
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Computer Science 

2012 

Profiling Instances in Noise Reduction Profiling Instances in Noise Reduction 

Sarah Jane Delany 
Technological University Dublin, sarahjane.delany@tudublin.ie 

Nicola Segata 
Harvard University 

Brian MacNamee 
Technological University Dublin, brian.macnamee@tudublin.ie 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Delany, S.J.,Segata,N. & Mac Namee, B. (2012) Profiling instances in noise reduction, Knowledge Based 
Systems, vol.31, p28-40. doi:10.1016/j.knosys.2012.01.015 

This Article is brought to you for free and open access by the School of Computer Science at ARROW@TU Dublin. It 
has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more 
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie. 

Funder: SFI 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fscschcomart%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Profiling Instances in Noise Reduction

I

Sarah Jane Delanya, Nicola Segatab, Brian Mac Nameec

aDigital Media Centre, Dublin Institute of Technology, Aungier Street, Dublin 2, Ireland
bSchool of Public Health, Harvard University, Huntington Ave, Boston MA, USA

cSchool of Computing, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland

Abstract

The dependency on the quality of the training data has led to significant
work in noise reduction for instance-based learning algorithms. This paper
presents an empirical evaluation of current noise reduction techniques, not
just from the perspective of their comparative performance, but from the
perspective of investigating the types of instances that they focus on for re-
moval. A novel instance profiling technique known as RDCL profiling allows
the structure of a training set to be analysed at the instance level cate-
gorising each instance based on modelling their local competence properties.
This profiling approach o↵ers the opportunity of investigating the types of
instances removed by the noise reduction techniques that are currently in use
in instance-based learning. The paper also considers the e↵ect of removing
instances with specific profiles from a dataset and shows that a very simple
approach of removing instances that are misclassified by the training set and
cause other instances in the dataset to be misclassified is an e↵ective noise
reduction technique.

Keywords: instance based learning, noise reduction, profiling, case-based
editing

1. Introduction

Instance-based learning approaches such as Case-Based Reasoning rely
heavily on the quality of the training data, and instance-based algorithms

IThis material is based upon works supported by the Science Foundation Ireland under
Grant No. 07/RFP/CMSF718.

Preprint submitted to Knowledge Based Systems January 25, 2012



such as k nearest neighbour are less noise tolerant than other machine learn-
ing techniques due to this reliance on individual training instances [1]. Re-
search in this area has focussed considerably on developing training set edit-
ing techniques which can identify data instances that can be removed without
a↵ecting the competence of the training set. Much of this research was ini-
tially focussed on reducing the size of the training set without a↵ecting the
generalisation accuracy of the resulting classifiers [2, 3, 4]. As processing
power increased, the measurement of performance moved from criteria mea-
suring performance based on size to criteria measuring performance based
on competence [5, 6, 7], and the more recent focus has been on the specific
identification and removal of noise in datasets [8, 9, 10].

For a significant period of time the de-facto noise reduction approach
in instance-based learning has been algorithms based on Wilson’s Edited
Nearest Neighbour (ENN) approach [11]. This is a simple technique that
removes instances in a training dataset that do not agree with their nearest
neighbours. Although there has been a significant amount of research into
developing new editing techniques over the years, a lot of this work either
develops a variation of ENN for noise reduction [12, 13] or incorporates a noise
reduction pre-processing stage based on ENN or its variants [14, 5]. More
recently there have been new editing techniques that focus specifically on the
removal of noise or anomalous instances in the training set [8] typically by
characterising the individual instances in the dataset to determine whether
instances should be removed or not [15, 9].

In this paper we compare a number of noise reduction techniques that
are in the current instance-based learning literature from the perspective of
the types of instances they focus on for removal. This is done by analysing
the structure of a training set at an instance level through the use of our
novel instance profiling technique known as RDCL profiling [16]. Profiling
the instances in a dataset allows for the categorisation of the instances based
on their usefulness and the e↵ect each instance has on the overall competence
of the training set. Determining the di↵erent types of instances removed by
the various noise reduction techniques can reveal the benefits and limitations
of some of these techniques.

We also consider the removal of specific instance profiles from a training
set and show that a very simple and conservative approach of removing in-
stances that are misclassified by the training set and cause other instances
in the dataset to be misclassified is an e↵ective noise reduction technique.

Our comparison of noise reduction techniques in this paper is not just

2



with respect to the types of instances they focus on removing but is also a
comprehensive comparison of performance. We compare their performance
with respect to each other and with respect to how e↵ective they are in
improving the competence of an instance-based classifier.

The structure of the rest of this paper is as follows. Section 2 discusses
existing work on editing strategies focussing on those that are designed to re-
move noise and improve competence. Section 3 describes the RDCL profiling
technique used to allow the investigation of the structure of a dataset, and
shows the e↵ect of removing di↵erent categories of instances from a dataset.
We show in this section how a very simple approach of removing instances
that are misclassified by the training set and cause other instances in the
dataset to be misclassified is an e↵ective noise reduction technique. Section 4
then describes a comprehensive comparative evaluation of the noise reduc-
tion approaches using the profiling technique. This evaluation illustrates the
types of instances that these techniques tend to remove which reveals the
benefits and limitations of some of these techniques. Section 5 concludes the
paper with directions for future work.

2. Related Work

Instance-based editing techniques have been categorised as focussing on
competence preservation or competence enhancement [5]. Competence en-
hancement is e↵ectively noise reduction, removing noisy or exceptional in-
stances from the training set; while competence preservation can be con-
sidered redundancy reduction, removing superfluous instances that do not
contribute to classification competence. Competence preservation techniques
aim to remove internal instances in a cluster of instances of the same class and
can predispose towards preserving noisy instances as exceptions or border in-
stances. Competence enhancement on the other hand aims to remove noisy
or corrupt instances but can remove exceptional or border instances which
may not be distinguishable from true noise. A balance of both approaches
can be useful in an instance editing algorithm.

Preprocessing the training set with noise reduction techniques also has
theoretical motivations. It is desirable for the error of a classifier to be close
to the Bayes error which is the theoretical minimum error for the optimal
classifier on a particular training set. It is well-known that the classification
error of a k nearest neighbour classifier (k-NN) with k = 1, is bounded by
twice the Bayes error as the number of training examples n goes to infinity.

3



Devijver and Kittler [17] showed that it is possible to approach the Bayes
error using a 1-NN classifier on a training set which was edited in such a
way as that no misclassifications are possible within the training set itself.
The k-NN algorithm, with k > 1, can also approach the Bayes error, but
under the conditions that n ! 1, k ! 1 and k/n ! 0. These conditions
are much more di�cult to meet that those of the 1-NN classifier which only
requires n ! 1. Of course it is not possible to satisfy the n ! 1 condition
in practice, but a good noise reduction technique can help in approaching
the Bayes error using non-infinite cardinality training sets.

There are good, comprehensive discussions and reviews of editing strate-
gies covering both redundancy reduction and noise reduction, notably Brighton
and Mellish [5] or Wilson and Martinez [18] which cover the earlier work well
and more recently Segata et al. [8] which covers current work. As we are
focussing on noise reduction this section will outline the main noise reduc-
tion techniques proposed and used in the literature on editing strategies.
The earliest technique proposed for noise reduction was the Edited Near-
est Neighbour technique [11] which, along with its variants [12, 13], has
remained the most prominent technique in the literature. More recently
proposed strategies include the Blame Based Noise Reduction approach in-
troduced by Delany and Cunningham [15]; the Threshold Error Reduction
algorithm suggested by Massie et al. [9] and the Local Support Vector Ma-
chine noise reduction approach o↵ered by Segata et al. [8]. These techniques
are discussed below.

