), and so
type(G)= type(S) it follows from Lemma 2.8 that § = (7. O

Next we describe the endemorphism rings of rational groups: for this

purpose it is useful Lo introduce the following:

Definition 2.10 Let 7 = (k),en be a type. Then the reduced type of T
is (I,)pen where I, = oo for each p € 11 with k, = oo and where [, = 0

otherwise.

12



Lemma 2.11 Let G be any rational group.
Then the endomorphism ring of G is that subring of Q containing Z

whose type is the reduced type of G.

Proof: Using Lemma 2.9, we may consider G to be a subgroup of @
containing Z without loss of generality. TLet 0 # ¢ € E(G) and let
0 # 2 € G. Since G is a rational group there are non-zero integers m, n
such that mz = n(z¢) and choosing (m,n)= 1 we can write z¢ :%r.
In fact, take any 0 # v € G. We can write y :%a: for some a, be Z,
b # 0 where (a,b) = 1, and so y¢ :(%.’L‘)qﬁ :%%m :g—‘y. In this way
cach endomorphism of ¢ is a multiplication by a rational so E(G)< @
Since B((G) certainly contains an identity then 7 C F(G).

Now, letting xc(1)=(k,)pen consider xp(1). Assume 1%"- € E(G) for
some arbitrary p € I1, then i’% € £(G) and so ]J% € B(G) foreach n € N,
. LB T Coa 1 \
ie. so hy,” ()= co. However, if hi(1)= k, is finite then 1(—-,»1”—4)5_! G

P
o L N i e REG) Gy 1. :
and so » ¢ I(G), ie. by (1)=0. If e (1)= oo then p 15 an allowable
E(G)

endomorphism of ¢ and so hy 7 (1)= o0 in this case. Therefore i)

is equivalent to the reduced type of . d

Now we can introduce the following definition:

13



Definition 2.12 Let G be any rational group. Then define

Xo={peTl| ,‘})g E-(G)).

X is the set of primes which have finite entries in type(G). A special

role is played by direct sums of rational groups. Hence we introduce:

Definitions 2.13
(i) A completely decomposable group is « direct sum of rational groups.

(ii) A homogeneous completely decomposable group is a direct sum of

rational groups each of the same type.

(iii) The type of a homogeneous completely decomposable group is that
of the rational groups which are its summands in its decomposition

into rational groups.

(iv) Theset of critical types, T..((), of « completely decomposable group
(i 15 the set of types of the rational groups which are its summands

m its decomposition into rational groups.

Decompositions of a completely decomposable group into direct sums

of rational groups are unique up to isomorphism —- see [8, Proposition

86.1).



Notation 2.14 Let G be a completely decomposable group. Then, in
the decomposition of G into rational groups, given any t € T,.(G), we
denote by Gy the direct sum of all rational groups of type t, i.e. the t-

homogeneous component of G. In this way we may write G = @ Gy,
teTer(G)

as a decomposition of i into homogeneous summands of distinct types.

Theorem 2.15 Let G = @@ R, be a homogeneous completely decompos-
icl

able group of arbitrary rank, where R; is a rational group of type ¢ for
each 1 € I. Let the reduced type of t be 7. Let R, = B(R) be that
subring of the rational numbers @, containing 7., of type .

Then, F(G), the endomorphism ring of G, is ring isomorphic to E(R)

»

the endomorphism ring of R = @ R, a;.
el

Proof: Since G = @ R; we may write ¢, any arbitrary endororphism
icl

of G, as ¢ = ) &, where ¢;, € Hom(R;, R;) for each i,j € I. By

el

Lemma 2.11, it follows that Hom(R;, R;)= R, that subring of () contain-
ing Z with type 7, the reduced type of t. Since cach R, (i € I} is isomor-
phic to a subgroup of Q containing Z, then any ¢, € Hom(R;, R;} may

be considered to be defined by its action on 1 € R;, i.e. say (pi; = 7o,

for some r, € R.. Let R = @ R,a;. Then, Hom(Ra,, R.e;)= R, for

=]

each 4,7 € [ in the same way we showed for Hom(R,, R;). Now, define

15



Q: E(EEr R)— E(G}I R.a;) by ¢i; = 14, where vy, (Lo 1y, 0,
ic i€

for each 7,7 € I. Since ker® = {¢ € E(G);r4,, =0 for each i,j € [} =
{¢ € E(G)i¢; = 0foreachi,j € I} = {p € E(G);¢ =0} =0 and
since by definition © is clearly surjective we have that € is bijective.
Now, given ¢, ;, ¥, arbitrary elements of Hom(R;, R;) for any arbi-
trary 2,7 € I then (¢;;)O+ (i ;)0 = 1y, + 1y, =(di; + 9:;)O for any
t,7 € I; and given arbitrary ¢, € Hom(R;, Rt), ¥u; € Hom(Ri. R;)
for any arbitrary ¢, j,k € I then (¢;4)0(¢:,)© =1y, Py, =(Piatn;)O.
Therefore E(G),-%:g E(R). O
We continue now considering some useful properties of rings.
Definition 2.16 The Jacobson Radical of a ring R, denoted J(R) is the

intersection of all the mazimal right ideals and all the mazimal left ideals

of K.

Lemma 2.17 Let R be a unital ring and © € R. Then the following are
cquivelent.

(i) © € M,, the intersection of all mazimal right ideals of R.

(ii) 1 — 2y is right tnvertible for any y € R.

(1i1) N2 =0 for any simple right R—module N.

16



Proof:

(i)=(ii): Let « € M, and assume 1 — 2y has no right inverse for some
y € R. Then there exists a maximal right ideal [ of R such that
l —zy €l Butazel sol—azy+zy e I. Therefore, since 1 € I,
I = R, contradicting / being a maximal right ideal.

(ii)=(iii): Recall that a module with no non-trivial submodules is called
simple. Let 1 — zy be right invertible for all y € R and suppose that
ne # 0 for some n € N. Then (nz)R is a right R-submodule of N
and is not zero, so (nz)R = N. In particular, n = nay for some y € R
and so n(l — zy)= 0. Now, since 1 — xy is right invertible then n = 0
contradicting our assumption.

(ii)=(1): If [ is a maximal right ideal of R then R// is a simple right
R-module and so by (iii) (R/I)z = 0. Thus (14 1)r = I soz € I. Since

I is an arbitrary maximal right ideal of R then = € M, . U

Lemma 2.18 For x € R, a unital ring, the following are equivalent.
(1) @ € My, the intersection of all mazimal left ideals of R.
(ii) 1 — yx 15 left invertible for any y € R.

(iii) N = 0 for any simple left R-module N



Proof: Similar to the proof of Lemma 2.17. O

Proposition 2.19 Forz € R, a unital ring, the following are equivalent
(i) z € J(R)
(1) 1 — zzy € U(R), where U(R) denotes the group of units of R,

for any y, z € K.

Proof:

(i)=(ii): Let z € J(R) ( J(R)= M,NAM;). Then, by Lemma 2.17 , 1 —zr
1s right invertible for all » € R. Let y,z € R be arbitrary. Therefore,
there exists v € R such that (1 — z(yz))v = 1, so v has a left inverse.
Now, v = l1+4(zyzv) is right invertible, again by hypothesis. Thus,
and so also 1 — zyz are units since if vw = 1, then (1 — 2yz)vw = w =
(1 —wyz)l.

Finally, since (1 — zzy)(I + zvzy) = | — zzy + 20zy — zzyzvzy =

I —zzy + z(v — zyzvley = 1 — zey 4 2(1)ay = | and, similarly,

(I 4 zvzy)(l — zzy) = |, we have that 1 — zzy is a unit as required.
()= (i): If 1 — zzy € U(R) for all y,2 € R then, by (ii} of Lemma 2.17
and (ii) of Lemma 2.18, = € J{R). U

We often use this last result in the form; given z € J(R) then 1 — zy and

18



1 — yz are units for all y € R (i.e. in fact M, = M; = J(R)).

Later we will discuss reduced modules over the ring of p-adic integers

(p € II). We will be particularly concerned with such p-adic modules
when they are complete in the so—called p-adic topology, i.e. a linear
topology having the subgroups p" M (n > 0) as a basis of neighbourhoods
of zero. Since the p-adic topology is metrizable in this case, completeness
1s equivalent to the convergence of all cauchy sequences. At this point

we Include this result:

Lemma 2.20 Let M be a torsion-free complete p-adic module.

Then J(E(M)) = pE(M),

Proof: If o € pE(M) then ¢ = pf for some 8 € E(M). For a an
arbitrary element of E(M) we will consider the endomorphism
Il — ¢ =1 — p{fec). Firstly consider the formal binomial expansion

1 -+ p(fa) + p*(Ba)® + ...
This 1s an endomorphism of M since, given any o € A, the expression
z(1 -+ p(fa)+p*{fa)? + .. .) is the sum of a cauchy sequence of elements
of M and hence converges to an element of M.
Moreover,

1= (1= p(6a))(l + p(da) + p*(6a) + .. )

19



{1+ p(0a) + P(6a + .. )(1 - p(0e))
since p is a central element of M.
Thus, 1 — ¢a is a unit of F(M) and so it follows from Proposition 2.19
that ¢ € J(E(M)). So pE(M)C J(E(M)).
Conversely, suppose J{E(M))Z pE(M). Then there exists 0 # z € M
and o € J(E(M)) such that ca ¢ pM.
However, consider the cyclic submodule generated by za, (za). This is
pure in M and complete since it is isomorphic to 21 Hence, by
{14, Theorem 23], it is a direct summand of M. Therefore there exists
some n € (M) such that (za)y = z. Since an € J(E(M)) then, by
Lemma 2.17, it follows that 1 — an is a unit of K{M).
However, 2(1 — an)= r — 2{ay)= v — » = 0 which contradicts 1 — ay
being a unit of IF(M). Hence J{F(M)) must be contained in pE(M).
Therefore J(E(M))=pE(M).

]

We finish this section with some important statements from arithmetic

number theory.

Lemma 2.21 (Dirichlet’s Theorem})

For each integer k > 1 and each integer | where 0 <1 < k and (I,k) =1

20



there is an infinite number of rational primes p of the form p =1 4+ nk

where n € Z+.

Proof: See [23, IV, Theorem 4.3] for details. G

Lemma 2.22 (Cauchy-Schwarz Inequality)

Let ay, ... a,, by, ..., b, be real numbers where n e Zr.

n

Then (!é a,-bi)z < (Z a?) (é b?)

=1

Proof: See [18, Lemma 7.1]. 0

Lemma 2.23 (Chinese Remainder Theorem)
Groen positive integers my,. ... m, which are pairwise relatively prime
and given any set of integers ny,...,n, (r € Z"). Then, there erists an
mteger nosuch that n = n; mod m, for all i € L.,

T

This solution is not unique.

Proof; [ollows from [12, 11, Theorem 6.2] with R = Z. O
The following historic theorem is credited to Hadamard and, indepen-
dently, de la Vallée Poussin. The Prime Number Theorem for Arithmetic

Progressions followed from this.



Theorem 2.24 (Prime Number Theorem)

lim (ﬁ—(l—)) =1 (z € R),

T —_—
nz

Proof: See (23, 1], Theorem 2.4]. 0
Note that the Buler function is defined by (k) = kn(l—jl)) (k € Z).
J]lk

Recall 7(x, k,1) denotes the number of primes which are congruent to

{ mod & but do not exceed .

Theorem 2.25 (Prime Number Theorem for Arithmetic Progressions)

Let ke N with (k{)=1, then

lim (M) = ;7(1_1._) (z e R),

23X —
In=x

Proof: See [23, IV, Theorem 7.5). O

§2 The involution property for vector spaces

In this section we introduce the notion of involution property Lirstly by
definition and then through a corollary to a result of O Searcéid {21] con-
cerning vector spaces. O Searcéid shows that every linear transformation
of a vector space X is a sum of a unit and an idempotent of E{X) the

endomorphism ring of X. This, along with Corollary 3.3, provide the mo-



tivation for Chapter [V. In Chapter IV we provide an alternative proof

to that of Corollary 3.3 (see [V, Theorem 2.1).

Definition 3.1 A unital ring E has the involution property if every el-
ement of ¥ is a sum of a unit and an involution of E.

An R-module M over « commulative ring R has the involution property
if every endomorphism of M is @ sum of an automorphism of M and an

involutary automorphism of M.
The next result is due to O Searcéid [21]

Theorem 3.2 Let X be a vector space over a field F. Let T be an
arbitrary element of E(X), the ring of linear transformations of X. Then

there erists P € E(X) with P* = P such that T— P is invertible in E(X).

Proof: Let
S={(MQIMCX (MTCM Q=0Q¢cEM),(MT-Q)= M,
(T [ar) — Q 1s injective)}

We note that
e S # 0, since ({0},0)€ S.

e 5 is a partially ordered set with (M, Q) < (M', Q") if M C M' and

Q' Ty=Q.

23



o If {(M;,Q)li €1} isachainin S, then (|J M,, |J @Q:) is an upper

el e

bound which is also an element of S.
We may therefore invoke Zorn’s Lemma. Therefore there exists a maxi-
mal element (¥, P) in 5. We will show that ¥ = X.

Assume there exists z € X\ Y.

Case 1:

T
Suppose there exists a polynomial p = 3~ p;l/7 of minimal degree such
j=0

that 2(p(T)) € V.
o Certainly m # 0, since if so ¢py € ¥ contradicting z € X \ Y.

e We show that we cannot have m = 1 with py = 0. If so then

prl € YandsoxT € Y. DefineY' =Y @ Fz,and P V' — V7

1

where (y +az)P' =yP+ar;ye Y, a € F.

It is clear that ¥ C X and (YT C Y'. Also P'? = P', since
(y +az)P? = (yP +az)P = yP® + ar = yP + az = (y + az) P
Since y-+axl’ € ¥, foreach y € ¥ and each a € F', then y+arT =
w(T — P}, forsomew € Y. Hence y+ar = w(T - P)—azT +ar =
(w —az)(T - PYyso Y'(T - PY=Y".

Moreover (1" {y+)— I’ is injective: Let (y+az)(T—P') = 0 for some

y €Y, ae i then y(T — P) + a2T — ax = 0, which, looking at

24



the summand Fz, implies that az = 0, so that & = 0, and looking
at the summand Y, implies that y(7' — P) = 0 so by injectivity of
T — P we get y=0.

Therefore (Y, P') € S, contradicting maximality of (Y, P).

o If m > 1. Assume that py = 0. Since z 3. p;77 = (= 3 p, 75 1T
: ~

1=1 i

m

then by minimality of i we have an «' = (2 5. p; 77 ) € X\ YV
=1

such that #'T" € ¥'. This corresponds to rn = 1 and py = 0, a case

already considered. Therefore {rom now on we assume pg £ 0.

Now

(i) {zT*|0 < k < m} is a linearly independent set:

=1 m—1

Let 3 awzT* = a5 oT* =0 € Y., € F for each k €
k=0 k=N

0.1...., m — 1. Then, by minimality of m, ay = a) = ... =

Gyl = U
(ii) Let W = (2T*]0 < k < m). Then,W Y = {0}, by minimal-

ity of m.

(iii) Define Y' =Y @ W, and P': ¥V’ — V' by (y + w)P = yP

L]

foranvy eV, we W.

We must show that (Y, Py € S,



Certainly V' C X.

YTCY YT CY,; (@TT =2T*" ¢ Wilork=0,...,m -2,

m—1

and for k =m — 1 we have (2T™ )T = 7" = ‘yT—'l— > peT,

p”l. j:U

for some yr € Y, p,, #0, so 2T™ ¢ YW =Y

(P)? = P': Since, given any arbitrary element y +w of ¥,

where y € Y and w € W, then (y + w)(P')’ = (yP)P' = yP? =

yP = (y-+w)P.

m—1

Y'(T' = P') = Y": Consider an arbitrary element y + > areT* of

k=0

Y/, wherey €Y, ar € F,k=0,...,m~ 1. Then

rie—1 m—1
y+ 0z = (y + 3 Bz T — P, for some y ey,
k=0 k=0

ﬁg\.EF, k:O,...,'mgl,

m—1

-1

= y+ 3 waTh =y (T - P)+ S BraThr

k=0

m—t

k=0

m—1

= oyt D apaTh = (T — PY+ > By 2T + 8, 2T™
k=1

k=)

m--1

&=yt axTh =y (T-P)+ 3 B
=1

=1}

m—1

in—1

et B0 (yqﬁp_ > paT™),

™ =)

for some yp € Y. This is so il and only if the following conditions

are fulfilled,

y= y"(j" - P) + ,BmflyT
.Bm—l‘

P

and o = 3,_,—

P

y g = —

ﬁmfl

Fn

Pn

yfork=1,... . m—1

Since py # 0 then we can always {ind a solution for By, ... By_; for

26



any given ay, ..., @,—;. Furthermore, since Y(T—P) =Y then we

may always find some ' € Y such that y'(1" — P)Y=y— Bniyr.

m—]

T [y —P' is injective: Consider an arbitrary element y+ > apzT*
k=0

of V', wherey € Y, o, € F, k=0,...,m — 1, such that

m-—1

(y+ 3 areTNT - P') = 0.
k=0
m—1
This can be true if and only if  y(T — P)+ 3 apeT*+! =0,
k=0
The last statement is true if and only ifay = ... = a,,_» =0 and

m—1

y(1' = P) + a,, l(mipm AZD maT™®) =0, some yp € ¥, and this
is 5o if and only if oy = ... = g = 0 and a, 1pp =0 |, for
all 0 <k <m—~ 1 and y(T — P) + amy1yr = 0; which is true if
and only if oy = ... = «x,, , = 0 and y(T — P) = 0; which in turn
is true if and only if oy = ... = y—1 = 0 and y = 0. Therefore

ker(T' [y —P') =

So (Y', P') € 5. This contradicts the maximality of (Y, P).

Case (2):

Suppose ep(T) ¢ Y, for all polynomials P

(i) {2T%0 < k € N} is a linearly independent set:

m T

Let Yozt = oS 7% = 0 € ¥ for some m € N. This
k=0 L=l

contradicts the supposition unless oy = ay = ... = a, = 0.
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(i) Let V = (zI*|k € N). Then VY = {0}.

(iii) Define Y' = Y@V, and define P’ : ¥’ —3 Y’ by P' [y= P, and
P' ly= Q where z77"Q = T and zT"Q = T™+2 _ 72

for all n > 0.

We must show that (Y', P') € S. Clearly Y' C X and (V') C ¥’

(P')* = P': It is enough to show that Q% = Q since P? = P by assump-
tion. Let n € N, arbitrary, then (2T7%*)Q? = (27?")Q and (T2 =
(2T™F2 — gTP)Q = 2722 - o — (27?4 1Q. Therefore Q2 = Q.

YT — P') = Y" It is enough to show that V(7' = Q) = V since Y =

Y(T-Py=Y(T-P)and V(T Q) = V(T-() C V. Furthermore, it is
enough to show +7* = v(T—P) for some v € V and for all k € N: we show
this as @7 = 27" (T - Q) and 2T = (2T 4 e THN (T — Q).

Therefore T' — P is onto Y'. 7" |y, — P' is injective: Again it suffices to

show that T' [y —@Q is injective. We show that T [y +1; - (2 is a right

tnverse of 7' [y —Q: For any n € N, 2T™(T [y —Q)(1 Iy +1y — Q) =

(12— 1Ty A1y - Q)

= TP Il o PIntl i a2 g =™, and
2T Ty Q)T fv +1ly = Q) = (&P = T2 4 27 Y(T [ 11y — Q)

— pIntd _f_l,T?n —Tin — ol SO, (T IV _Q)(T ['V +1V_Q) = 1.
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Similarly, (T [v +1y — Q)T [v ~Q)= 1y so T [v —Q is injective.
Therefore, (Y', P')€ S, contradicting the maximality of (¥, P} and so
eliminating Case 2.
Hence there can be no 2 € X such that 2 g Y, therefore X = Y. There-
fore (X,P) € S, and so P is an idempotent of E(X); we also have
T — P is injective; further, since X(T — P) = X therefore 7' — P is onto.
Therefore T — PP is an antomorphism of X.

0
Next we relate O Searcéid’s result to the involution property. Notice the

role of 2 being an element of the field.

Corollary 3.3 Let I be any field containing 2. Let X be a vector space
over I and T an arbitrary element of E(X). Then there exists [ € E(X)
with 12 = 1y, where 1y is the identity on X | such that T — I is invertible

m K(X).

Proof: By Theorem 3.2, %(T—i— 1x) = P+ V where P, V¥ € /[ X) with
P an idempotent and ¥ an automorphism of .\,
Then T' = (2P — 1x) + 2V. Certainly 2V is an automorphism of X, and

since (2P — 1x)* = 4P? — 4P 4 1y = |y we see that (2P — 1x) is an

involutary automorphism of X. O
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IT Free modules and completely

decomposable groups

In the first two sections of this chapter unit sum numbers for a free
R-module, M, over a commutative ring R are investigated. Wans has
shown, for B a PID, where the rank of M is finite, but greater than 1,
then usn{M )= 2 and if the rank of M is infinite then usn(AM)< 3 (see I,
Theorems 2.4 and 2.5). We concentrate therefore on cases of infinite rank
and attempt to determine precise unit sum numbers for these modules.
We begin in the first section of this chapter by considering the easier
case of a free R-module M where R has unit sum number of 2; we show
that usn{M )= 2. In this case R is an arbitrary commutative ring not

necessarily a PID.

