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Abstract 
 
The reliability of the structural performance of any given structure is affected by 
both in-service loading and material deterioration due to environmental attack. They 
must be evaluated at any given time in order to compute lifetime probability of 
failure. This paper presents an innovative methodology to derive the structure 
lifetime load effect due to existing traffic using a statistical tool known as Predictive 
Likelihood. Loss of resistance due to corrosion originated by chloride ingression is 
also taken into account. Finally the lifetime probability of failure is evaluated via the 
application of a time-discretization strategy. 
 
Keywords: bridge, structural reliability, safety, predictive likelihood, corrosion, 
traffic. 
 
1  Introduction 
 
As the existing stock of bridges ages, there is an increasing need for the assessment 
and maintenance of existing structures. Ageing reinforced concrete structures are 
generally subject not only to in-service loading, but also to an aggressive 
environment which will eventually lead to material degradation. Consequently there 
is a reduction in the operational safety of such structures. Safety evaluation and 
damage assessment have been topics of intensive research in recent years (Li[1], 
Stewart et al [2]) 
 

Both the resistance and loading of a bridge structure are time-dependent variables 
and they must be considered in the service-life prediction of deteriorating structures. 
While much research has been carried out on the characterization of degradation 
mechanisms which lead to a reduction of resistance with time, Melchers [3] points 
out that load modelling is also a critical area demanding research as loads are 
typically the variables with the greatest uncertainty. 
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In recent years statistical models have been increasingly employed to assist the 
estimation of the lifetime traffic loading to which a bridge is subject. These models 
are focused on the development of statistical tools to obtain the characteristic load 
effect. However statistical methods, such as Predictive Likelihood (PL) (Butler [4], 
Davison [5]), can provide probability distribution functions of each characteristic 
value (predictand) as opposed to a single value. The characteristic value is defined 
as the value with an acceptably low probability of exceedance. For example, the 
Eurocode for bridge loading [6] defines the characteristic value as the level with a 
10% probability of exceedance in 100 years, which is usually approximated as a 
1000-year return period. 
 

In the estimation of bridge traffic loading, Caprani [7] has shown that a complete 
100 year lifetime extreme load effect distribution can be obtained from measured 
traffic characteristics. PL has proved to be an efficient computational tool to 
accurately define extreme load effect and will be used to determine the most likely 
distribution for the maximum lifetime loading effect, given both the data and a set of 
postulated predictands. 
 

This approach opens the possibility of incorporating this methodology of 
prediction of lifetime extreme traffic loading into the general framework of 
structural reliability, in order to evaluate the lifetime probability of failure of any 
given structure. 
 

This paper combines the load effect distribution with a model of material 
resistance. The example used for the latter is the deterioration of structural resistance 
of bridge beams due to loss of area of reinforcing steel through corrosion. 
Reinforcement corrosion has been established as the predominant causal factor for 
the premature deterioration of reinforced concrete (RC) structures leading to 
structural failure (Schiessl [8], Broomfield [9]). Loss of structural resistance due to 
spalling of concrete as well as the effect of other degradation mechanisms such as 
sulphate attack, carbonation, alkali-silica reaction and freeze-thaw cycle attack are 
not considered.  

 
Finally the probability of failure for a given period of time is calculated. 

Integration over the lifetime of the structure gives the probability of failure over a 
duration (0, tL], also called the cumulative time failure probability. 
 
 

2  Time-variant resistance modelling 
 
2.1 Bridge deterioration model 
 
In order to assess accurately the safety of any structure, the time-variant residual 
strength of the structural elements must be evaluated. This paper considers loss of 
strength due to environmental attack, expressed as reduction of reinforcement area 
originated by corrosion, as proposed by Enright and Frangopol [10]. For bridges, 
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corrosion initiation of reinforcement is normally due to chloride ion ingress. 
Assuming that it is a diffusion controlled process, chloride ingress can be modelled 
using Fick’s second Law of diffusion: 
 

2

2

x
CD

t
C

C ∂
∂

=
∂
∂  (1) 

 
where C is the chloride ion concentration (% of the weight of cement) at distance 

x cm from the concrete surface after t years of exposure to the chloride source. Dc is 
the chloride diffusion coefficient (cm2/year). 
 
