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Fabrication and Characterization of a Magnetized
Metal-Encapsulated FBG Sensor for Structural

Health Monitoring
Sagar Jinachandran, Huijun Li, Jiangtao Xi, B. Gangadhara Prusty,

Yuliya Semenova , Gerald Farrell, and Ginu Rajan

Abstract— A novel means of metal packaging of a fiber Bragg
grating (FBG) sensor using stainless steel and tin, together with
high temperature resistant samarium cobalt (SmCo) magnet
is proposed in this paper. The inclusion of high temperature-
capable SmCo magnets enable the metal packaging of the FBG
sensor with magnetic capabilities. This packaged sensor can be
placed in direct contact with the substrate structures such as
iron pipelines and other ferromagnetic components without any
adhesives, making them easily detachable and reusable. This is a
significant improvement compared with other commercial fiber
optic sensors which are, surface attached using epoxies or welded
to the substrate. The design parameters and characteristic
properties such as load, temperature, and vibration sensitivity of
the magnetic metal-packaged FBG sensor are studied numerically
and validated experimentally to demonstrate the feasibility of
using the encapsulated reusable FBGs for structural health
monitoring of compatible structures.

Index Terms— Acoustic emission sensors, fiber Bragg gratings,
strain, temperature, welding.

I. INTRODUCTION

STRUCTURAL health monitoring (SHM) using optical
fibre sensors (OFS) is a fast developing area of research

and the design and development of field-usable sensors
is currently accelerating [1]. Continuous assessment of
the integrity of structures such as those used in pipelines,
automotive, military applications, nuclear energy, and bridges
is essential for preventative maintenance and to predict
possible operational failure. This requires implementation
of adequate methods for SHM of metal structures [2], [3].
In order to detect damage and failures, various types of sensors
that measure parameters such as vibration, temperature, strain

Manuscript received May 28, 2018; revised August 13, 2018; accepted
August 13, 2018. Date of publication August 23, 2018; date of current version
October 10, 2018. The associate editor coordinating the review of this paper
and approving it for publication was Dr. Carlos Marques. (Corresponding
author: Sagar Jinachandran.)

S. Jinachandran, J. Xi, and G. Rajan are with the School of Electronics,
Computer and Telecommunication Engineering, University of Wollongong,
Wollongong, NSW 2522, Australia (e-mail: sj317@uowmail.edu.au;
ginu@uow.edu.au).

H. Li is with the School of Mechanical, Materials, Mechatronics and
Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522,
Australia.

B. G. Prusty is with the School of Mechanical and Manufacturing Engi-
neering, University of New South Wales, Kensington, NSW 2052, Australia.

Y. Semenova and G. Farrell are with the Photonics Research Centre, Dublin
Institute of Technology, Dublin 8, D08 X622 Ireland.

Digital Object Identifier 10.1109/JSEN.2018.2866803

and stress are integrated with the structures. Among a number
of currently available sensors, OFSs are becoming popular
due to their capability to be embedded in, or attached to,
a structure without affecting its operation [1]. Compared
with conventional electric and mechanical sensors, OFSs
have unique properties such as light weight, compact size,
long-term durability, good linearity, immunity to external elec-
tromagnetic interference and resistance to corrosion [4], [5].

Among the different types of fibre sensors, fibre Bragg
gratings (FBGs) are widely used and are one of the most
popular technology for SHM systems [6]–[8]. The unique
capabilities of FBGs to measure multiple parameters make
them attractive and also commercially viable. However, along
with these advantages, they have limitations such as a degraded
performance at elevated temperatures, lack of suitable packag-
ing for direct field deployment and cross-sensitivity between
strain and temperature [9].

Several methods have been proposed to package FBGs in
metal [10]–[13] for field deployment applications. Li et al. [10]
illustrated embedding of FBGs by layered manufacturing using
nickel and stainless steel which was then characterised for
strain and temperature measurements and found that this
method of embedding will increase the temperature sensitivity
of FBGs. Alemohammad and Toyserkan [11] demonstrated
a way of packaging FBGs in which a thin film of silver is
deposited on the fibre using a low-temperature laser micro-
deposition method followed by nickel electroplating on steel
using microscale laser-based direct writing method before
embedding. This method can be utilised for temperatures
of about 200 °C. Some of the other methods reported are
aluminium and nickel electroplating, brazing, and ultrasonic
welding with aluminium and tin substrates [11]–[13]. The
strain sensitivity of FBGs can also be enhanced by using
ceramic coatings such as an aluminium oxide coating spray
which can be used in high -temperature applications requiring
operation up to 600 °C [14]–[16].