§1 Free modules over rings with the 2—sum property

In this section we will show that for M a free i-module of arbitrary
rank, where R is a commutative ring then usn(M)= 2 if usn(R)= 2.
Although we will improve on this result in Section 2 where R isa PID.

the method in this section is easier. We begin by developing some results
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regarding certain types of endomorphisms. The first proposition is due to
Freedman [6]; it provides useful sequences for “breaking” endomorphisms

into pieces.

Proposition 1.1 Let M = @ Re; (n < w) be a free R-module of count-
1<n

able rank and let ¢ be an endomorphism of M.

Then there ewists a strictly increasing sequence of natural numbers

O=rm<r<...<n,...(s€ w) such that

f t<nand r, <i<rg then [ed] C {0,1,.. ., 700 — 1}.
(+)

Proof: Firstly, if n < w, set 7q = 0 and choose some 1 < 7y < n which
satisfies feqgp] C {0,4,...,r — 1}, ie. trivially we can choose r; = n. For
r. >n (k> 1), set . = n+ & In this way a sequence (7,).ei can be
chosen fulfilling condition {*).

Now we turn our attention to the infinite case n = w. Choose 7, to be
any positive integer greater than 0. Clearly [e:¢] is finite for any i < r
and so we may choose ry € N to be bigger than the maximum of the finite

ry—1
set {r1} U |J [e;4]. Therefore the property (*) is satisified for s = 0.

We continue inductively in the same way. Suppose r,, ts given for some

s 2 1, then we obtain r,,; as an integer bigger than the maximum of
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1‘,.}_1‘1

the finite set {r,41} U | [eid). Then [e;p] C {1,..., 7,09 ~ 1} for each

Ty <1< Tayg
Henceforth 0 = rg <, < ... is a strictly ascending sequence with the
desired property (*) ]

Applying the above proposition to an a—endomorphism we obtain:

Corollary 1.2 Let M = €D Re, (n < w) be a free R-module of countable
tn

rank and let ¢ be an a—endomorphism of M.

Then there exists a strictly increasing sequence of naturel numbers

O=rg<r <...<ry... (sEw), such thatif 1 <nandr, <i < ryp

then {e;p) C {i+1,...,740 ~ 1}.

Proof:  The proof follows directly from Proposition 1.1 and the defi-
nition of an a—endomorphism isee I, Definition 2.2). [

The next lemmas concern locally nilpotent endomorphisms.

Lemma 1.3 Let M be a free R-module of arbitrary rank over a com-
mutative ring K and let 5 be any locally nilpotent endomorphism of M.

Then (p+ 1) is an automorphism of M.

Proof: Obvicusly, 5 + 1 is also an endomorphism of M. To show that

7 + 1 is bijective let m # 0 be an arbitrary element of M. Since 7 is
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locally nilpotent there exists an integer n > 1 such that msn™ = 0 and
mn™ ' # 0 where we agree that n° = 1.

Since  m(n+ )" ! =my* ! #£0 it follows that ker(n 4 1) = 0 and
so (7 +1) is injective. Also, (m(1—-p+72—n*+... 7" Y (H+1) =

which shows that (7 + 1) is surjective. |

Lemma 1.4 Let M be a frec R—-module of arbitrary rank over « commu-
tative Ting R. Moreover, let ¢, be locally nilpotent endomorphisms of
M satisfying Py = 0.

Then the endomorphism ¢ + 1 s locally nilpotent.

Proof:  Firstly we show, by induction on n, that the following holds

for any n € N:

(6 + )" Zl,[)(ﬁ" ! (")
The statement (*) is certainly true for n = 1, ie. {0+ ¥} = ¢! + 1.
Therefore we assume that (*) is true for all 1 < n < k for some & € M.

Then:

(¢+¢R+l_ Z zﬁﬁ z (f)-i—l_’)

=1}

Is
= (¢"+ v )0+ v)

i—=1

k k
_ ¢A-+l + Z 'r[)‘.d)(k"'”ﬂ. + ¢)Aw + z 'l,[}iqﬁk‘i‘l[).
=i i=1
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However, since ¢4 = 0 the last two summands reduce to #**! and thus
we deduce (¢5 + 7,b)k+l — ¢k+1 + Zk: 1,[)i¢5(k+1]"" + ¢k+1 — %lwqb(kﬂ)—i’
i=1 i=0

as required.
Using (*), now it can be shown that ¢+ is locally nilpotent. Let m # 0
be an arbitrary element of M. Since ¥ is locally nilpotent there exists
v € N such that my"* = 0. Since ¢ is also locally nilpotent we can
find v € N so that (my*)¢” = 0 for all 0 < i < u. Therefore, letting
n = u + v, it follows that myp'¢" " =0 forali 0 < i < n = wu-+ v, and
thus m(¢ + )" =m i: Pl = 0.

i=0)
As this 1s true for all elements m € M we can conclude that ¢ + ¥ is

locally nilpotent. a

Lemma 1.5 Let M = € Re; (n < w) be a free R—-module of countable

rank over a commutaltive ring R and let n be an a—endomorphism of M .

Then 1 s a sum of two locally nilpotent a—endomorphisms.

Proof: By Corollary 1.2 there is a strictly ascending sequence of inte-
gers
0= ry <r <ry... such that {e;n] C {i+1,... 71,42 — 1}, for each

7, 1< Py (5 € w).



Using this sequence we now define endomorphisms #,, 75 of M as follows

(fOI' I = 0| 17‘ . )
4
e for o <d <y
e = <
0 for ray1 <11 <1
\
and .
D fOT T34 S I < r'Zi-’r—l
€y = ﬁ
e for Taryy <0< raes

Clearly, 7, and #; are a—endomorphisms of M with 5 = 5 + 7,. Thus
it remains to show that 5, and 7 are locally nilpotent. Obviously, it is
enough to consider 7 (or 72) because of their similarity. Moreover, we
only need to consider the base elements e; (i < n). If rop; < 7 < Popyn
for some t € w then ¢;n] = e;n; = 0 by the above definition.
So, let 7y <4 < 1oy, for some t € w. Then also by definition, e;n; = e;n
and therefore we have:  [en] € {i +1,... 790 — 1}, Now, since
eyim C i+, — 1} or e;m = 0 for all 7 = rop, o0 o — 1
then [e;”] € {i+ 2. 19,0 ~ 1) or ep? = 0. and [eim:®] € {7 -+
3, . e — 1} or e ® = 0, and continuing in this way we have [eim™] C
{rapi+b o raa—1} oregn™ = 0, for some m € w. Hence et =0

and so 1y is locally nilpotent as required.
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Now we are ready to prove the main theorem of this section.

Theorem 1.6 Let M = @ Re; (n <w) be a free R-module of count-

i<n

able rank over a commutative ring R. If usn(R) = 2 then usn(M) = 2.
Proof: Let M be as above and assume usn{R)= 2. Moreover, let ¢ be
an arbitrary endomorphism of M. Then ¢ can obviously be expressed as

p=n+p+s (1)
where 77 1s an a—endomorphism, p is a - endomorphism and 4 is a d-
endomorphism. By Corollary 1.2 there i1s a strictly ascending sequence
of integers 0 = rg < 7, < ry...such that (e C{i+1,...,r,42 -1} or
e =0, forall r, <v<r,; (s €w).
Now, by Lemma 1.5 there are locally nilpotent a-endomorphisms 7; and
il such that g, + 70 = 7.
Recall that e,y =0 =¢;m0 forje £y = U{hk €w | ry <k < ryei)

flw
and i € [, = |J{k € w | ray €k < 1ryy0} while e;p = ey for
fEw
v€ly and ejpp = e;n for j € [
Therefore we have, in fact, obtained that yn, and yn. are locally nilpo-

tent a—endomorphisms for any d-endomorphism 4 of M (see proof of

Lemma 1.5).
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Next we decompose the f-endomorphism p. For each i < n we write e;p

as

ep = D e;bi; = 3 ;b + 3o ejby;
3<i j<i j<i
JEL JEI,
and we define p;, py correspondingly, i.e.

eipy = ) eiby epy = Zejbij-
j<i i<i
JEN jel
Clearly, pi 4+ ps = p and yp;, and py are also B-endomorphisms of

M for any d-endomorphism of Af. Note that any g-endomorphism is
locally nilpotent by I, Lemma 2.3 . Moreover, the definitions of 7, 72,
£y, p2 imply immediately that gy, = 0 = pymy. In fact, given any d-
endomorphism « of M we have  ypiyn = 0 = ypoy1;.
Now we consider the d-endomorphism §. For each i < n there is an
element a; of R such that e;0 = a,e;. Since usn(R)= 2. there are units
w;i, up of R {1 < n), such that a; = w; + up. Putiing
€;01 = upe; and  e,6y = upe; for each 0 < i < w

we obtain d-endomorphisms 4, and &y of M which are, in fact, automor-
phisms of M and satisfy § = §, + 6.
Finally, we rewrite equation (1) as follows:

¢=n+ptd=mtmtptptditde = (4 p+td)+(n+p+ o)

= &8 (1 + po) + 1) + 8285 (2 4 1) + 1) (2)



By Lemma 1.4, &7 (71 -+ pa) is locally nilpotent since &; 'n; and 8! ps
are locally nilpotent and satisfy 7' ps67 'y = 0. Therefore, by Lemma
1.3, 8, (m + p2) +1 is an automorphism of M and so & (37 (9, + p2) +1)
is also an automorphism.

Moreover using the same argument, we deduce that &,(6; (12 + 1) + 1)
is an automorphism.

Therefore ¢ is a sum of two automorphisms of M as required. U

Applying a method due to Castagna (see [3]), we can extend the above
result to free modules of uncountable rank.

Let M = € Re, be a free module of rank 7, then for any X C M we

¥
define the support of X as [X]= | [m].
meX
Definition 1.7 Let M = @ Re; be a free module of arbitrary rank
e

and ¢ be an endomorphism of M. For any subset S of M the ¢—closure

of S, (S),j.,, is defined as {S), = |J S., with Sy = {e; | i € [S]) and

Swi = (e [T € S JUlS.0)).

Note that (S), is invariant under ¢ and (S), is countable whenever S
5.

Now we adjust Castagna’s lemma to our situation.

38



Lemma 1.8 Let M = P Re, be a free R-module of uncountable rank
a<k

K, ¢ any endomorphism of M end m € Z*. Then M can be written as

the union of a smooth ascending chain {Hp [ B < x} of submodules Hy

of M of rank less than xk such that

(i) (Hp)¢ C Hy for all 8 < &.

(if) Hyyr = Hy @ Cpy where m < vh(C) < Ry, for all 8 < k.
(iii) [Hz] C Hy for all B < k.

Proof: We inductively define the H; (8 < x).
Put Hy =0 and let Hy = |J H, if 8 is a limit ordinal.

a<f
Clearly, Hy¢ =0 C Hy and, if H,¢ C H, for all o < 3, then Hyp C Hy.
Now, suppose Hy is given for some 8 < k. We choose distinct ba-
sis elements e, ,eq,,... €4, which do not belong to {f;] and we put
X ={ea €ars e ) )\ [Hyl. Clearly, m < | X | € Xy We define (7
and hence Hy, by Cy = @ Re, and Hy,y = Hy @ Cy.

mEX
Obviously, m < rk(C};) < Ry. It remains to show that H,,, is invariant
under ¢ and contains its support. The latter is obvious. Now, Hup C Hy

by assumption and Cp¢ C Hyyy by our definition of X and Cy. There-

fore property (i) also holds. 0
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Theorem 1.9  Let M = @ Rep be a free module of uncountable rank
B<x

end m € N (0 # m € N). If every free module over R of countable

rank greater than m — 1 has unit sum number equal to n € N, then

usn(M) < n.

Proof:  Let ¢ € E(M) and write M = |} Hjy as in Lemma 1.8,

REeS

Inductively we define automorphisms 8, for each 8 < & and for each

it =1,2,...,n such that ¢ [g,= i 0:p and if o < 8 then 8y [, = 6.,
-1

foreachi=1,2,....n.

For 8 = 0, Iy = 0 and therefore ¢ [p,= 0 = iO. Since Hy = 0 the

i=1

encdomorphisrm 0 ts injective and surjective and so is an automorphism of

H[J.
For o < 3 assume that {6, |t = 1,2, .., n} has been suitably defined.
Let 3 be a limit ordinal. For any ¢ € {1.2....,n} define 6, = |J 0.,

a<fd

which is well defined since each 8;,,, for each a < 3, is an extension of
f). s, for each & < o.
Moreover, domf; 5 = dom |J 8., = [Jdomb,, = J H, = Hs, e

o< f3 < f3 a<ff

0;:; has the correct domain.

Also, Imb;y = Im |J 0. = Hpy as above and thus 8,4 is surjective.
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Clearly, 6; 5 is injective as all the 6;,,'s are. Similarly it is clear that 8 s
is a homomorphism of Hg. Henceforth, 8,5 is an automorphism of Hy
(1 <i<n).
Now, let h € Hg, then h € H, for some o < 3. By the induction hy-
pothesis and the definition of the 8, 4’s we have h¢p = h i} ="~ i 0; 5.
i= i=1

Therefore ¢ [y4,= z": & s as required.

i=1
Now assume /7 is not a limit ordinal.
Let 3 = a4+ 1. By Lemnma 1.8 we have H,,, = H, ® C, where m <
rk(Cy) < g .
Define m; and my as the projections of H,,, onto H, and (', respectively.
Then (¢ [, )72 is a mapping from C, to €. in other words an endomor-

_______ . such that
Py € Aut(C,,) for each 7 € 1,2,...,n and such that (¢ ¢, )7 = i P,
i=1

For each ¢ € C, define v, € H, as v, = (c¢)m,. Note that ¢ém is a
mapping from C, to H,.
Foreach v € 1,2,...,n define 0;,.;, on H, . ; by

(€ +c)01nr1 = 2010 + ety + v,

(z+cWiny =axbiq+cp; fori=2,...,n

where x € H, and c € (.



For each i = 1,2,... n it is clear that §; o, is a homomorphism; §; ., is
an extension of 8; , because, for any z € H,, 20; .1 = 20io + 0 + vy =
xf; osince vy = (0)m; = 0.

Next we show that 6, ,,, is an automorphism of H,, foreachs = 1,2,.... 7.
Consider the kernel of 8, ,y,. Forz € H,,c€ C, withz+c € kerf o,
we have 0 = (z+c}0) aq1 = 20y 0 +cth1 + v, = (2810 +v.) + ). Now,
(#61o+v.) € H, and epp; € C,,. Since 4, is an automorphism of (", then
cihy = 0 implies that ¢ = 0 and so v. = 0. Therefore we are left with
0 o = 0. By assumption, ¢, is an automorphism of H, so that z = 0.
Therefore ker#, ., = 0.

For+ = 2,...,n it is just as easy to show that kerf, .., = 0. Suppose
(z+c)0in-r = 0. Then 26, ,+cp; = 0 and it follows again that r = 0 = ¢
since ¥, is an automorphism of €, and, by assumption, 8, , is an auto-
morphism of H,.

Next we show that 8, ., is surjective.

Let a + b be an arbitrary element of H,,,, = H, & C,, where a € H,
and b € . Thena +b = ((a - v)0; )0, + (by, "Y1y + v, where
c=by;l € C,and v, = (c¢)my. Therefore, letting = (e —v.)8] ! € H,,

we have a + b = (z + )0 41



Now we show that #; ., is surjective for all i = 2,...,n. Take an ar-
bitrary ¢ € {2,...,n} and let a + b be an arbitrary element of H,,, =
fl, & Cy where @ € H, and b € C,. Define ¢ = b(¢);)! € C, and
z = 0(0i)"' € Ho. Then a+ b= (204 + ;)0 as1, 1.6, Oiayr is surjec-
tive,

Therefore 8, .1 € Aut(H,,,) for all # = 1,...,n. It remains to show

k3

that ¢ |5, , = nl Birr. Let (2 4+ ¢) € Hoyy (v € Ha, ¢ € C). Then
(1:+C)(1§ Giar1) = 1(12 Oi.a)-f‘c(é Vi) v = (¢ [u,)+(cd)me+(ch)m
=z¢+ (co)(m +m) = ¢ +cdp = (2 + ).
Finally we conclude that ¢ = iﬁ, where 8; = |J 8,5 is an automor-

R B<n

phism for each i = 1,...,n. 0

Corollary 1.10 Let M be a free R -module of arbitrary rank over a com-

mutative ring R. If usn(R) = 2 then usn{M) = 2.

Proof: The proof follows from Theorem 1.6 followed by Theorem 1.9
(taking m = 1 and n = 2) . 0
It has been shown here that, for example, free modules of countably
infinite vank over R =J, (p#2) or R =7, (p #2) have unit sum

number 2. This improves the result of [11] for p-adic modules.
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§2 Free modules — extending finite rank results

Next we use known results for free modules of finite rank over commuta-
tive rings to consider free R-modules, M = P Re;, of countably infinite
i<w

rank over a commutative ring R where usn{R) may not equal 2; e.g.
R=12Z, R =%y, R = Jy,. Many free modules of finite rank over
commutative rings have been shown to have unit sum numbers of 2. In
particular, Wans [29] (see I, Theorem 2.4 of this text) has shown that
free modules of finite rank greater than 1 over a PI[) have unit sum
number of 2. We develop a method which extends the finite rank result
to the countably infinite case. Then we can extend to the uncountable
case using the approach of Castagna.

The method used is one of matrix decomposition. It relies again on Freed-
man’s Proposition 1.1 but noting that every endomorphism of M is the
sum of an a—endomorphism, a f—endomorphism and a d-endomorphism
the proposition is reused more generally for any endomorphism of M by

way of the following defimition,

Definition 2.1 Let M = ) Re; (n < w) be a free R-module of count-

able rank and let ¢ be an arbitrary endomorphism of M. We define

W = (v))icw b0 be a d—sequence if il is a strictly increasing sequence o
€ q
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integers such that ry = 0 and [e;¢] C {0,1,...,7,09 — 1} ore;p =0, for
any 1 < n withr, <1 <71y (s € w).
Moreover, we define the corresponding W-function, fyy, for W by

fwiw = w mappingi €w onte fy(i)=secwifr, <i< Tagl-

Note that such a sequence always exists by Proposition 1.1 and that, the

function fyy is obviously well defined.

Definition 2.2 Let M = P Re; (n < w) be a free R-module and let

<n

W be a strictly increasing sequence of integers with rq = 0.
We define an endomorphism ( avtomorphism) ¢ of M to be a W--endomorphism

(W-automorphism) of M if M, = @ Re,; is invariant under ¢ for
e<ln
T, ’il<. Faoy

any s € w.

The following definition plays a crucial role in tackling the unit sum

number problem for modules of countably infinite rank in general.

Definition 2.3 Let M = P Re; (n < w) be a free R—module of count-
<n

able rank. Moreover, let ¢ be an endomorphism of M and let W = (73 )ecw

be a p-sequence, fy its W—funciion.



For any t € w we define the t'™"($, W)-mapping ¢w.) as follows:

For any i < n we can express e;¢ as e;¢ = > z5¢5, {Ti; € R).
I<r iy
Using these coefficients we put (for i < n):

2 riye;  fw(i)=s>t-1
eidow,y) = FaplotSi<r g2t

0 else

The following are immediate consequences of the above definition.

Observation 2.4 Let M = @ Re; (n < w) be a free R-module of

i<n

countable rank. Moreover, lel ¢ be an arbitrary endomorphism of M and

let W = (r,)se. be a p-sequence and fyy its W-function.

(i) The infinite sum Y dpw,y) has @ well-defined meaning as
Cw
eidbown =0 for all t > fiy(i) + 1 with any fized i < n.

Furthermore ¢ = > dow.).-

tCw
{ii) Piw.n s a f-endomorphism for any t > 2 and so is gy >z =

) Qv -

P>

Reeall that all 3-endomorphisms are locally nilpotent by I Lemma

2.3
(i)  pyyyy 78 @ W-endomorphism.

Next we have a closer look at the endomorphisms given by (ii) and (iii).
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Lemma 2.5 Let W = (r,)},c., be a strictly ascending sequence of integers

with rg = 0. Moreover, let M = @ Re; (n < w) be a free R—module of
i<n

countable rank and let ¢ be a W-endomorphism of M.

Then ¢ is an automorphism of M if and only if ¢ [y, is an automor-

5

phism of M, = @ Re; for each s € w.
reSicris

Proof:  Trivially, if ¢ {5 is an automorphism of M, for all s € w then
¢ 1s an automorphism of A .
Conversely, if ¢ is an automorphism of M then M.p~! C M, (s € w)
since for each j € [A/[sqﬁ_l] we must have e;¢p € M, which is only so if
7 € [M,] by the definition of a W--automorphism. Therefore ¢ [, is an
automnorphism of M, for each s € w.

O

Note that, in particular, the above lemma holds for ¢, for any endo-

morphism ¢ of M and any ¢-sequence W.

Lemma 2.6 Let M = @ Re; (n < w) be a free R-module of countable
[

rank and let ¢ be an endomorphism of M with o given ¢-sequence W =

(T.f).sGw-

Moreover, let 3 be a W-automorphism.

Then the endomorphism 4 + dpwy >2) 15 also an automorphism of M.
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Proof: By Observation 2.4 (ii), ¢w.>2 = éqb[w‘f) is a locally nilpo-
>

tent A—-endomorphism.