 
2.2 Corrosion initiation time 
 
It is taken that corrosion is initiated by the diffusion of chloride ions and that the 
concentration of chloride ions on the surface of the reinforcement is constant. Then 
the corrosion initiation time is given by (Thoft-Christensen et al [11], Lounis [12]): 
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where Ti is the corrosion initiation time (years), X is the concrete cover (cm), Co 

is the equilibrium chloride concentration at the concrete surface (% weight of 
concrete) and Ccr is the threshold chloride concentration at which corrosion begins 
(% weight of concrete). Therefore the corrosion initiation time is dependent on four 
random variables, which are considered in this paper to be lognormally distributed 
(the approach from different authors is not consistent – Hong [13], Schiessl [14], 
Stewart [15], Enright and Frangopol [10]). 

 
2.3 Area loss of steel reinforcement 
 
It is assumed that the cross sectional loss of steel reinforcement due to corrosion 
propagation is the only cause of loss of resistance of a structural element. For a 
reinforced concrete element with equal diameter bars, subject to the same corrosion 
initiation times, the time-variant area of steel reinforcement can be expressed as: 
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where n is the number of reinforcing bars, Di is the initial diameter of steel 
reinforcement, t is the elapsed time, rcorr is the corrosion rate (mm/year), and  
 

)()( icorri TtrDtD −−=  (4) 
 
 is the diameter of a bar under corrosion. 
 

When the corrosion rate is estimated based on a corrosion current density icorr, the 
latter can be transformed into the loss of metal by means of Faraday’s Law, which 
indicates that a corrosion density of icorr=1μA/cm2 corresponds to an uniform 
corrosion penetration of 11.6 μm/year (Val et al [16]). Consequently, the reduction 
of the diameter of a corroding bar, as stated in Equation (4) can be estimated as  

 

∫=−
T

T corri
i

dttitDD )(0232.0)(  (5) 

 
If a constant annual corrosion rate is assumed, Equation (5) can be rewritten as 
 

)(0232.0)( icorri TtitDD −=−  (6) 
 
Consequently it is usual to define the corrosion rate as 

 
corrcorr ir 0232.0=  (7) 

 
Alonso et al [17] have derived similar relationships. 

 
 
 
 
 

 
 
2.4 Time-variant resistance 
 
Once the time-variant loss of steel reinforcement has been determined, the 
determination of the time-variant resistance is straightforward. It is sometimes 
convenient to express this time-variant resistance as a product of the initial 
resistance and a resistance degradation function:  
 

)()( tgRtR o=  (8) 
 

where Ro is the initial resistance and g(t) is the resistance degradation function. 
The initial resistance Ro can be determined using equations for nominal resistance in 
relevant bridge design codes. 
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3 Bridge traffic load simulation 
 
3.1 Data acquisition and simulation of bridge loading 
 
In order to determine the statistical distribution of bridge traffic loading, it is 
essential to have actual highway traffic data obtained from suitable installations. 
Weigh-In-Motion (WIM) technology is a tool that provides appropriate data for this 
purpose. Characteristics that are measured include gross vehicle weights, inter-axle 
spacing, vehicle headway, speed, flow rates and flow composition. 
 
 In this paper, data from the A6 motorway near Auxerre, France, is used as the 
basis for simulating bridge traffic loading. This site has 4 lanes of traffic (2 in each 
direction) but only the traffic recorded in the slow lanes was used which is 
acknowledged to result in conservative loading effect for a 2-lane bridge. During the 
5 days of measurement, 17 756 and 18 617 trucks were measured in the north and 
south slow lanes respectively; an average daily truck flow of 6744 trucks. This 
period is acknowledged to be short in duration. However the methodology proposed 
is general and only quantitative results may be affected by this short duration. 
 