2.1. Edited Nearest Neighbour (ENN) and its variants

The principle behind ENN is very simple–remove any instance that is
misclassified by a k nearest neighbour (k-NN) classifier. This means that
the class of the target instance as predicted by the classifier is not the same
as its actual true class. Two extensions to this algorithm were proposed
by Tomek [12]. The first is Repeated Edited Nearest Neighbour (RENN)
which iteratively performs ENN on the training set until no more instances
are removed. The second is the all-kNN algorithm which performs ENN
multiple times on each instance in the training set starting with k = 1 and
incrementing the value of k each time. Instances are removed if any value of
k results in a misclassification.

RENN has in e↵ect become the noise reduction technique of choice with
a number of instance-based editing strategies including it as a pre-processing

4



pass to remove noise [14, 5, 18]. A more recent variation on ENN was pro-
posed by Sánchez et al. [13] which uses a k nearest centroid neighbour (k-
NCN) classifier rather than a nearest neighbour classifier. Nearest centroid
neighbours are those that are the closest to the target but also are as sym-
metrically distributed around the target as possible [19].

This approach of removing misclassified instances from a training set is
also used in work outside instance-based learning. Vezhnevets and Barinova
[20] use a conceptually similar approach to avoiding overfitting in boosting
by removing confusing instances, those instances that are misclassified by a
perfect Bayesian classifier.

2.2. Blame Based Noise Reduction (BBNR)

BBNR [15] adopts an alternative principle to that used in ENN. Rather
than focussing on the instances that are misclassified by the training set,
it attempts to focus on those instances that cause other instances to be
misclassified. BBNR identifies the training instances that are considered
harmful by building a competence model of the training set. The competence
model used derives from established case-base maintenance research [6] and
identifies for each training instance, t, the other instances in the training set
that t can classify correctly (captured as a set known as the coverage set [6])
and those instances that t causes to be incorrectly classified (captured as a
set known as the liability set [15]). More details on the competence modelling
technique are given in Section 3 as the RDCL profiling technique used in this
paper also uses these basic sets. The coverage set e↵ectively measures the
potential ‘good’ associated with a training instance whereas the liability set
measures the potential ‘harm’.

The essence of the BBNR algorithm is to remove those instances in the
training set that do more harm than good. The algorithm considers each
harmful instance t, which are those with liability sets, and removes any t
where the instances in the coverage set can still be classified correctly by the
training set if t is removed.

A similar type of approach is used by Salamó and López-Sánchez [21] in
ongoing case-base maintenance evolving the case-base by measuring the use-
fulness of cases for solving new problems using a ‘goodness’ measure inspired
by re-inforcement learning.

BBNR was found to work e↵ectively at editing training sets in the domain
of spam filtering [15] but is not as e↵ective in other text-based domains [22].

5



2.3. Threshold Error Reduction (TER)

The aim of the TER algorithm [9] is to identify and remove both noisy and
harmful boundary instances. It calculates a friend to enemy distance ratio

(F:E) value for each instance in the training set and uses thresholds on this
value to determine which instances to remove. The F:E value of an instance
t is the ratio of the friend distance (calculated as the average distance to
t’s three nearest neighbours of the same class) to the enemy distance (the
average distance to t’s three nearest neighbours of a di↵erent class). High
F:E values indicate instances which are closer to instances of a di↵erent class
and may potentially e↵ect the generalisation accuracy of the training set.
Instances, however, are only removed after a check to prevent removal of
any instances that might appear to be noisy due to their noisy neighbours.
As it is di�cult to set a single threshold that works across all domains, the
algorithm is iterative, reducing the threshold value at each iteration. It stops
when the leave-one-out accuracy on the edited set is lower than that achieved
on the previous iteration.

Massie et al. [9] also propose a simpler version of the algorithm, TER-
Simple (TER-S), which simply takes a fixed threshold and removes all in-
stances with F:E values higher than the threshold.

A significant limitation of the TER algorithm is that it is not viable for
large datasets. Due to the leave-one-out validation that occurs at each step
of the algorithm its performance can be unusably slow for large amounts of
data. As an example of this, it took over 150 hours to run the TER algorithm
on the largest dataset used in our evaluation which had over 6,500 instances,
two classes and 166 features.

2.4. Local Support Vector Machine Noise Reduction (LSVM-NR)

The basis of the LSVM-NR algorithm [8] is to induce a localised SVM de-
cision function around each training example and remove training examples
for which the predicted probability of the actual class is below a specified
threshold. In e↵ect it removes an instance t that is too close to, or on the
wrong side of, the maximal separating hyperplane which is built on the fea-
ture space projections of t’s neighbouring instances. The technique is based
on Local Support Vector Machines (LSVM) [23, 24] that consider locality
explicitly and adopts the internal local model selection approach described
in [25] to sensibly speed up and simplify the selection of the regularisation
parameters and of kernel parameters.

6



Segata et al. [26] expand on this technique introducing FaLKNR, a fast
and scalable noise reduction technique based on LSVM-NR, which is shown
to be successful on very large training sets. The algorithm achieves scalability
by reducing the number of local SVMs that need to be retrieved and built
while ensuring the entire training set is covered by the models, and by using
cover trees [27] to determine which instances to select as centres for the
models.

3. Profiling Instances

In our earlier work [16] we introduced a profiling technique based on the
local competencies of individual instances in a training set used in instance-
based learning. The profiling technique allows the investigation of the e↵ect
that each instance in a training set has on the overall competence of the
training set. This RDCL profiling technique builds on established case-base
maintenance research [15, 16, 6] to model the competence of a training set
which in turn allows the categorisation of each instance in the training set
based on three characteristics;

(i) whether the instance is classified correctly or not by the rest of training
set,

(ii) what benefit (or good), if any, it brings to the training set by its inclu-
sion, and

(iii) whether or not it causes damage (or harm) to the training set by its
inclusion.

Smyth and Keane [6] proposed two sets to model the local competence
properties of an instance in instance-based learning; the reachability set of
an instance t which is the set of all instances that can successfully classify
t, and the coverage set of an instance t which is the set of all instances that
t can classify. Using the training set T itself as representative of the target
problem space, these sets can be estimated by definitions 1 and 2 below.
Delany and Cunningham [15] extended this model to include an additional
property; the liability set of an instance t which is the set of all instances that
t causes to be misclassified and can be estimated by definition 3. Delany [16]
further extended this model to include a final set, the dissimilarity set of an
instance t which is the set of instances that contribute to the misclassification
of instance t and can be estimated by definition 4.

7



ReachabilitySet(t 2 T ) = {t0 2 T : Classifies(t0, t)} (1)

CoverageSet(t 2 T ) = {t0 2 T : Classifies(t, t0)} (2)

LiabilitySet(t 2 T ) = {t0 2 T : Misclassifies(t, t0)} (3)

DissimilaritySet(t 2 T ) = {t0 2 T : Misclassifies(t0, t)} (4)

where

Classifies(t0, t) i↵ t0 2 { t00 2 T : t00 2 the k-neighbourhood of t

^ class of t = class of t00

^ predicted class of t = actual class of t}

and

Misclassifies(t0, t) i↵ t0 2 { t00 2 T : t00 2 the k-neighbourhood of t

^ class of t 6= class of t00

^ predicted class of t 6= actual class of t}

In these definitions Classifies(t, t0) means that instance t0 contributes to
the correct classification of target instance t. This means that target instance
t is successfully classified by an instance-based classifier such as k-NN and
that instance t0 is a nearest neighbour of instance t and has the same class as
instance t. For k-NN with k = 1, instance t0 ‘causes’ the correct classification
as the closest instance to the target instance t but for k > 1 t0, as just one of
the closest instances to the target t, ‘contributes’ to the correct classification
of t. In both scenarios k=1 and k > 1 instance t0, as a neighbour of target
instance t, will be a member of the reachability set of t and t will be a member
of the coverage set of instance t0.