In this paper, we propose, and demonstrate a novel method
for metal packaging of FBG sensors, using stainless steel
and tin, together with samarium cobalt (SmCo) magnets,
so that they can be easily attached to structures such as
iron pipelines and can operate at high temperatures. The
proposed configuration will provide a metal-packaged FBG
sensor which can be directly used in a range of applications,
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without any installation complications, in contrast to other
similar commercial sensors which are surface attached using
epoxies or welded to the substrate structure.

Section 2 of the paper describes the design and fabrication
methods for the packaged FBGs. Analysis of the design is con-
ducted using ANSYS workbench and is presented in Section 3.
The experimental arrangements for the characterization of the
fabricated sensors are discussed in section 4 and results are
discussed in Section 5. It is expected that the outcome of
this study will pave a way for a new economical surface
mountable packaging technology for FBGs that can operate
at high temperatures.

II. DESIGN AND FABRICATION OF THE MAGNETIC

AND METALLIC PACKAGED FBGS

An FBG comprises a short section of single-mode optical
fibre in which the core refractive index is periodically spatially
modulated using an intense optical interference pattern,
typically at UV wavelengths [5]–[6]. The light reflected by the
periodic variation of the refractive index of the Bragg grating
has a central wavelength λB given by;

λB = 2ne f f �, (1)

where � is the grating period and nef f is effective refractive
index of the fibre. The operation of an FBG strain or tem-
perature sensor is based on the measurement of the peak
wavelength shift induced by applied strain or a change in
temperature [17]. The temperature sensitivity of the FBG
arises from the change in its period associated with the
thermal expansion of the fibre, coupled with a change in
the refractive index arising from the thermo-optic effect. The
strain sensitivity arises from the change in the period of the
fibre grating due to applied strain coupled with a change in
the refractive index arising from the strain-optic effect. The
temperature-induced wavelength shift for the peak reflected
signal from a FBG is given by;

�λB = λB�T (α + ξ) , (2)

where α is the thermal expansion coefficient, and ξ is the
thermo-optic coefficient of fibre material [17]. Similarly the
strain induced wavelength shift can be expressed as;

�λB = λB (1−pα) �ε (3)

where �ε is the induced static strain, and pα is the photo-
elastic coefficient. For silica fibre the value of (1−pα) is
usually 0.78. Thus by measuring the wavelength shift, changes
in temperature or strain can be determined [18]. Similarly for
vibration induced dynamic strain, the corresponding dynamic
wavelength shift can be written as

�λB (z, t) =λB (1−pα)�ε (z, t) . (4)

Where z is the axial direction along which longitudinal strain
propagates and t is the time.

It should be also noted that a typical FBG starts to deteri-
orate at high temperatures close to 400 °C and with a further
increase in temperature the degradation is rapid [19], [20] and
structural deterioration can occur [21], [22]. The FBGs used in

this work were obtained from DK photonics and were 10 mm
long with polyimide buffer coating and with peak reflected
wavelengths of circa 1540 and 1550 nm, side lobe suppression
ratio (SLSR) higher than 15 dB, peak reflectivity greater than
90% and a bandwidth of <0.3 nm. The maximum operating
temperature of the polyimide-coated FBG sensors used in this
experiment is 300 °C [23].