 In order to generalize the limited measured data, a Monte Carlo simulation 
process is used. Models for the simulation process are derived from the data 
measured on site. 
 
 Monte Carlo simulations of 1000 1-day sample periods of truck traffic on a two-
lane bidirectional bridge are generated. The load effects induced by heavy trucks and 
multiple truck presence events are recorded. Long term traffic growth is not 
considered in this model. For the purpose of prediction, the year is defined as 
consisting of 50 weeks of 5 weekdays each (allowing for 11 public holidays). 
 
3.2 Analysis of extremes 
 
 In this work an extreme value analysis is performed on the load effect data 
collected from the simulation process. Based on the method proposed by authors 
such as Castillo [18], Ang and Tang [19] and Coles [20], an algorithm is proposed in 
order to obtain the distribution of the lifetime maximum load effect considered. It is 
well known that when the extremes of interest are generated from a single statistical 
mechanism, the three Fisher and Tippet families can be expressed in a single form; 
the Generalized Extreme Value distribution (GEV) as described in Coles [20]: 
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where [h]+ = max(h,0) and the parameter vector is θ=(μ,σ,ξ), i.e., the location, 
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scale and shape parameters of the distribution respectively. 
 
It is remarkable to note that considering traffic loading as a single statistical 

generating mechanism will result in loss in accuracy. Caprani et al [21] have shown 
that the mechanisms of loading caused by different numbers of trucks 
simultaneously present on the bridge are statistically different; for example, the 
distribution of stress due to a single truck crossing is different to that of a 2-truck 
event. Caprani and OBrien [22] give a method known as Composite Distribution 
Statistics (CDS) which accounts for this, and they show that the exact distribution of 
load effect may be derived by considering the distribution associated with each 
mechanism as well as their relative frequency of occurrence. 

 
Considering there to be nt event types and nd loading events per day, and using 

the law of total probability, the exact distribution of daily maximum load effect, S  
is then given by 
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in which the cumulative distribution function and frequency of the jth type is Fj(·) 

and fj respectively. In practice these quantities are difficult to derive but it is known 
(Gumbel [23]) that the exact distribution may be asymptotically approximated by 
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where Gj(·) is the GEV distribution of the jth event type and GC(·) represents the 

CDS. Thus it is necessary to note each loading event according to its truck 
composition and to order the loading events separately, noting the maximum event 
of each type for each day of simulation.  

 
3.3 Prediction by Predictive likelihood 
 

There has been considerable work in recent years on the problem of predicting a 
characteristic value from a set of observed data (Nowak [24], O’Connor [25], 
Getachew [26]). Current methods of predicting characteristic load effects give 
greatly variable results, often being unduly influenced by a small number of extreme 
loading events. Predictive Likelihood (Bjørnstad [27]) addresses this problem by 
identifying the likelihood of a range of possible characteristic values. In the context 
of bridge traffic loading, PL is used to estimate the likelihood of lifetime maximum 
load effects. In addition to providing a more robust method of estimating the 10% 
fractile of the lifetime maximum, it provides a tool which can be applied in 
Reliability Theory. 
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In predictive likelihood, the observations are taken as the only incontrovertible 
known. All subsequent processing is taken to introduce variability which must be 
accounted for. Such processing uncertainty is the reason why conventional 
approaches are not generally repeatable – for the amounts of data generally 
simulated, there is considerable variation in repeated runs using the same 
algorithms. PL ranks all possible predictions by their joint likelihood given the 
observed data. The mathematical concept behind PL, as shown by Pawitan [28] or 
Azzalini [29], relies on the maximization of the joint likelihood of a fit to a set of 
data and a fixed predictand (characteristic value), z. The data is y and the parameters 
describing the statistical distribution are θ. Then the maximized joint likelihood of θ 
being consistent with y and z is:  
 

)|()·|(sup)|( zLyLyzL zyP θθ==
θ

 (12) 

 
where Ly(θ|y) represents the likelihood of θ given the data and Lz(θ|z) is the 

likelihood of θ given the predictand. Equation (12) is termed Fisherian predictive 
likelihood, after Fisher [30]. 
 