Misclassifies(t, t0) means that instance t0 contributes in some way to the
incorrect classification of target instance t. In e↵ect this means that when
target instance t is misclassified by the training set, instance t0 is returned as
a neighbour of t but has a di↵erent classification to t. Instance t is a member
of the liability set of instance t0 while t0 is a member of the dissimilarity set
of t. The dissimilarity set complements the reachability set in the same way
that the liability set complements the coverage set.

8



Either the reachability set or the dissimilarity set for an instance t will
always be empty. An instance t that has been classified correctly by the
training set will, by definition, have a non-empty reachability set, |RSet(t)| >
0, and an empty dissimilarity set |DSet(t)| = 0. Vice versa for an instance
t that has been misclassified by the training set, the dissimilarity set will
be non-empty |DSet(t)| > 0, whereas the reachability set will be empty,
|RSet(t)| = 0. However, the coverage and liability sets can independently be
empty or non-empty, regardless of whether the instance is classified correctly
or not. The coverage set of an instance t identifies the potential benefit
or usefulness of t in the training set, represented by the instances that t
contributes to classifying correctly. On the other hand the liability set of
an instance t identifies the damage or harm that t causes in the training set
represented by the instances that it causes to be misclassified. It is possible
for an instance to be both useful for some targets and damaging for others.

The RDCL profile of an instance is derived by using the initial letter (R
or D and/or C and/or L) of any of these four sets which are non-empty.
An instance t can therefore have one of eight possible combinations of these
letters with each combination or profile indicating (i) whether the instance is
classified correctly or not, (|RSet(t)| > 0 or |DSet(t)| > 0); (ii) whether the
instance is useful (|CSet(t)| > 0) and (iii) whether the instance is harmful
or damaging (|LSet(t)| > 0).

Each of the eight possible profiles for instance t is defined and interpreted
below.

R |RSet(t)| > 0 ^ |DSet(t)| = 0 ^ |CSet(t)| = 0 ^ |LSet(t)| = 0
t is correctly classified but is not used for classifying any other
instance in the training set.

D |RSet(t)| = 0 ^ |DSet(t)| > 0 ^ |CSet(t)| = 0 ^ |LSet(t)| = 0
t is misclassified but is not used for classifying any other instance
in the training set.

RC |RSet(t)| > 0 ^ |DSet(t)| = 0 ^ |CSet(t)| > 0 ^ |LSet(t)| = 0
t is correctly classified and is useful in that it contributes to the
correct classification of other instances in the training set.

RL |RSet(t)| > 0 ^ |DSet(t)| = 0 ^ |CSet(t)| = 0 ^ |LSet(t)| > 0
t is correctly classified but is harmful causing damage by contribut-
ing to other instances being misclassified.

9



DC |RSet(t)| = 0 ^ |DSet(t)| > 0 ^ |CSet(t)| > 0 ^ |LSet(t)| = 0
t is misclassified but is useful.

DL |RSet(t)| = 0 ^ |DSet(t)| > 0 ^ |CSet(t)| = 0 ^ |LSet(t)| > 0
t is misclassified and causes harm.

RCL |RSet(t)| > 0 ^ |DSet(t)| = 0 ^ |CSet(t)| > 0 ^ |LSet(t)| > 0
t is correctly classified and is both useful and harmful.

DCL |RSet(t)| = 0 ^ |DSet(t)| > 0 ^ |CSet(t)| > 0 ^ |LSet(t)| > 0
t which is misclassified and is both useful and harmful.

Figure 1 shows the profiles for a number of datasets, with Figure 1(a)
including datasets that, in general, have good generalisation accuracy when
a cross validation test is performed, and Figure 1(b) including datasets with
poorer generalisation accuracy. The profiles are computed using k = 1, the
e↵ect of noise in the data is more evident with this value as higher values of
k are more noise tolerant.

For datasets that separate well, it can be seen that the RC and R profiles
are generally the majority instance profile types which is to be expected as
these instance profiles cover instances that are classified correctly and con-
tribute to the successful classification of others (in the case of RC instances).
There are few instances with D or L in their profiles, which indicate instances
that are misclassified and/or contribute to the misclassification of other in-
stances. For datasets with poorer separability, the proportion of R and RC
instances is considerably lower with the numbers of instances causing harm
(with L in their profile) significantly higher.

3.1. Visualisation of the training instances using profiles

To explore the structure of the datasets for which profiles are generated,
and to better understand the e↵ect of removing di↵erent kinds of instances,
the datasets used in this paper have been visualised using a force-directed
graph drawing algorithm visualisation technique [28]. This visualisation tech-
nique has been used before for, amongst other things, data exploration [29],
similarity measure selection [30] and the visualisation of active learning ap-
proaches [31].

A force-directed graph drawing algorithm considers a dataset to be a
maximally inter-connected graph in which each instance is represented as a
node that is linked to every other instance (or node) in the dataset. An
example is shown in Figure 2(a) in which instances a, b and c are shown as

10



!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)# )*# )+# )*+# ,# ,+# ,*# ,*+#

-./0.123451#

67.3-2#8318.7#

9:1.#

(a) Profiles of datasets with good cross
validation generalisation accuracy (seg-
mentation 96%, breast-cancer 95%, wine
95%)

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)# )*# )+# )*+# ,# ,+# ,*# ,*+#

-.-#

/0123#

45607#

(b) Profiles of datasets with poor cross
validation generalisation accuracy (cmc
43%, yeast 49%, liver 61%)

Figure 1: Examples of dataset profiles illustrating the proportion of each type
of instance. For details on the characteristics of the datasets, see Table 1.

a maximally inter-connected graph. The layout of the graph should be such
that instances most similar to each other appear close together. To achieve
this the metaphor of springs is used. Each instance is imagined as a steel ring
with springs connecting it to every other instance (as illustrated in Figure
2(b)). The strength of the spring between any two instances is proportional
to the similarity between the two instances, i.e. instances that are similar are
linked by stronger springs than those linking instances that are dissimilar.

b 

a 
c 

b 

a 
c 

b 

a 
c 

att(c,b) 

att(b,c) 

rep(c,b) 

rep(b,c) 

rep(a,c) 

rep(c,a) 

att(a,c) 

att(c,a) 

att(b,a) 

att(a,b) 

rep(a,b) 

rep(b,a) 

(a)

b 

a 
c 

b 

a 
c 

b 

a 
c 

att(c,b) 

att(b,c) 

rep(c,b) 

rep(b,c) 

rep(a,c) 

rep(c,a) 

att(a,c) 

att(c,a) 

att(b,a) 

att(a,b) 

rep(a,b) 

rep(b,a) 

(b)

b 

a 
c 

b 

a 
c 

b 

a 
c 

att(c,b) 

att(b,c) 

rep(c,b) 

rep(b,c) 

rep(a,c) 

rep(c,a) 

att(a,c) 

att(c,a) 

att(b,a) 

att(a,b) 

rep(a,b) 

rep(b,a) 

(c)

Figure 2: Dataset representations used by the force-directed graph drawing
algorithm

11



To create a visualisation, the instances in a dataset are initially placed
at random positions on a two-dimensional plane and are allowed to move
according to the simulated spring forces until equilibrium is reached. As the
system is allowed to find its own equilibrium the stronger springs will draw
together those instances that are most similar to each other. So that all
instances do not form a single small group, a repulsive force between each
instance is also introduced.