A. Design, Fabrication of the Packaged Sensor

A cylindrical stainless-steel container is machined as shown
in Fig 1(a). A disc, was machined from tin to be inserted into
the cylinder (Fig 1(b)). A 1 mm-diameter hole was drilled
into the centre of the container base as well as the tin disc for
insertion of the optical fibres. Prior to assembly of the sensor,
the FBGs were sheathed in a 30 mm-long and 1 mm-outside
diameter teflon tube for protection and to impart strength to
the optical fibre where it entered and exited the assembly. Four
cylindrical SmCo magnets were positioned inside the container
as shown in Fig. 1(c). SmCo was chosen as the magnetic
material to be incorporated in this design, given its ability
to withstand high temperatures and also allowed a means to
position a fibre in the centre of a stainless steel container.
Typically permanent magnets lose their magnetic capabilities
at higher temperatures. For commonly used neodymium mag-
nets, the operating temperature is up to 150 °C. Recently
SmCo based permanent magnets have attracted interest due to
their superior high-temperature properties [24], [25]. In SmCo,
the interatomic exchange between the cobalt atoms gives rise
to higher Curie temperatures, which depend on the transition
metal sub lattice. Therefore, SmCo can have a Curie tem-
perature of about 800 °C and an operating temperature of
around 350 °C. It was for this reason that SmCo was chosen as
the magnet to be incorporated in this design. Solid cylindrical
magnets of 6.25 mm diameter and 12.7 mm height were used
allowing for the FBG to be inserted between the magnets
and accommodated easily as shown in Fig 1(c). For each
sample the sheathed FBG was inserted through the hole in
the tin disc (as shown in Fig 1(b)) and then into the central
hole between the magnets. The entire assembly was then
heated in an oven to 270 °C, which is significantly higher
than the melting point of tin (232 °C) so that the tin disc
melts and entirely fills the container. The sensor assembly
was then allowed to cool to room temperature. The assembly
process and the fabricated metal packaged sensor are shown
in Fig. 1(d) and 1(e) respectively. Tin was used for the binding
material as it does not react with stainless-steel. The properties
of materials such as the Young’s modulus, Poisson ratio and
the density of the material used in the design are shown
in table I.

The reflection spectra of the FBG were monitored before
and after packaging using a commercial FBG interrogator
(I-MON 256, Ibsen Photonics). A schematic diagram of the
FBG interrogation setup used in this study is shown in Fig. 2.
The interrogator has a wavelength resolution of 5 pm with a
maximum data acquisition rate of 6 kHz, and is connected to a
broadband source with a spectral range of 1530-1580 nm. The
reflected signal from the FBG was directed to the interrogator
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Fig. 1. The schematic of (a) stainless steel cylinder region (b) cross section view of the tin disc (c) placement of SmCo magnets within the cylinder (d)
the fabrication of the metal packaged magnetic FBG sensors components before the embedding, indicating the location of the SmCo magnets, stainless steel
cylinder and tin discs (e) the metallic packaged FBG sensor.

TABLE I

THE MATERIAL DATA FOR SIMULATION IN ANSYS

through a fibre circulator. The reflection spectra of the FBG
before and after packaging are shown in Fig. 3. Though the
reflectivity signal is reduced, no peak distortion was observed
due to the packaging. It is observed that the peak reflected
wavelength of the FBG before embedding was 1549.82 nm
and the wavelength after embedding is 1549.76 nm. As the
FBG was heated for only three hours at high temperature
during the fabrication, the thermal decay to optical fibre
material is not considered to be significant. However the
observed blue shift of 48 pm to the FBG signal after
fabrication indicates a residual strain developed within the
material after the packaging which is a common phenomenon.

B. Analysis of the Design Using the Finite Element
Method (FEM)

The packaged FBG is subjected to strain during fabrication
due to the thermal expansion of the encapsulating material.

Fig. 2. The schematic diagram of the FBG interrogation system.

Fig. 3. Reflection spectra of the FBG sensor before and after the packaging.

An ANSYS-based simulation tool was used to study the
impact of stress and strain caused by heating on the embedded
FBG sensor. We performed FEM simulation of the proposed
design with the dimensions and materials as discussed in
section IIA.

