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An Optical Machine Vision System for
Applications in Cytopathology

Jonathan M Blackledge, Fellow, IET and Dmitry A Dubovitskiy, Member, IET

Abstract— This paper discusses a new approach to the pro-
cesses of object detection, recognition and classification in a
digital image focusing on problem in Cytopathology. A unique self
learning procedure is presented in order to incorporate expert
knowledge. The classification method is based on the application
of a set of features which includes fractal parameters such as the
Lacunarity and Fourier dimension. Thus, the approach includes
the characterisation of an object in terms of its fractal properties
and texture characteristics. The principal issues associated with
object recognition are presented which include the basic model
and segmentation algorithms. The self-learning procedure for
designing a decision making engine using fuzzy logic and mem-
bership function theory is also presented and a novel technique
for the creation and extraction of information from a membership
function considered. The methods discussed and the algorithms
developed have a range of applications and in this work, we
focus the engineering of a system for automating a Papanicolaou
screening test.

Index Terms— Computer vision, Segmentation, Object recog-
nition, Contour detection, Edge detection, Decision making,
Self-learning, Fuzzy logic, Image morphology, Cytopathology,
Cervical smear analysis, Papanicolaou screening test.

I. INTRODUCTION

THE cervix is an important site for pathological studies,
particularly in women of reproductive age. It protects the

uterine cavity from intrusion of pathogenic micro-organisms,
promotes the movement of spermatozoa to the ovule and holds
a fetus in the uterus at pregnancy. The conventional study
of cellular structures on stained glass slides for cytological
reporting is a routine procedure for the early detection of
pre-carcinoma conditions. Visual inspection allows an estimate
to be made of the state of the cervix and a diagnosis to be
developed based on the cytological pattern observed providing
an adequate specimen is available. Worldwide, approximately
471,000 women are diagnosed with invasive carcinoma of
the cervix each year and the order of 233,000 die from the
disease. Although mortality from cervical cancer continues to
decrease due to improved screening programmes, it remains
among the most common female cancers in many countries.
For example, in the United Kingdom, it is ranked eleventh
for women, sexually transmitted infections by certain strains
of the human papilloma virus being the major cause of the
condition.
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A. Papanicolaou Screening

Cervical cancer is preceded by a precancerous condition
called Cervical Intraepithelial Neoplasia (CIN) which can be
easily treated if detected. It is therefore important to identify
CINs through a Papanicolaou screening test commonly known
as a ‘PAP test’. A small sample of cells from the surface of
the cervix is removed and smeared onto a glass slide and
the material is fixed in alcohol. The slide is then stained
and the sample(s) examined under a microscope, a search
being carried to detect abnormal cells. Examination typically
involves observing the nucleus of a cell and inspecting it
for characteristics that point toward abnormalities that include
size, texture and colour. For example, if the nucleus is enlarged
relative to the area of the cytoplasm as shown in the example
given in Figure 1 then there is a likelihood of abnormal activity
within the nucleus.

Fig. 1. Example of normal (left) and abnormal cell clusters (right) where,
in the latter case, the Cytoplasm to Nuclei area ratio is enlarged.

The order of four million cervical smears are taken annually
in the UK and fifty million in USA, for example, and a princi-
pal diagnostic problem is that about one fifth of the borderline
preparations show the disease at an advanced stage on referral
and biopsy. Overall there is a 50% ‘failure’ rate in detecting
significant diseases within borderline cases. In addition there
is a 50% ‘failure’ in detecting significant deceases within
negative cases. The reasons for this vary from extraction of
a sample, the preparation of the slide, but most of all, from
the sequential reading of a slide in the diagnostic laboratory
when human error occurs.

In current practices world-wide a diagnosis is performed
manually. It typically takes 8-10 minutes for a cytopathologist
to screen a slide and involves upto 300 movements of a
microscope over the slide. This approach not only takes time
but inevitably leads to outcomes in which it is not possible to
guarantee consistent and accurate results as many borderline
results are generated, for example. It is therefore of significant



value if accurate image analysis and object recognition tech-
niques can be developed in an attempt to automate the process
and produce a system that provides a reliable, consistent and
quantitative estimation of CINs and other abnormalities to
improve upon the subjective assessments of a cytopathologist.

A typical screening session involves a cytopathologist
analysing a slide under the microscope with a magnification
up to 400x. The output is related to the number of slides
and working hour per cytologist and an increase in either
reduces the speed and reliability of the results. Telecytology
[5] provides a large number of digital images for consider-
ation which can lead increased human error. Moreover, in
telecytology the cytopatholoist is not usually able to examine
cellular details and to change the focal plane of the image.
In virtual microscopy a digital image of the entire slide is
generated and consequently the image file can become very
large ∼4-7Gb. Another problem with virtual microscopy is
that the focal plane limits the representation of the specimen.
Virtual microscopy is used for proficiency tests and there are a
number of commercially available medical imaging assistant
tools [11], [12], [13]. However, a cytopathologist is still an
important factor in the ‘diagnostic cycle’. Furthermore, due
to compression and/or differences in the focal depth, many
images may not provide a clear enough representation of a
cell in comparison to those obtained using conventional mi-
croscopy. Thus, the development of automated recognition and
classification systems provides the potential for introducing
quality control in national screening procedures.

B. Image Analysis and Pattern Recognition

Conventional microscopy, as applied to cytopathology, in-
volves the use of image processing methods that are often
designed in an attempt to provide a machine interpretation
of an image, ideally in a form that allows some decision
criterion to be applied, such that a pattern and/or object can
be recognised [1], [2]. Pattern recognition uses a range of
different approaches that are not necessarily based on any
one particular theme or unified theoretical approach. The main
problem is that, to date, there is no complete theoretical model
for simulating the processes that take place when a human
interprets an image generated by the eye, i.e. there is no
fully compatible model, currently available, for explaining the
processes of visual image comprehension. Hence, machine or
computer vision remains a rather elusive subject area in which
automatic inspection systems are advanced without having a
fully operational theoretical framework as a guide. Never-
theless, numerous algorithms for interpreting two- and three-
dimensional objects in a digital image have and continue to be
researched in order to design systems that can provide reliable
automatic object detection and recognition in an independent
environment, e.g. [3], [4], [14], [16], [25].