Figure 3(a) shows a visualisation of the breast-cancer dataset in which
each instance is represented as a point in the graph and the colours and
shapes of these points indicate their classes. As shown in this visualisation,
this dataset is relatively well-behaved and the classes are very well separated
(the cross validation accuracy for the data set shown in Figure 1(a) supports
this). Figure 3(b) is a similar visualization of this dataset but displays the
instances with R and RC profiles highlighted in black. This visualisation
shows that the vast majority of instances are in the categories R and RC
as was evident from the profile shown in Figure 1(a). Figure 3(c) shows
that the small number of instances in the other damaging categories are
scattered around the class boundary where there is less certainty with regard
to classifications.

Figure 4(a) shows a visualisation of the liver dataset, again with classes
indicated by shape and colour. This time it is clear that the class separation
is not nearly as evident as was the case for the breast-cancer dataset. Again
this is supported by the cross validation accuracy achieved on this dataset as
listed in Figure 1(b). As this dataset is not easy to classify it is not surprising
that the profiles are much more mixed than the breast-cancer dataset. Figure
4(b) highlights the instances with R and RC profiles, the useful instances,
and we can see that there are fewer of these, relative to the breast cancer
dataset, and they are distributed without the same correspondence to class
positioning as in the breast cancer visualization above. Figure 4(c) shows the
instances with profiles indicating damage, illustrating the larger proportion
and wider distribution of these.

The e↵ect of removing di↵erent types of instances will be shown in further
visualisations in section 4.

3.2. The E↵ect of Removing Di↵erent Types of Instances

The ability to associate a competence profile with each instance in a
dataset o↵ers the opportunity to investigate the structure of datasets at an
individual instance level and the e↵ect of removing di↵erent types of instances

12



(a) Visualisation of the classes

(b) Highlighting the R and RC profiles (c) Highlighting the DL profiles

Figure 3: A visualisation of the breastcancer dataset where (a) the two classes
are indicated by the di↵erent colour and shape of the points and (b) the R
and RC instances are highlighted in black and (c) the damaging DL instances
are highlighted in black.

from the dataset. This section outlines a number of di↵erent investigations
performed using profile information on a variety of datasets. Table 1 gives
a list of the datasets used in this paper with a description of their char-
acteristics. All datasets are available in the UCI repository [32]. Table 1

13



(a) Visualisation of the classes

(b) Highlighting the R and RC profiles (c) Highlighting the DL profiles

Figure 4: A visualisation of the liver dataset where (a) the two classes are
indicated by the di↵erent colour and shape of the points and (b) the R and
RC instances are highlighted in black and (c) the damaging DL instances are
highlighted in black.

also includes the baseline 10-fold cross validation accuracy achieved on each
dataset using a k-NN classifier with a Euclidean distance measure. Since
the objective is to consider the e↵ect of di↵erent editing strategies, k = 1

14



Table 1: Datasets

#instances #classes #features cv

accuracy(%)

australian 690 2 14 80.1

breastcancer 683 2 9 95.5

cmc 1473 3 9 43.3

diabetes 768 2 8 70.8

ecoli 336 8 7 81.0

glass 214 6 9 65.9

heart 270 2 13 75.6

hill-valley 1212 2 100 59.4

ionosphere 351 2 34 86.0

iris 150 3 4 95.3

liver 345 2 6 61.5

musk2 6598 2 166 73.8

segmentation 2310 7 19 96.3

sonar 208 2 60 61.1

spectf 267 2 44 71.5

vehicle 846 4 18 68.2

vowel 528 11 10 91.9

waveform 5000 3 21 77.2

wine 178 3 13 94.9

yeast 1484 10 8 48.8

was selected (the e↵ect of noise in the data will be most evident with this
value as higher values of k are more noise tolerant). Moreover, we already
mentioned in Section 2 that applying the 1-NN classifier after preprocessing
has theoretical motivations.

Table 2 shows the e↵ect of removing all the instances of each profile
type from each dataset. The accuracies were calculated using 10-fold cross
validation, using the same folds as the original baseline unedited accuracy.
A competence model was built on each training set of nine folds and the
training set was edited to remove all instances with the specified profile. The

15



instances in the remaining fold were classified using the edited training set.
Table 2 also indicates whether removing a particular type of instance

results in a significant (at the 5% level) improvement or dis-improvement
in accuracy for a particular dataset. Significant decreases in accuracy are
highlighted with a ‘–’ next to the accuracy figure and significant increases
highlighted with a ‘+’. The McNemar [33] test was used for testing for
significance and where there were small levels of disagreement (i.e. ten or less)
an exact sign test was used. Looking at individual dataset results suggests
that removing RC or R instances causes significant decreases in generalisation
accuracies, whereas removing DL instances causes significant improvements
in generalisation accuracy. Using the more appropriate tests proposed by
Demsar [34] for comparing two or more algorithms across multiple datasets
supports these results. Using the Wilcoxon [35] Signed Rank test to compare
the e↵ect of removing each type of instance across all the datasets shows
that removing R type instances and RC type instances has a significantly
decremental e↵ect on generalisation accuracy, whereas removing DL type
instances has a significant improvement on generalisation accuracy.

Let us consider what this means.

RC and R instances:. RC instances are those that are classified correctly by
the training set and are also used to correctly classify other instances. It
would seem obvious that removing these types of instances would be detri-
mental to the generalisation accuracy of the training set which is what our
evaluation shows. In fact Friedman’s test (which tests whether the aver-
age ranks of a group of algorithms across multiple datasets are significantly
di↵erent from the mean rank [36, 37]) followed by the Holm [38] post-hoc
procedure shows that the pairwise comparison between the unedited dataset
and the treatment of removing RC instances detects a significant di↵erence
– although this is the only di↵erence that is detected as significant by this
statistical test.

On the other hand instances with an R profile are instances that are
classified correctly by the rest of the training set but are not used in the
classification of any other instance in that training set. This might suggest
that these are redundant and are not needed for generalisation but our evalu-
ation shows a considerable dis-improvement in generalisation accuracy (with
significance detected by the Wilcoxon test) when these are removed. This
suggests that these may be outlier instances that are useful for generalisation
across unseen data.

16



The instance profiles can also be computed with values for k higher than
one and the results can be slightly di↵erent as each instance is more likely
to be returned as one of the k nearest neighbours of other instances in the
training set and thus contribute to the classification, correct or otherwise, of
other instances. For k > 1, this means that the proportion of instances be-
longing to the R and D profiles will certainly decrease whereas the proportion
of instances with RC, C, RCL and DCL profiles increase.

DL instances:. DL instances are those that are themselves misclassified by
the training set and in addition cause damage by misclassifying other in-
stances in the training set. It would again seem obvious that removing these
would increase generalisation accuracy which we have shown is the e↵ect.

RL and RCL instances:. Considering the average ranks of all treatments
as shown in the second last row of Table 2 which according to Demsar [34]
provide “a fair comparison of the algorithms”, the removal of RL and RCL in-
stances each ranks slightly higher than the accuracy on the baseline unedited
dataset. The di↵erence in average ranks is very small and without statistical
significance which implies that removing these types of instances is unlikely
to have a significant e↵ect on the generalisation accuracy. RL and RCL in-
stances are classified correctly by the training set but are causing harm overall
by being instrumental in the misclassification of other instances. However,
in addition, RCL instances are somewhat useful in that they contribute to
the correct classification of other instances. This would indicate that these
instances are located near the decision boundary and their removal may con-
tribute to smoothing the decision boundary.

D, DC and DCL instances:. In contrast, the accuracy achieved by removing
instances with a D, DC or DCL profile ranks lower overall (although again,
not with statistical significance) than the accuracy on the baseline unedited
accuracy. The di↵erences in average ranks are again very small for the D and
DCL instances, but considerably larger for the DC instances. Any instance
with a D in its profile is misclassified by the training set but those with C
and/or L are used to classify other instances. Again, this suggests that these
instances are located at the decision boundary, but their removal overall is
not necessarily advised by these results.