For the FEM analysis, the size of the meshing is selected
as auto and a triangular mesh is generated which encloses
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Fig. 4. (a) Thermal strain profile of the packaged sensor due to applied
temperature (b) the thermal strain along the embedded fibre containing
the FBG.

the structure and the material properties such as the Young’s
modulus, Poisson ratio and the density of the material used
in the design are shown in Table 1. The temperature was
applied using the transient structural tool box to act on the
whole of the structure. In both the cases a path was defined
along the length of the FBG and the resultant strains for
both the temperature and load were calculated. The numerical
model was analysed to calculate the induced thermal strain
as the temperature is increased from 20 °C to 200 °C during
fabrication. Fig 4(a) shows the overall thermal strain in the
structure, while Fig 4(b) shows the thermal strain experienced
by the fibre containing the FBG. From Fig 4(b) the thermal
strain induced on the fibre is calculated as 961.2 με over a
temperature change of 20 to 200 °C which gives a thermal
strain sensitivity of 0.4806 με/°C for the FBG which equates
to a change of 4.005 pm/°C. The standard temperature sensi-
tivity for a polyimide coated FBG is 10 pm/°C and the total
thermal sensitivity of an FBG is the sum of the free space
temperature sensitivity and thermal strain sensitivity and is
estimated as 14.005 pm/°C.

To estimate the load sensitivity of the packaged FBG sensor
we numerically calculated load-induced strain. The loads were
simulated to be acting on the tin region of the packaged
sensor, and a fixed support was also placed at the base of
the structure. The load range was selected from 0 N to 25 N
in 5 N increments, applied on the base of the structure, and it
was solved for the equivalent elastic strain on the FBG. The
obtained elastic strain shows the expected strain values for
the loads applied and it is calculated that for 25 N of applied
load the embedded FBG experiences a strain of 19.46 με
which equates to a strain sensitivity of 0.7784 με/N. The
strain distribution in the FBG and in the packaged material
with applied load is shown in Fig 5(a) whereas the strain
distribution along the FBG is shown in Fig 5(b), and a linear
change in strain is experienced by the FBG with applied load
when the simulation is carried out, this linear change is shown
in Fig 5(c).

III. EXPERIMENTAL SETUP FOR CHARACTERIZATION

OF THE METAL PACKAGED FBGS

The packaged FBG sensors were characterised for load,
temperature and vibration. The experimental arrangements for
characterization are shown in Fig 6 (a)-(c).For load charac-
terization, force was manually applied to the packaged sensor
using a mechanical bench vise longitudinally along the sensor
as shown in Fig 6(a). The applied forces are then measured
using a button load cell SLB-100 which is placed between
the packaged sensor and the load application point, with a
measurement range of 440 N. The theoretical percentage of
error of the load cell used was ±0.25%RO (SLB100). The
loads of up to 25 N are applied with an increment of 5 N and
the corresponding wavelength shift is measured. The applied
load for each increment was measured using the load cell
connected to a load cell conditioner unit SCC-SG24 and a
data acquisition board (NI6321e) and controlled via a Lab-
View program. For temperature characterization, the packaged
sensor is placed in a carbolite laboratory chamber furnace,
and the temperature is increased up to 200 °C in increments
of 5 °C. As the melting point of tin is 232 °C, the packaged
sensor was characterised only up to 200 °C. After the set up
reaches the desired temperature it is kept at that temperature
for approximately 10 minutes. This time was allowed between
each temperature recording to make sure that the tempera-
ture uniformity throughout the packaged sensor structure was
achieved. The temperature attained by the packaged sensor
was then verified using an infrared temperature sensor. The
shift in the peak reflected wavelength induced by the tem-
perature change was recorded by the interrogator. To evaluate
the vibration measurement capability of the packaged sensor
mechanical excitations were applied to the sensor using tuning
forks of frequency 500 Hz and 1 kHz. The packaged FBG
sensor was placed on the mechanical bench vise so that
there is a firm support for the packaged FBG sensor and
then the tin region of the packaged FBG sensors are excited
using the tuning forks as shown in Fig 6(c). The vibration-
induced dynamic wavelength shift was then measured using
an interrogator capable of measuring at frequencies of up
to 3 kHz. Fast Fourier transform (FFT) of the experimental
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Fig. 5. (a) Strain profile of the packaged sensor with applied load (b) strain
experienced by the embedded optical fibre (c) simulated load vs. strain plot
of the packaged sensor.

data was also calculated and The sampling frequency for
FFT is same as the sampling rate used which was 2400 Hz
and the frequency resolution was 0.01667. No windowing,
averaging or overlapping was used, to verify the applied and
measured frequencies [26].