Vision can be thought of as a process of linking parts of
the visual field (objects) with stored information or templates
about their significance for the observer. There are a number of
questions concerning vision such as: (i) what are the goals and
constraints? (ii) what type of algorithm or set of algorithms
is required to effect vision? (iii) what are the implications

for the process given the types of hardware that might be
available? (iv) what are the levels of representation required
to achieve vision? The levels of representation are dependent
on what type of segmentation can and/or should be applied
to an image. For example, we may be able to produce a
primal sketch from an image via some measure of the intensity
changes in a scene which are recorded as place tokens and
stored in a database. This allows sets of raw components
to be generated, e.g. regions of pixels with similar intensity
values or sets of lines obtained by isolating the edges of an
image scene and computed by locating regions where there is
a significant difference in the intensity. However, such sets are
subject to inherent ambiguities when computed from a given
input image and associated with those from which an existing
database has been constructed. Such ambiguities can only be
overcome by the application of high-level rules, based on how
humans interpret images, but the nature of this interpretation is
not always clear. Nevertheless, parts of an image will tend to
have an association if they share size, colour, figural similarity,
continuity, shading and texture, for example. For this purpose,
we are required to consider how best to segment an image and
what form this segmentation should take.

The identification of the edges of an object in an image
scene is an important aspect of the human visual system
because it provides information on the basic topology of the
object from which an interpretative match can be achieved. In
other words, the segmentation of an image into a complex
of edges is a useful pre-requisite for object identification.
However, although many low-level processing methods can be
applied for this purpose, the problem is to decide which object
boundary each pixel in an image falls within and which high-
level constraints are necessary. Thus, in many cases, a principal
question is, which comes first, recognition or segmentation?

Compared to image processing, computer vision (which
incorporates machine vision) is more than automated image
processing. It results in a conclusion, based on a machine
performing an inspection of its own. The machine must be
programmed to be sensitive to the same aspects of the visual
field as humans find meaningful. Segmentation is concerned
with the process of dividing an image into meaningful regions
or segments. It is used in image analysis to separate features or
regions of a pre-determined type from the background; it is the
first step in automatic image analysis and pattern recognition.
Segmentation is broadly based on one of two properties in
an image: (i) similarity; (ii) discontinuity. The first property
is used to segment an image into regions which have grey
(or colour) levels within a predetermined range. The second
property segments the image into regions of discontinuity
where there is a more or less abrupt change in the values
of the grey (or colour) levels.

In this paper, we consider an approach to object detection in
an image that is based on a new segmentation (edge detection)
algorithm based on a Contour Tracing Algorithm and space-
oriented filter [6]. The image usually requires enhancing
before it is process and for this purpose a novel self-adjusting
sharpening filter has been developed as discussed in this paper.
The segmented object is then analysed in terms metrics derived
from both a Euclidean and fractal geometric perspective, the



output fields being used to train a fuzzy inference engine and
the recognition structure being based on some of the methods
reported in [15], for example. The approach considered is
generic in that it can, in principle, be applied to any type
of imaging modality. There are numerous applications of
this technique especially when self-calibration and leaning is
mandatory. Example applications may include remote sensing,
non-destructive evaluation and testing and many other appli-
cations which specifically require the classification of objects
that are textural. However, in this paper we focus on one
particular application, namely, the diagnosis of cervical cancer
based on standard Papanicolaou screening test images.

II. OBJECT RECOGNITION ARCHITECTURE

Suppose we have an image which is given by a function
f(x, y) and contains some object described by a set S =
{s1, s2, ..., sn}. We consider the case when it is necessary
to define a sample which is somewhat ‘close’ to this object.
This task can be reduced to the construction of some function
determining a degree of proximity of the object to a sample
- a template of the object. Recognition is the process of
comparing individual features against some pre-established
template subject to a set of conditions and tolerances. The
process of recognition commonly takes place in four definable
stages: (i) image acquisition and filtering (as required for the
removal of noise, for example); (ii) object location (which
may include edge detection); (iii) measurement of object
parameters; (iv) object class estimation. We now consider the
common aspects of each step. In particular, we consider details
on the design features and their implementation together with
their advantages, disadvantages and proposals for a solution
whose application, in this paper, focuses on problems in
cytopathology.

Image acquisition depends on the technology that is best
suited for integration with a particular application. For pattern
recognition in cytopathology, for example, high fidelity digital
images are required for image analysis whose resolution is,
at least, compatible by the image acquisition equipment used
for human inspection. For cytopathology this involves optical
microscopy and for the application considered in this work,
the microscope is equipped with digital camera. The colour
images generated, examples of which are presented in this
paper are, in general, relatively noise free and are digitised
using a standard CCD camera. Nevertheless, it is important
that good quality images are obtained that are homogeneous
with regard to brightness and contrast, for example. Unless
consistently high quality images can be generated that are
compatible with the sample images used to design a given
computer vision system, then that same system can be severely
compromised.

The system discussed in this paper is based on an object
detection technique that includes a novel segmentation method
and must be adjusted or ‘fine tuned’ for the each area of
application. The necessary features associated with the ‘object’
must be computed for a particular area of application. In the
work reported here, this includes objects for which fractal
models are well suited [23], [1], [2]. The system provides

an output (i.e. a decision) using a knowledge database and
outputs a result by subscribing different objects. The ‘expert
data’ in the application field creates the knowledge database
by using a supervised training system with a number of model
objects [18]. The recognition process is illustrated in Figure 2,
a process that includes the following steps:

image
acqusition

1

digital image {fm,n}

special
transform

2

transformed image {f̃m,n}

segmentation
3

. . . object images {f1
m,n}, {f2

m,n}, . . .

feature
detection

4

. . . feature vectors {x1
k}, {x2

k}, . . .

decision
making

5

. . . class probability vectors {p1
j}, {p2

j}, . . .

reporting
6

Fig. 2. Recognition processes.

1) Image Acquisition and Filtering
A physical object is digitally imaged and the data
transferred to memory using current image acquisition
hardware available commercially. The image is filtered
to reduce noise and to remove unnecessary features such
as light flecks.

2) Special Transform: Edge Detection
The digital image function fm,n is transformed into
f̃m,n to identify regions of interest and provide an
input dataset for the segmentation and feature detection
operations [17]. This transform avoids the use of edge
detection filters which have proved to be highly unreli-
able in the present application.

3) Segmentation
The image {fm,n} is segmented into individual ob-
jects {f1

m,n}, {f2
m,n}, . . . to perform a separate analysis

of each region. This step includes such operations as
thresholding, morphological analysis and contour tracing
using the convex hull method developed in [6].

4) Feature Detection
Feature vectors {x1

k}, {x2
k}, . . . are computed from the

object images {f1
m,n}, {f2

m,n}, . . . and corresponding
{f̃1
m,n}, {f̃2

m,n}, . . . . The features are numeric param-
eters that characterize the object inclusive of its texture.



The feature vectors computed consist of a number of Eu-
clidean and fractal geometric parameters together with
statistical measures in both one- and two-dimensions.
The one-dimensional features correspond to the border
of an object whereas the two-dimensional features relate
to the surface within and/or around the object.