Instances with a D profile might, similar to those with an R profile, be
considered to be redundant as they are not used in the classification of any
other instance in the training set. However, in line with the argument for

17



Table 2: Accuracy values (%) on editing the datasets by removing instances
with a specific instance profile. Values which show a significant decrease in
accuracy over the unedited baseline using McNemar’s test are highlighted by
‘–’ next to the accuracy figure while accuracy values which show a significant
increase are highlighted by ‘+’. The average rank of each algorithm is given
in the second last row and the last row indicates whether the results of a
Wilcoxon signed rank test between each algorithm and the unedited dataset
is significant (Y) at the 5% level.

Dataset unedited R RC RL RCL D DC DL DCL

australian 80.1 79.6 78.3– 79.9 83.4 79.6 80.6 83.5+ 78.7-

breastcancer 95.5 95.5 94.4– 95.9 95.5 95.9 95.6 96.1 95.5

cmc 43.3 42.5 42.9 42.9 42.8 42.8 42.7 46.2+ 44.1

diabetes 70.8 70.1 66.0– 70.6 69.7 71.4 71.0 74.1+ 70.2

ecoli 81.0 78.9– 77.1– 80.3 81.0 82.1 80.1 83.3+ 81.0

glass 65.9 65.9 62.2– 66.4 64.5 65.4 65.9 65.0 65.9

heart 75.6 76.7 72.2– 75.6 75.6 75.9 76.0 77.4 75.2

hill-valley 59.4 57.7– 59.2 59.7 59.7 53.1– 57.8– 59.5 59.1

ionosphere 86.0 87.2 81.5– 86.3 86.3 85.8 84.6 86.3 86.6

iris 95.3 95.3 95.3 95.3 95.3 96.0 95.3 95.3 95.3

liver 61.5 61.5 60.6 61.5 61.5 60.6 60.3 62.0 62.3

musk2 73.8 72.4– 70.5– 74.0+ 74.5+ 74.9+ 73.8 74.9+ 73.8

segmentation 96.3 95.8– 95.6– 96.2 96.3 95.6– 96.0– 96.1 96.2

sonar 61.1 58.2– 60.6 59.1 62.5 59.1 61.1 62.0 61.1

spectf 71.5 70.4 67.8– 71.9 72.7 72.7 70.8 73.4 71.5

vehicle 68.2 69.0 64.9– 67.9 68.4 68.6 68.1 68.2 68.0

vowel 91.9 90.2– 75.0– 92.4 91.9 82.4– 91.5 87.1– 91.9

waveform 77.2 76.7 74.5– 77.2 76.9 77.2 77.0 78.0+ 77.6

wine 94.9 93.8 93.8 94.9 94.4 94.4 94.9 94.9 94.9

yeast 48.8 47.1– 46.2– 48.9 49.5 50.5+ 48.9 50.1 48.5

Avg rank 4.5 6.3 8.3 4.2 4.3 4.7 5.5 2.8 4.7

Wilcoxon Y Y Y

18



the R profile instances discussed above, they may prove useful in classify-
ing unseen examples. Interestingly, in spite of the evidence here suggesting
keeping these instances, all D, DC and DCL instances are removed by the
standard Wilson noise reduction technique used in many editing techniques
which removes all instances that are misclassified by the training set.

4. Comparison of Noise Reduction Algorithms

The objective of this evaluation was to compare existing noise reduction
algorithms and, using the profile framework, identify the types of instances
that the algorithms focus on for removal. The noise reduction algorithms
to be compared in this work include RENN, BBNR, LSVM-NR and TER
which are all discussed in detail in Section 2 and are recently proposed noise
reduction algorithms in the area of instance-based learning. Two versions of
LSVM-NR were considered, the first using a linear kernel function denoted
LSVM-lin, and the second using a radial-basis kernel function, LSVM-rbf.
Two versions of TER were also considered, the non-iterative version TER
Simple (denoted TER-S) which uses a F:E threshold of 1 in determining
which instances to delete and the standard TER algorithm which uses a
variable F:E threshold starting at 1.25 and reducing by 0.1 on each iteration
stopping when the threshold reaches 0.5 if the main stopping criterion of
increased leave-one-out accuracy was not already reached1.

We also included in the comparison removing the DL instances from each
dataset as we showed in the previous section that removing DL instances
resulted in a significant improvement in generalisation accuracy.

The evaluation consisted of a 10-fold cross validation across all the datasets
listed in Table 1 using the same folds for each algorithm. Each training set
of nine folds was edited using the various noise reduction algorithms and the
instances in the remaining fold were classified with a 1-NN classifier using
the resulting edited training set. The results are presented in Table 3 which
gives the accuracy achieved by each algorithm on each dataset. Table 3 also
indicates whether the algorithms result in significant improvements or dis-
improvements in accuracy when compared to the baseline unedited dataset
using McNemar’s test with significant decreases in accuracy highlighted with

1This additional stopping criterion was added after communications with the authors
of the TER algorithm [9] as the algorithm failed to stop on some of the datasets in this
evaluation

19



Table 3: Accuracy values (%) on editing the datasets using the di↵erent noise
reduction algorithms. Values which show a significant increase in accuracy
over the unedited baseline using McNemar’s test are highlighted by + while
accuracy values which show a significant decrease are highlighted by –. The
percentage of datasets which show an overall increase or decrease are listed
in the row labelled % +/–; with percentages of datasets with significant
di↵erences in the row labelled #sig +/– . The last row shows those algorithms
marked Y which exhibit a significant di↵erence over the unedited dataset
using the Wilcoxon test.

Dataset unedited LSVM LSVM TER-S TER RENN BBNR DL

-lin -rbf

australian 80.1 85.1+ 84.9+ 85.1+ 85.6+ 85.2+ 83.8+ 83.5+

breastcancer 95.5 97.1+ 96.6+ 96.6+ 96.8+ 96.6+ 96.5+ 96.1

cmc 43.3 49.6+ 48.3+ 47.4+ 45.0 46.1+ 45.1+ 46.2+

diabetes 70.8 74.6+ 75.4+ 75.8+ 73.4 75.0+ 73.8+ 74.1+

ecoli 81.0 86.6+ 86.6+ 85.4+ 85.1+ 85.7+ 82.7 83.3+

glass 65.9 64.5 65.9 64.0 61.2 63.1 65.4 65.0

heart 75.6 79.3 78.9 80.0 79.3 79.3 77.0 77.4

hill-valley 59.4 55.3– 59.4 49.7– 51.0– 48.5– 58.3 59.5

ionosphere 86.0 84.9 83.5– 84.1 84.3 84.9 86.9 86.3

iris 95.3 95.3 95.3 96.0 96.0 96.0 95.3 95.3

liver 61.5 62.9 64.1 62.3 57.3 60.6 61.7 62.0

musk2 73.8 74.7+ 74.0+ 78.4+ 82.2+ 76.0+ 75.1+ 74.9+

segmentation 96.3 95.5– 95.5– 94.6– 94.8– 94.8– 96.0 96.1

sonar 61.1 57.7– 59.6 59.1 60.6 60.6 62.9 62.0

spectf 71.5 75.6 74.9 72.7 74.2 75.3 71.9 73.4

vehicle 68.2 70.3 71.0+ 68.3 64.7– 67.4 66.6 68.2

vowel 91.9 78.8– 80.9– 70.83– 80.9– 79.6– 87.5– 87.1–

waveform 77.2 80.8+ 80.7+ 79.8+ 81.2+ 78.9+ 78.4+ 78.0+

wine 94.9 94.4 94.9 94.4 94.4 93.8 94.9 94.9

yeast 48.8 57.0+ 56.5+ 56.1+ 56.4+ 55.3+ 50.9+ 50.1

%+/– 60/35 65/20 65/35 55/45 55/45 65/25 70/15

%sig +/– 40/20 45/15 40/15 30/20 40/15 35/5 30/5

Wilcoxon Y Y Y

20



a ‘–’ next to the accuracy figure and significant increases highlighted with a
‘+’. The percentage of datasets showing an increase or decrease in accuracy
(labelled % +/–) are included with the percentage of datasets with significant
increases and decreases also listed (labelled %sig +/–).