We show firstly that ¥ ¢ >9) is also a B-endomorphism of M. We
consider an arbitrary 7 < n. Let s = fy(7). So, by Lemma 2.5, e;9y™! €
M, and so [e;7') C {ry,ra +1,...,7541 — 1}. Thus [e;z,bfl(,‘b(w,zg)] C
{0,1,...,r, — 1} since, for any t > 2, [e;¢mwn] C {0,1,...,7, — 1} for
any j € {7, ..., 71 — 1} (ie. fw(3)= s). Therefore ¢ P oa) is a
locally nilpotent 8- endomorphism of M. Hence 1414~ dywy 52 is an au-

tomorphism by Lemma 1.3 and thus so is ¥ +¢pw >0y = P(1+¥ oy > )

as required. U

Lemma 2.7 Let M = @B Re; be a free R-module of finite rank n > 2,
let ¢ be an endomorphism of M and let W = (v.).c., be a ¢-sequence

with ro = n. Moreover let 4 be a W-automorphism of M.

Then the endomorphism i + ¢y ) 15 an automorphism of M.

Proof: Note that we can always choose such a W by Lemima 1.1. [t fol-
tows from Lemma 2.5 and the assumption that [e;) ™' C {r.,..., 7,51 —1}
for r, <4 < 1,4, s = 0,1. Now, by definition of ¢pyg;, we have

et Py = 0 for f(i)=1and [e;p "] C {r1,.... 7o —1} for f(i)=
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0. Therefore e;(3/ ™' ¢w.0y)* = 0 for any ¢ < n and thus (" "¢pw,n)? = 0,
i.e. P ) is nilpotent and so locally nilpotent.

Hence, by Lemma 1.3, 1 + ¢~ '¢pw gy is an automorphism of M and thus
50 15 P(1 + P~ dowa)= ¥ + dov) - O

Next, we decompose the £ (¢, W)-mappings:

Definition 2.8 Let M = ) Re; (n < w) be a free R—module, let ¢ be
<n
an endomorphism of M and let W = (7,),c., be ¢ ¢-sequence.

Moreover, let w4 be the t™ (¢, W)-mapping (t € w).

For any t € w we define mappings dow.n, and doyy, as follows (i < n):

€iDIW 1 fwli) even
Eidiway, =
0 otherwise.
.
_ e;thow.n fwii) odd
Cilow.ay =
0 otherwise.

Ohserve that oy, = Pow.ny + Giway, for any £ € w.

Notation 2.9 Let (2;)ic; = {zg,21,....7,, ...} be a sequence with in-
dexing set I and let y be an arbitrary mathematical object. Then y™(x;)ies

denotes the sequence {y,zo,21,...,2.,...}.
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Proposition 2.10 Let M = @ Re; (n < w) be a free R—module, let ¢
i<n

be an endomorphism of M and let W = (7,)se. be o p—sequence. More-

over let ¥ be a W-automorphism of M.

Then o + Pow.n), s @ W' —automorphism of M for W' = (793 ) sew-

Also, Y+ diw.oy, 15 a W' —automorphism of M for W** = ry™(r2:11)scw-

Proof: As a trivial consequence of Lemma 2.5 notice that since 3" is

a W-automorphism of M then so too is # ! and furthermore M, =
@  Re; is invariant under ¢! for any s € w. Therefore by the defi-

reEir,

nition of ¢ .m, we have that (r/)’lgzb(y\;_u)u)2 =0 since e{t/)"d)(w_mn =0

for fw(?} an odd number and [e,-‘z,:‘"_lqﬁ(w.uj“] = [e;x 'O C

{rfotipits -y Therir2 — L} for fw(i) an even number. Similarly, we have

(l,i’f’ﬁlff)mun1)2 = {},

Therefore, both -1/)*1(;5[“;_”]” and zjflrﬁ(w,”)l are nilpotent endomorphisms

of M.

By applying Corollary 1.2, we obtain that both 1 + a,i’_lz_f)lw_.,,“ and

l+'l,b71¢(w'(,)1 are automorphisms of M and | recalling that ¢ € Aut(A]),

we get 2 + ¢‘(w.il)u and ¥ + qﬁfw_ml are automorphisms of 1.

[t remains to show that the condition on the support is satisified.



Let us first consider ¥ + doway,- Let i < noand ryy, < @< Py,
Then either eipwn, = 0 (for fw(i)= 2s + 1) or eidw.0y, = eidow.n
{(for fw(i)= 2s). Thus [61‘(}5[_”)‘0)0] C {rasi1s---,T2a41y) — 1}. More-
over, [e;] C {ra,,...,79542 — 1} since 3 is a W-automorphism. Hence
[e:(¥ +doworg)] € {resy ..., rasye — 1} forany ¢ < n with rg, <7 < 7904y
(s €w), Le. P+ by, is a W' —automorphism of M.
Sunilarly, consider i + ¢pw.ny,- First, let ¢ < n with rq <7 < r;. Then
eipowny, = 0 by definition and thus [ei(¥ + dow.gy,)] € {0,...,7 — 1}
Now let ¢ < n with r.y; < ¢ < 79,43. Then eippyny, = 0 for
fw(i)= 2s + 2 and eibow.oy, = eidpwn for fw(i)= 25 + 1. In the latter
case we have [€i¢(w‘0)1] C {resr2,. .. 7oy43 — 1}. We deduce, there-
lore, that {e (4 -+ dew.0))] € {rasr1s -y Toas — 1} for any @ < n owith
72,41 < ¢ < ragg. Therefore 4 + gy, is a W' —automorphism of M.
U

We are now ready to prove the essential result of this section.

Theorem 2.11 Letm € Z7. Let R be a commutative ring such that any
free R—module of finite rank at least m has unit sum number 2. Moreover,
let M = @ Re; be a free R-module of countably infinite rank.

i<w

Then every endomorphism of M is a sum of two awlomorphisms of M.



Proof: Let M be as in the assumption and let ¢ be any endomorphism
of M. We choose a ¢—sequence W =(7,),e, such that 7,4 — 7, > m

for all s € w. Recall that ¢ = Y ¢y where $w.y denotes the ¢t
{Cew

(¢, W)-mapping (¢ € w).

First we consider ¢yy.1). By Observation 2.4, w1 1s a W-endomorphism

1

ie. M; = @ Re; is invariant under ¢y, for any s € w. Thus
e SEr g
$w.1) [m, 13 an endomorphism of the finite rank module M, (with

rk(M,) > m) and hence it can be written as the sum of two auntomor-

phisms of M, say ¢ow 1) [m,= a,+5, (a, B, € Aut(M,)). Puta =3 a,

FCwW
and 3 = 3" f3,. Clearly, & and  are W-automorphisms (see Lemma 2.5).
alw
Now dpway = 3 {(dwa) [am.) = 2, (e, + 8,)= o + 8 and therefore
SEw SEw

@ = doway + o+ B+ dwa, + {Z),; Drw.a)
= (o + dway, + dowa, + f;f’w;.gs,) +(B+ dow.y, +doway,) (%)
where ¢y ) = 1;3 bov.n and . = down, + o, (L € w), as given
by Definition 2.8,
We now show that (*) is, in fact, a sum of two automorphisms.
First we consider vy = a+ iy, + Goway, +Pow.>3. By Proposition 2.10

we have that o + Pow.y, 1s a W'— automorphism where W' =(ry,)},c..

Now consider Piw.2), T Gow.>3); we claim that the sum equals
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Yiw+.>2) = 3 Yowe.y. Consider the term bw.2), For 0 <4 < 7, since
£>2
fw(i) = 0 we have €g¢(w_2)0 = 0 and for r; < i < 7y, since fw(i) =1,

and so is odd, we have €g¢(w‘2}0 = 0. Now let s > 0 and o, <2< roypo.

It follows from the definitions that

Ei(ﬁ(w‘g) fOT‘ fw(z) = 25
€i¢(w,2)0 =

0 for fuw(i)=2s+1
Therefore, since [eidw.ay) C {roc.1,... 19 - 1} for fy(i)=2s, we have,

in terms of W*, that [e,—qﬁ(w‘z)u] C {reaca, ... ,r9 — 1} for any i with
T2, <1 < 79,49 and e;qb{w.g,“ = 0 otherwise.

Now we consider $wey. For 0 < i < T2, 1.e. 0 < 5 < 2, we have
€idw =3 = 0 by definition. For s > 1and ro, <7 < ry,49 we have
[ecomsg] C {0, .. rq, — 1}

Now we consider the sum Powa, + $iw.>3); 1t is now clear that
[6‘,(cb{w|gjll + diwen)] C {00, — 1} for any i with 7y, <1 < roypn
and any s € w.

Adjusting these properties to W', we have Q’{)[W‘g)ﬂ + P gy = Fiwe >
and also o + dowag = Tiwea,. Since we have already shown that
Ywe1, 1S a W'-automorphism of M then it follows from Lemma 2.6
that v = Tiwe 1)+ Ywe >0, 15 an automorphism of M, ie ywen =0 by

our construction.



Now we let § = 4 + bowoy, + Q{)(W.g}l. Using an argument similar
to that which we used for vy, we show that § is an automorphism of
M. Using Proposition 2.10, 8 + $ow.0y, 1s a W'~ automorphism where
W' = 2™(T9541 )sew- For 0 < i < 71 we have eipow.z), = 0. Now let
s 2 0and ry,p1 <7 < re,y3. It follows from the definitions that

0 for fw(i) =2s

Cséfw.-z“ =
eipowa)  for fw(i) =2s+1

Therefore, since {e;ppvn] C {ras ..., raep1 = 1} for fu(i)= 25 + 1, we
have, in terms of W"*, that [e;duw.a),] C {rac1.... ,r2upr — 1} for any i
with rs.,1 <1 < 79,,3 and (:','QS(W.Q)I = () otherwise.
Therefore [e,—(éfw_gll)] C {0, raeqr = 1} for any ro.; <1 < ragag with
s > 0 and e;(onw.a), )= 0 otherwise,
Thus. if we adjust these properties to W', we have bway, = Sowes >n
and 3 + Powan, = dpwe+. - Since we have already shown that §yye. 1)
s a W' automorphism of M then it follows from Lemma 2.6 that
8 = bpwerq) + Swe«.»2) 1s an auwtomorphism of M, i.e. note dyye. gy = 0

by construction.

Therefore we have shown ¢ = v + ¢ is a sum of two automorphisms of



M. O

Applying Theorem 1.9 now to Theorem 2.11 the following result is proven:

Theorem 2.12 Let M = € Re; be a free R~module of arbitrary rank
1<K
K& > m for some m € ZY, over a commutative ring R. If every free

module of finite rank of least m over R has unit sum number equal to 2,

then every endomorphism of M is a sum of two awtomorphisms of M.

We know of no commutative ring R where the unit sum number of a free
R-module of rank greater than 2 has a unit sum number differing from
that of a free R-module of rank 2. Furthermore, we know of no non-
trivial commutative ring, R, where a free R-module of rank not less than
2 has a finite unit sum number differing from 2. However, the following
answers finally the question of unit sum number for free R-modules of

arbitrary rank greater than 1 over a PID R.

Corollary 2.13 Let M = @ Re; be a free R-module of arbitrary rank

(L
greater than 1 over a PID R. Then usn(M) = 2.
Proof: The finite rank case (rank greater than 1) has been shown in
I, Theorem 2.4, due to Wans [29]. Then applying Theorem 2.12 with

m = 2 gives our result. U

N
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In Chapter [II we will show that there are a variety of possibilities for

the unit sum number of a free R—module of rank 1 over a PID R.

§3 Unit sum numbers of completely
decomposable groups

In [20] Opdenhével has shown that if ¢ is a completely decomposable
abelian group of finite rank, then usn{G) = 2 if and only if
usn(G(r)/G" (1)) = 2, for all 7 € T,..(G) with rk(G(7)/G* (7)) = 1 (see
(20, IV Proposition 1.11]). Recall that G(7) = (g € G' | type(g) > 7) and
G*(1) = {g € G | type(g) > 7) with T..(G) denoting the set of critical
types of (4.

Notice that for a homogencous completely decomposable group G of ar-
bitrary rank greater than 1, it follows from [, Lemma 2.15 that the en-
domorphism ring of & 1s ring isomorphic to the endomorphism ring of a
free i-module over R where R is that subring of (), containing Z, with
the reduced type of ¢ (i.e. R is a PID) and so, by Corollary 2.13. we
can deduce that usn({()= 2.

We now extend Opdenhével’s result to arbitrary rank and develop it to

give a more general result. We begin with two lemmas.



Lemma 3.1 Let G = A@ B be the direct sum of two arbitrary groups
with Hom(A, B) = 0. Let ¢ be an arbitrary endomorphism of G, repre-

sented as

$paa O

¢p.s PB.B

where g4 4 € E(A), ¢pp € E(B), ¢p.a € Hom(B,A). Then ¢ is an
automorphism of GG if and only if both ¢4 4 and ¢p g are automorphisms

of A and B, respectively.

Proof: Let a, 3 be arbitrary endomorphisms of . Represent the prod-

uct of a and 3 as follows

g g4 0 da4 O W 0

apa ppf\dsa Baa apafBastappBsa appbBrp

where a4 4,844 € B(A); app.Bpp € (D) apa,Bp.4 € Hom( 3, A).
Firstly, if e is an arbitrary automorphism of &, and 3 the inverse of o
then observe that a4 4544 = 14, and appBp e = lg. Similarly. con-

sidering the product Sa we get B4 444 = 1,4 and Bepapgp = lg. Of

(g}
-1



course, this means that a4 4 € Aut(A) and apg p € Aut(B).

Conversely, given 4, any endomorphism of (3, such that §4, 4 and §p p are

units then 6 has the multiplicative inverse

-1

daa 0

~8p.5 '0p. aban" bpp

Therefore an endomorphism of ¢ is an automorphism if and only if the

two diagonal entries are units. 0

Lemma 3.2 Let G = A B be the direct sum of two arbitrary groups
with Hom(A, B) = 0 and 2 € Aut{G). Then usn(G) = maz{usn{A), usn(B}};

using the convention for unit sum numbers n < w < x for all n € N,

Proof: Let ¢ be an arbitrary endomorphism of (& written as

Q';" A4 0

®B.A WB.B

where ¢4 € E(A), dpp € E(B), ¢pa € Hom(B, 4). Now let A =

max{usn(A),usn(B)} = usn(B).



If A € N then choose ¢ such that ¢4 4 is a sum of usn(A) units of A
and no less. Of course, since A = usn(B), then ¢pp is a sum of A
units of B. Recall that if, say, usn(A) = & < A, then we can write
baa = (A= k)(1a) + (Paa — (A~ k)14), where 14 is the identity in
E(A), and since (¢4.4 — (A — k)1,4) is a sum of k automorphisms of A
then ¢4 4 1s a sum of A automorphisms of A. Therefore ¢ is a sum of A
automorphisms of G and so usn(G)= A.

If A = w then whatever n € N there exists some ¢pp € F{B) which
cannot be expressed as a sum of exactly n automorphisms of B. So, by
Lemma 3.1, for each n € N there is some ¢ € E(G) which cannot be
expressed as a sum of exactly n automorphisms of & so usn{(7)= w.
Similarly, if A = oo there exists some ¢ p € E(B) which is not a sumn of
automorphisms of B. Then, by Lemma 3.1 there exists some ¢ € E(({)
which is not a sum of automorphisins of GG, Therefore usn{G)= .

A similar argument applies if A = usn(A). We are finished. (J

Using the above we finally prove:

Theorem 3.3 Let G = @ Gy, be a completely decomposable group
teTi 1G)

of arbitrary rank where T,.(() denotes the set of critical types of G and

Gy denotes the t-homogeneous component of G. Let 2 € Aut(G).



(1) If T (G) s finite then usn(G) = maz{usn(Gy) | t € T..(G)}.
(11) Let | T.(G) | be infinite then

(a) If there exists n € N, such thal usn(G ) < n, for each

t € T (G), then usn(G) > maz{usn(Gy) | t € T (G)}.
(b) If, for each n € N, there exists t € T..(G) such that
usn(Gyyy) > n then usn(G) > w.

(using the convention for unit sum numbers, n < w < co for all n € N}

Proof: If |7,.(G) | =1 then GG is homogeneous and by [, Lemma 2.15
and Corollary 2.13 we are finished.

Let

T.(G) | > 1. Recall that G = € Gy expresses (7 as a direct
teT,{G)

sum of 1ts homogeneous summands.
Let v € 7,..(G) be arbitrary and set ' = G, P Gy. Since a
I>7

el G
homomorphism cannot map an element onto an element of lesser type or

even mmcomparable type, we have that Hom( b G¢..Goy) =0

Er
el i
By Lemma 3.2, usn(G')= maz{ usn(G(,), usn{ @ Gu)}.
{>7
fGT(:(G)
Of course, G=G'@ P Gy, and Hom(G, @ Gu)=0.
tFT tET
LT (G) 1T, (G

So,
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usn(G)= maz{usn( P G), usn(G").

AT
teT (G
usn(G)=maz{usn( & G“_)),usn(G(T,),usn( D Gu)}
t#r t>r
teTer () teTer (G)

> usn(G ).

Therefore, since 7 was arbitrarily chosen: If, for each n € N, there is
some ¢t € 1,,.(G) such that usn(Gy) > n then usn(G) > n for each n ¢ N
and therefore usn(G)> w. Otherwise there exists some n € N such that
usn(Gy) < n for all ¢ € T,.((7) and so we may write

usn((7) > max{usn(Gy,) | t € T..(G)}.
In this way we have proved (ii).
We now prove (i) using an induction argument. Let | T, ()| = 1. Then
usn(G) = usn(G\y) where {t} = T..(().
Let 1 < m bean arbitrary positive integer and assume for all integers, | <
ko <m, that if | T, (G) |= k then usn(G) = max{usn(G,) | t € T,.(G)}.
Now, let | 7., (G) | = m and choose any 7 € 7,,(G). Then, as we showed

above, usn(G)= maz{usn( @ Gy} usn(Gin ) usn( @ G}
tFr for
TG TS te

Since, {f | £ > 7.t € T..(G)} and {t | t # 7,t € T,,(())} are both proper
subsets of 77, (G) and so of cardinality less than m, then by our hypoth-

esis usn(G)= max{max{usn(G\,) | t € To( @ Guy)}ousn(Giry),
t#T
teTe (@)
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max{usn(Gy) | t € To( B Gu)}} = max{usn(Gy) | t € T (G)}
t>r
teTer(G)
and so (i) has been proved. O

We conclude with some examples of unit sum numbers for completely
decomposable groups where | T..(G) | is countably infinite, including an
example of a completely decomposable group with unit sum number .
be the set of rational primes under the natural ordering. In each case
let us assume that Hom(Gy,),Gu,)) =0 forall i #£ 7, 1 <4, < w, ie.
there are no comparable types within the set of critical types of (. and
so () iS II E(Gu,)). Recalling that sums of units are inherited by
<

ring direct products we hegin our examples;
¢ Choose (7 and T,,(G) such that usn(G;,) = w lor each 1 < i < w.
Then we may choose some ¢ € E(G) with ¢ = ][] ¢, where

1<i<w

by

. € E(G,)) and such that ¢, is not expressible as a sum of
2 units of E(G ) for each } < ¢ < w. Then ¢ = (o1, 01,,...)
cannot be written as a sum of n units for any n € N, and so

usn((7/) = oo. Lastly, let us define a group for which this is so.

Set T (G) = {t; = (k,,);=12... where k,, = oo, k,, = 0, for all

Ty

62



J#1 | 1€ N} andset rk(Gp,y) = 1forall 1 < i < w (to see
usn(Gyy,)) = w for each 0 < ¢ < w refer to 111, Theorem 1.2 and 111,

Proposition 1.1).

Set Tor(G) = {ti = (kp,)j=12.... where k, = oo and k,, =0, for
all 7 #4 |2 € N} and set tk(G,)) = 2 for all + # 1, and set
rk(Gyy) = 1 (where ty, = ty = (k‘,,J)j:Lg.___ with &y = > and
kp, = 0, for all 3 # 1). In this case, since rk(G(#)) = 2, then
usn{Gy,;) = 2 for each £, withi # 1, 1 < i < w and, by 11l Theorem
1.2, usn(Gyy,y) = w. Choose an arbitrary endomorphism ¢ of @,
then ¢ = [] ¢y, where ¢, € E(G,) for each 1 < i < w. Since
t<i<w

usn(Gy,) = w then ¢, is a sum ol m units of E{Gy,,) for some
m(>0) € N. I m = 1 then, since %E Aut{Gy,)), ¢4, :%qﬁh-i—%@l
15 a sum of two units of E(Gy,)). Therefore, ¢, is a sum of two
units of E(Gy,)) for cach | <7 < w.

If m > 2, then ¢, = (¢, — (m — N, )+ (m - Q)IEIG‘.,J
for cach 2 < i < w, where 1;;((,-““,_ is the identity in K(G, ) for
each 1 <7 < w. Since, for each 2 < i < w, usn(Gy;,) = 2 then
(dy, — (m — 2 e, ) is a sum of 2 units in #(Gyy,)) and so ¢y, is

a sum of m units of E(G|,,), for each 1 <i < w.
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Hm =2, then ¢, is a sum of two units of E(Gy,,y) for each
1 <1 <w.
In this way it is easily seen that ¢ = (¢y,, ¢4,,...) can be expressed

as a sum of m units. Therefore usn(@) = w.