5) Decision Making
This involves assigning a probability to a predefined
set of classes [21]. Probability theory and fuzzy logic
[19] are applied to estimate the class probability vec-
tors {p1

j}, {p2
j}, . . . from the object feature vectors

{x1
k}, {x2

k}, . . . . A fundamental problem is to establish
a quantitative relationship between features and class
probabilities, i.e.

{pj} ↔ {xk}

A ‘decision’ is the estimated class of the object coupled
with the a probabilistic accuracy [20].

The application considered in this paper is based on algo-
rithms that have been designed to solve problems associated
with the above steps details of which are given in [6] which
provides algorithms on threshold selection and a contour
tracing algorithm using the ‘convex hull’ property. However,
the application considered here requires some additional algo-
rithms to solve the object recognition problem associated with
cytopathology. This is because edge detection is particularly
difficult to solve for images consisting of many cells and
a special space-oriented filter has therefore been designed
to extract parameters associated with the spatial distribution
of object borders. This includes a self-adjustable filter for
enhanced object sharpness that has been considered as an
inter-medium mask filter in order to clarify a cellular border.
For characterisation, the line of objects found using the steps
described above, need to be considered in terms of their major
properties.

With regard to the design of a decision making engine,
the approach proposed is based on establishing an expert
learning procedure in which a Knowledge Data Base (KDB)
is constructed based on answers that an expert makes during
a manual mode. Once the KDB has been developed, the
system is ready for application in the field and provides results
automatically. However, the accuracy and robustness of the
output depends critically on the extent and and completeness
of the KDB as well as the quality of the input image, primarily
in terms of its compatibility with those images that have been
used to generate the KDB. The algorithm discussed in Section
IV has no analogy with previous contour tracing algorithms
and has been designed to trace a contour of an object with
any level of complexity to produce an output that consists
of a consecutive list of coordinates of an object’s edge. The
algorithm is optimised in terms of computational efficiency
and can be realised in a compact form suitable for hardware
implementation.

III. REGION OF INTEREST SEGMENTATION

For applications in cytopathology, a fundamental require-
ment is to select Regions of Interest (ROI) for detail review.

The ROI is not taken to be the object itself but its local
boundary. This approach improves the efficiency associated
with the process of recognition, a process that is recursive and
involves different settings required to evaluate the probability
of a the presence of a cell in the image. The algorithm used
for ROI segmentation is based on adaptive thresholding and
morphological analysis. The adaptive image threshold is given
by

Tx =
1
2

(
min
y

(
max
x

f(x, y)
)
− 〈max

x
f(x, y)〉y

)
+〈max

x
f(x, y)〉y,

Ty =
1
2

(
min
x

(
max
y

f(x, y)
)
− 〈max

y
f(x, y)〉x

)
+〈max

y
f(x, y)〉x,

T =

{
Tx, Tx ≥ Ty,
Ty, otherwise,

where 〈·〉x and 〈·〉y are the means within column x and row y,
respectively. This approach provides a solution for extracting
the most significant features in the image, in this case, the
nucleus of cells. If these objects cover an extensive area of the
image, then this ‘filter’ provides the fastest compact solution.
An example of the output generated by this algorithm is shown
in Figure 3). In order to obtain a clear boundary, morphological
analysis is applied to select objects with a predefined area. This
is discussed in the following section.

Fig. 3. Example of ROI segmentation where + points to the location in the
image where there is a cell.

IV. SPACE ORIENTED FILTER DESIGN FOR EDGE
DETECTION

Edge detection is used to identify the edges in an image
which are those areas that correspond to object boundaries.
To find these edges, an algorithm is designed that looks for
places in the image where the intensity changes rapidly; this
is typically based on using one of two principal criteria:



(i) areas where the first derivative of the intensity is larger
in magnitude than some threshold;

(ii) regions where the second derivative of the intensity has
a zero crossing.

There are many standard digital filters available for this
process. Taking into account that in many images, high fre-
quency noise (white noise) is usually present, we consider an
appropriate adaptive filtering strategy.

A. Noise Reduction by Adaptive Wiener Filtering

Edge detection methods typically require an effective noise
reduction algorithm in order to eliminate noise which should
be undertaken adaptively. A well known adaptive filter is the
Wiener filter which can be applied to an image adaptively,
tailoring itself to the local image variance. When the variance
is large, the Wiener filter performs little smoothing; when
the variance is small, it performs more smoothing. This
approach often produces better results than linear filtering. The
adaptive filter is more selective than a comparable linear filter,
preserving edges and other high frequency parts of an image.
Although the Wiener filter requires greater computational time
than linear filtering, it performs better when the noise is
constant-power or ’white’ additive noise, such as Gaussian
noise which is one of the conditions required to simplify the
result of applying a least squares criterion.

The Wiener filter algorithm uses a pixel-wise adaptive filter-
ing procedure with neighborhoods of size m-by-n to estimate
the local image mean and standard deviation. It estimates the
local mean and variance around each pixel given respectively
by

µ =
1
nm

∑
r,c∈η

Is(r, c) - mean of the brightness of the image

and
σ2 =

1
nm

∑
r,c∈η

(I2
s (r, c)− µ2) - dispersion

where the sum is taken over the n-by-m local neighborhood
of each pixel in the image I . The algorithm then creates a
pixel-wise Wiener filter using the following estimates

ID (r, c) = µ+
σ2 − v2

σ2
(Is(r, c)− µ)

where ν2 is the noise variance. If the noise variance is not
given, the filter uses the average of all the local estimated
variances. In this work, the Wiener filter is used as a first step
to processing the image prior to applying a space oriented edge
detection filter in order to provide an image that is optimal with
regard to solving the edge detection problem for applications
in cytopathology. Example results are shown in Figures 4
and 5. Figure 4 shows the original image and Figure 5 is
the result of applying the Wiener filter described above.

B. Edge Detection

Edge detection methods are based on a number of derivative
estimators. For some of these estimators, it is possible to
specify whether the operation should be sensitive to horizontal

Fig. 4. Original image of a cell cluster obtained from a cervical smear after
staining.

Fig. 5. Adaptive Wiener filtered image.

or vertical edges, or both. In each case, the aim is to return
a binary image - an array containing elements which are
either 0 or 1 where 1 represents an element of an edge and 0
represents an empty edge space. Moreover, within the context
of the overall approach, it is assumed that different edge
detectors will yield minimal differences. In this application
a Canny filter [8] is used to provide a first estimate of the
edge boundaries of a cell nucleus.

The Canny edge detector is based on a functional analysis
to derive an optimal function for edge detection, starting
with three optimisation criteria, namely, good detection, good
localization, and only one response per edge under white noise
conditions. The 1D ‘Canny function’ is accurately approxi-
mated by the derivative of a Gaussian function which is then
combined with a Gaussian of identical standard deviation in
the perpendicular direction, truncated at 0.001 of its peak
value, and split into suitable masks. Underlying this method, is
the idea of locating edges at the local maxima of the gradient
magnitudes of a Gaussian-smoothed image. In addition, the
Canny implementation employs a hysteresis operation on edge
magnitude in order to make edges reasonably connected.
Finally, a multiple-scale method is employed to analyse the



output of the edge detector.