The Freidman test which considers the average rank of each algorithm in-
dicates that there are no significant di↵erences across the accuracy achieved
by the di↵erent algorithms, however, the Wilcoxon Signed Ranks test which
takes into account the magnitude of the di↵erences by allowing greater di↵er-
ences to count more, shows that LSVM-rbf, BBNR and removing instances
with a DL profile result in a higher generalisation accuracy than the unedited
dataset where the di↵erence is significant at the 5% level.

Looking at the individual results, no particular algorithm results in an
improvement for each and every dataset. However, removing the DL in-
stances performs consistently better than other algorithms. It only results in
a reduction in generalisation accuracy for three of the 20 datasets (in two of
these datasets (glass and segmentation) the reduction is less than 1 percent-
age point). For the remaining dataset (vowel) however, there is a significant
dis-improvement – although none of the noise reduction algorithms result in
improved accuracy on this dataset and the drop in generalisation accuracy
for DL is considerably less (approx 5 point) compared with the other algo-
rithms, in particular TER-S (a 22 point drop) or LSVM-lin (a 13 point drop).
In fact, vowel appears to be a well-separated dataset with little noise which
does not necessarily require editing.

TER and RENN appear to perform quite poorly, with the generalisation
accuracy lower than that achieved on the unedited set almost half of the
time. Although these algorithms can perform very well on certain datasets
(e.g. almost 8 point and 7 point improvements in generalisation accuracy
respectively on the yeast dataset) they also perform very badly on others in-
cluding a decrease in generalisation accuracy of 10 and 11 points respectively
on vowel and 9 and 11 points respectively on hill-valley. The performance
of the more successful algorithms is more consistent and less variable across
the datasets.

Although we are focusing here on competence enhancement, from the
computational viewpoint TER is the slowest algorithm due to its internal
leave-one-out procedure as discussed in Section 2.3. All of the other algo-
rithms tested here are much faster than TER and are adequate at least for
non-large datasets; however, due to their implementation on very di↵erent
frameworks, their di↵erent approaches for model selection and the use of

21



24.0%&

12.8%&
16.4%&

13.0%&

18.3%&

33.2%&

7.1%&

0%&

10%&

20%&

30%&

40%&

RENN& BBNR& LSVM4lin& LSVM4rbf& TER4S& TER& DL&

Figure 5: The percentage of instances removed by the di↵erent noise reduc-
tion algorithms averaged across all datasets.

di↵erent machines it is not worth evaluating their speeds.
The proportion of the datasets removed by the di↵erent algorithms varies

considerably. Figure 5 shows the overall percentage of instances removed by
each noise reduction algorithm averaged (by median) across all datasets. All
averages reported in this work are median averages to remove the e↵ect of
outliers as the distributions are quite skewed. RENN and the TER algorithms
remove the highest number of instances, with TER on average removing one
third of the dataset. This would seem to be high for an algorithm that claims
to remove noise and in Section 4.1 we show how these algorithms do in fact
focus on instances that can be considered redundant rather than noisy within
the context of the training set. The techniques that focus on removing the
smaller amounts of instances are those that perform best - including LSVM-
rbf, BBNR and the approach of just removing damaging DL instances (with
the latter reducing the datasets by the least amount, on average just over
7%).

4.1. Profiles of Instances Deleted by Noise Reduction Algorithms

The profiling approach described in Section 3 o↵ers the opportunity to
consider the types of instances focussed on for removal by the di↵erent noise
reduction techniques. Figure 6 shows the percentage of each type of instance
in the original dataset that are removed by di↵erent algorithms averaged
over all datasets whereas Figure 7 shows the proportion of the instances that
are deleted which are of each type. To clarify the di↵erences between these
graphs, Figure 7(a) shows that on average 57% of the instances deleted by
BBNR have a DL profile whereas Figure 6(a) shows that on average 100%
of the DL instances in a dataset are removed by BBNR.

22



!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

($!"#

)# )*# )+# )*+# ,# ,*# ,+# ,*+#

)-..#

//.)#

(a) RENN vs BBNR

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)# )*# )+# )*+# ,# ,*# ,+# ,*+#

+-./0123#

+-./0456#

(b) LSVM-lin vs LSVM-rbf

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)# )*# )+# )*+# ,# ,*# ,+# ,*+#

-.)/0#

-.)#

(c) TER vs TER-S

Figure 6: Percentage of each type of instance removed by the di↵erent noise
reduction algorithms.

The most obvious focus of di↵erence is between the RENN approach and
the BBNR approach. RENN removes instances that are misclassified by the
training set, so removes instances that have a D in their profile; whereas
BBNR focusses on instances that are harmful in the training set causing
other instances to be misclassified, indicated by having an L in their profile.
Figure 7(a) illustrates this, with the majority of the deleted instances having
D in their profile for RENN and all instances removed by BBNR having L in
their profile. Figure 7(a) also shows that a small proportion of the instances
removed by RENN include R in their profile which is contrary to what is
expected. This is due to the fact that the algorithm is iterative; repeating
until all instances in the resultant edited training set are classified correctly
by the edited set. During these iterations the profiles of particular instances
might change as other instances are removed from the dataset. However,
as the RENN algorithm runs independently of our profiler we report on the
initial profile of the dataset generated at the beginning of the RENN process.

23



We have shown that removing DL instances improves the generalisation
accuracy of a training set. Both RENN and BBNR remove all these in-
stances but also remove a considerable amount of other types of instances
(see Figure 6(a)). In particular in addition to the DL instances RENN re-
moves all instances with D in their profile (i.e. D, DC and DCL), which our
investigations suggested did not need to be removed. RENN also removes a
proportion of the instances with a profile of R which might seem to be redun-
dant instances but our earlier investigation showed generalisation accuracy
dis-improvements on their removal.

Figure 7(b) shows that there is little di↵erence in the type of instances re-
moved by the LSVM algorithms. Both algorithms perform well with LSVM-
rbf performing the best. It’s hard to get any significant evidence from the
profiles of the instances removed to account for the di↵erence. It seems that
LSVM-lin focusses on removing marginally more of the beneficial R and RC
instances than LSVM-rbf as can be seen in Figure 6(b). Also, LSVM-lin
removes more instances on average than LSVM-rbf which may be a con-
tributing factor. These are noise reduction algorithms that perform well in
general and it may be possible to improve on their performance by adapting
them to allow the RC and R instances to be kept by the editing process.

There are some di↵erences between the performance of the two TER algo-
rithms. Of the two, TER performs worst which is convenient as the varying
threshold makes the algorithm unusable for large datasets. In addition TER
is a very aggressive algorithm removing on average almost double the in-
stances than its TER-S counterpart. It also focusses more on removing the
beneficial R and RC instances, and removes less of the damaging DL in-
stances as can be seen in Figure 6(c). Overall, TER is a noise reduction
algorithm that does not seem to work well. Its simpler version TER-S does
perform better, but its behaviour with respect to the type of instances it
deletes is very similar to RENN, see Figures 8(a) and 8(b) and its perfor-
mance in terms of generalisation accuracy is also very similar, as evident in
Table 3.