Set T(G) = {ti = (k;;)j=12... where k, = co and k, = 0 for
all 3 # i |+ € N} and set 1k(G,)) = 2 forall 1 < i < w.
Using a similar method to that of the last case it can be shown

that usn(G) = 2.



III Unit sum numbers of rational groups

In Section 3 of Chapter [l we saw in Theorem 3.3 that the unit sum
number of a completely decomposable group G is determined by the set
of unit sum numbers of the t-homogeneous summands of G which are
of rank 1 {t € T,,(G)). Opdenhovel’s result [20, IV, Proposition 1.11})
had highlighted this previously for finite rank. In this chapter we show
that there are a variety of possibilities for unit sum numbers of rational

groups including finite values greater than 2.

§1 General considerations

Every rational group is isomorphic to a subgroup of () containing Z. The
endomorphism ring of such a group G is casily described: Any endomor-
phism of GG is determined by its action on 1 and hence it corresponds to
multiplication by a rational number %E G ((e.b) =1, a,b € Z). Since
multiplication by integers is always possible, our only concern is when
1. e (e 1 Lo (e

[2 , T ) n MR Ael 79 el a3 B s
7 18 an element of 1 (G). If € Eu(G) then pre b (G) and so on
and thus it follows that El,;je E-(G) forall n € N. So, il p|b then
« _
hy(1) = oo .

Thus E-(G) is that subring of Q) containing Z with the reduced type of
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G,

The first two results reflect the importance of the prime number 2 in

determining the unit sum numbers of rational groups .

Proposition 1.1  Let G be a rational group. If 2 is not en automor-

phism of G then usn(G)=w.

Proof: We need only consider E-(G) = R, that subring of () contain-
ing 7, and with the reduced type of (. Consider an element % of R where

e : b :
a, b are positive integers, If b1s even then % i % is an element of R.

a—1

EZinwhichcase%— 5 ﬁ%

a—1
9

&

Therefore a must be even or else
must be an element of R, contradicting 2 not being a unit of R. There-
fore if % 15 a unit of R, expressed in lowest form, then both, a and b,
must be odd.

Let n be any even positive integer. Consider any sum of n units of R,

(1.1bg...b,,+agb1b;3...b,,+...+a”bl '-'bn—l
by...by, !

o) | a2 @y _
iR S el

2

-

1

where is a unit of R expressed in lowest form for each 7 € 1,2,... . n.

o~

L

Observe that the denominator ts a product of odd numbers and there-
fore odd and the numerator is an even sum of odd number products and
therefore even. A sum of n units can never be a unit in this case. There-

fore R has not got the n—sum property for any even integer n.
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We know, however, that for any positive integer n a ring which has the
n-sum property must also have the (n+ 1)-sum property. It follows that
R cannot have the n-sum property for any positive integer n. Every el-
ement of R is a sum of units so we conclude that usn(R) = usn(G) = w.

]

Theorem 1.2 Let G be any rational group such that B (G) = QY.

Then usn((7) = w.

Proof: We prove that, for each positive integer n, there is an integer,
namely 1+ 2% 4+ ... + 2", which cannot be expressed as a sum of 7 units
of Q. Now, in @ each unit is of the form +2¢ where a is an integer,
The proof is by induction on n € Z% where the induction statement is
L 22 o 2% Z“: + 2 for whatever a; € 7. (%)
i=1
The statement is true for n = 1 since 1 4+ 2™ = 5 and 5 is not a unit.
We assume the statement is true for all positive integers n < m. Now,
seeking a contradiction, assume
I (1)
i=t
for some fixed set of integers aq, ..., a,,. The left hand side of this equa-

tion is odd and hence the set {i |a; < 2} is non-empty. By renumbering

we can arrange that thereis! € Z* ! < msuchthate; < 2fori =1,....1
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and a; > 2 fori=1{+1,...,m. Hence we can rewrite equation (1) as
! m
A I I O E 2 e D (2)
1=1 =i+l

i
We claim that the term () £ 2%) — 1 can be written as a sum of less
i=1

than { units in Q® unless it is zero. Observe from the equation that 4

i !
divides (3 £2%)—1. So, writing (> +2%) -1 = 4/ for some I' € Z, we
i=1 i=1

!
note that this expresses (> + 2%) — 1 as a sum of | I | units for I £ 0.
=1

It remains to show that | ' |< !, for I' # 0.
Since 2% < 2 for all a; < 2 it is clear that
| (zr: +24) — 1| =]4l'| < 2l + L. Therefore we have | 2{' | +1 < 2 + 1
i=1
which gives us | ' |<{ as I' # 0. The claim is proved.
Returning to equation (2), since (Z[: + 2%) — 1 is either zero or can be
i=i

expressed as a sum of less than [ units then 22 ...+ 2% can be expressed
as a sum of less than m units. Thus we may write:

2442 = ir: + 2%  for some m' < m, b, € Z .

=1

Dividing this equation by 4 we get,

Lo 220l = Z £ 2

i

This contradicts the induction statement {*) for n = m — 1, since any
sum of m' < m — | units can easily be expressed as a sum of m — | units,

m' mf—1

. 1 1 . .
Le. du = Wit U+ where each u; is a unit expresses a sum
i=1 i=1
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of i’ units as a sum of m'+1 units. Hence the assumption (1) is false and
the proof now follows by induction. Therefore usn(G) = usn(Q!?)= w.
a

The following two lemmas will be very useful later on.

Lemma 1.3 Let G be a rational group with E-(G) = R. If %6 R then
G has the n-sum property if and only if every positive integer is a sum

of exactly n units of R.

Proof: Note that R contains the integers.

In the first direction if R has the n—sum property for some positive inte-
ger n then clearly every positive integer is a sum of n units of R.

In the other direction, let every positive integer be expressible as a sum
of n units of B. Then every negative integer must also be expressible as

a sum of n units of R. For n even, asum of nunits for 0is - 14+ 5 -1,

Wiz

i=1 i=1
R
for nodd . asumof nunits for 0is ( > 1)+(> —l)+%+%. Therefore
i1 izl

all integers are sums of n units.

o . . a .
Consider an arbitrary non-integer element X of R expressed in lowest
form, ¢ and b being integers.

a . o : . .
If @ =1, then 7 1s a unit. Since products of units are units and 1 is a

: a . .
sum of 72 units then E'l 1s also.
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If b=1, then %: a, an integer, and so is a sum of n units.

In any remaining case a and b must be relatively prime so there exist
integers k,! such that ke + b = 1. Now k-%+l is an element of R and
(k-%+l) b= 1. Therefore b is a unit of X and so also '11; Since a, as an

: . . 1 .
integer, 1s a sum of n units then 518 also. 0

Lemma 1.4 Let G\, Gy be rational groups such that E-(G,) C E-(Gs).

Then usn(G,) > usn(Gy).

Proof: Since E-{G) < E-(G5) then every unit of £-(G) is also a unit
of E-((fy). So, if a positive integer z is a sum of n units in E-(G) then
the same is true for = as an element of F-(('). There may, in fact, be
more units in £-{G5) than in E-(G)) in which case z may be expressible
as a sum of less than n units in £-((5). Therefore, by Lemma 1.3,

usn( £ (G-)) < usn(£-(Gh)) and so usn{(ry) <usn{(G,). ]

§2 Approach via elementary number theory

In this section unit sum numbers for various kinds of rational groups
are investigated. The unit sum number of a rational group G is that of

its endomorphism ring, which has the reduced type of ¢. The reduced



type of a group (G can be identified with a sequence of symbols 0 and
oo corresponding to each of the rational primes. If the symbol oo cor-
responds to a prime p within the reduced type then % is an element of
the endomorphism ring of (¢ and so p is a unit in the endomorphism
ring. If the symbol 0 corresponds to a prime p within the reduced type
then ?l) is not an element of the endomorphism ring of &. In this way
we investigate the unit sum numbers of rational groups relative to the
number and positioning of symbols 0 or oo within their reduced types.

Recall the definition X¢ := {pe 1| %Q E-(@)} for a rational group G.

Theorem 2.1 Let G be a rational group with 2 € Aut(G). If X¢ is

finite then vsn(G) = 2.

Proof: Let R=FE-(G). Let X ={g;{i=1,... k}, wherek =| X¢ |.
By Lemma 1.3, we need only prove all positive integers are sums of two
units of R. Clearly, if 2 1s a unit of K then every unit of R is a sum of
two units. Now, hy definition of X we know that for all p € II\NX¢, p is

a untl of & and so any products of primes not in Xy are units of #. Let

Ty

=( 11 ¢&"Y I p;’) with m;, n; € w be an arbitrary positive
i=l..... k JJ;EH\I\'G

integer which is not a unit in R, i.e. some ¢; € X divides :.

Since ( ]] p;-l’) is a unit we need only show that 2" = { [] ¢™)isa
mell\Xg =1k



sum of two units of R. If every g; in X¢; divides 2 then (2’ —1) is relatively
prime to all ¢; € X and therefore a unit, in which case z' = (2 -1)+1
is a sum of two units for 2’

If some ¢; in X do not divide z' then {2 + [ ¢) is a unit since no

gitz'

(2 + M a)+5(=' ~ [Ta0)

qif’ gitz’

prime in X can divide it. In this way, 2’ =

[Nl

expresses z' as a sum of two units and the result follows. We have shown
that every positive integer is a sum of two units of R. £
Theorem 2.1 can be extended to show that there are many rational groups
with X countably infinite yet with unit sum number of 2. The following
result is similar to that of Opdenhével [16, IV, Theorem 1.20], though it is
arrived at in a completely different way. We will illustrate the proposttion
with an example after the proof. Recall that m(z} is defined, for a real

number x, as the number of rational primes not exceeding r.

Proposition 2.2 Let (7 be o rational group with BE-(G) = R where
2 ¢ Xg. Moreover, assume thal, for any x € 7% with (z,p) = 1 for all
p € I\ X¢ there is some prime q > x s0 that ¢ @ Xp for all ¢’ € I with

g < ¢ <qg™. Then usn({G) = 2.

Proof:  We need only prove that usn(R)= 2. By Lemma 1.3, it is only

necessary to show that every positive integer is a sum of two units of R.
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Since 2 is a unit of R every unit is a sum of two units. Each pell\ Xp
is a unit of R and since products of units are units it is sufficient show

that products of elements of X = {g; |i € I} are sums of two units of

R.

Let 2 € Z" such that (z,p) = 1 for all p € I1 \ Xp, ie. z is a product
of primes in X and = > 3. By assumption, there is some g € II with
@ < g so that ¢’ £ Xp for all ¢ € IT with ¢ < ¢' < ¢", Then we claim
that the following expresses  as a sum of two primes:

I:%(fw I qa-)+%($_ IT a)

ditrsq <q titzigi<q

To prove this claim we need to show that (zx 4+ [] ¢)is a unit of R.
gtz <q

Let p € 11 be such that p divides (z + T[] ¢;). We show that p € Xp.

ditrigi<q
I p < g then since all primes in Xy less than ¢ are accounted for by
the prime factors of z and { [] ¢}, then p cannot divide both z and

IRET

Il gisopd Xp.
iRy, <oy
If ¢ <p < g™ then p g Xp by the condition that g & Xgpforallg ell
with ¢ < ¢ < g™,
Now, we consider ¢™'?' < p. Note that, by assumption, = < g and g > 3

and so g™ > ™= L o Also notice that {i € {;9: < q}| < ={q) — 1.

since 2 ¢ Xpand thus ( [] ¢.) < (] q) < @1,

i <y i<
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Therefore | (z 4+ [ @) |<q+ g9 < g™,

qitry<q
So p > ¢™¥ cannot divide (z + J] ¢) since it is too big. Therefore
aiziai<q

the integer (z+ [] ¢;) must be a product of primes not contained in
qizigi<q

X g and therefore a unit of R. By a similar argument (z — [] ¢:)is
gitzigi <q
also a unit of R . g

Example 2.3 Let Il = {p;}i.10.__ denete the set of rational primes un-

der the natural ordering. Denote by 7'|n] (n € Z') the index of the

least prime greater than p:(p"), 1.¢. Prip) 18 the least prime greater than

p." W) Furthermore, let 7't V[n]] = 7"[n] for all | < m e N.

Let R be that subring of QO such that type(R) = (k,, )ic., where

'I

o fori =1,

0 for 1 < i< 72);

x for T12] < i < 7[2];
k=
0 for Ti[2) < e < 2], | < 7 ecven;
x for T2} < i < THU2), 1 < 7 odd,

Then, by Lemma 1.4, any rational group, G, with E-(G) > R has unit

sum number 2. This is not a unique ezample. [t may be worthwhile,



i this example, to note that given any z € Z% there is always some
<y, z€Rsuchthat |{pc Xpp<y}|>|{peTT\Xr;p<y}| and

[{pelI\ Xpmp<z}|>l{pcXmp<z}|

Next, rational groups are investigated which have only two symbols oo
within their reduced type or in other words where | I\ X¢ | = 2. By
Proposition 1.1, it is only necessary to consider rational groups G where
a symbol oo corresponds to the prime 2 within the reduced type of &

since otherwise usn(G)= w. We begin with a technical lemma.

Lemma 2.4 Let a,b,c,d € Z\ {0} and let %, ac* be rational numbers

expressed in lowest form. If% + Ecz s an integer then b = +d.

R

Proof: Let —+§: c for some z € Z. If = = 0 then %: —HC- and, % %

being in lowest form it follows that b = %d.

If = # 0 then (% -+ 5) = adeCb = z. In this case we consider the two
possibilities b = &1, or b # +1.

co. .
p being in lowest

It b= -1 then d § (ad + ¢). Therefore d divides ¢ but
form it follows that d = +1.
If b # +1 then b | (ad + cb). Therefore b divides ad but % being in lowest

form it follows that b divides d. Of course, by symmetry d = +1 only

if b = +1. Therefore d # +1 and must divide (ad + cb). Therefore d

=1
[ |



divides cb but < being in lowest form it follows that d divides . So b
d g

divides d and d divides b s0o b = +4. O

Corollary 2.5 Let k,{,m,n € Z. Moreover let z be an integer and let
p £ 2 be a rational prime such that z = £(2%p' + 2™p™). If k < 0(or

m < 0} then k =m. Ifl <0{orn <0) then! =n.

Proof: The proof follows directly from Lemma 2.4. OJ
The following proposition provides a framework for the discussion of the
2-sum property for all rational groups with only two symbols infinity in

their reduced type, one of which corresponds to the rational prime 2.

Proposition 2.6 Let p € II\{2} and let G be a rational group with
I5-{G) = R, where R s that subring of (@ generated by % and }:1; Then
usn(G) = 2 if and only if every positive integer = with {z,2) =1 = (z,p)

can be crpressed in one of the following forms:

(1) 2 = £(2%4p") for some k>0, 1 >0,

(2) z =2p'%1 for some k>0, > 0.
(3) = =§(2"'j:1) for some k>0, 1> 0.
(4) = :'Ql—k(]')'!:i:l) for some k>0, 1>0.



where k1 € Z.

Proof: In the first direction we assume that usn{G)= 2 and so usn{R)=
2. Every unit of R s of the form £2%p" where a,b € Z. Let z be a pos-
itive integer greater than 1 and relatively prime to both 2 and p. Let
z = +(24p" £ 2¢p") be a sum of two units for z, where a, b, ¢,d € Z. Notice
that a, b, ¢, d cannot all be less than or equal to zero since 2 cannot take
the values 1,42, or 0.

By Corollary 2.5 if @ < 0 then ¢ = a and since z is relatively prime to 2
then if either a or ¢ is greater than 0 then the other must be zero, i.e. if
a > 0 then ¢ = 0. Similarly if b < 0 then d = b and since z is relatively
prime to p then if either b or d is greater than 0 then the other must be
zero, i.e. if b > 0 then d = 0. In light of this we consider the possible
expressions of z as a sum of two units:

If e > 0 (forcing ¢ = 0) and d > 0 (forcing ¢ = 0) then z = £{2¢ 4+ p9).
This is of form (1). Similarly, form (1) oceurs for ¢ > 0 and b > 0.

Ifa >0 (forcing ¢ = 0) and b > 0 (forcing d = 0) then z = 2p* -+ 1. Note
that only one % sign occurs in this equation and it must accompany the
1, otherwise a negative integer would result. This equation is of form

(2). Similarly form (2) occurs for ¢ > 0 and d > 0.



Ifa=c<O0thenb>0andd=0,0rb=0andd>0resulting in z =

1
2—~u

la( 44 1). Notice, there is only one + sign in each

(p*+£1)or 2z =

(]

equation and it must precede the 1 otherwise a negative integer would
result. These equations are of form (4).

Ifb=d < 0thena>0and ¢c=0, or a =0 and ¢ > 0 resulting in z =
ﬁ(?“ +1)orz= #(2‘3 1+ 1). Again the only & sign accompanies the
1 or a negative integer results. These equations are of form (3).
Ifb=d =0then a >0 and ¢ =0, or a =0 and ¢ > 0 resulting in
z=2%%1or z=2°41. These equations are of form (2). Since z must
be an odd integer both @ and ¢ cannot both be zero, i.e. 2 divides p” + p*
for b,d > 0. We have covered all possible cases.

To prove the other direction let & be a positive integer. We can write
x = 2p"(z) with a,b € Z where (2,2) =1 = (z,p) or 2 = L. If z (# 1)
can be expressed in one of the forms (1),(2),(3) or (4) then, also 1 =

1 e
+3. Therefore every positive integer can be expressed as a sum of two

B |—

units. Then by Lemma 1.3 usn(G)= 2. ]
It is convenient for our purposes to consider the primes modulo 24. Ex-

cluding 2 and 3 the primes fall into eight classes modulo 24, these being

1,5,7, 11,13, 17, 19 and 23 mod 24. By Dirichlet’s famous theorem (see



I, Theorem 2.21) for primes in an arithmetic progression, we know that

in each of these classes there is an infinite number of primes.

Definition 2.7 Define P* ={p €Il |p=1,511,13,19 or 23 mod 24}.

Proposition 2.8 Let Py, = P'\{5,13,23,29,101} and p € Ps,. Let R

be that subring of () generated by % and }1-)' Then usn(R) > 2.

Proof: We will show that 25 cannot he expressed as a sum of two units
in R and therefore usn(R)> 2. Since (25,p) = 1 for all p € Pj;, and
(25,2) = 1, then by Proposition 2.6 a sum of two units for 25 in R must
be of form (1),(2},(3) or (4). In the following we consider the possible
forms separately.

Form (1): We tabulate modulo 24 values of £2* &+ »' for &,/ > 0 and

for all possible values of p in P’.
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+p' mod 24

+ {4 1|5 [11113119 |23
2037 7113115211
4 1519 |15(17]23 3
8 9 13 (19213 | 7
+2* mod 24 16 [17:21 3 |5 |11]15
4201|719 (15]19
2012313 |9 (111721

Table: +2* 4 p' mod 24; k,1 >0, p € P".

On this table 1 mod 24 occurs only for £2% = 2 or —4 mod 24, which
correspond to 42 = 2 or —4. However, 25 = 2 £ p' implies that p = 23,
which is not contained in Pj; and 25 = —4 + p! implies p = 29, which is
not contained in Py,. Therefore 25 does not occur in R as form (1).

Form (2): This time we tabulate values of 2*p" modulo 24 for k& > 0,

{ > 0 and for all values of p in P".
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p' mod 24

x || 1[5 1113|1923

2 12 (10222 |14]22

4 (| 4 120020 4| 4 |20

+2% mod 24 81 8l16|16] 8| 8 1|16

6161 8|8 16116 8

Table: 2%p' mod 24; k > 0,1 > 0, pe P

From this table we deduce that 2*p' + 1 with £ > 0 and { > 0 can only
be congruent to 1 mod 24 for £ = 1 (i.e. see values resulting in 0 or 2
in the table above). However 25 = 2p' £ 1 implies p = 13 which is not
contained in Fy;. Therefore 25 does not occur in R as form (2).

Form (3): The set of congruences modulo 24 for 25p" with { > 0 and
p € P'is {1,5,11,13,19,23}. The set of congruences modulo 24 for
28+ 1 with & > 0is {1,3,5,7,9,15,17}. Values common to both sets are
1 and 5 mod 24; these correspond to & = 1 and k& = 2. Since 25 > 28 +1
for £ =1 or 2, then 25 cannot be expressed as form (3) in R.

Form (4): The set of congruences modulo 24 for 25(2%) with k£ > 0 is

{2,4,8,16}. The set of congruences modulo 24 for p' + 1 with { > 0 and
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p € Pt is {0,2,4,6,10,12,14,18,20,22}. Only the congruences 2 and
4 mod 24 occur in both sets. These correspond to k=1 or 2. For k=1
we get 2(25) = p' £ 1 giving p' = 49 or 51 both of which are impossible
for p € P*. For k = 2 we get 4(25)= p' £ 1 giving p' = 99 or 101, neither
of which is possible for p € Pj,. Therefore 25 cannot be expressed in

form (4) in R. O

Proposition 2.9 Let Fj; = P'\{37,71,203}. Let p € Pj;. Let R be

that subring of () generated by % and % Then usn(R) > 2.