Fig. 6. Application of a Canny Filter to Figure 5.

An example of applying a Canny filter to Figure 5 is
given in Figure 6. This result typically illustrates that it
is not possible to uniquely tell where the edge of a cell or
nuclei occurs, especially when there is a connection between
one edge with another gradient, where Canny edge detection
introduces errors. For this purpose, it is necessary to design a
new filter which is discussed in the following section.

C. Space Oriented Filtering

In some cases, the nuclei of the cells in a cervical smear
can appear very close together, or be in touch with a foreign
object such as a bacterium. In this case, an extra filter must be
used to obtain a contour boundary. For this purpose, a space-
oriented filter for the detection of ‘holes’ has been developed.
The nuclei represent a ‘hole’ if the image is visualised in terms
of a surface in which the nuclei are regions of lower intensity.
The filter has been designed to take account of the following:
(i) objects should be of a quasi-spherical form; (ii) the search
space should include objects with lower intensity (i.e. which
have a darker colour); (iii) it is necessary to find only the
surface of a cell without a hysteresis zone. An example of a
profile that is characteristic of a nucleus is given in Figure 7.
The same principle can of course be used for other objects.

The solution to this problem is compounded in the algorithm
that is now described, the basic procedure being illustrated in
Figure 8. To start with, we estimate the brightness of the
central area (using a window of 9×9 pixels) and a circle (a
layer consisting of 2 pixels). If the center is dark, we suppose
that it is part of the nuclei and compare the intensity along the
white line in Figure 8 with the central zone. If the profile along
this line has a maximum and minimum gradient, we consider
the angle between them. If the angle lies in the range 79o to
248o degrees then we assume that we are near to the border
of a nucleus. This angle can be estimated automatically or
established as a constant and ‘hard-wired’ into the algorithm.

The next step is to apply the hole detection method (red
and brown lines in Figure 8). This hole detection algorithm
is extended in a procedure to decide whether the area under
investigation is a nuclei or otherwise. In Figure 8, the

Fig. 7. Example intensity profile of a Nucleus.

Fig. 8. Mask used for space-oriented filtering.

maximum length of the brown line is approximately 70 pixels
(which depends on the image resolution) and can be chosen
automatically. A useful procedure is to check the direction
toward the center of a nuclei but this is application dependent.
If, for a period, there is no hole, then the present position is
ignored. If the test for detecting a hole gives a positive result,
as in an index figure, the line from the center of a hole up to
the border of a hysteresis is drawn.

In the central part of the image (Figure 5) one can see 5
joint kernels in the centre of the image. To automatically find
the edges between all of these nuclei requires a special algo-
rithm for object separation The sequence of steps associated
with the algorithm designed for this purpose can be divided
into following list:

(i) estimation of the edge;
(ii) search the boundaries of the cell;

(iii) calculate the direction to the center of a core;
(iv) search the opposite edge of the core;
(v) calculate the centers of the kernels;

(vi) save the index map of the figure.
Estimation of edge expectation

Pre-processing can be used to form part of the estimated
performance for edge expectation. This allows for accelerated



scanning of the image. For this purpose a structure estimation
operator is applied at the central part of the mask as shown in
Figure 8. This selects only those nuclei of interest and avoids
spending computer time processing other parts of the image.
Searching the boundaries of the cell (Step 1)

The ring around of the central part of a mask (Figure 8) is
decomposed using the operator

R = [x1, x2, ...xn]

In the following analysis we evaluated the gradient sequence:

g1..n =
dR

dn

Upon demarcation of a core and after the derivation, the
gradient window will contain two maxima - positive and
negative. The polar angle then gives the direction of the
nuclear center θ1.
Calculation of the direction of the center (Step 2)

In this step, the expected direction to the center is updated
by means of a check on the position of the angle on a plane
between the maxima obtained in the previous step. In general,
for the purpose of recognition, a point on the binary map uses
a convolution technique with a series of masks for searching
the exact point on the object edge. The sequence of masks
used is as follows:

M =


 0 0 0

0 1 0
0 1 0

 ,
 0 0 0

0 1 0
1 1 0

 ,
 0 0 0

0 1 0
0 1 1

 ,
 0 0 0

0 1 0
1 1 1

 ,
 0 0 0

0 1 1
1 1 1

 ,
 0 0 0

1 1 0
1 1 1

 
The appropriate mask is applied in the direction of a local

gradient rate and gives a maximal convolution between both
the points obtained from the previous step. From the definition
of the angle θ2, utilizing the a priori results, we form the ratio

θ =
θ1 + θ2

2
The logical conformity of the mask and adjacent points of the
binary map is further evaluated and the binary representation
of object is determined via

IB(r, c) =
{

1, if M /∈ Ig;
0, if M ∈ Ig.

The profile information (gradient and amplitude) is mem-
orized for Step 3 (discussed below). The dimension IB(r, c)
corresponds to the dimension and starting map Ig(r, c).
Search for the opposite edge of a core (Step 3)

The opposite gradient is searched for by finding of centre
of a nuclei together with the gradient on the opposite end
which serves as a final confirmation for the coordinates of
object. In Figure 9 these lines are illustrated in brown. The
opposite profile has to have the same properties as at Step
2. This prevents any wrong detection through irregularities in
the image. If the opposite profile is found, then a green line
is ‘painted’ on the index binary image from the center to the
boundary of the nucleus as in Figure 10.

Fig. 9. Mask of the space-oriented filter with an image.

Fig. 10. Result of applying the space oriented filter to an image.

Calculation of the central of kernel
The centre calculation algorithm is based on the weighted

mean from the total number of bars detected in the previous
steps - Figure 3. The calculation depends on the kind of
implementation used to design the processing engine. If the
calculations are implemented in a programmed logic, the data
are better stored in an index space. For a PC, the data are
stored as array of coordinates.
Saving the index map (Figure 11)

After application of the algorithm, a connected area can
be detected which serves as an index for further processing.
An example of an index image is given in Figure 11
which includes the application of erosion and dilation for the
subdivision of close located objects.

V. TWO DIMENSIONAL ALGORITHM FOR IMAGE
SHARPENING

In this section, we consider the procedures necessary during
object recognition. These procedures are adaptive and are not
bound to a particular range of applications.



Fig. 11. Segmentation of nuclei (Index Image).