 
Figure 1. Schematic of predictive likelihood analysis 

 
Figure 1 illustrates a schematic of a statistical extrapolation on probability paper. 

Two postulated predictands from the same set of observed data, are seen to yield 
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different values of predictive likelihood. By considering a range of such predictands, 
the predictive likelihood function can be plotted to rank different possible lifetime 
maximum load effects. 
 
 A detailed methodology regarding the theory behind the application of PL to 
bridge traffic loading plus all relevant computational aspects is presented by Caprani 
and OBrien [31]. 
 
 The likelihood function is normalized and, for this paper, a GEV distribution 
fitted through the discrete points. A number of weighting functions are possible; the 
one adopted in this work is to use a weight of unity for all points below the mode of 
the distribution, and to use a weight equal to the reciprocal of the predictand for 
points above it. 
 
4 Structural Reliability. Probability of failure 
 
In its most basic approximation, Structural Reliability (SR) aims to provide an 
estimate of the probability of failure (pf) of a given structural element. The 
probability is the sum of the failure probabilities for all the cases of resistance and 
load for which the load effect (S) exceeds the structural capacity to resist this effect 
(R), as expressed in Equation (13). In other words, any structural element is 
considered to have failed if its resistance R is less than the stress resultant S acting 
on it. The relative frequency of failure is then the number of failures divided by the 
total number of outcomes. Hence the probability of failure is (Melchers [32] or 
Stewart [15]): 
 

)0()()()0( ≤==≤−= ∫ ∫
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where fR(·) represents the probability density function (PDF) of the capacity and 

fS(·) the PDF of the loading. Integrating once gives  
 

)0()()()0( ≤==≤−= ∫
∞
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ZPdssfsFSRPp SRf  (14) 

 
with FR(·) standing for the Cumulative Distribution Function of the capacity. 

 
The solution to this integral can be found accurately using numerical techniques. 

The inaccuracy of the obtained probability of failure derives only from the 
modelling of the stochastic variables, to which it is sensitive. 
 
 To compute the lifetime probability of failure, the time-discretization strategy, as 
described by Petryna and Krätzig [33], is adopted. It represents an acceptable 
compromise between the time-integration approach that underestimates the actual 
reliability and the first-passage approach that involves highly demanding algorithms 
in terms of computation time. In the time-discretization, the entire lifetime is 
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subdivided into a number of time intervals at which the integration of the extreme 
value distributions for loading and resistance is evaluated. 
 

Melchers [32] or COST 345 report [34] propose acceptable risks in society for 
different events. This approach enables the introduction of maintenance operations 
to return the probability of failure to acceptable values and facilitates maintenance 
planning for deteriorating concrete structures. 
 
 

5 Example 
 
Let us consider a 20 m span, 13 m wide, two-lane, simply-supported bridge 
consisting of 5 reinforced concrete bridge beams as the one shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Example reinforced concrete bridge beam 
 

For rectangular non-prestressed members for which the compression steel is 
neglected, the ultimate bending moment (flexure) is given by: 
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where 
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a
c
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and As is the area of non-prestressed tension reinforcement, fy is the specified 

yield strength of reinforcing bars, d is the distance from the extreme compression 
fiber to the centroid of non-prestressed tensile reinforcement and f’c is the specified 
compressive (cylinder) strength of concrete at 28 days and b is the width of the 
compression face of the member. 
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The main descriptors, mean and coefficient of variation (COV), for all the 
stochastic variables in Equations (2), (15) and (16) are summarized in Table 1. As 
already stated all stochastic variables are taken to be lognormally distributed. 