Proof: We will show that 73 has no two unit sum in K. The proof
follows Proposition 2.8 exactly, so we summarise as follows:

Form (1): Let 73 =2+ p' with { > 0 and p € P*. This implies p = 71
which is not contained in Fg;.

Let 73 = —4-£p' with > 0 and p € P*. This implies that 77 = p' which
is impossible for p € P'. Therefore 73 cannot be of form (1) in A.
Form (2): Let 73 = 2p' &1 with{ > 0 and p € P*. This implies p = 37
which is not contained in Fj;. Therefore 73 is not of form (2) in R.
Form (3): As in Proposition 2.8.

Form (4): 2(73) = p' £1 with [ > 0 is impossible for p € P*. Let

4(73) = p' £1 with { > 0 and p € P*. This implies that p = 293 which
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is not contained in Pj;. Therefore 73 is not of form (4) in R. 0

Corollary 2.10 Let p € P*. Let R be that subring of (Y generated by %

and :—J Let G be a rational group such that B~ = R. Then usn(G) > 2.

Proof: Recall from Propositions 2.8 and 2.9 that Py = P*\{5, 13,23,29,101}
and P, = P'\ {37,71,293}. Therefore P' = Py, U Pj;. The proof then

follows directly from the two propositions. t

Proposition 2.11 Let p € Il such that p = 7 mod 24. Let R be that

subring of Q) generated by % and Il) Then usn(R) > 2.

Proof: (p*+p-+3) > 1is a positive integer relatively prime to p and
2. We will show that (p® + p 4 3) cannot be expressed in any of forms
(1),(2),(3) or (4) and so, by Proposition 2.6, is not a sum of two units
of R and therefore usn(R)> 2.

Note that (p® +p +3) = 11 mod 24 .

Form {1): We tabulate values for £(2* £ p') modulo 24, &k, > 0.
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+»' mod 24

+lrt7 a7

+2*% mod 24 16171231151 9

41211 3 19113

“2 010230 5 | 2115

Table: +(2* 4 p') mod 24; k,1 > 0.

The value 11 occurs only once on this table and as 11 mod 24 = 4 + p/
with { > 0. However p® +p+3 # 4+p for any ! > 0. Therefore (p>+p+3)
is not of form (1), i.e. p*> +p+3 #£ (2% £ p') for any k¢ > 0.
Form(2) and form(3): We consider these two forms together.

The set of possible congruences modulo 24 for (2’"pr +1}, k>0,1>0,
is {1,3,5,7,9,13,15,17}.

The set of possible congruences modulo 24 for p™(p*-+p+3), m(€ Z) > 0,
is {11,5}.

The only common entry in both sets is 5 mod 24. In the first set, for
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[ = 0, this corresponds to & = 2 and so (2%" £ 1) = 22 +1 =5
and since p™(p®* +p +3) > 5 for all p € Il with p = 7 mod 24 then
PP+ p+3)#£ 2"+ 1 for any m > 0,k > 0. We are finished for form
(3). In the second set the value 5 mod 24 corresponds to m odd and so
m > 0. Therefore we are finished for form (2).
Form (4): We assume that

2 +p+3)=p 41 for some k,{ >0 (2)
Possible congruences modulo 24 for 2%(p? + p + 3) are {22, 20,16, 8}.
Possible congruences modulo 24 for (p' + 1) are {0,2,6,8}.
The only common value is 8 mod 24 corresponding to k& > 3 (even), and
{ odd. This restricts equation (2) to

P 4+p+3)=p +1 , k(even)> 3, l{odd)> 0 (2)*+
Recall, we are considering p = 7 mod 24. We may also write this as
p=8X—1, for some A € N.
First consider A = 1, i.e. p = 7. The set of possible congruences modulo
48 for 2F(7% + 7 + 3), k> 3 (even), is {32}. The set of possible congru-
ences modulo 48 for 7 + 1, { > 0 (odd) is {8}. Therefore p = 7 does not
satisfy equations (2)* or (2).

Next consider equation (2)* modulo A to get



2*3=0mod A for (k > 3).
This implies that A divides 2¥3. To satisfy this we must have A = 3 or
2" (0 < 7 < k)or 23 (0 <r < k). However, A = 3 or 2'3 are not
consistent with p = 7 mod 24; since A = 3 it follows that p = 23 and
A =2"3 implies p = 27733 — | = 23 mod 24.
We are left to consider A = 2" (0 < r < k), in which case p =2"8 — 1 =
2+ — 1. This time consider equation (2)* modulo p to get

23 = 1lmodp (k> 3).
This implies that “3 mod p” is a multiplicative inverse of “2* mod p” for
some k > 3. However, for p = 273 — 1, the multiplicative group gener-
ated by “2 mod p” is {2,4,....27, 2% 272 | mod p}. Therefore in this
case “3 mod p” is not a multiplicative inverse of (2¥ mod p) for any & > 3.
Therefore

M+ p+3)£p£1 forany k>0,0>0

and thus the proof is finished. (Y

Proposition 2.12 Let p € 11 such that p = 17 mod 24. Moreover lel R

be the subring of QQ generated by % and % Then usn(R) > 2.

Proof: We will show that 2p + 3 is not a sum of two units in R, and
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therefore it follows that usn(R)> 2. Since (2p + 3) is a positive integer
relatively prime to p and 2 and is greater than 1, then, by showing that
(2p + 3) cannot be expressed in form (1),(2),(3) or (4), it follows by
Proposition 2.6 that usn(R) > 2.
Note that (2p + 3) = 13 mod 24 .

Form (1): We tabulate values for £(2* + p') modulo 24, k,1 > 0.

+p' mod 24

4+ 51 117 | -1 | -17

203 119:119

42% mod 24 16017 9 15 23

-4 02111319 3

-2 023015021 5

Table: £(2* & p} mod 24; &, > 0.

From this table it can be seen that 13 mod 24 occurs only for 12 =
~4 mod 24, which corresponds to £2% = —4. However 2p + 3 # —4 + !
for any { > 0, therefore 2p + 3 does not occur as form (1) in R.

Form(2) and form(3): We consider these two forms together.
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The set of possible congruences modulo 24 for (2"p' £ 1), & > 0,1 > 0 is
{1,3,5,7,9,11,15,17,19, 21}.
The set of possible congruences modulo 24 for p"(2p + 3), m(€ Z) > 0,
is {13,5}.
In the first set, for { = 0, this corresponds to & = 2 so that(2*p" +1) =5
and since p™(2p + 3) > 5 for all p € Il and m > 0 then we are finished
for form (3). In the second set the value 5 mod 24 corresponds to m odd
and so non-—zero. Therefore we are finished for form (2).
Form (4): Seeking a contradiction let us assume

28(2p+3)=p £ 1 forsome k,! >0 (4)
Simple rearrangement gives

pl— 271y =32+ 1 for some k,{ >0 (5)
Since p cannot divide 3.2* 41 for & < 3, we restrict our attention to
k > 3. The set of possible congruences modulo 24 for 2%(2p + 3) with
k> 3is {8,16}. The set of congruences modulo 24 for p' &1 with { > 0
is {0,2,16,18}. The only common entry in each set is 16 mod 24. This
value corresponds to p' — 1 where [ is odd, so equation (4) is constrained
to

2°(2p+3) = p' =1 for some k > 3,l(odd) > 0 (4)t
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Since p = 8\ +1 for some A € Z1\ {1}, we consider equation (4)* modulo
A giving

285 = 0 mod A
This is only possible if A divides 2¥.5. Therefore we consider (i)A = 5,
(MA=2"(0<r <k), (1i)A=2"5(0<r <k).
Again refering to equation (4)* but this time modulo p, we get

23 = —1modp, (k>3).
Therefore, “—3 mod p" is the multiplicative inverse of “2* mod p” for
some k > 3.
In case (i) where p = 8.5 + 1 = 41 the multiplicative group generated by
“2 mod 41" is {2,4, 8,16, 32,23, 5, 10, 20, 40, 39, 37, 33, 25,9, 18, 36, 31, 21, 1}.
In case (ii) where p = 8.2" +1 = 27" -1 with 0 < » < &, k& > 3, the multi-
plicative group generated by “2 mod p” is {2,4,8,...,2", 2"} 2r+2 r+3,
S SRR L, S LN Y
In neither case (i) nor (ii) is “~3 mod p" a multiplicative inverse of 2%
for any & > 3, so we are left with only case (ii1} to consider.
In case (iii) p = 85.2" + 1 = 52" 4 | with 0 < r < k. In this light we
consider equation (4)" modulo 2"%3 giving

2¥5 = 0 mod 27 (k > 3).
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This implies that & > » + 3. However & # 7 4+ 3 since p = 5.2"%3 4+ 1
cannot divide 3.27%3 £ 1, a necessary condition noted after equation (5).
So consider
@2p+3)=p'-1, k>r+3,{>0(cdd),p=52" 41 (4)*+
Rewriting this as
RG22 D+ =G24 —1 k>r43,1>0 (odd)
and then expanding the bracketted term on the right binomially we get
RGBT L) +3) =52 4 U552 41 -1

with k& > » + 3, {(odd) > 0.
However this is impossible since modulo 2"+ we get 5/2"+3 = 0 mod 27+1
contradicting ! odd. Therefore we are finished for form (4). U

Finally we are left to consider the case for the rational prime 3.

Proposition 2.13 Let R be that subring of Q generated by % and %

Then usn(R) > 2.

Proof: Since 401 is relatively prime to both 2 and 3, by Proposition
2.6, if 401 is shown not to be expressible in any of forms (1), (2), (3)
or (4}, then usn{R) > 2.

Form (1): That 401 # 2* + 3, for any k,{ > 0 is obvious by merely

substituting 3' = 3,9,27,81,243 in the expression. Therefore in the fol-
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lowing table we list only values for +(2* — 3') with &, > 0 and we do so

modulo 48.
+3' mod 48

+ (3|9 |27(33|-3|-9]|-27(-33

2 47 |41 | 23 | 17

4 1 | 43| 25 | 19

8 5 47|29 | 23

16 137 |37 |31

32 29 (23| 5 | 47
+2% mod 48 20117 [25]31

-4 (|47 | 5 | 23|29

-8 11431 |19 25

-16 || 35 | 41 | 11 | 17

-32 (119125 (43| 1

Table: +(2" — 3') mod 48; k,{ > 0.

Note that 401 = 17 mod 48 and this value is only listed twice on the table
above. It occurs firstly as 2 — 3 = 17 mod 48. However, 401 # 2 — 3' for
any [ > 0. Secondly, it occurs as 2 — 3' = 17 mod 48, where k > 3 and

3! = 33 mod 48. Observe that 3' = 33 mod 48 is only possible when 4
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divides . To finish for form (1) we consider this modulo 80. The set of
congruences for 2¥ mod 80 with k > 3 is {16,32,64,48}. When 4 divides
{ > 0 then 3' = 1 mod 80. Therefore 401 which is congruent. to 1 mod 80
cannot equal 2% — 3! for any & > 3, { > 0, ! divisible by 4.

Form (2): It is easily checked that 401 # 2*3' £ 1 for any k£ > 0,71 > 0.
Form (3): The set of congruences modulo 80 for 3' - 401 with [ > 0 is
{3,9,27,1}. The set of congruences modulo 80 for 2* £ 1 with k > 3 is
{15,17,31,33,63,65,47,49}. There are no common values between these
sets and certainly 3'.401 > 241 for any k& < 3. Therefore we are finished
for form (3).

Form (4): The set of congruences modulo 80 for 2*.401 with k& > 0 is
{2.4,8,16,32,64,48}. The set of congruences modulo 80 for 3' £ 1 with
[ > 0is {2,4,8,10,26,28,0}. The only common values for these two
sets are 2,4,8 mod 80 which correspond to & = 1,2 and 3, respectively.
However, it is easily checked that 2-401, 22401 and 2°- 401 do not equal
3+ 1 forany [ > 0. 0l

We now summarise the above results to obtain:

Theorem 2.14 Let p € TI\{2}. Let &G be a rational group such that

F-(G) 1s that subring of Q@ generated by % and ]lj Then usn(G) > 2.



Proof: Since 3 is the only prime p with p = 3 mod 24, we have that
M\ {2} =P U{pelllp=Tmod 24} U {p € lI|p = 17 mod 24} U {3}.

Then the proof follows as a corollary to Propositions 2.11, 2.12, 2.13 and
Corollary 2.10. O
We now extend Proposition 2.6 to rational groups (¢ in which arbitrary
numbers of primes have entries co in any characteristic representing

type(G).

Proposition 2.15 Let {2} C P C1II. Let & be a rational group such
that E--((') is that subring of () generated by {]l)| p € P}. Then usn(() =
2 if and only if cvery positive integer z with (z,p) =1 forall pc P

can be expressed in one of the following forms:

i .
(a) z = 2,,,3(6 + D)

1 T
(b) z= “35'(2 ¢+ D)

where m € Z' and B, C, D are products of elements of P\{2} such

that (B,C)=1=(C,D)=(B,D).

Proof: Let R = E (). Let us assume that every positive integer z,
such that z is relatively prime to every prime integer in P, is expressible

in form (a) or (b).
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All other positive integers are either units of R, i.e. products of elements
of P and 1, or else products of elements of P by a product of rational
primes relatively prime to P. In the case of a positive integer being a
unit we can always express it as a sum of two integers since 2 is also a
unit. In the case of a positive integer relatively prime to P, this can, by
assumption, be expressed in form (a) or (b), which are sums of two units
of R. Finally, any integer which is not a unit yet not relatively prime to
P can always be expressed as unit-(unit-+unit), using the previous case.
Therefore, by Lemma 1.3, usn{R)= 2 =usn(G).

Conversely, let us assume that usn{G')= 2 and so also usn(R)=2 . Let 2
be an arbitrary positive integer such that z is relatively prime to P. We

can write 2 as a sum of two units as

&= H pl" =a HPA.P (lw k, € Z) (7)
pEP peEP

We will make some remarks regarding equation (7). Firstly, from Lemma

2.4 we know that []p'" = [] p*. So equation (7) may be rewritten
pEP peEP
<) k<0

as

2= 1 o I p» £ 1 »*) (8)
pPEP peP peP
1,<0.e02 [,>0.e2. Rl (X =

Secondly, since z is relatively prime to P then {, > 0 implies &, = 0 and

vice versa. Also, both [, and &y, cannot be zero or else the bracketted
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term in equation (8} will be an even integer which is not possible for =

relatively prime to 2.
As a consequence of these remarks we rewrite equation (8) as
1
g = im(?’"?c + D)

where B= [] p . C= T[] p*.D= T[] p*,
reP\{2} [lE'P\{?} pe'p\{g}
lp<0 [p>0 Ep>0

and where (B,C) =1 = (C,D) = (B, D), and m; or my = 0 but not

both. The £ sign is unnecessary in form (b) since z is a positive integer

and we can always choose C' to be the greater product.

Finally, equation (9) is of form (a) when ms = 0 and is of form (b) when

m1:0.

a

Corollary 2.16 Let G be o rational group such that E-(G) is that sub-

ring of @ generated by 1 @) l' pell, p=1mod24}.
2 P P

Then usn(G) > 2.

Proof: Consider the set P = {2} U{p eIl |p = 1mod 24} and let

z = 11. We show that z is not of either form (a) or (b} corresponding to

Proposition 2.15. Then 2 1s not of the form {a) since:
(CE+D)=0o0r2mod?24  and
2" -118 = 22, 20, 16 or 8 mod 24.

Moreover, z is not of form (b) either, since:



11B =11 mod 24 and

+(2"C £ D) = £1, 43, 5, £7, £9, 415 or 17 mod 24,
Therefore, by Proposition 2.15, usn(R)# 2. O
By Dirichlet’s Theorem (see [, Theorem 2.21), {p € I | p =1 mod 24}
is infinitely countable. So R, as defined in the corollary above, is a first
example of a subring of ) where [1\ Xy is infinitely countable and yet
usn(R) # 2. This ring becomes of further significance in the next section

of this chapter.

§3 Approach via additive number theory

A different line of approach is followed now adapting some results from
additive number theory to get some interesting outcomes. First, some

definitions are necessary.
Definitions 3.1 Let A be a set of integers, z € 7, and h € N.

(i) The Counting Function of the set A, defined for x € Z, is the

number of positive elements of A not exceeding , written A(z),

A(:L‘): Z 1.
acA
1<a<r
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(i1) The Shnirel'man Density of the set A, denoted o(A), is
AWU

n

J(A) — infn:l.iZ....(

(11) The set A is a basis of order h if every non-negative integer can be

expressed as o sum of exactly h elements of A.

We include here some results which will be used later.

Lemma 3.2 Let x be a positive integer greater than 2. Let r(N) denote

the number of representations of the inteqger N as the sum of two primes.

2
Then 5 r(N)> clﬁ, for some positive constant ¢ .
N<s ( HQE)
Proof: See [18, Lemma 7.6]. O

Lemma 3.3 Let x be a positive integer greater than 2. Let r(N) denote

the number of representations of the integer N as the sum of fwo primes.

3
Then 3 (r(N))* < o ! 1, for some positive constant ca .
P (In x)
Proof: See {18, Lemma 7.7]. 0

Let A and B be arbitrary sets of integers. We denote by A -+ B the set

{a+b |ac Abc B}
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Lemma 3.4 Let A and B be sels of integers such that 0 € A, 0 € B. If

n €N and A(n)+ B(n) > n, thenne A+ B.

Proof: If n € A thenn =n+0¢€ A+ B. Similarly if n € B then
n€ A+ B,

Suppose 2 ¢ AN B. Define sets A' and B'as A/ ={n—a:a € A,
l1<a<n-1}and B ={b:be B, 1 <b<n-1}

Then |A'] = A(n) since n ¢ A, and |B'| = B(n) since n ¢ B. Further-
more A UB C{1,...,n~1}.

Then since |A'| + |B'l = A(n) + B(n) > n it follows that A’ B’ # @.
Therefore n —a = b for some a € A and some b€ B, andson=a+5b €

A+ B, ]

Lemma 3.5 Let A and B be sets of integers such that 0 € A, 0 € B.

Ifo(A)+o0(B)> 1, thenn€ A+ B for each n € N.

Proof: Let 6(4) = o and o(B) = 3. Take any arbitrary n € N, then

A(n) + B(n) > (o + B)n > n. Therefore, by Lemma 3.4, n€ A4+ B. O

Corollary 3.6 Let a be a set of integers such that 0 € A and o(A) > %

Then A is a basis of order 2.
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Proof: This follows directly from Lemma 3.5 with A = B. O

The next Theorem is due to Shnirel'man; we include the proof.

Theorem 3.7 (Shnirel'man) Let A and B be sets of integers such that
0€ A, 0€ B. Let 6(A) =« and o(B) = 8. Then
oA+ B)>a+ 58— af.
or, equivalently,

l-c(A+B)<(1-a)(l-5).

Proof: lLetn > 1. Letagy=0andlet1 <a; <...<a, <n bethe
L= A(n) positive elements of A that do not exceed n. Since 0 € B it
follows that a; = a; +0€ A4+ Bforalli e 1,... k.

Fori =0,...,k -1 let 1 <b < ... <b, <ayy—a —1 bethe
r; = Bla;yy —a; — 1) positive elements of B less than a1 — a;.

Then a; <a;+by < ... <a;+ b, <a;

and a;+b; e A+ B forg=1,... ,r.

Now, let 1 < b < ... <b, <n—a bether, = B(n— a} positive
elements of B not exceeding n — ay.

Then a <ap+b <...<a+b, <n

and ap+b; € A+ B forj=1,.. r.
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It follows that
(A+ B)(n) > A(n) + Az_; Blaips — ai — 1) + B(n — az)
> A) 46 5 (eir1 = a - 1)+ Bl - )
= A(m) 8 T @ — @) + Bl = ) b
= A(n) + fn - Bk
= A(n) + fn — PA()
= (1= B)A(n) + Bn

> (1 — Blan + pn

= (o + f — of)n,
and so
L%)(n) > a4+ —af.
Therefore
e m = i SR -
This completes the proof. ]

Theorem 3.8 Let h > 1, and let Ay, ..., Ay, be sels of integers such that
0€ A; foree1,...,h. Then

1 —U(Al + ... JrA],) S 1_1(1 — O'(Al))
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Proof:  The proofis by induction on h. Let o(A;) = a; fori = 1,... A
For h = 1 there is nothing to prove. For i = 2 | by Theorem 3.7, our
inequality is true.

Let & > 3, and assume the theorem holds for all A < k. Let B =

Ay + .o Agy. 1t follows from the induction hypothesis that

l—o(B)=1-0c(A1+ ...+ A1) < AHI(I_J( A;))

and so
1—-0‘(/‘1; +—|—AA): 1 —O'(B-i-r’-lk)
< (1 —=o(B))(1—-0c{A)) (by Theorem 3.7)

k—1

< (b —o(A)) [T - o(4y))
i=1
k
U (1 — a(A)).
This completes the proof. (|

The following theorem due to Shnirel'man is fundamental to our line of

approach.

Theorem 3.9 (Shnirel’man )

Let A be o set of integers such that 0 € A and o(A)=a > 0.

Then A is a basis of finite order.

Further, A 15 a basis of finite ovder ut most h = 21, h,1 € N where | is

defined by 0 < (1 — &)’ < l

l\J
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Proof: Leto(A)=a > 0. Then0 <1-a < 1,andso0 < (1—a) g%,
for some integer [ > 1. By Theorem 3.8, 1 — o({A4) < (1 — o(A)) =

. Let A = 20. Tt follows from Corollary 3.6

SR

(1 —a) S%, and so o({A) >
that the set [A is a basis of order 2 and so A is a basis of order 2{ = A.