A. Self-adjustable filter for enhanced object sharpness

The task of edge searching of an object in an image is
a part of the process of object recognition. In the case of
an image with no preliminary information on the quantity of
the points on each edge, resolution or particular boundary,
it is possible to convert the data into an auxiliary map with
an increased contrast range. With existing algorithms image
contrast enhancement does not provide sufficient fidelity to
cope with unknown levels of difference between objects.
Typically, noise appears causing an increase in the level of
transformation parameters and at a low level there is poor
detection of an objects edge.

An image I , is represented in a computer memory in terms
of an array r × c of points and the value of a particular
point is determined as I(r, c). One of the approaches to apply-
ing a filter or transformation to two-dimensional information
representation is in terms of a sequence of masks M over
m× n points and the subsequent calculation of a value for a
central pixel depending on its environment. We now consider

Fig. 12. Cytology cells - Mild dyskaryosis.

an algorithm for calculating the value of a central point in
a moving window M with m × n points. The algorithm is
applied sequentially and not recursively to all points of an

image. For example, consider the image given in (Figure 12).
The characteristic property of the given image is that during
preparation of a sample, a cell can be fixed at a given angle and
consequently, it can have a different gradient rate on different
boundaries. The mask sizes m and n are selected according to
the proportional sizes of the object to the image. The method
is compounded in the following stages:

1. The first step is to sort out the array M [m × n] in
terms of increasing values. The result of applying this
operation gives an information represented in terms of
a one-dimensional array S[i] as illustrated in Figure 13.

Fig. 13. Profile obtained by sorting an image into an array of increasing
pixel values.

2. We define an index i as a point with the greatest value
of a gradient rate Simax. Otherwise, we determine a
maximal gradient rate such that the given position of
the window M does not correspond to a boundary of
the object. It is then possible to apply general filtering
methods, e.g. to calculate the average value or to take
the value of a point with a predetermined index and with
this value, assign it to a central point. For example, in
Figure 13 Simax is the point shown by the red arrow.

3. We estimate in which part of the sorted array S[i] from
mask M there exists a value of the original central
mask point Ic(r, c). For example, in Figure 13, this
is indicated by the green arrow. We denote this part of
the array by Sc[i] (see Figure 13).

4. We estimate the parameter established by the user which
sets a factor on a boundary excretion - in percentage
terms, 50% for example - and then define the value of
point Scr[i] of the array Sc[i] from the beginning of
the array. This value is the resultant solution Ic(r, c) =
Scr[i] displayed by the cyan arrow in Figure 13.

An example result of applying this procedure is shown in
Figure 14. Application of this filter allows us to observe very
precisely the evolution of cell boundaries during the operation
of the object recognition system.



Fig. 14. Filtered image.

VI. PRECISION CALCULATIONS ON THE MEASURE OF
STRUCTURE

For characterization, the line of objects obtained using
the method described in the previous section, need to be
considered in terms of their major properties. The modern
requirements for recognition systems establish structures as
main features for natural objects such as the measures defined
by Tamura [9].

For structure classification, we apply fractal geometry for
a description of natural objects. A fundamental property of
a fractal is its Fractal Dimension. There are a number ways
to calculate this feature of a fractal object and many dif-
ferent approaches to computing the Fractal Dimension have
been considered [23]. For example, the origins of the ‘box
dimension’ is hard to trace but would have been consid-
ered by pioneers of the Hausdorff measure and dimension
and was probably rejected as being less satisfactory from
a computational viewpoint. The precision of the calculation
is less than two decimal places. Computation of the Fourier
dimension provides a better result [10]. However, in our case,
we have to estimate the dimension from an image with a
lower resolution than that at which the object ‘exists’ using a
frequency spectrum that is subject to additive noise.

Many signal processing applications are based on the use
of different transforms. The signals under consideration are
written as a linear combination (or series) of some predefined
set of functions. Traditionally, orthogonal basis functions have
been used for this purpose, for example, the discrete Fourier
transform. The theory for orthogonal basis and Hilbert spaces
can, however, be generalized to other sequences of functions
called frames which have been used in this work to develop
measures of structure with high precision.

If we consider the profile of a typical cytopathology image,
then the curve does not coincide with a sine-wave signal.
To obtain adequate accuracy, it is necessary to magnify the
resolution of the image, which in turn introduces distortion.
For increased accuracy on low-resolution data, we consider a
convolution function of a form more consistent with the profile

of a video signal. For a signal I we consider the representation
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In this work, application of the power spectrum method used
to compute the fractal dimension of a cell boundary and
cell surface is based the above representations for F (k) and
F (p, q) respectively. We then consider the power spectrum
of an ideal fractal signal given by P = c|k|−β , where c is a
constant and β is the spectral exponent. In two dimensions,
the power spectrum is given by P (kx, ky) = c|k|−β , where
|k| =

√
k2
x + k2

y . In both cases, application of the least squares
method or Orthogonal Linear Regression yields a solution
for β and c [23], the relationship between β and the Fractal
Dimension DF being given by [23]

DF =
3DT + 2− β

2
for Topological Dimension DT . This approach allows us to
drop the limits on the recognition of small objects since
application of the FFT (for computing the power spectrum)
works well (in terms of computational accuracy) only for
large data sets, i.e. arrays sizes larger than 256 and 256×256.
Tests on the accuracy associated with computing the fractal
dimension using equations (1) and (2) show an improvement of
5% over computations based on conventional Discrete Fourier
Transform.

VII. FEATURE DETERMINATION

Features (which are typically compounded in a set of
metrics - floating point or decimal integer numbers) describe
the object state in an image and provides the input for a
decision making engine as illustrated in Figure 2. The features
considered in this paper are computed in the spatial domains
of the original image {fm,n} and transformed image {f̃m,n}.
Further, these features are extracted from the three colour
channels - Red (R), Green (G) and Blue (B) - captured



by the CCD array. The issue of what type and how many
features should be used to develop a computer vision system
is critical to the design associated with a specific application.
The system considered here has been developed to include
features associated with the texture of an object which include
the Fractal Dimension. Texture is particularly important in
medical image classification and of primary importance in the
application considered in this paper. The following features
or their derivatives have been considered (primarily through a
process of ’trial and error’) in the recognition system reported
in this paper:

Average Gradient G
describes how the intensity changes when scanning
from the object center to the border. The object
gradient is computed using the least squares method
in polar coordinates as compounded in the following
result:

g =

N
∑

(m,n)∈S

rm,nf̃m,n −
∑

(m,n)∈S

rm,n
∑

(m,n)∈S

f̃m,n

N
∑

(m,n)∈S

r2m,n −

 ∑
(m,n)∈S

rm,n

2 ,

where N is the number of object pixels and rm,n is
the distance between (m,n) and the center (m′, n′),
i.e.

rm,n =
√

(m−m′)2 + (n− n′)2.
The centers (m′, n′) correspond to the local maxi-
mums of f̃m,n within the cluster. The cluster gradient
is the average of object gradients,

G = 〈gi〉i∈I
where i ∈ I is the object index.