IV. RESULTS AND DISCUSSIONS

The load-induced wavelength shift of the FBG correspond-
ing to the applied load is shown in Fig 7. Here two sets of data

Fig. 6. The photographs of the set up for characterisation (a) load
(b) temperature (c) vibration.

Fig. 7. Measured wavelength shift and calculated strain due to applied load
calculated strain from the experiment due to applied load and its comparison
with the simulation.

were obtained in order to obtain the error bars for the data
after comparing the two sets of data, and the corresponding
strain is calculated and is shown in Fig. 7. A linear fit to
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Fig. 8. Measured temperature induced wavelength shift of the packaged
sensor.

the measured data is shown in the figures. A strain value
of 13.37 με is obtained for an applied load of 25 N. This
corresponds to a sensitivity of 0.5348 με/N or 0.4456 pm/N.
The trend agrees well with the simulation results which
calculated a sensitivity of 0.7784 με/N and are also shown
in Fig 7 the difference in between the simulation and the
experiment may be because of the different loading and
boundary conditions. The load sensitivity of the FBGs
reported in the literature is in the range of approximately
0.1285 pm/N-1.933 pm/N [27], [28]. Compared to these
values, the sensitivity of the proposed packaged sensor is in
the lower mid-range of the reported ones, however it can be
enhanced by re-scaling the design and packaging dimensions.

The Bragg wavelength shift of the packaged sensor with
temperature was measured and is shown in Fig 8. The tem-
perature sensitivity of the metal-packaged FBG derived from
the results is 11.16 pm/°C. This shows that the temperature
sensitivity of the packaged FBG sensors is less than the
simulated result of 14.00 pm/°C. The difference between the
results may be due to the difference in the applied heating and
boundary conditions.

The vibration charactersitics of the packaged sensor were
measured. Fig. 9(a) shows the dynamic wavelength change of
the sensor the sudden change in the wavelength at 5.5 seconds
corresponds to the time when it is excited using a 500 Hz
tuning fork and the corresponding FFT, is shown in Fig. 9(b).
From the figures it is clear that the excitation event is resolv-
able with the FFT showing a measured peak at 502 Hz and
its corresponding first harmonic. The measured frequency for
a 1000 Hz excitation was 931 Hz.

This confirms that the fabricated metal-packaged sensor can
detect vibrations and upon using with a suitable interrogation
system, high frequency vibrations can be measured. Thus the
feasibility of the packaged sensor to pick up the vibrations
were successfully demonstrated. It is expected that the metal
embedded sensors can have a wide range of applications
and can be used in many industries such as manufacturing,
the aerospace industry, the oil industry, the power industry,
the automotive industry and the construction sector [20].
As such the proposed and demonstrated design of the metal-
packaged sensor with magnetic capabilities can simplify field
deployments for FBG sensors in the above application areas.

Fig. 9. (a) the wavelength v. time plot of the vibration experiment (b) the FFT
plot for the measured vibration at 500 Hz, (c) the FFT plot for the measured
vibration at 1 kHz.

V. CONCLUSION

A novel means to fabricate a metal-packaged magnetic,
reusable FBG was demonstrated in this paper using stainless
steel and tin together with SmCo magnets. The design of
the structure was analysed by finite element analysis using
ANSYS. The simulation results show a temperature sensi-
tivity 14.005 pm/°C and a load sensitivity of 0.7784 με/N.
The stand-alone packaged sensor has been characterised for
load, temperature, and vibration and were compared with
the simulation results. The measured load and temperature
sensitivity of the packaged sensor were 0.4456 με/N and
11.16 pm/°C respectively. The behaviour of the simulated
and experimental packaged sensor were similar but the small
difference in the sensitivity values are attributed to the dif-
ferent boundary conditions in the experiment and simulation.
The vibration measurement capability of the packaged sensor
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was also demonstrated by exciting the packaged sensor at
two different frequencies and the measured frequency was
in close agreement with the applied frequency. The ease of
fabrication, low cost, detachability and reusability of the metal-
encapsulated FBG can make it an excellent choice for SHM
especially for ferrous pipeline monitoring and for welded
structures.
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