This completes the proof. U

Theorem 3.10 {Shnirel'man-Goldbach)

The set A={0,1} U {p+q|p g € I} has positive Shnirel’'man density.

Proof: See [18, Theorem 7.8]. 0

Definition 3.11 Let S be a subset of 1I. Then S contains a positive
proportion of 11 if there is a real number 0 < 8 such that S(z) > On(z)

for all sufficiently large x C 2.
The following is a well-known result:

Lemma 3.12 Let S be a subset of Il which contains a positive proportion

of II. Then the set SU{0,1} is a basis of finite order.

Proof: We show that the set A = {0,1} U{p + ¢;p,q9 € S} has posi-

tive Shnirel’'man density. For any positive integer V let »(N) denote the
Y g
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number of representations of N as a sum of two primes and let rs(N)
denote the number of representations of N as a sum of two primes be-

longing to S. Then, for all sufficiently large x € Z,

> rs(N) >(8(5))? = (0n(5))%,

N<z

and by the Prime Number Theorem (see I, Theorem 2.24)

ol &

(971'(%))2 > ol %:_)2, for some positive constant ¢;.

Also, by Lemma 3.3,

.3
S (rs(N))? < e (llib—)‘i’ for some positive constant c;.
N<z

Now, by the Cauchy-Schwarz inequality (see I, Lemma 2.22),

(X (rs(N)P < 3 13 (ns(N))™

N<z N<r N<z
ra(N}>1
Of course, > 1 < A(z). Therefore we can write,
<z
rs(N)=1
(> rS(N
A(z) S l N<an 4
T = g Z IS(N )2,a11 50
N<z

@D 2t e

.A(QB) S -1“ 11172 _ Cl“(lnI) >C1"(EH$)

z T 29 Tog(lnz—In2)1= eg(lna)t
‘(l_u-.r:)"1

This means that A(x) > cyz, for some positive constant ¢z and for all suf-
ficiently large z. Since 1 € A it follows that A has positive Shnirel'man
density and so is a basis of finite order, say h € Z*. Therefore every

non-negative integer can be expressed as a sum of exactly i elements of
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A. Whenever 0 occurs in such a sum we may write 0 4+ 0 and whenever
1 occurs we may write 1 4+ 0 and so any sum of exactly h elements of A
is a sum of exactly 2h elements of S U {0,1}. Therefore, SU{0,1} is a

basis of order 2h. O

Theorem 3.13 Let S be o subset of [1 which contains a positive propor-
tion of I1. If 2 € S then R, the subring of Q@ generated by {11_;| pe Sy,

has usn(R)=n for some n € N.

Proof: By Lemma 3.12, the set SU{0,1} is a basis of finite order, say
of order h € Z*. By Lemma 1.3, we need only prove that every positive
integer 1s a sum of exactly & units of R to show that K has the h-sum
property. For an arbitrary element r of Z* we have:
r=s+s+t...+s, (s, € SU{0, 1}, i=1,...h)
Since r € Z*, then s; #0 foralli =1,..., h.
If s5,€ SU{l} forall i=1,...,h then» isa sum of h units of R.
If s;,...,80 #0 forsome 1 <k < h and sp41,...,85, = 0 then,
k—1 1 h—k 1
i—1 i—1
is a sum of & units of R. By Lemma 1.3, R has the A-sum property. So,
certainly usn(R) < h. |

This is a significant result. For example, letting I1 = {p;};,-14... under
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the natural ordering, the ring generated by { 5}1—, j—)l—, ﬁ, . pL,,.
. Tt p¥ia

)

has finite unit sum number whatever n € Z*. (Note, R=Q forn=1.)

From the Prime Number Theorem (see I, Theorem 2.24) and the Prime
Number Theorem for Arithmetic Progressions (see I, Theorem 2.25) it is

seen that;

lim m(@, k1) = L ,  where ¢ is the Euler function.
S22 PR

So, for any ¢ > 0, we can find zy € R such that

m(x, &, 1) 1 ) ‘ N ,
—£ < ) —‘P(k) <€ for all = > xy,

so that  w(z, k) > ﬂ(l)(ﬁ—E) for all @ > .

Now set & =24, 1 =1 and choose ¢ :%. Then  @(z,24,1) >—11-61r(:c)

for all @ > 2y and for some z; € R,
Therefore the set of primes congruent to 1 mod 24 is a positive proportion

of I1, and by Theorem 3.13 and Corollary 2.8 we have proved:

Corollary 3.14 Let P = {2} U{p € I | p = I mod 24}. Let & be a
rational group such thet E-(G) is that subring of O generated by

{% | p € P}. Then usn((Y) is finite but greater than 2.
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Obviously, this result and the results previous to it open the question of
what the range of values of unit sum numbers is for rational groups. Do
values of unit sum number depend entirely on the proportion or density
of primes in X¢ (allowing for the special role of 2) or do they depend
on other attributes of the particular primes in I\ X7 It is interesting
to notice that in Example 2.3 a rational group & in which I\ X¢ does
not contain a positive proportion of the primes, by definition, is shown

to have usn{G)= 2. We leave the discussion of these questions open.

Our last objective in this chapter is to find an upper bound for usn(R)

where R is as described in Corollary 3.14.
Definitions 3.15

o Oz k)= > Inp, zcR, klecNuwth(kl)=1
=k mod {
I P
pell

e A multiplicative function is e function defined on the integers such

that f(m)f(n) = f(mn) whenever (m,n) = 1.

Note that for any multiplicative function f, if f # 0, then f(1) = 1.

Proposition 3.16 Let P = {2} U{p € Il | p = 1 mod 24} and G «

rational group with E-.(G) that subring of Q generated by {% | p € P}.
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Then usn(G) < 1208000.

Proof: In finding the required bound our principal instrument is a

cauchy inequality. We set up the cauchy inequality as follows.

First, for each NV € N set

r(N) = >, Inpinp,
pr+pr=N
p1-p2=1 mod 24

Let A = {py + ps;p1,p2 € I and pi,p» = | mod 24}, so that, recalling

the definition of the counting function for A, A(x)

= Y 1= Y L

D<N<a N<s
NeA P(N)>1
Then the form of the inequality is as usual

(22 r(N))* < Afz) 3 (n(N))*

N<r N<r

Next we provide a lower bound for > (#(V)).

N<r

Since 3 r(N) > (6(

N<e

Lo &

1.24)}*. we can refer directly to Ramaré and

Rumely [24, Theorem 1] from which we can state

O(x:1,24) > (1 — E)¢(§4) for all z > exp 24

where ¢ is calculated to be 0.008173. Therefore

ST r(N) > 3.84266 x 107%2? | for all 2 > 2exp 24.
N<z

An upper bound for r(N} is also required.

Let



R{r,a,by=sup >, 1 ,z€R,a,beZ
I peninr
up+bEH
where the supremum is taken over all intervals I of length z.

Then Reisel and Vaughan [26, Lemma 5] give us

8 L p—1
R(z,0,8) < (532 ~1002%) ,Eb(?’_“_)
p>2

for all > exp 24 and ab # 0 and where ¢ is the twin prime constant.

Taking a = -1, b = N, then

Bca p—1
Rz, ~1,N) < ((lnm)Q) 1;[\,(‘%-5) for all 2 > exp24
»

p>2
Of course, returning to consider r{N),

r(N) g( > 1)(111 z)? forall N < =.
el
NprEl'!
Therefore, for all z > exp24 and N <z

N < ((lii")g(ln ) T1 (=)

PN pP=
p2
p—1
< 8cz|] (1——_)__ )
piN
p>2

It is known for ¢, the twin prime constant, that 1.320323 < ¢ < 1.320324

(see [26]). Also notice that 3 cannot divide N where ¥ = 2 mod 24 so

. p—1
we may write r(N) < 8(1.320324)3:1)1;[\,(;;—_3) for all & > exp24 and
p=3
N <.

Now we may return to our cauchy inequality and using the bounds de-

scribed above we write
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(3.84266 x 107%22)2 < A(z) 5 (1056262 [] (%))2

N<x pIN
N=2mod 24 >3
for all > 2exp24 and therefore
A(z) (3.84266x 103) 24 .
> o] for all ¢ > exp 24 (*)
e CmsT (11D

N<e PN
N=2 mod 24 p>3

Now we must consider the term >~ (] (”:i )?). We begin by defin-
.‘\’Si: plN
N=2mod 24 p>3

ing the multiplicative function f. It is defined over the prime powers, for

each p € I, & € N, as follows

,

(;’Tg)h'l for p>3 k=1

0 for p=2,p=3

J(P*) = o
0 for k>1
I for k=20
Now we define f'(n) = > f(d) forn € Z*, d € Z"*, and letting
dine
(d.6)=1

n,m € Z* such that (m,n) =1, then

fFmf = 5 fd) Y f)
By AR

= T

{dd.G)=1

— f*(mn)
Therefore f* is also a multiplicative function. Now let n be any positive

integer. Express n uniquely in the usual way n = []p* (k, € N). Then
pEH
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Finy= 2 fd)=11 2 fld=T11U@+ 1) =I1{p)+1)

din rell d|p"'p pell pell
{d.6)=1 {d.6)=1 pln pln
p>3 >3

So we may write

p—=1Ly,
> i@ ={5=)"
din pln P
{d.8)=1 p>3

Now, for each d < z, d divides not more than ﬁ of the set

{N < z; N = 2 mod 24}. Therefore

p—1 T f(d)

o NEs)k= & (D sy T T
N<z n| ¥ N<e d|N d|N
N=2mod 24p>3 N=2mod 24 (4.6)=1 (d.6)=1

We are not yet ready to return to inequality (*). We now show that

A
s = 3 f(d)
[d.6)=1

Let n,m € N, arbitrary, such that (m,n) = 1. Then

g = L8 5 [

1s a multiplicative function.

d|m dln
(d.6)=1 {d.6)=1
5 L)
dimn d
(d.6)=1

Therefore ¢ is a multiplicative function and so, for any N € N with

N = []p™ (k, € N), we may write

s Aoy s My By

d|N PETL dlpkr pell
(d5)=1 PN PIN
p>3 p>3

In fact, changing the conditions under the summation we have

d ;
| el
(@01 >3
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Therefore

. fld) /(p)
lim — = lim ——4]
T 3%% d z~+x1£l} p )
{d.6)=1 p>3
We now evaluate a bound for the expression on the right hand side.
. . fp) .\
By direct computation [] (——+1) = 1.31562.
p<160
p>3
Now
lim H(@+1): I1 (M—i—l) lim J] (M+1)
0% oy P p< 100 T pSign P
p<z p>3 p<e
Since z + 1 < expz for all z > 0, then %—H < exp(i%i)‘) for all

p € II. Therefore

lim [] (M +1) < hm exp . (f(]J)
£ 5100 % ST
r<r pE
. [{p) 2p—3 2.06 ‘ .
Certainly —— = 22— dpta) < 2 for all p > 100,p € II. In this
way we over—estimate lim [] (f(p < fmn 2. 06 9dn) <
FX L1
per

exp(0.020397) = 1.0206055.

S0 we can drop the terminology of limits and write

iz

>3 14

+1}) < (1.31562)(1.0206055) < 1.3435.
So we have shown that

S TT(E=)2 <&(1.3435)  forall = > 0.

NZe N P2 24
N=21mod 24523
Therefore we can rewrite expression (*) as

Az) (3.84266 x 1073)%z(24)
¢ = 2¥{111.57)(1.3435)

> 2.3640 x 107 for all & > 2 exp 24.
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At this stage recall that the set we are fundamentally interested in is not
A but the set A" = {a € Z* | a is a sum or difference of two units of R},

Since A"’ O A then

A i
% > 2.3640 x 107%  for all & > 2exp 24.

We need to show that this inequality is true for all z > 0. We use a step-
wise procedure. For reference purposes, following this proposition there
is a list of the first 268 primes congruent to | mod 24 (see List 3.17).

Al(z)

&€

Step 1: 1 and 2 are units of Rso 1 € A’. Therefore > 2.3660x107¢
for all x < (2.3640 x 107%)"1 = 423011 .

Step 2: The number of primes congruent to 1 mod 24 and not exceeding
17,000 is 268 (see List 3.17). Let p be any one such prime. Then p + 1,
p+2p+4, p+8 p+16,p—1,p—2,p—4,2p—1,2p+2, 2p+ 4,
2p + 8, 2p -+ 16 and 2p — 4 are all distinct modulo 24. Therefore each

prime congruent to 1 mod 24 contributes at least 14 distinct elements to

A", which are all positive and less than 423011 | so

V(z 14(268
A'(x) . 14(268)

for all z > 423011.

r = x
Therefore

AI(CC) 1 b 14(268) q

o (2.3640 x 107")  forall z < 2.3640%10-6 — 1.587 x 107.

Step 3: The number of primes congruent to 1 mod 24 and not exceeding
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10,000 is 141 (see List 3.17). Then the number of distinct products of

W= 10011. Each product is congruent

pairs of these primes is
to 1 mod 24 and so, in precisely the same way as for the primes congru-

ent to 1 mod 24 in Step 1, each product contributes at least 14 distinct

elements to A', all positive and less than 1.587 x 10°. Then

Al(z) >14(10011)

T - T

for all 2 > 1.587 x 109,

Therefore

Al
—3:(-%1 > (2.3640 x 107%)  for all @ < 5.9286 x 10!,

Step 4: The number of primes congruent to 1 mod 24 and not exceed-

ing 24,000 is at least 268 (see List 3.17). Then the number of distinct
268(2

products of pairs of these primes is 168(“‘3—S+H: 36046. Each product

is congruent to 1 mod 24 and as in Step 3, each product contributes at

least 14 distinct elements to A’, all positive and less than 5.9286 x 10'0.

Then
Al 14(36046
SE) > ( - ) for all > 5.9286 x 10",
Therefore

Al
_ii) > (2.3640 x 10°6)  for all @ < 2.1328 x 10!,

Since 2exp 24 < 2.1347 x 10! it is evident that we have shown

A'lz)

r

> (2.3640 x 107%), for all z > 0.
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Thus the Shnirel'man density of A’ is at least 2.346 x 107%. Using
Shnirel’'man’s Theorem 3.9, we calculate an I € N such that (1 —2.346 x

107%)" < 5 to be 302000. Therefore the set A’ is a basis of order at most

NG [ et

2(302000) = 604000. So, recalling that A’ is a set of sums and differences

of two units, then usn(R) is at most 604000 x 2 = 1208000. O

The following list was compiled using [15].

114



List 3.17

List of the first 268 primes

73. 97, 193.

1249,

4297,

5689.

6841,

7993.

09049,

11513,

11833,

12721,

13729,

—

16417,

17497.

5241,

1297.

L2377,

. 3361,

4441,

5737,

6961,

8017.

241, 313, 337. 409, 433, 457,

1321

2473

. 1489, 1609, 1657, 1753,

3433,

58567.

8089,

9241. 9337.

10657

11953

12841.

13873.

15313.

3457.

2881,

8161,

9433

. 4657, 4729.

L TATT. 7297,

. 9601, 9649, 9697,

. 10729, 10753, 10993.

. 16633.

. 17713,

. 12049,

12889,

13921,

15361,

. 19417,

12073, 12097,

13009. 13033.

14281. 14401.

15601, 15649.

166567, 16729,

17737, 17761,

19441, 19439.

3629. 3673.

5353. 6073.

8209, 3233.

. 2689,

11113,

13177.

14449.

153817.

16921.

17881.

19609.

3697.

7321,

8329,

congruent to 1 mod 24

577. 601, 673. 769. 937, 1009, 1033, 1120,

1777. 1801, 1873. 1993,

2713. 2833.

3769, 3793.

. 4969, 4993,

. 6217, 6337.

7369. 7393,

8353. 8377,

9721. 9769.

11161. 11257.

. 12289, 1241).

13249, 13297,

14593, 14713,

15889. 15913.

169933, 17041,

7929, 17977,

19681. 19753, 19777, 19801
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3889.

5113.

6361,

7417,

9817.

2053,

1057,

5209.

6481,

7489,

. 8641,

2017,

3001,

4129,

8589,

2089, 2113.

3049, 3121.

4153, 4177.

. 5281, 5449.

. TH61. 7681,

8713, 8737.

. G673,

10009, 10177, 10273, 10321,

11329, 11353, 11497, 11593,

12433, 12457, 12553, 12577,

13417, 13441,

14737, 14929,

156937, 16033,

17137. 17209,

18049. 18097,

13. 13537.

15073, 15121.

16067, 16249,

17257, 17377.

18121. 18913.

. 19993, 20089,

11617.

12601,

13633,

15193.

19909,

20113.

3169.

420,

. 5641,

6793,

. T873.

. 9001,

13681.

15217,

. 16369,

174449,

19081,

20161



IV The involution property

Having considered the unit sum number problem in previous chapters,
it is perhaps natural to ask a further question: under what conditions is
every element of a ring a sum of two units one of which is an involution?
This question is motivated by work of Nicholson [19], O Searcéid [21] and
others on so called “clean rings”, i.e. rings in which every element is the
sum of a unit and an idempotent. The latter element can, of course, be
converted in suitable circumstances to an involution. In this chapter we
have attempted to supply some answers to this question with regard to
the rings and the endomorphism rings of modules discussed with regard
to unit sum number in previous chapters.

As in previous chapters all rings will be unital associative rings.

§1 General considerations

Recall that a unital ring # has the involution property if every element
of E is a sum of a unit and an involution of F and an B-module M over a
commutative ring R has the involution property if every endomorphism

of M is a sum of an automorphism of M and an involutary automorphism

of M.
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Proposition 1.1 If G is a group which has the involution property then

2 is an automorphism of (.

Proof: Let 1 be the identity in E(G). Certainly 1 € Aut(G). Let
1 = a +v where o, v € Aut(G) and v* = 1. Then v = va + 1. Therefore
l = a+wva-+ 1 and so we get 0 = (1 4+ v)a. However, since a € Aut(G)
then 0 = 1 4+ v. Thus v = —1. Therefore & +v =1 = a — | which gives
us o = 2. 0

The following is a well-known result.

Lemma 1.2 Let M be ¢« R-module where 2 € Aut(M). Let v be any
involutary avtomorphism of M and 1y the identity in E(M).

Then M =ker(lpy — v} @@ ker(1a +v).

Proof: Let m € ker(1p — v)N ker(1y + ). Since m(ly — v) = 0 then
m = muv. Therefore m(ly +v) = m +mv = 2m. Since m € ker(1yy + v)
it follows that m = 0. Therefore ker(lys — v)N ker(1y + v) = 0.

Now let z be an arbitrary element of M.

If 2(lyy —v) # 0 then (z — zv)(1yy +v) = 2 — zv + 20 — 2 = 0.
Therefore,  — zv € ker(lpy + v). Similarly, if 2(ly + v) # 0 then
(z+zv)(lyy —v)=z+zv—zv+2=0 Soz+avcker(ly —v).

Therefore we may write 2 in the form = :% ((z — zv) + (z + xv)) where



(z — zv) € ker(1y + v) and (x + zv) € ker(2y — v) . 0
Unlike the unit sum property, for a PID R, it is necessary for the R to

have the involution property in order for any free R-module to have it.

Theorem 1.3 Let R be a PID. A free R-module has the involution

property only if R has the property.

Proof: Let M be an arbitrary free R-module over R a PID. Let
Inv(E(M)) be the set of all involutions of E(M). This is a subset of
Aut(M). Assume that R does not have the involution property. We
show that then M cannot have it.

Let k£ # 0 be an arbitrary element of R and assume, for contradiction,
kly = a+ v for some o € Aut(M) and v € Inv(E(M)) where 1 is
the identity in F(M).

If 2 is not a unit in R then 2 is not an automorphism of M, since for any
basis element of M, say e;, lei & M and so by Proposition 1.1, M has
not got the involution property.

If 2 is a unit in R then, by Lemma 1.2, M = ker(1y — v)® ker(1y + v).
So, letting {e;}ic; be a basis for the summand ker(ly; — v) and letting
{ei}ics be a basis for the other summand ker(1;; + v) then e;u = ¢; for

alle € I and e;v = —e, forall 2 € I'. Now, letting J = JTU [, then {e;}ics
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is a basis for M such that e;v = %e; for each 7 € J.
Now, for some arbitrary ¢ € J, we may write e;a™! = 3 z;;e; where
jed

z;; € R for each ¢,7 € J, keeping in mind that these are finite sums. By

assumption ¢ =(k1p—v) and so e;a™ (Alpy—v)=(D" z;;e;)(hlpr —v)=e;.
Jed

Of course, for each 7 € J, since e;a = e;(k1p—v) # 0 then [e;(kly —v)] =

{i} and consequently z;e;(kly — v)= z;(k £ 1)e; = e;, where 1 is the

identity in R. So z;(k £ 1)=1; here, by & £ 1 we mean £+ 1 or k — 1

not both (i.e. ¥ —1 for7 € [ and k+ 1 for i € I'). Therefore, & + 1 and

or k£ — 1 must be units in A.