Colour Composites Υ and ΥD

characterises the relationship between R, G and B
layers of the transformed image. The triangle formula

r(a, b, c) =

√
(s− a)(s− b)(s− c)

s
,

s =
1
2

(a+ b+ c)

is applied to the ‘colour triangle’ RGB such that the
following pixel colour composite is obtained

υm,n = r(a, b, c)

where

a = f̃Rm,n, b = f̃Gm,n, c = f̃Bm,n

and υD = rincircle(a, b, c) with

a = |f̃Rm,n − f̃Gm,n|, b = |f̃Gm,n − f̃Bm,n|
and

c = |f̃Rm,n − f̃Bm,n|.
The average colour composites are then given by

Υ = 〈υm,n〉(m,n)∈S ,ΥD = 〈υDm,n〉(m,n)∈S .

Fourier Dimension q
determines the frequency characteristics of the object
and is related to the fractal dimension D by q =
4 − DF [1], [2]. It represents a measure of texture
[23] and is computed using the approach discussed
in Section VI.

Lacunarity (Gap Dimension) Λk
characterizes the way the ‘gaps’ are distributed in an
image [2]. The gap dimension is, roughly speaking,
the number of light or dark spots in the image. It is
defined for the given degree k by

Λk =

〈∣∣∣∣ fm,n〈fm,n〉
− 1
∣∣∣∣k
〉 1

k

,

where 〈fm,n〉 = 1
N

∑
fm,n denotes the mean value.

In the system described in this paper, an average of
local lacunarities of the degree k = 2 is measured in
the spatial and frequency domains.

Symmetry Features Sn and M
are estimated by morphological analysis in three-
dimensional space, i.e. two-dimensional spatial coor-
dinates and intensity. A symmetry feature Sn is mea-
sured for a given degree of symmetry n (currently
n = {2, 4}). This value shows the deviation from a
perfectly symmetric object, i.e. Sn is close to zero
when the object is symmetric and Sn > 0 otherwise.
Feature M describes the fluctuation of the centre or
mass for pixels with different intensities; M = 0 for
symmetric objects and M > 0 otherwise.

Structure γ
provides an estimation of the 2D curvature of the
object in terms of the following:

γ < 0, if the object bulging is less than a threshold,

γ = 0, if the object has the standard bulging,

γ > 0, if the object has a higher level of bulging.

Geometrical Features
include the minimum Rmin and maximum radius
Rmax of the object (or ratio Rmax/Rmin), object
area S, object perimeter P (or ratio S/P 2) and the
coefficient of infill S/SR, where SR is the area of
the bounding polygon which, in this application, is
determined using the convex hull algorithm given in
Section V.

The system reported in this paper classifies objects using
mixed mode features that are based on Euclidean and fractal
geometric metrics. The procedure of object detection is per-
formed at the segmentation stage and needs to be adjusted
for each area of application. The recognition algorithm then
makes a decision using a knowledge database and outputs a
result by subscribing objects based on the features defined
above. The ‘expert data’ associated with a given application
creates a knowledge database by using a supervised training
system with a number of model objects. This is discussed in
the following section.



VIII. OBJECT RECOGNITION

In order to characterize an object, the ‘system’ must have
a mathematical representation compounded in metrics that
are used to compose a feature vector. The basis for the
application considered in this paper are the textural features
(Fourier dimension and Lacunarity) for an object coupled with
the Euclidean and morphological measures as defined in the
previous section. In the case of a general application, all
objects are represented by a list of parameters for implemen-
tation of supervised learning in which a fuzzy logic engine
automatically adjusts the weight coefficients for the remaining
features. The methods developed represent a contribution to
pattern recognition based on fractal geometry (at least in a
partial sense), fuzzy logic and the implementation of a fully
automatic recognition scheme as illustrated in Figure 15 for
the Fractal Dimension D (just one element of the feature
vector used in practice). The recognition procedure uses the
decision making rules from fuzzy logic theory [21], [18], [19],
[20] based on all, or a selection, of the features defined and
discussed in Section VII which are combined to produce a
feature vector x.

Fig. 15. Basic architecture of the diagnostic system based on the Fractal
Dimension D (a single feature) and decision making criteria β.

A. Decision Making

The class probability vector p = {pj} is estimated from
the object feature vector x = {xi} and membership functions
mj(x) defined in the knowledge database. If mj(x) is a mem-
bership function, the following equation defines the probability
for each jth class and ith feature as follows:

pj(xi) = max

[
σj

|xi − xj,i|
·mj(xj,i)

]
for weight coefficient matrix given by wj = wj,i where σj
is the distribution density of values xj at the point xi of the
membership function. The next step is to compute the mean
class probability given by

〈p〉 =
1
j

∑
j

wjpj

where the distance from the mean probability selects the class
associated with

p(j) = min [(pj ·wj − 〈p〉) ≥ 0]

providing a result for the decision making of the jth class.
The weight coefficient matrix is adjusted during the learning
stage of the algorithm.

The decision criterion method considered here represents a
weighing-density minimax expression. The estimation of the
decision accuracy is achieved by using the density function

di = |xσmax
− xi|3 + (σmax(xσmax

)− pj(xi))3

with an accuracy determined by

P = wjpj −wjpj
2
π

N∑
i=1

di.

B. Supervised Learning Process

The supervised learning procedure is the most important
part of the system for operation in automatic recognition mode.
The training set of sample objects should cover all ranges of
class characteristics with a uniform distribution together with
a universal membership function. This rule should be taken
into account for all classes participating in the training of the
system. An expert defines the class and accuracy for each
model object where the accuracy is the level of self confidence
that the object belongs to a given class. During this procedure,
the system computes and transfers to a knowledge database
a vector of values of parameters x = {xi} which forms the
membership function mj(x). The matrix of weight factors wj,i
is formed at this stage accordingly for the ith parameter and
jth class using the following expression:

wi,j =

∣∣∣∣∣1−
N∑
k=1

(
pi,j(xki,j)− 〈pi,j(xi,j)〉

)
pi,j(xki,j)

∣∣∣∣∣ .
The result of the weight matching procedure is that all

parameters which have been computed but have not made any
contribution to the characteristic set of an object are removed
from the decision making algorithm by setting wj,i to null.