 
  Mean COV 

X [cm] 5,08 0,20 
Dc [cm2/yr] 1,29 0,10 
C0 [% cement] 0,10 0,10 
Ccr [% cement] 0,04 0,10 
Di [mm] 32 0,02 
fy [N/mm2] 460 0,12 
f’c [N/mm2] 25 0,18 
d [cm] 110 0,10 

 
Table 1. Probabilistic descriptors of main stochastic variables 

 
5.1 Time-variant resistance 
 
Once defined the four initial random variables X (cm), Dc (cm2/year), Co (% weight 
of cement) and Ccr (% weight of cement) and in order to determine Ti, 32 000 Monte 
Carlo simulations are performed. These 32000 simulations are then subdivided in 
1000 equally spaced regions and the frequency of occurrence of the output of the 
sample is computed for each region. The histogram so obtained is then fitted to a 
lognormal distribution, as suggested by Enright and Frangopol (13), using 
Maximum  Likelihood (ML). It results in a lognormal distribution with mean 15.712 
years and standard deviation 8.206 ( 8.206) Ln(15.712,~iT ). 
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Figure 3. Distribution of corrosion initiation time 
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Once corrosion initiation time has been obtained, the next step consists in 
determining the area of steel corroded at a given time. This is done by a Monte 
Carlo simulation of 32000 samples for which the residual area of tensile 
reinforcement after a given time is evaluated in accordance with Equation (3). 

 
Finally, the residual capacity of the structure, Equation (15), is evaluated at a 

given time. Again a histogram based on 1000 equally spaced regions and the 
frequency of occurrence of the output of the sample is fitted to a lognormal 
distribution using, again, ML, in a similar manner to the fit for corrosion initiation 
time shown in figure (3). 

 
5.2 Traffic load effect 

 
Based on the traffic described in paragraph 3.1, Caprani [7] has performed a 

parametric study of the maximum load effect, 3 cases considered: bending moment 
at mid span for a simply supported bridge, left support shear in a simply-supported 
bridge and central support bending moment of a two-span continuous bridge, for a 
set of spans ranging from 20 to 50 m, for 100 years lifetime. At the same time a set 
of different distributions functions were fitted to the output of the different load 
effects considered, having ranked them according to their Maximum Likelihood 
values. 

 
For our example, 20 m span simply supported bridge and bending moment at mid 

span, a GEV distribution function was proposed as the most accurate representation 
of the data, the vector parameter is found to be θ = {0.2028; 66.18; 3953}. 
Consequently the 100 years distribution of extreme loading is given by, 
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However, as a time-discretization strategy has been adopted in order to compute 

the probability of failure, the lifetime level has to be taken to be 1 year as opposed to 
the 100 years time proposed by Caprani [7] to not underestimate the reliability of the 
system. 

 
This is done by means of an inverse application of the stability postulate, leading 

to the following 1 year distribution of extreme loading 
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Figure 4 shows a comparison between the 100 years time distribution and the 1 
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year time one. 
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Figure 4. PDF and CDF for 100-years and 1-year lifetime maximum bending 

moment at midspan 
 
 

Consequently, the probability of failure for a given year can be computed as 
stated in Equation (14). Figure 5 shows the PDF for the 1 year maximum in 
conjunction with the PDF with the distribution of ultimate bending resistance at t=0 
(Mu

t=0) and t=10 years (Mu
t=10). 

 
year pf Cumulative pf year pf Cumulative pf 

0 1.35389·10-7 1.35389·10-7  11 2.35960·10-7 1.847484·10-6 
1 1.35389·10-7 2.70778·10-7  12 3.00165·10-7 2.147649·10-6 
2 1.35398·10-7 4.06176·10-7  13 4.00316·10-7 2.547966·10-6 
3 1.35400·10-7 5.41576·10-7  14 5.56005·10-7 3.103971·10-6 
4 1.35515·10-7 6.77091·10-7  15 7.95794·10-7 3.899765·10-6 
5 1.36155·10-7 8.13246·10-7  16 1.16593·10-6 5.065694·10-6 
6 1.38254·10-7 9.51501·10-7  17 1.73912·10-6 6.804815·10-6 
7 1.43293·10-7 1.09479·10-6  18 2.62470·10-6 9.429518·10-6 
8 1.52848·10-7 1.24764·10-6  19 3.99193·10-6 1.342144·10-5 
9 1.68957·10-7 1.41660·10-6  20 6.08433·10-6 1.950578·10-5 
10 1.94923·10-7 1.61152·10-6  20* 1.35389·10-7  