Since K does not have the involution property there exists A € R such

that h is not the sum of a unit and an invelution of R. Then, since

h=h+1-1and both 1 and —1 are involutions of R then neither h 41

nor h — 1 are units of F. Therefore hly; cannot be the sum of an au-

tomorphism and an involutary automorphism of M. With this, we are

finished. 0O

At this stage we introduce a technical lemma which we will use later on.
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Lemma 1.4 Let M be a module with a decomposition

M= M; (n <w) and let ¢ be an endomorphism of M. Moreover, let

1<

7 M — M; denote the canonical projection and assume that
(& Tar,)mi € Aut(M;), (¢ [a,)7m; =0 for alli,j < n with 1 < j.

Then ¢ 1s an automorphism of M.

Proof: First, set ¢;; = (¢ [a)m;. Clearly, ¢ = z ¢:; and the as-
ij<n

sumption now reads as ¢;; € Aut(M,) and ¢, ; =0 for i < j.

Consider the set X' of all canonical summands X, = @ M; (m < n)

i<

with X,,¢ C X, and ¢ [x, € Aut(X,,). Let X be ordered naturally by

inclusion; note that X C X' is equivalent to X T X' here for X, X' € X.

Now, A is non-empty since Xy = {0} is clearly an element of X"

Consider an arbitrary chain in A, say

M, = X,y € Xy, ©...C X,, T .... (j €J Cn). Then,

L = |J X, is a least upper bound for M. We now show that L ¢ X.

Jed
For m = supm;, where X,, = € M;, we obviously have L = @ M.
icd 1<y i<m
If 15 Anite then L = Nom, for some j € Jandso L € X.
Let m = n = w. Then L = M is obviously invariant under ¢. Now,

for any h € L, there is j € J such that & € X, Therefore, since

¢ | X, € Aut(X,,b) we have that h¢p = 0 if and only if A = 0 and that
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h = z¢ for some x € X;. Thus ¢ is bijective, i.e. ¢ € Aut(L). Therefore

L € A and we may invoke Zorn’s Lemma, i.e. there is a maximal element

Lof &,

Assume L = @ M; # M. Then there exists an integer i withm < i < n,
j<m

such that M; N L = 0. Notice that then also (L¢) N M; = 0 by definition

of A'.

For clarity we now simplify our notation. We write ¢ [p= ¢r.z, (¢ [a, )7L =

$as,r, and (¢ [p)m = ¢p.ar, where my and m; are the canonical projec-

tions onto L and M; respectively. Let 11, 155, and 1zg, be the identity

mappings for L, M; and L & M; respectively.

Now we show that ¢ [pga, € Aut(L & M;). Firstly, since ¢ 55, = 0 we

have that ¢ [rgan= dr.L + a0 + ¢is. Since ¢y € Aut(L) and by

assumption ¢;; € Aut(M;) then

¢ Toor (1Y — ¢ dandr), + ¢7)) =
¢ro(Pry — bl dandry + 6 )b LlOrL — 6Tl bandL ) + .0)
(B~ ¢ danndb + 0
=1+ L dyy — Giidi) bad7y + Loy,

=1y + 1, = 1pgu,
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where ¢ b = 0= ¢ b1 = dar, pb:}. Similarly
(91205 da sty +617) ¢ lLom=
(71 — qs;ilqu.'.quz,lL + ¢:i])¢L.L+(¢’E,IL - QE,;W’M.—.LQE_IL + o7 basL
H(Pry — ii barndy s + 6l )i
=1y~ @ brrbL 1L + ¢ ass + Las,
=1, + 1y,

= lpga,-

¢ 0

We illustrate this with matiices. Let ¢ [Lom = , then
GriL Pia
¢rr 0 I 0
]-L-G;)ﬂ”[,' -
Gar Pis ~ (i) o n(brr) Tt (¢e)7!
(br.1)" 0 ¢ O

—( i) barn(brn) T (fii) ! PuL Dis

Thus ¢ [rear, € Aut( L@ M;) and Lo M; € X contradicting L being max-
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imal and so by Zorn’s Lemma we deduce . = M.

Therefore ¢ € Aut(M). 0

§2 Free modules over a PID

In Chapter I we presented Searcdid’s result, (see I, Theorem 3.2) that
every vector space is ‘clean” and we proved in [, Corollary 3.3, that every
vector space over a field F' has the involution property if %6 F. In this
section we provide an alternative proof to that of I, Corollary 3.3, with

the necessary condition that %E F. This proof is of value due to its

constructional approach.

Theorem 2.1 Let F be a field and let X = @ Fe; (n < w) be a vector
i<n

space of countable rank over F.

Then X has the involution property if and only if %E F.

Proof: If %E F' then F' has not got the involution property. Then, by
Theorem 1.3, X has not got the property.

We proceed to make a change of basis with respect to ¢.

Step 1: Set ¢y = €p.

If egnd € (Eg_g) then set Fy = {6{]_0} and go to Step 2.
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If not, set e5; = (€590),. Clearly ¢y and ¢ are linearly independent.
If o1 € (€n0,€0.1) then set Ey = {€gg, €01} and go to Step 2.

If not, set ey = €410

Continuing in this way the linearly independent set By = {eg.;7 € Iy}
is formed where the indexing set I is countable.

Clearly, {ep ;¢ € Iy) 1s invariant under o.

Step 2: Choose m; € N minimal such that e, is linearly independent
of Ey. (If there is no such ¢, then our steps are completed.)

Set €10 = €, -

If eyop € {Ey,e19) then set E) = {e, 4} and go to Step 3.

If not set €1 = ¢, 9¢. Clearly, €y,€p.1,...,€1.0 and € are linearly inde-
pendent.

If e14¢ € (Ey,€10,€1.1) thenset By = {e)4,€1.1} and go to Step 3.

If not set €19 = €;10.

Continuing in this way we form 5y = {¢, ;7 € I}, where [ is countable.
Step j(€ N): Choose m; such that ¢, is linearly independent of £y U
Eyu...UE;_,. (If no such m; exists then our steps are completed.)
Set ¢; = €m, -

Ife;00 € (Bo,..., Ej.1,€0) then set E; = {¢;0} and go to Step j + 1.
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If not set ¢;1 = ¢;9¢. Clearly {Ey, E\,...,E;_1,¢;1,€¢;1} is a linearly
independent set.

Continuing as before we form E; = {¢;;;1 € I;} where I; is countable.

Continuing on in this manner we form a new basis for X which we

may write as X = @ P Fe;; = @ X;. In the usual way we may

jediel, jed
write ¢ = > ¢y where ¢, € Hom(X,, X,), for all a,b € J, ie.
a.be. g
/‘,?50.0 0 0 0 ... \

1o &ra 0 O 0O

We show that indeed ¢,, = 0 for all @ < b € J (i.e. the matrix is zero
above the diagonal): Let » € X,, where r is arbitrary and non-zero,

and ¢ € J arbitrary. Then z = 3 rie,,, a finite sum, where r; € F
iEIﬂ

for each 7 € I,. Therefore z¢p = > ri{e,;¢). However, by construction,
iy

i € (EBy, £, ..., E,), for each ¢ € [,. Therefore z¢ € P X;. It fol-
=0

7

lows that ¢,, = 0 for all b > «.
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Now consider X, where a € J is arbitrary. The basis for X is

{eai;1 € 1.}. We consider different cases with respect to the cardinality
of I,.

Case (a): | [, |=1:

In this case ¢, = ¢, for some ¢, € F. Since I has the involution prop-
erty ¢, = u, + v,, where u, is a unit of ¥ and v, is an involution of F.
Case (b): | I, | s countably infinite: In this case €, ;¢,0 = Cai€air1,

0 #£ c,; € F, for each 7 € I,. We can represent this in matrix lorm as

Pea= | 0 0 0 0 4 O

We define U/, . and V,,, endomorphisms of X, as follows;
€ai t Cai€aiy1 foOr 1even

Ea.ibrma -

—€.; for 1odd
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—€,; for 1even

Ea.ilfu.u =

€ai T+ Caifaitl fO?“ 7 odd

Notice at this point that ¢, = Uy + Via.

m

Let x be an arbitrary non-zero element of X,,. We can writez = 3 L€y
j=k

a finite sum, where each z; € F and z, # 0 with m,kt € N. Then

zl, ., = ‘e, + ”il Yj€q; where y; € Fforeach j=k+1,... m+1.
i=k+1

Since z;, is non-zero then U, , is non-zero and therefore U, , is injective,

Let €,; be an arbitrary element of /.

When 4 is even then €,; =(€,; + Cui€eir1)Uee and when ¢ is odd then

€ai = —€,:Uso therefore U, , 15 surjective. Therefore, U, , 1s an auto-

morphism of X,,.

Notice also that for ¢ even e(,‘,-‘l{?_“ = —€1iVaa = €,; and for 7 odd

6(1.1"/[3(! :(Ea,i + Cll.iell.i+l)1/:1.ﬂ = €ai t Cai€aitl — Cai€aitl = € which

demonstrates that V? = 1x,, the identity in #({X,) and so is an involu-

tary automorphism of X,. Although unnecessary to the argument, one

may note that in this case both U,, and V,, are involutary automor-

phisms of X,,.

Therefore we may write ¢,, = U, o + Voo a sum of two automorphisms

of X, at least one of which is involutary. We represent this in matrix
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form as follows;

0 -1 0 0 0 +1 ¢, O
Qsa.u = 0 0 41 Cud . + 0 0 -1 0
0 0 0 -1 0 0 +1 ec,3 0O

Case (¢): | I, |=!+1 > 1,1 € N: in this case ¢,, may be described as

Cai€a.itl fOT 7= 0, L ,l —1
Eiq()u.r: - {
z Ti€aj fO'I‘ i =1
i=0

where 0 # ¢,; € F, for each ¢ € 1.

We may represent this in matrix form as follows;

d)a.a -

Since F' has the involution property then r = w+ v; u, v units of F' with
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For { odd, we define endomorphisms U, , and V, , of X, as follows;

(
Ve, 4 fO'f' 1< ! even

€aillog = § —V€ai + Cai€airr for <! odd

-1
wear + Y ri€a; for i=l
\ 3=0
4
—V€ui Tt Cui€ait} fOT i < [ even
€aiVoa = 4 ve,; for i< lodd

vegy for 1=l

!

Let z be an arbitrary non-zero element of X,. We can write z = ) ;¢,
1=k

where each 2; € F and z; # O forsome k € 0,1,...{. By inspection of the

-1
definition for U, , we can write 2lU,,, = tarve ot Y, yj€w;H2i€ar)Van
—h—1

j=k+
where each y; € F; if £, = 0 then since (z16,)Uaq = 0 and xv #£ 0 ( Le.
z v? = z;) so the coefficient of ¢, in zU,,, is non-zero, then zl/,, # 0
if ¢ #£ 0 then aU,, # 0 since (z/€,1)U, , must have zju # 0 as coeflicient
for ¢, ;. Therefore U, is injective.
By definition, for each i </, ¢ even, (v le,;)U,u = €4.i; for i < I, 1 odd,
(_'U_leu.i + vh?‘cu.iéﬂ.i—i-i)UH.f! - Aluil(ufvgu.i + C(r.ifr:.i+1)+'Uilcu.ifu.i+i

€ai- Thus, for each ¢,; with i € {0,1,...,! — 1}, we have shown that

there exists some z; € X, such that 2;U,, = ¢,;. Now we can write
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-1 —1 -1
! (car— 20 752 Vnn = w (e + 3 €0 3 Ti€a;)= €as. Hence we
i=0 ; ‘

i=o =0

have shown U, , to be surjective since it maps onto all the basis elements.
Therefore U, , is an automorphism of X,,.
Letting 2 € I, arbitrary, and taking ¢ < { with ¢ even, then

2 _ — 2 , . —
Eu.é‘/a_(, ‘“('—Ueu.i + Cu.iﬁa,i-l—l)wl.a = V€ui — VUCq ifa,itrl + Ca.i+1VEyit1 = €qi
since F' is commutative and v is an involution; if ¢ < { with i odd then

2 S 2 3, _ ofore V
E(l.il/:z.(g = V'€Cus = Cuiy if 2 = [ then E(L.II/‘MI = V€t = €q - Therefore T’a.a
is an involutary automorphism of X,,.

By inspection it is also clear that ¢,, = U,, + V,, a sum of two auto-

morphisms of X, one of which is involutary. We illustrate this in matrix

form as
qsa.([ =
v 0 0 o —v cqn O e 0
0 —v e ... o ... 0 v 0 0
_|_
—u ¢_a 0 v 0 0
0 v 0 0 0 —v Cal-1
T1 ri_3 Ti_ U 0 0 0 v
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For { even, we define endomorphisms U, , and V,, of X, as follows;
'

— V€ ; t+ Caifuitt fOT ¢ <[ even

€ailaa = ¢ ve,; for i<l!lodd
-1
UEal + ) Ti€; for i=1
=0
.

ve,; for i <[ even
6u.t'"/:l,ﬂ - — Ve, ¢ + Cﬂ.iEtl.i-l-l fO?' 1 < [ Odd

vea,y for 1=1

i

Let z be an arbitrary non-zero element of X,,. We can write x = > z;€,;
i=k

where each x; € F' and z; # 0, for some k& € 0,1,..../. By definition

1
of U we can write zU,, = kzpvean + D yjca;+ (x1€as)lVea where

jedetd

ony; € Floreach jc k+1,...,{—1;if 2, =0 then (z6,)Us. =0 and
since T, # 0 ( L.e. zpv° = 2;) the coeflicient of ¢, in 2U,, is non-zero,
so U, # 0; if 2; # 0 then 2U,, # 0 since (2€,.1)U,., must have zju # 0
as coefhicient for €. Therefore U, . is injective,

By definition, for each i < [ with 7 even, (—v™ e ; + v %cu i1 Jaw =
—v N —veg; + Ci€uiv1) U YCaiCuir) = €uq; similarly for i < [ with <

[N

odd, (v i) Upw = v v, = €4y So foreach e, ; withi € 0,1,...,/—1

we have shown there exists some z; € X, such that z; I/, , = ¢,;. We can
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1 -1 -1
also write u™ (e,0— 3 752 e = w (Ui + 3 €0 — 3 Ti€as)= €au.
i=0 i=0 j=0

In this way, we have shown U,, to be surjective since it maps onto all
the basis elements. Therefore U, is an automorphism of X,,.

Let 7 € I, arbitrary; if 7 < { with i even, then €., V2 = v%¢,; = ¢,;;ifi <

a.a

. . 9 2
[ with < odd, then ¢,;V?, =(—ve i + cui€uis1)Vie = V€ui — VCai€air1 +

Carit1V€q i1 = €q SINCe F' is commutative and v is an involution; if ¢ = {

then e, V2, = v?e,; = €,;. Therefore V,, is an involutary automorphism
of X,.

By inspection, ¢, = U, + V,. and, as we have shown, a sum of two

automorphisms of X, one of which is involutary. We illustrate this as

¢ﬂ.ﬂ —_
(—-v a1 O ... 0 v 0 0 ... 0
0 0 0 0 —v c,»
+

o ... v g O 0 ... —v 0 0

0 0 0 v 0 0o ... -V Cuy

1 O i B T s | U ) 0 Caes . (} 0 [y
So we have shown that, for each e ¢ J, ¢y = U,u + Vi, where
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UsarVaa € Aut{X,) and (V,)? = 1, where 1, is the identity in E{X,).

Recallingthat ¢ = 3~ ¢, we may write ¢ =(5° Uput Y. das)+ > Vi

a>b acJ a>b acJ
akeJ a.beg
Now, let U = > U, where we set U,y = ¢oy forall b < ¢ and U, = 0
a.beJ

for all @ < b, and, moreover, let V = 3~ V,, where we set V,, = 0 for
a.beJ

each a # b € J. Then we can write ¢ = U + V. We illustrate this in

matrix form as

qf) —
(VM 0 o ... \ (Uo.n 0 0
0 Vi, 0 0o ... Ug Uy O 0
0 0 Via O T Usog Uy Usy O
Now, since X may be decomposed as X = @ X, where X, = @ Fe;

we JCI €1,

for each o € J such that U,,, V., € Aut(X,) for each a in J and such
that U, = Vo, = 0 for each a,b € J with 0 < a < b, we deduce by using
Lemma 1.4 that both I/ and V are automorphisms of .

Finally, V' is an involutary automorphism of X since taking any arbitrary
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r € X where z = > z,, a finite sum, where ¢, € X, for each @ € .J then

ac.]
eV =(Y 2 )V = (2. V2 )= 3w, = v since V7, = 1x,, where 1x,
uc.J act aeJ '

is the identity in X, for each a € J.

Therefore ¢ = U + V is a sum of an automorphism and an involutary
automorphism of X. ]
We extend our result for vector spaces to uncountable rank using the

following theorem which we state it in more general form.

Theorem 2.2  Let M = @ Rey be a free R-module of uncountable
PEx
rank over R, a commutative unital ring. If every free R-module of count-

able rank greater than 1 has the property that every endomorphism is a

sum of two automorphisms one being involutary, then M ealso has this

property.

Proof: We follow the proof of Theorem 1.9 of Chapter 1l exactly, with
n=2and m—1=0.

The only additional conditien we impose is that for a < f assume
(05.,)> = 1y, where 1y, is the identity in F(H,). For § =0, Hy = 0 and
therefore ¢ [y,= 0 = 0+ 0. Every endomorphism of Hy is involutary, so
this is correct.

In Case 1 where 8 is a limit ordinal we need to show that |J 6., is
o< f3
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involutary.
Let h be an arbitrary element of Hy = Ug H,. Then there exists o < 3
<
such that h € H,. Of course by construction h(lﬁ?g_,,[)2 = h. Then since
024 o, = 02 it follows that (6,4)* = 1y,.
In Case 2 8 =a+ 1 is not a limit ordinal.
Since 2 < rk(C,) < ¥y then by assumption we can choose 9, to be an
involutary automorphism of €. This does not effect the procedure as
followed in II, Theorem 1.9 but we do need to show that 5,1 is an
involution of H,,,. Since &5 .. is defined by (z+ ¢)fsn1 = T2, + ¥,
where v € H,, and c € (',. Then
(z+ C)(GZ,(H»I)?‘ = (2020 + c¥2)(f2.041)
= 2(0y..)* 4 c()?, (since 2bh,, € H, and cp» € C,)
=zx+ec
Lastly [ 64 is an involution: Let h be an arbitrary element of M =

A<

Hy. Then there exists f € & such that A € Hy. Of course by con-
f / A
PExr

struction h(fh4)? = h. It follows that |J (024)* = 1y where 1, is the
<

identity in £(M). O

Combining Theorem 1.3 and Theorem 2.1, and appealing to Theorem

2.2 we have proved,



Theorem 2.3 Let F' be a vector space. Every vector space over F' has

the involution property if and only if %E F.

§3 Completely decomposable groups

[n this section we consider the involution property for completely decom-

posable groups. We begin by examining the property for rational groups.

Theorem 3.1 Let G be a rational group with E-(G) = R. Then G has
the involution property if and only if %— ERand | Xp| <1

(Recall Xp = {p 1l | %g R}).

Proof: Note that the only elements of R which are involutions are 1

and —1.

D | =

Let 5 € R and [ Xg |= 0. Then, by I, Lemma 2.11, R = @ which

certainly has the property that every element is a sum of a unit and an

involution. Now let % € Rand | Xp |= 1, in other words let Xp = {g}
a

for some ¢ € 11\ {2}, i.e. R =Z,). Then let 7 be an arbitrary non-zero

element of R with, (a,b) = 1, so there exist non-zero integers k,{ such
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that ke +1b = 1. Now k(%) + 1 is an element of R and (k(7)+1)(b) = 1.

<]

Therefore b is a vnit of R .

If @ = 4:b then % =2 —1or =2+ 1 expresses % as a sum of a unit and
an involution.

We now consider when a # +b. Recall that b is a unit so ¢ { b and thus if
q|a+bthen gf(a+b)—2b=a—b. Similarly,ifg|a —bthengfa+b

In this way there are only two cases;

¢ If g4 (a + b): thus @ + b is a unit and we may write

a at+b b atbd : . .
T = ———73 = ——~—1, asum of a unit and an involution.
b b b b
o If g{(a— 0): then a — bis a unit and we may write
% = %b-i-% = GT_b-i—l , a sum of a unit and an involution.

It remains to prove the other direction. By Proposition 1.1, R does not
. . 1 |

have the involution property unless 5 € R so we proceed with 5 € R
and | Xp| > 1, e let {g,7} C Xp with ¢ # 7.
Choose any b € Z \ {0} such that b = 2mod g and & = —2 mod r.
The Chinese Remainder Theorem (see [, Theorem 2.23) guarantees the
existence of many such b's.

2—b

i . ) . ) 2
Then %— is not the sum of an involution and a unit of R since: 3—1 ="

is not a unit because g divides (2—0) and %—}-1 :2_1@ is not a unit because
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r divides (2 + b). O
Note that the only subrings of ) having the involution property are Q@
itself and the localization Z,) at a prime p 3# 2. Before attempting a

result for certain completely decomposable groups we introduce:

Lemma 3.2 Let G = A@ B be the direct sum of two arbitrary groups
with Hom(A, B} = 0. Then G has the involution property if and only if

Aand B do .

Proof: Let ¢ be an arbitrary endomorphism of G written as

¢B.A @B.B

where ¢4 € E(A), ¢ppp € E(B), ¢pa € Hom(B, A).