IX. DISCUSSION

The methods discussed in the previous sections represent
a novel approach to designing an object recognition system
that is robust in classifying textured features, the application
considered in this paper, having required a symbiosis of the
parametric representation of an object and its geometrical
invariant properties. In comparison with existing methods, the
approach adopted here has the following advantages:

Speed of operation. The approach uses a limited but effec-
tive parameter set (feature vector) associated with an object
instead of a representation using a large set of values (pixel
values, for example). This provides a considerably higher oper-
ational speed in comparison with existing schemes, especially
with composite tasks, where the large majority of methods
require object separation. The principal computational effort



is that associated with the computation of the feature vector
using the metrics discussed in Section VII

Accuracy. The methods constructed for the analysis of
sets of geometrical primitives are, in general, more precise.
Because the parameters are feature values, which are not
connected to an orthogonal grid, it is possible to design
different transformations (shifts, rotational displacements and
scaling) without any significant loss of accuracy compared
with a set of pixels, for example. On the other hand, the overall
accuracy of the method is directly influenced by the accuracy
of the procedure used to extract the required geometrical tags.
Generally, the accuracy of a method will always be lower,
than, for example, classical correlative techniques, where,
due to padding, error can arise during the extraction of a
parameter set. However, by using precise parameterization
structures based on fractal geometry, remarkably good results
are obtained.

Reliability. The proposed approach relies first and foremost
on the reliability of the extraction procedure used to establish
the geometrical and parametric properties of objects, which,
in turn, depends on the quality of the image; principally in
terms of the quality of the contours. It should be noted, that
the image quality is a common problem in any visual system
and that in conditions of poor visibility and/or resolution, all
vision systems will fail. In other words, the reliability of the
system is fundamentally dependent on the quality of the input
data.

An additional feature of the system discussed in this paper,
is that the sub-products of the image processes can be used
for tasks that are related to image analysis such as a search for
objects in a field of view, object identification, maintaining an
object in a view field, optical correction of a view point and
so on. These can include tasks involving the relative motion
of an object with respect to another object or with respect to
background for which the method considered can be also be
applied - collision avoidance tasks, for example.

Among the characteristic disadvantages of the approach, it
should be noted that: (i) The method requires a considerable
number of different calculations to be performed and appro-
priate hardware requirements are therefore mandatory in the
development of a real time system; (ii) the accuracy of the
method is intimately connected with the required computing
speed - an increase in accuracy can be achieved but may be
incompatible with acceptable computing costs. In general, it
is often difficult to acquire a template of samples under real
life or field trial conditions which have a uniform distribution
of membership functions. If a large number of training objects
are non-uniformly distributed, it is, in general, not possible to
generate accurate recognition system.

The original approach to the decision process proposed
includes the following important steps: (i) estimation of the
density distribution is accurately determined from the original
samples in the membership function during a supervised
learning phase which improves the recognition accuracy under
non-ideal conditions; (ii) the pre-filtering procedures provide
a good response to the required features of the object without
generating noise; (iii) the segmentation procedures discussed
in Section III efficiently select only those objects required; (iv)

computation of fractal parameters, in particular, the average
lacunarity, helps to characterize the textural features (in terms
of their classification) associated with the object.

The integration of Euclidean with fractal geometric pa-
rameters provides a more complete suite of tools for pattern
recognition in combination with supervised learning through
fuzzy logic criteria. In the following section, we consider the
application of our approach for the design of a cytological
screening system.

X. APPLICATION TO CERVICAL SMEAR SCREENING

The application considered in this section has focused on
screening programmes that utilize Liquid Based Cytology
(LBC). Cells are collected from the cervix in the same way as
PAP smear, but using a very small brush instead of a spatula.
The head of the brush is broken off and maintained in a liquid
environment instead of smearing the cells directly onto a slide.
This preserves the cells and so the results of the test are more
reliable. At present, about one in twelve PAP smears have to
be done again because they can not be read properly. With the
LBC approach, far fewer test have to be repeated. However, the
LBC method is not, as yet, in widespread use. Nevertheless,
the system reported in this paper has been designed to operate
in conjunction with screening centres that use LBC.

A. Classes of Cervical Cells

There are two main types of cervical cancer: (i) Squamous
cell cancer; (ii) Adenocarcinoma. They are named after the
type of cell that becomes cancerous. Squamous cells are
the flat skin-like cells that cover the surface of the cervix.
Squamous cell cancer is the most common type of cervical
cancer. Adenocarcinoma cells are glandular cells that produce
mucus. The cervix has these glandular cells along the inside
of the passageway that runs from the cervix to the womb
(the endocervical canal). Adenocarcinoma is a cancer of these
cell types. It is less common than squamous cell cancer, but
has become more commonly recognised in recent years. Only
about one in five to one in ten cases of cervical cancer are
adenocarcinoma. Adenocarcinoma is associated with a similar
precancerous phase. It is treated in the same way as squamous
cell cancer of the cervix.

Tables I and II explain the relationship between
the current system and Bathesda 2001 classifications -
http://www.aafp.org/afp/2003/1115/p1992.html. The first class
represents normal cells and the last one are malignant (can-
cerous) cells. Intermediate classes represent different degrees
of abnormalities; it is important to detect these as well. The
classification, for which the system is ‘focused’ is simplified
because, unlike Bathesda 2001, it provides a fuzzy estimation
of class membership, which gives a better description of the
cell state. An additional class Exudate is defined to described
irrelevant structures in the image.

With current techniques, all cervical smear tests are exam-
ined by ‘screeners’ who have only a few minutes per slide.
This means that the screening is done at low magnification and
high speed so it is not surprising that mistakes can be made.
The ‘screeners’ look for abnormal variations in the ratio of the



TABLE I
CLASSIFICATION OF SQUAMOUS CELLS.

System Bathesda 2001
Normal Sq Normal squamous cells
Normal Sq Atypical squamous cells – ’undetermined signifi-

cance’ (ASC-US)
Normal Sq Atypical squamous cells – ’cannot exclude high

grade disease’ (ASC-H)
LSIL Low grade squamous intra-epithelial lesion (LSIL)
HSIL High grade squamous intra-epithelial lesion (HSIL)

– CIN2
HSIL High grade squamous intra-epithelial lesion (HSIL)

– CIN3
Invasive Sq Invasive squamous carcenoma

TABLE II
CLASSIFICATION OF GLANDULAR CELLS.

System Bathesda 2001
Normal Gl Normal glandular cells
Normal Gl Atypical glandular cells (AGC) – endocx/endom/not

specified
Normal Gl Atypical glandular cells (AGC) – favour neoplasia
AIS Adenocarcinoma in situ (AIS)
Invasive Adeno Adenocarcinoma

size of the nucleus relative to the size of the cell, as well as
other markers of diseased tissue. When they identify suspect
areas of the slide they mark these with a felt tip pen and pass
them on for further inspection. These slides are then looked
at by ‘checkers’ who have more experience and examine the
slide more carefully and at higher magnification. If they are not
satisfied that ‘all is well’, then they pass the suspect slides to a
cytopathologist for further, more detailed analysis and diagno-
sis. Even at this final stage, mistakes can be made as each slide
is prepared differently and it is common for cells to overlie
each other, compounding the problem of accurate diagnosis
further. New techniques that use cytocentrifuge preparations
(e.g. http://www.tharmac.com/?p=15) can overcome this last
problem but have yet to be introduced in general.