Another recent algorithm for instance selection is the Hit Miss Network
(HMN) proposed by Marchiori [10] which focusses on competence preserva-
tion (redundancy removal) rather than noise reduction. Although variations
on the original algorithm (HMN-E and HMN-EI) are adaptations for noise
reduction, as the base algorithm focusses on redundancy reduction it was not
included explicitly in the evaluation. However, this algorithm is interesting
from the point of view of the RDCL profiles as it is straightforward to see the

24



!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*# *+# *,# *+,# -# -+# -,# -+,#

*.//#

00/*#

(a) RENN vs BBNR

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*# *+# *,# *+,# -# -+# -,# -+,#

,./01234#

,./01567#

(b) LSVM-lin vs LSVM-rbf

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*# *+# *,# *+,# -# -+# -,# -+,#

./*01#

./*#

(c) TER vs TER-S

Figure 7: The percentage of those instances removed by the di↵erent noise
reduction algorithms which are of each type.

25



!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*# *+# *,# *+,# -# -+# -,# -+,#

./*01#

*/22#

(a) % of deleted instances of each type

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)# )*# )+# )*+# ,# ,*# ,+# ,*+#

-.)/0#

).11#

(b) % of each type of instance deleted

Figure 8: Comparison of the behaviour of the TER-S and the RENN algo-
rithms.

types of instances that it focusses on for removal. The algorithm creates a
proximity directed graph from the nearest neighbour of each instance in the
training set, with an edge connecting each instance to its nearest neighbour
of each class. A ‘hit’ reflects the connection to the nearest like neighbour
whereas a ‘miss’ reflects a connection to the nearest neighbour of a di↵erent
class. The basic form of the algorithm removes the nodes in the graph with
in-degree of zero which, in e↵ect, removes instances with no coverage or lia-
bility sets, removing only instances with an R or D profile. Our evaluation in
Section 3.2 showed that it was detrimental to overall generalisation accuracy
to remove the R instances. Marchiori’s results support this in that the basic
form of their algorithm does not improve generalisation accuracy over a 1-NN
classifier (see Table 2 in [10]).

4.2. Visualisation of Instances Deleted by Noise Reduction Algorithms

Figures 9 and 10 show visualisations of the breastcancer and liver datasets
respectively, highlighting in black the instances which are removed by each
of four di↵erent noise reduction techniques. The breast cancer dataset is
an example of a well separated dataset where the cross validation accuracy
on the original dataset is high and few instances are removed by any of
the noise reduction techniques (less than 5% in all cases). It can be seen
from Figure 9 that there is little di↵erence across the di↵erent techniques
in the instances removed, although by comparing with the visualization in
Figure 3(c) interestingly, the LSVM-rbf techniques seems to keep more of the
instances that could be considered to be more ‘damaging’, the DL instances,

26



Liver is an example of a less well separated dataset where the noise re-
duction techniques behave di↵erently with regard to the instances that they
remove. Figures 10(c) and 10(d) show little di↵erences in the instances re-
moved which reflects the conclusions above that there are a number of sim-
ilarities between the RENN and TER algorithms. Both the LSVM-rbf and
BBNR algorithms remove significantly less instances and Figures 10(a) and
10(b) show that they don’t concentrate as much as the RENN and TER
algorithms on removing large clusters of instances, in fact they each tend to
remove di↵erent instances from the other. It is worth noting here too that
by comparison with Figure 4(c) we can see that the LSVM algorithm leaves
a number of the ‘damaging’ instances. Given that LSVM-rbf has the best
performance on this dataset, this suggests that the local characteristics of
this algorithm cause it to behave quite di↵erently from the other algorithms
in this study.

5. Conclusions

This paper has compared a number of noise reduction techniques that are
currently in use in instance-based learning literature namely RENN, BBNR,
LSVM-NR and TER. As the work is focussed on instance-based learning, our
conclusions are less relevant for model based learners. We compared these
noise reduction techniques not just from the perspective of comparative per-
formance but from the perspective of identifying the types of instances that
each focusses on for removal. We use the RCDL profiling technique which
categorises each instance in a training set into one of eight categories based
on its local competence properties. These categories capture whether the
instance is correctly classified by the rest of the training set and whether it
is beneficial and/or harmful depending on how it contributes to the classifi-
cation of other instances in the training set.

It is obvious that instances in a training set that are classified correctly
and contribute to the successful classification of others are beneficial to the
training set. A significant finding of this paper is that we are able to identify
such instances with the RCDL profiling technique and we have shown that
removing such instances from a training set is significantly detrimental to the
competence of the training set. We also found that the removal of instances
that may appear to be redundant (i.e. not used in the classification of other
instances in the training set) is not necessarily beneficial to generalisation
accuracy.

27



(a) BBNR (96.5%–4%) (b) LSVM-rbf (96.6%–3%)

(c) RENN (96.6%–4%) (d) TER-S (96.6%–3%)

Figure 9: Visualisations showing the instances removed in the breast cancer
dataset (highlighted in black) by each of the noise reduction techniques. The
cross validation accuracy achieved and the percentage of instances removed
by each technique is also shown (accuracy%–deleted%).

28



(a) BBNR (61.7%–24%) (b) LSVM-rbf (64.1%–31%)

(c) RENN (60.6%–42%) (d) TER-S (62.3%–36%)

Figure 10: Visualisations showing the instances removed in the liver dataset
(highlighted in black) by each of the noise reduction techniques. The cross
validation accuracy achieved and the percentage of instances removed by
each technique is also shown (acc%–del%).

29



Comparing the actual performance of the algorithms we evaluated we
have found that no single noise reduction algorithm can improve the gener-
alisation accuracy consistently on all the twenty datasets used in our eval-
uation. However the simple approach of removing all instances which are
misclassified by the training set and cause other instances to be misclassified
works very well as an e↵ective noise reduction technique. Its performance,
along with the performance of BBNR and LSVM (using an rbf kernel), is
significantly better than using the original dataset, i.e. not removing noise,
across the datasets used in our evaluation. Our results also suggest that
algorithms which are conservative in the proportion of instances removed
perform considerably better than aggressive ones.

Considering the types of instances removed by the di↵erent algorithms,
there is little overlap in RENN and BBNR whereas TER-S and RENN seem
to target the same types of instances and perform very similarly–both quite
poorly overall.

The performance of the LSVM-NR algorithm is good, particularly with
an rbf kernel. We have shown that this algorithm does remove a percentage
of beneficial instances, those with an R or RC profile. Future work could
consider adapting the algorithm to retain these types of instances.

Apart from noise reduction, the profiling technique we have proposed
here enables other investigations. Future work will include the application
of the RCDL profiling technique to the redundancy reduction task in order
to improve it. Also, the recently increasing study of active learning in which
the learning procedure has the possibly of choosing unlabeled examples to be
labeled, can take advantage from our work. For example, an active learning
algorithm should not be interested in selecting unlabeled points that, once
labeled, end up with a R or D profile, because instances with these profiles
are not used for classifying other instances. Addressing the potential learning
advantage in selecting an instance for labelling with respect to the profiles it
can have, has the potential of improving active learning approaches.

References

[1] D. W. Aha, D. F. Kibler, Noise-tolerant instance-based learning algo-
rithms, in: Proceedings of the 11th International Joint Conference on
Artificial Intelligence (IJCAI-89), Morgan Kaufmann Publishers Inc.,
1989, pp. 794–799.

30

Sarah Jane Delany




[2] G. W. Gates, The reduced nearest neighbor rule, IEEE Transactions
on Information Theory 18 (1972) 431–433.

[3] P. E. Hart, The condensed nearest neighbor rule, IEEE Transactions
on Information Theory 14 (1968) 515–516.