 
Table 2. (20* pf after maintenance operation at year 20) 
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Figure 5. 1-year lifetime loading effect vs residual structural capacity 
(at t=0 years and t=10 years)  

 
Finally, the cumulative probability of failure over a given period of time t can be 

computed as the sum of the probability of failure over each of the discretized 
segments. Table 2 shows the computed pf for each of the years from 0 to 20 and the 
cumulative probability of failure for the first 20 years. 

 
It is assumed that after year 20 a major maintenance operation takes places, 

which brings back the bridge to its original state. Therefore, the expected probability 
of failure for the 100 years life time is computed as the sum of 5 of these cycles, 
leading to a lifetime probability of failure of 9.752889·10-5, which corresponds to a 
reliability index, β, of 3.72 (just below the target level of β=3.8, for a bridge life of 
100 years, suggested on the Eurocode [35]). 

 
Note that no allowance has been made for growth of traffic in the model. 

Consequently the 1 year lifetime distribution for the load effect remains constant 
along the process. 

 
6 Conclusions 
 
In this paper the reliability of concrete structures subject to deterioration has been 
evaluated. An innovative tool is proposed to estimate the lifetime distribution of the 
maximum loading effect considered. 
 

Concrete structures are subject to deterioration as they age. Deterioration due to 
ingress of chlorides has been considered in this paper as the main cause of loss of 
resistance. The main geometric properties of the beam together with the most 
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representative environmental parameters are evaluated in order to obtain a 
distribution of residual strength at any given time t. 

 
Regarding the loading, measured Weigh-In-Motion data is statistically modelled 

to characterize the traffic at the site of measurement. Monte Carlo simulation is used 
to extend the amount of data available. This traffic is passed over a simply supported 
bridge of 20 m span and the influence line of the bending moment at midspan. The 
resulting output forms a population upon which a statistical analysis is carried out. 

 
The method of predictive likelihood is applied to the bridge loading problem, 

making use of an extension of it which accounts for composite distribution statistics 
problems. It results in a lifetime distribution of maximum loading effect, as opposed 
to a more conventional approach that would lead to a ‘characteristic value’. As many 
sources of variability are incorporated within the predictive likelihood distribution it 
is preferred to the conventional approach. On the other hand the output distribution 
of loading effect can be used to compute the reliability of the structure at any time. 

 
Finally the probability of failure pf is computed from the distribution of residual 

resistance and the distribution of loading effect. A time-discretization strategy is 
used to determine the lifetime probability of failure. 1-year intervals are considered. 
It is worth mention that no allowance has been made for the growth of traffic with 
time, remaining constant, consequently, the distribution of the 1 year lifetime 
maximum loading effect. 

 
In summary, predictive likelihood has proved to be an efficient tool to compute 

lifetime distributions for maximum loading effects. This, together with the fact that 
residual strength can be computed efficiently when it is mainly due to corrosion of 
reinforcement, lead to a very useful framework to efficiently compute probability of 
failure of existing structures, in which the real traffic loading can be measured using 
WIM technology. 

 
It is expected that this approach will enable the introduction of maintenance 

operations to return the probability of failure to acceptable values and will facilitate 
maintenance planning for deteriorating concrete structures. It is expected that these 
improved maintenance strategies will result in significant savings as unnecessary 
repair and rehabilitation of existing bridges may be avoided. 
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