One of the major criteria of assessing whether a cell is pre-
malignant or malignant is the ratio of the size of the nucleus of
the cell compared with that of the whole cytoplasm - the nu-
clear/cytoplasmic ratio. The rapid identification of variations in
these ratios enables ‘checkers’ to quickly and more accurately
determine if there are abnormalities by examining cells that
are located in a small area. To estimate the condition of the
cells, the cytologist typically makes upto 300 slide movements
over a period of 8-10 minutes on a desk microscope and may
consequently miss many important features. This approach not
only takes time but inevitably can not guarantee consistent
and accurate estimates of the condition of the cells. With an
increasing number of screening projects taking place together
with the variability of different preparations, diagnostic errors
can lead to a number of fatalities due to false negatives and
lack of appropriate treatment in the early stages of cervical
cancer.

At present, there are no commercial or experimental systems
available for the automatic identification and classification
of tissue cells without human participation. Obtaining results
from cytology diagnostics in real time with a robust least error

criterion is a widespread and important problem for screen-
ing the cervix uteri. The automatic coloring (staining) and
scanning of the material creates preconditions in designing an
algorithm and technical devices for the automatic identification
and classification in cytopathology. A key point is to identify
and classify the condition of the cell nuclei using a suitable
recognition process.

There are a range of techniques that aim to
improve the examination of slides using integrated
optical densitometry. For example, SurePath -
http://www.pathlabsofark.com/surepathliquidpap.html -
uses integrated optical density of conventional smears. The
aim of the system reported in this paper is to exclude 25%
of samples without visual examination. Unlike a human
expert, the automatic scanning method can count the cells
and estimate their statistical distribution among classes or
states. The system delivers high accuracy and automation due
to the following innovations:

Fractal analysis
Biological structures (such as body tissues) have
natural fractal properties. Numerical measurements
of these properties provides for the efficient and
effective detection of abnormalities.

Extended set of detectable features
High accuracy is achieved when multiple features are
measured together and combined into a result

Advanced fuzzy logic engine
The knowledge-based recognition scheme enables
highly accurate diagnosis.

B. System Overview

It is proposed that the approach described in this paper and
the system developed may assist cytopathologists in reducing
the workload by eliminating in a secure manner a percentage
of normal smears, thus allowing more time for the evaluation
of the abnormal cases. The ‘software solutions’ detect abnor-
malities in organic structures such as cells by digital image
analysis. Cancer experts create the knowledge database by
training the system with a number of case study images. The
recognition algorithm is composed of the following steps:

Filtering
The image is filtered to reduce noise and remove
unnecessary features (bacteria, broken cells).

Segmentation
The image is segmented to perform a separate anal-
ysis of each object. In order to separate connected
objects a new algorithm has been designed. An
example of the GUI developed is given in Figure 16
which shows the stage at which the nuclei of suspect
cells have been identified and located.

Feature Detection
For each object, a set of recognition features are
detected. The features are numeric parameters that
describe the object inclusive of fractal geometric
parameters. The system captures a variety of geomet-
rical, fractal and statistical features in one- and two-
dimensions. One-dimensional features correspond to



TABLE III
IMAGING ACQUISITION HARDWARE.

Model and
Supplier

Advantages Shortcomings

Nikon
Coolscope
(Nikon
Instruments
Europe BV)

Available on the
market
Magnification 40x.
Complete solution
with a slide feeder.

Very slow (several
hours/slide).
Small focus depth and
automatic focus does
not find the optimal z-
position.
Dynamic range to be
adjusted.
Tiling scan.

Aperio
Scanscope
(Aperio
Technologies:
DakoCytoma-
tion)

High scanning
speed
(20 min/slide).
Magnification 40x.
Non-tiling scan.
Better focus.
Better dynamic
range.

Not fully developed.
Problem to achieve
60x.

Nikon Eclipse
E8000 +
JVC 3-CCD
KY-F55B.

Variable resolution
4X-80X.
Manual focus.
Manual brightness.

Manual image capture.
Can be used only for
testing.

the border of objects, whereas two-dimensional fea-
tures relate to the surface within and around objects.

Decision Making
The system uses fuzzy logic to combine features
into a decision. A decision is the estimated class
of object and accuracy probability. In-between states
are determined by the probability. For example,
35% normal is equivalent to 65% abnormal and
suggests careful analysis by cancer specialists. In
the extended training version for cervical cancer, the
system provides upto 10 classes (CINs) depending on
the classification system and the number and extent
of available samples for learning procedures.

Fig. 16. GUI associated with the cervical smear analysis system.

The system has been developed to operate with a range of
image acquisition hardware, examples of which are provided
in Table III.

XI. CONCLUSION

This paper has been concerned with the task of developing
a methodology and implementing applications that are con-
cerned with two key tasks: (i) the partial analysis of an image
in terms of its fractal structure and the fractal properties that
characterize that structure; (ii) the use of a fuzzy logic engine
to classify an object based on both its Euclidean and fractal
geometric properties. The combination of these two aspects
has been used to define a processing and image analysis engine
that is unique in its modus operandi but entirely generic in
terms of the applications to which it can be applied.

The research has investigated numerous processes for pat-
tern recognition using fractal geometry as a central processing
kernel. This has led to the design of a new library of pattern
recognition algorithms. The image types considered contain
about 80% useful environmental information for the human.
With rapid advances in video technology, the content of a
video stream is increasing at a rate that is far beyond the
human brain capacity for decision making. This necessitates
a need for developing an automatic image processing and
decision making system using artificial intelligence. Such
systems are required in search engines, information databases,
navigation in unknown terrain, interpretation of two dimen-
sional data, etc.

The creation of logic and general purpose hardware for
artificial intelligence is a basic theme for any future de-
velopment based on the results reported in this paper for
the applications developed and beyond. The results of the
current system can be utilized in a number of different areas
although medical imaging would appear to be one of the
most natural fields of interest because of the nature of the
images available, their complex structures and the difficulty
of obtaining accurate diagnostic results which are efficient
and time effective. A further extension of our approach is to
consider the effect of replacing the fuzzy logic engine used
to date with an appropriate Artificial Neural Network. It is
not clear as to whether the application of an ANN could
provide a more effective system and whether it could provide
greater flexibility with regard to the type of images used and
the classifications that may be required. Within the context
of this paper, algorithms have been designed that focus on
solving the detection and classification problems associated
with the analysis of cervical smear images. In this respect, a
new set of image processing algorithms have been developed
that may have value in a wider class of image processing
and pattern recognition application, particularly with regard to
medical image analysis.
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