[4] G. L. Ritter, H. B. Woodru↵, S. R. Lowry, T. L. Isenhour, An algorithm
for a selective nearest neighbor decision rule, IEEE Transactions on
Information Theory 21 (1975) 665–669.

[5] H. Brighton, C. Mellish, Advances in instance selection for instance-
based learning algorithms., Data Mining and Knowledge Discovery 6
(2002) 153–172.

[6] B. Smyth, M. Keane, Remembering to forget: A competence preserv-
ing case deletion policy for CBR systems, in: C. Mellish (Ed.), Pro-
ceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, (IJCAI-95), Morgan Kaufmann Publishers Inc., 1995, pp.
337–382.

[7] D. Wilson, T. Martinez, Instance pruning techniques, in: Proceedings
of the Fourteenth International Conference on Machine Learning (ICML
97), Morgan Kaufmann Publishers Inc., 1997, pp. 403–411.

[8] N. Segata, E. Blanzieri, S. J. Delany, P. Cunningham, Noise reduc-
tion for instance-based learning with a local maximal margin approach,
Journal of Intelligent Information Systems 35 (2009) 301–331.

[9] S. Massie, S. Craw, N. Wiratunga, When similar problems don’t have
similar solutions, in: Proceedings of the 7th International Conference on
Case-Based Reasoning (ICCBR 07), Springer-Verlag, Berlin, Heidelberg,
2007, pp. 92–106.

[10] E. Marchiori, Hit miss networks with applications to instance selection,
Journal of Machine Learning Research 9 (2008) 997–1017.

[11] D. L. Wilson, Asymptotic properties of nearest neighbor rules using
edited data, IEEE Transactions on Systems, Man and Cybernetics 2
(1972) 408–421.

31

Sarah Jane Delany




[12] I. Tomek, An experiment with the nearest neighbor rule, IEEE Trans-
actions on Information Theory 6 (1976) 448–452.

[13] J. S. Sánchez, R. Barandela, A. I. Marqués, R. Alejo, J. Badenas, Analy-
sis of new techniques to obtain quality training sets, Pattern Recognition
Letters 24 (2003) 1015–1022.

[14] E. McKenna, B. Smyth, Competence-guided editing methods for lazy
learning, in: W. Horn (Ed.), Proceedings of the 14th European Confer-
ence on Artificial Intelligence (ECAI 2000), IOS Press, 2000, pp. 60–64.

[15] S. J. Delany, P. Cunningham, An analysis of case-based editing in a spam
filtering system, in: P. Funk, P. González-Calero (Eds.), Proceedings of
the 7th European Conference on Case-Based Reasoning (ECCBR 2004),
volume 3155 of LNAI, Springer, 2004, pp. 128–141.

[16] S. J. Delany, The good, the bad and the incorrectly classified: Profil-
ing cases for case-base editing, in: L. McGinty, D. C. Wilson (Eds.),
Proceedings of the Eighth International Conference on Case-Based Rea-
soning (ICCBR 09), volume 5650 of LNCS, Springer, 2009, pp. 135–149.

[17] P. Devijver, J. Kittler, Pattern recognition: a statistical approach, En-
glewood Cli↵s, London (1982).

[18] D. R. Wilson, T. R. Martinez, Reduction techniques for instance-based
learning algorithms, Machine Learning 38 (2000) 257–286.

[19] B. B. Chaudhuri, A new definition of neighborhood of a point in multi-
dimensional space, Pattern Recognition Letters 17 (1996) 11 – 17.

[20] A. Vezhnevets, O. Barinova, Avoiding boosting overfitting by removing
confusing samples, in: J. N. Kok, J. Koronacki, R. L. de Mántaras,
S. Matwin, D. Mladenic, A. Skowron (Eds.), Proceedings of the 18th
European Conference on Machine Learning (ECML), volume 4701 of
LNCS, Springer, 2007, pp. 430–441.

[21] M. Salamó, M. López-Sánchez, Adaptive case-based reasoning using
retention and forgetting strategies, Knowledge-Based Systems 24 (2011)
230 – 247.

32

Sarah Jane Delany




[22] G. Singh, Improving CBR: Investigating improved approaches to Case
Base Maintenance and Textual Case Retrieval, PgDip(Res), School of
Computing, Dublin Institute of Technology, 2010.

[23] E. Blanzieri, F. Melgani, An adaptive SVM nearest neighbor classifier
for remotely sensed imagery, in: Proceedings of the IEEE International
Conference on Geoscience and Remote Sensing Symposium (IGARSS
2006), pp. 3931–3934.

[24] E. Blanzieri, F. Melgani, Nearest neighbor classification of remote sens-
ing images with the maximal margin principle, IEEE Transactions on
Geoscience and Remote Sensing 46 (2008) 1804–1811.

[25] N. Segata, E. Blanzieri, Fast and scalable local kernel machines, Journal
of Machine Learning Research 11 (2010) 1883–1926.

[26] N. Segata, E. Blanziere, P. Cunningham, A Scalable Noise Reduction
Technique for Large Case-based Systems, in: 8th International Con-
ference on Case-based Reasoning (ICCBR 09), volume 5650 of LNCS,
Springer, 2009, pp. 328–342.

[27] A. Beygelzimer, S. Kakade, J. Langford, Cover trees for nearest neigh-
bor, in: Proceedings of the 23rd International Conference on Machine
Learning (ICML ’06), ACM, New York, NY, USA, 2006, pp. 97–104.

[28] P. Eades, A Heuristic for Graph Drawing, Congressus Numerantium 42
(1984) 149–160.

[29] B. Smyth, M. Mullins, E. McKenna, Picture perfect: Visualisation
techniques for case-based reasoning, in: W. Horn (Ed.), Proceedings of
the 14th European Conference on Artificial Intelligence (ECAI 2000),
IOS Press, 2000, pp. 65–72.

[30] B. Mac Namee, S. J. Delany, CBTV: Visualising case bases for similar-
ity measure design and selection, in: I. Bichindaritz, S. Montani (Eds.),
Case-Based Reasoning. Research and Development, 18th International
Conference on Case-Based Reasoning, ICCBR 2010, Proceedings, vol-
ume 6176 of LNCS, Springer, 2010, pp. 213–227.

[31] B. Mac Namee, R. Hu, S. J. Delany, Inside the selection box: Visualising
active learning selection strategies, in: Proceedings of the Challenges of

33

Sarah Jane Delany




Data Visualization Workshop at the Twenty-Fourth Annual Conference
on Neural Information Processing Systems.

[32] A. Asuncion, D. Newman, UCI machine learning repository, 2007. Uni-
versity of California, Irvine, School of Information and Computer Sci-
ences.

[33] Q. McNemar, Note on the sampling error of the di↵erence between
correlated proportions or percentages, Psychometrika 12 (1947) 153–
157.

[34] J. Demsar, Statistical comparison of classifiers over multiple data sets,
J. Machine Learning Research 7 (2006) 1–30.

[35] F. Wilcoxon, Individual comparisons by ranking methods, Biometrics
1 (1945) 80 – 83.

[36] M. Freidman, The use of ranks to avoid the assumption of normality
implicit in the analysis of variance, Journal of the American Statistical
Association 32 (1937) 675–701.

[37] M. Freidman, A comparison of alternative test of significance for the
problem of m rankings, Annals of Mathematical Statistics 11 (1940)
86–92.

[38] S. Holm, A simple sequentially rejective multiple test procedure, Scan-
dinavian Journal of Statistics 6 (1979) 65–70.

34

Sarah Jane Delany



	Profiling Instances in Noise Reduction
	Recommended Citation

	tmp.1348854626.pdf.83LFK