By I, Lemma 3.1, ¢ is an automorphism of & if and only if ¢4 4 and
¢ p are automorphisms of A and B respectively. If ¢ 1s an involutary
antomorphism of G then by necessity ¢4 1044 = 14 where 1, 1s the
identity in F(A) and ¢p pog.p = 15 where 15 is the identity in F(B). So
4.4 and ¢ p must be involutary automorphisms of A and B respectively
if ¢ 1s an involutary automorphism.

Now assume that A does not have the involution property. Then there
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exists ¥ € Hom(A, A) such that ¢ is not a sum of an automorphism
and an involutary autormorphism of A. Moreover, let ¢ be an arbitrary
endomorphism of & such that ¢4 4 = % using the same notation as above.
This ¢ cannot be a sum of two automorphisms, one being involutary, of
(' since this would require % to be a sum of an automorphism and an
involutary automorphism of A. Therefore G does not have the involution
property.

The proof is similar if B does not have the involution property.
Conversely, if both A and B have the involution property then given any

endomorphism 6 € E(G),

B4 0 4.4 0 VA A 0

Op.4 BB .4 opp 0 wvpp

where 84 4 = a4 4 + V4.4 15 a sum of two automorphisms of A, v4 4 being
involutary, and where 8g p = apg g+ vp.p is a sum of two aulomorphisins
of B, vp g being involutary. By I, Lemma 3.1, this is a sum of two

automorphisms of ¢ and the second is clearly involutary. (J

For any reduced type there may be more than one type for which it is

the reduced type, L.e. (k,),cn, where k, = 0 for each p € Il is a reduced
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type which 1s the reduced type for infinitely many distinct types. In this

context the next simple remark 1s useful in the proof which follows it.

Remark 3.3 Let G be a rational group with type t. If | Xg | is finite

then the reduced type of t is t itself.

Theorem 3.4 Let G = @ Gy be a completely decomposable group,
T (G)

where (1) denotes the t-homogeneous component of GG.

Furthermore, let vk(Gy)) =1 for each t € T,.(G).

Then G has the involution property if and only if %E R?f] and | XR?” |

<1, for eacht € T,,.(G), where R?ﬂ denotes that subring of ) containing

Z. and having the reduced type of t.

Proof: By Proposition 1.1, G cannot have the involution property unless
2 € Aut(G)and and if 2 € Aut{G) then 2 € Aut(Gyy) for each t € T,.(G).
Then, %E R?” for each ¢t € T...(G). Therefore, we assume from here on
in this proof that %E R{, for each t € T,.(G).

Assume there exists t' € T..(G) such that | Xpo | > 1 so, by Theorem
(th

3.1, Gy does not have the involution property. Now,let A = €p Gy,
1>t
€T (G
B =Gy and C = € G(y. Since a homomorphism cannot map an
1A
teT{G)
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element onto an element of lesser or incomparable type we know that
Hom(A,BY = 0 = Hom((A@ B),C). By Lemma 3.2, since B does
not have the involution property and Hom(A, B) = 0 then AP B does
not have the involution property and then since Hom((A @ B),C) =0,
again using Lemma 3.2 , (A€ B) D C = G does not have the involution
property.
Conversely, assume that | Xpo, | <1, for each t € T,..(G).
Following Remark 3.3 we note: since | Xp, | < 1 for each distinct
t € T..(G) then for each p € II there can be at most one ¢ € T,,.(G) and so
T..(G) is countable: each t € T,,.(G) is of reduced type. Now let £; be the
type of Q. Since t: > tforallt € T,.(G)\{tz} then Hom(G ), Gigy) = 0,
for all t € T..(G)\ {¢t-}, and in fact, letting G' = @ G, then
el AGN{1-}
Hom(G\.),G"')= 0. Since, by Theorem 3.1, each Gy, ¢ € T (G), has
the involution property then if | 7. (G) \ {tz} |< 1 (i.e. G' = Gy or 0.
for some type t) then by Lemma 3.2 we are finished.
Let | T..(G)\ {t-} |> 1. Since | Xpo, | <1, for each ¢t € T,.((G), there is
at most one symbol 0 within the type £. Then let ¢,,%s be two arbitrary
distinct types within 7., (G)\{¢- }. Then the 0 in the type ¢, corresponds

to some prime p;, and the 0 in {5 to a prime ps # py. Since ¢; £ ¢ and
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ty £ ti, then certainly Hom(G,), Gs,y) = 0 = Hom(G,), G,)), for all

ti,# t2 € T (G) \ {22},
We now show that E(G') has the involution property. Let ¢ be an

arbitrary endomorphism of G' then ¢' = > ¢, where ¢y, € E(Gy))
T (')

for each ¢t € T..(G)\ {t:} = T..(G"), since we have shown for all £, #
ta € T..(G") that ¢y, 4, = 0.

Since rk(iyyy = 1 for each ¢ € T,,.(G'), then by Theorem 3.1, we know for
each ¢t € T,,.(G') that (7, has the involution property therefore for each
t € T..(G') we may write ¢, = Viy + Upy for some Vi, Upy € Aut(Gy)
with (Vi4)? = lg,, where lg  is the identity in E(G,)). Let U' =

U,; and let V' = Vit Recalling that T, (G") is countable,
g
teTen{G) HETer (G7)

then, by Lemma 1.4, both U’ and V' are automorphisms of G'. Let

g = > g bean arbitrary element of G' where g, € G, for each
teTe (G

t € To(G"), then g(V')* = (5 (g)Vi.)V' and since (g,)Vi, € Gy
T (G)

for each t € T,,.(G') we have g(V')2 = 3 ¢ Vi,® = g thus V' is an
T (G')

involutary automorphism of G'. Therefore ¢' = {7/ + V' is a sum of two
automorphisms, one being involutary.
Now writing & = G;.) @ G’ and recalling that Hom(G;.,,G')= 0 then,

by Lemma 3.2, G has the involution property as both G' and Gy. do. 3
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§4 Complete modules

In this last section we provide some results which will be helpful in con-
sidering modules which are complete in their p-adic topologies. We also
consider torsion-complete p-groups giving a comprehensive result in this
case. The line of approach is similar to that followed by researchers of

the n—sum property previously (see [11]}. We begin with a lemma.

Lemma 4.1 Let E be a ring such that E is complete in ils p-adic topol-
ogy and where 2 is a unit in B. Let B = E[pE.
Then for any 1 € F with p*> = 15, where 1 is the identity in E, there

exists 1 € B such that + = p and i = 1 where 1 is the identity in E.

Proof: Let E and & be as above. We prove the conclusion in two steps.

Step 1: Tor all n € Z* and z an arbitrary ring element we have;
y ring

1= (z+ (1 —2)*= | 2®77(1 — 2}/, where as usual

denotes a binomial coefficient.
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2n

So we define, for each n € Z*, f,(z) = > £2I(1 — 2). In
3=0

this summation 2n — 7 > n for each term, so f,{z} = 0 mod z" for all

r < n,r € Z*. Now, rearranging f,(z) in the following way f, (z) =

In 9; i )
- 3> " ¥ 7I(1 — z)?, we note that 7 > n for each term so
j=n+1
7

fo(z) = lmod (z 1) forall 0 <+ < n, r € Z*. Since the same
congruences follow for f2(z) we then have:
fiz) = fo(z) mod "(z — 1) forallr < n,r e Z*. (*)
Another consequence of these congruences is that we can write

folz) = fle) mod 2 (z — 1) forall r <n-1,reZ". (**)
Finally  fi(z) = 2? + 2(x)(1 - &) = 22 - 1%, s0 that

fi(z) = 2 mod 2* — . (FHH)
Step 2 We apply the results of Step 1 to £ and £.

We are given that u? = 15 and that 2 is a unit of E{and also of E). If

we let e = %(;L + 1g) then ¢ is an idempotent of E, i.e. €2 =e.
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Now choose ¢ € E such that @ = €. Then m =€ —€e =0, s0
(a® — a) € pE. Therefore a" '(a — 15)""' € p"'E for all n € Z*. This
along with congruence (**) gives us f,(a) — fo_1{a) € p" 'Eforalln €
Z*. Therefore f,(a) is a cauchy sequence and hence HILH; fulay=ec E
since £ is complete.

The congruence (*) gives us f2(a) —~ fu(a) € p"E for all n € Z*. s0 in
the limit this implies that ¢> — e = 0. Therefore e is an idempotent.
Combining congruences (**) and (***) we get that f.(e) = fi(a) =
a mod a(a — 1g) which means f,(a) — a = 0 mod a(e — 1g) and since
ala—1g) € pE then f,(a)—a € pE foralln € Z*. Since {f.(a)—a} is
a cauchy sequence in p& and pF is complete, then in the imit e —a € pk&
50 € = 4 = ¢,

Choose i = 2e — 1g an involutary element of E since i* = (2e — 1g)? =
de* —de + 1 = 1p.

Then finally 2 = 26 — 15 = 2¢ — 15 = 2((%)(#—1— 1g))—1g=p. O

Theorem 4.2 Let F be « ring such that I is complete in its p-adic
topology, with 2 a unit of I/, and such that J(E )= pk.

If E/pE has the involution property then E also has this property .

145



Proof:

Take an arbitrary @ € E. We are given (0+pF) = (a+pE)+ (3+pFE)
where (o + pE) is a unit of EfpE, and {8 + pE) is an involution of

E/pE.

By Lemma 4.1 there exists 7, an involutary element of K, such that

(1 + pE) = (# + pE). Therefore we can write 8§ = (a+py) +:¢ for

some v € F.

Now we show that (a4 py) is a unit of E.

(a + pE) = ((a + py) + pE) 1s a unit of E/pE. Therefore there exists

¢ € F such that (¢ + pE) is a right inverse of ({a + py) + pE). It fol-

lows that (& + py)¢ — g € pF = J(F), where 1z is the identity in £,

Then by the properties of the Jacobson Radical (see I, Proposition 2.19)
(a +py)p is a unit in £. Writing (o + py)(#((a + py)¢) ') = 1 we see

that (o + py) has a right inverse. A similar argument shows (a + py)

also has a left inverse . Therefore (a + py) is a unit in £. 0

Lemma 4.3 Let M = @ Jye; (p € II), be a reduced torsion—free p-adic
icf

module of non—trivial rank. Let M be the p-adic completion of M. Then

E(M) _ E(M)

pE(ﬁ) ring P (M)’
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Proof: Letting z € M then z = Yo pim;,m; € M.

=0
% is divisible since, for any x € %, writing = = Z%pjmj +M,m; € M,
J:
n—1 x .
then z = }_ p'm; + ). p’m; + M for any arbitrary n € N, so that
j=0 j=n

r= ZzﬂmJ +M=p" 2?‘77?-,1+j + M =p"y+ M for some y € M.

j=n =0

— —

M 1s torsion—free since, for any z EMM, z =3 pm, + M, m; € M with
M M 7 J
i=0

p'z = 0 mod M, for some » € N, then (p" > p'm; + M) = M, which
=0

7

o .
means that = 3 p""'m; € M but since M contains only finite sums of
=0

. = .
p'm; then 3" p™™m; € M and so z € M.
3=n

Now consider the short exact sequence

0 M — M —2 o,
By a theorem of Cartan Eilenberg (see [7, Theorem 44.4)), this induces
the exact sequence

0> Hom(M, M) — Hom(M, ) — Hom(M %) —

Ext(M, M) — Bat(M, M) — E'mt(M,%)———} 0.
Now, as M is free then, by [7, Theorem 14.4], Fzt(M, M} = 0 and so we
get the short exact sequence
0 — Hom(M,M) — Hom(M, Ifff) — Hom(ﬂf,%) — 0.

M is dense in M so every member of Hom(M, fT/f)can be unigquely ex-

tended to an endomorphism of M so we rewrite our short exact sequence
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as

o

= M
0 — Hom(M, M) — Hom(M, M) — Hom(M,37)— 0.

————

Also, by [7, Theorem 43.1], Hom(@ Iy, M) = 1] Hmn(Jp, %) and so
icl icl
we have [] Hom(J,,, %)":“ Hﬁ:f* since ¢ : J, _——)% is uniquely deter-
el wcd

mined by {1)o. So

A

0 —s Hom{M, M) —s Hom(M, M) —» HM”") 0,
il

Hom(M M
where | [ | is the rank of M. From this we get H fg E%%"v which

)
)
Hom(M M) Hom(M M)
)

makes W torsion free and divisible. Since "“"_W is tor-

sion free then Hom(M, M) is pure in Hom(fl}, ﬁ)

. = Lo B(M) _
Given any ¢ € E(M), using the divisibility of B(M)’ we can write
¢ = 0 + pdy for some ¢ € F(M) and some ¢; € E(Iff)

o~ E(M
Define x : £(M) Hﬂjyp((ﬂT)) by ¢x =0+ pE(M). Let p =0+ pp; =
¢ +p¢’. Then 0 — ¢ € pE(IT/f) NpE(M) = pE(M) by purity of E(M)
in E(ﬁ) Therefore 8 = §' mod pE(M). Therefore x is well defined.
Now take any ¢, @' € E(JT/f) then ¢x + ¢'x = 8 + 0" + pE(M) for
suitable 8,0 € E(M) such that ¢ = 0 + pyp and ¢' = & + py', where
' € B(M). Therefore (¢ + ¢')x = (0 +0') + pE(M) = dx + ¢'x.

Also, using the same arbitrary ¢,¢’ as described above

b = 00’ + Opp’ + pd + ppy’ = 66" mod pE(M). Therefore (¢} =

148



06" + pE(M) = (6 + pE(M))(0' + pE(M)) = (dx)(¢'x). Hence we have
shown that x is a ring homomorphism.
Let ¢x = 0, for some ¢ € E(ﬁ), then for any 8 € E(M), ¥ € E([Tff) such

that ¢ = 8 + py, it follows that 8 € pE(M). Therefore ker(y) = pE(H)

. L - . ! . 8 E ﬂ/[ b .l A T l fM
x s surjective since letting 8 +pE(M) be an arbitrary element o pE(M)

——

and choosing any ¢ € E(M) then (0 + py)x = 8 + pE(M).

Now by the First Isomorphism Theorem,
E(M) _ E(M)

———

pE(M) ringPE(M)

12

The next result is due to Goldsmith, Pabst and Scott {11].

Lemma 4.4 Let M = @ Jye;, where p € I, be a torsion-free p-adic
icd

module. Then E(M)/pE(M) = E(M/pM).

ring

Proof: See [L1, Proposition 2.6.] O

Theorem 4.5 Let M = @ Je,, where p € Il, be a reduced torsion-free
il

p-adic module. Let M be the p-adic completion of M. Then M has the

involution property if and only of p # 2.

Proof: If p = 2 then 2 ¢ Aut(;”v[\) so, by Proposition 1.1, M does not

have the mvolution property.
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Now assume p # 2. Since M/pM is a vector space over Z,, the in-
tegers modulo p, then by Theorem 2.3, it is evident that E(M/pM)

has the involution property. By Lemma 4.3 and Lemma 4.4, we have

E(M) ., EM E(M
pE‘((ﬂfa?)) ,.’f\:ng((M')) r:_—T‘:’g E(M/pM). These being ring isomorphisms pE‘((M?))

also has the involution property. Since, by I, Lemma 2.20, J(E(ﬁ)) =
pE(H), it follows, by Theorem 4.2, that E(]’l?) and therefore M has the

involution property if and only if p # 2. tJ

We now consider the involution property in relation to the torsion com-

pletion of a p-group B. Let B = @ B, be a direct sum of cyclic groups
n<w

where each B, is a direct sum of cyclic groups of order p"*'. By the

torsion completion of B we mean the torsion part, T(B), of the p-adic

completion, g, of B and we denote the torsion completion of B by B.

Then, foranyn € N, B = (@ By) €D C, where C,, = { p"B, @ By ).
L<n n<k<w

Let 7, be the canonical projection of B onto C,,. Define p,, = 7, — Ti01-

Then p, is a projection of B onto B,,.

Now define the mapping A, from E(B) to E(B,[p]) as z(¢A,) =: (z¢)p,

for each * € B,[p] and each ¢ € E(B).

The following two lemmas are due to Castagna [3].
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Lemma 4.6 ), is a ring homomorphism of E(B) onto E(B,[p]).

Proof: Let ¢ € E(B) then ¢X, maps B,[p] to B,[p]. Note also that
z € C,[p] implies that z¢ € C,[p]. Let 3 also be an arbitrary element

of E(B). Then ), is a group homomorphism since for any = € By[p],

2({(¢+ P)h) = 2(¢ +¥)pn = (2d)p + (29 pr = 2(PAn) + (P An).
For any n € N, where B, # 0, we may write B, = €D Z,»+1¢;. Then
i‘EIﬂ

for any arbitrary i € 1,,, (p"e;)¢ = 5. o ;p"e; +y, wherey € C,y1[p].
Jela

Thus (pTe;)(@A.) = 3. ai;pe; and so (pPe;)¢ = (p"e;)(¢A,)+y. There-
j€ln

fore (p"e;) (9 An) = (P eidth)pn = ((p ei)pAnth+yip)pn = (P e} (PA) (W A).

Thus A,, is a ring homomorphism. ]

Lemma 4.7

Define A : E(B)Y — [[ E(B.[p]) by X} : ¢ (pAo, dA1, ... dN,, .. .).

e w

Then X is a ring epimorphism.

Proof: Since each A, is a ring homomorphism of E(B) into E(B,[p]),
for each n € N, then by the properties of ring direct products A is a ring

homomorphism also.

Let (¢4, ¢, @ --.) € T] E(B.[p]), where ¢, € E(B,[p]), for each

<l

n. Extend ¢/, to ¢! € E(B,) in the usual way.

If 2 € B then 2z = lim Y xp; the limit being taken in the p-adic

m = k<m



topology. Hence the elements LZ eppdy, m = 1,2,... form a cauchy
e<m

sequence in B with bounded order. Now define z¢ € E(B) to be the

limit of this sequence.

If z € B,[p| then z¢ = o), € B,[p] and hence (¢}, ... ., &,,...) = A

a

We include two results by Pierce [22].

Lemma 4.8 Let G be a p-group with no non-zero elements of infinite
height. Let H(G) = {¢ € E(G)|h(zd) > h(x) for each & € G[p],x # 0}.
Then H(G) = J(E(Q)) if and only if the following condition is satisified:
For each © € Glp] and each ¢ € H(G), selting y,, = z +xd+ ...+ xgp™!

where n € N, there exists ¢ y € G such that h(y—y,) — o0 asn — 0.

Proof: See [22, Lemma 14.5]. O

Lemma 4.9 Let B = @ B, be a direct sum of cyclic groups where each
n<w

B, is a direct sum of cyclic groups of order p"*'. Let B denote the

torsion completion of B.

Let H(G) = {¢ € BE(G)|h{(z¢) > h(z) for each x € G[p],z # 0}. Then

H(G) = J(E(G)).
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Proof: Let z be an arbitrary element of G[p] and ¥ an arbitrary element
of H(B) and consider the sequence (3, )ne Where y, = 24zt +. . .+
" !, Since v is a height increasing endomorphism then zy" € p"G
for each n € N so for any n; < n, € N it follows that y,, — ¥, =
—ryp™ —. . —zyp" 7! € pm G, Therefore (y,,),.e. 18 a cauchy sequence and
s0 converges to some y € B. Since, for any n € N, p(z¢") = (p2)y¥"* =

then the sequence (py,)ne., 1s cauchy and so converges to py = 0 so y
is a torsion element of B therefore y € B. Since y — ¥, € p"G for each
n € N then A(y —y,,)— o0 as n — 00. The result follows directly from
Lemma 4.8. 0

The above leads us to this useful lemma by Castagna:

Lemma 4.10 Let B = P B, be o direct sum of cyclic groups where
n<w

each B, is a direct sum of cyclic groups of order p**}. Lel B denote the

torsion completion of B. Then

E(B)/J(E(B)) = T[] B(B.lp).

J‘Irlg H<\'.IJ
Proof: Let A be defined as in Lemma 4.7. We must prove ker(A) =
J(E(B)).
Suppose ¢A = 0 for some ¢ € E(B). Then, for each n € N and each

z € B,lp), ©¢ € Cop1[p). Hence, if z # 0, h(xz¢) > h(z). Hence ¢ €
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H(B) = {¢ € B(B)|h(z¢)> h(z) for each = € B[p],z # 0}.

Conversely il ¢ € H(B) then ¢X =0, i.e. for z € B,[p] then ¢ € C,, 4,
so z{¢A)= 0. It follows that ker(A\)= H(B) and then, by Corollary 4.9,
that H(#(B))= J(FE(B)) and the result then follows. a

We are now ready for our final result.

Theorem 4.11 Let B = € B, be a direct sum of cyclic groups where
< w

each B, is a direct sum of cyclic groups of order p"1. Let B denote the

torsion completion of B. Then B has the involulion property if and only

ifp# 2.

Proof: If p = 2 then 2 ¢ Aut(B) so, by Proposition 1.1, B does not

have the involution property.

Let p # 2. In Lemma 4.10 we noted that K(B)/J(E(B)) _Eq I1 E(B.[2).
TiRG e

Each B,[p] is a vector space . Therefore, by Theorem 2.3, F(B,[p])

(p # 2) has the involution property. It is clear that the involution prop-

erty i1s inherited by ring direct products. Therefore the quotient ring

E(B)/J(E(B)) has the property. It follows then by Theorem 4.2 that

E(B) has the property and so also B. (Il
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