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Abbreviations: PTE-2, peroxisomal acyl-CoA thioesterase-2; PPARα, peroxisome

proliferator-activated receptor alpha; CoASH, coenzyme A; THCA-CoA,

trihydroxycoprostanoyl-CoA; CA-CoA, choloyl-CoA; CDCA-CoA,

chenodeoxycholoyl-CoA; DMN-CoA, 4,8-dimethyl nonanoyl-CoA; PGF2α-CoA,

prostaglandin F2α-CoA; 2-CH3-C18-CoA, 2-methylstearoyl-CoA; Mal-CoA, malonyl-

CoA; HMG-CoA, 3-hydroxy-3-methyl-glutaryl-CoA; AcAc-CoA, acetoacetyl-CoA;

BAAT, bile acid-CoA:amino acid N -acyltransferase; ACO, acyl-CoA oxidase; FXR,

farnesoid-X-receptor; BSA, bovine serum albumin; PBS, phosphate buffered saline.

ABSTRACT

Peroxisomes function in β-oxidation of very long- and long-chain fatty acids,

dicarboxylic fatty acids, bile acid intermediates, prostaglandins, leukotrienes,

thromboxanes, pristanic acid and xenobiotic carboxylic acids. These lipids are mainly

chain-shortened for excretion as the carboxylic acids or transported to mitochondria

for further metabolism. Several of these carboxylic acids are slowly oxidized and may

therefore sequester coenzyme A (CoASH). To prevent CoASH sequestration and to

facilitate excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases, which

catalyze the hydrolysis of acyl-CoAs to the free acid and CoASH, may play important

roles. We have here cloned and characterized a peroxisomal acyl-CoA thioesterase

from mouse, named PTE-2, which was first isolated as a HIV-1 Nef binding protein

in human (Liu et al. J. Biol. Chem. (1997) 272, 13779-13785, Watanabe et al. Biochem.

Biophys. Res. Comm. (1997) 238, 234-239). PTE-2 is ubiquitously expressed and

induced at mRNA level by treatment with the peroxisome proliferator WY-14,643

and fasting. Induction seen by these treatments was dependent on the peroxisome

proliferator-activated receptor alpha (PPARα). Recombinant PTE-2 showed a broad

chain-length specificity with acyl-CoAs from short- and medium-, to long-chain acyl-

CoAs, and other substrates including trihydroxycoprostanoyl-CoA,

hydroxymethylglutaryl-CoA and branched chain acyl-CoAs, all of which are present

in peroxisomes. Highest activities were found with the CoA esters of primary bile

acids choloyl-CoA and chenodeoxycholoyl-CoA as substrates. PTE-2 activity is

inhibited by free CoASH, suggesting that intraperoxisomal free CoASH levels

regulate the activity of this enzyme. The acyl-CoA specificity of recombinant PTE-2

closely resembles that of purified mouse liver peroxisomes, suggesting that PTE-2 is

the major acyl-CoA thioesterase in peroxisomes. Addition of recombinant PTE-2 to

incubations containing isolated mouse liver peroxisomes strongly inhibited bile
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acid-CoA: amino acid N -acyltransferase activity, suggesting that this thioesterase can

interfere with CoASH-dependent pathways. We propose that PTE-2 functions as a

key regulator of peroxisomal lipid metabolism.

INTRODUCTION

Peroxisomes are cellular organelles present in all eukaryotic cells. They play an

indispensable role in the metabolism of a variety of lipids including very long-chain

fatty acids, dicarboxylic fatty acids, bile acids, prostaglandins, leukotrienes,

thromboxanes, pristanic acid and xenobiotic fatty acids (for review, see (1,2)). The

peroxisomal β-oxidation system contains two sets of enzymes, one of which is

involved in the oxidation of branched chain fatty acids and intermediates in the

hepatic bile-acid biosynthetic pathway, and consists of one or two branched-chain

acyl-CoA oxidase(s), a D-specific bifunctional protein and the sterol carrier-like

protein x (SCPx). The second pathway is involved in the oxidation of very long

straight-chain fatty acids, CoA esters of prostaglandins, leukotrienes and

thromboxanes (prostanoids) and dicarboxylic acids. This system is composed of a

straight-chain acyl-CoA oxidase (ACO), an L-specific bifunctional protein and

straight-chain 3-ketoacyl-CoA thiolase. However, these two pathways are not

mutually exclusive (1). All enzymes in this latter pathway are induced by

peroxisome proliferators, whereas the enzymes in the former β-oxidation pathway

are not. Peroxisome proliferators are a group of structurally diverse compounds

including hypolipidemic drugs, which induce peroxisome proliferation,

hepatomegaly and cause hepatocarcinogenesis in rodent liver. These peroxisome

proliferators, together with free fatty acids act as ligands for the peroxisome

proliferator-activated receptor alpha (PPARα) (3,4). The PPARα is a nuclear receptor

that plays a central role in fatty acid metabolism and induces the expression of many

enzymes involved in peroxisomal and mitochondrial β-oxidation and ω-oxidation

of fatty acids. Targeted disruption of the PPARα gene in mouse has established a key

role for this receptor as a mediator of lipid metabolism (5-8) and in the adaptive

response to fasting (7-10).  

Prior to transport into peroxisomes and β-oxidation, all substrates must be activated

to their CoA ester, which occurs at different cellular locations. Long-chain acyl-CoA

synthetases are present in different subcellular membranes (11,12) and very long-

chain acyl-CoA synthetase in the peroxisomal membrane activates very long- and
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long-chain fatty acids and possibly branched-chain fatty acids to their CoA esters.

Dicarboxylic fatty acids, prostanoids and di- and trihydroxycoprostanic acid are

activated to their CoA esters in the endoplasmic reticulum. These CoA esters are

then transported into peroxisomes, possibly via ABC transporters. Peroxisomal β-

oxidation of very long- and long-chain fatty acyl-CoAs results in chain-shortening of

these esters, and the chain-shortened products can be transported as carnitine esters

to mitochondria for further degradation. However, peroxisomes appear to have

important roles in β-oxidation of a number of xenobiotic carboxylic acids which may

only be partially metabolized in peroxisomes (13,14). The β-oxidation of other CoA

esters, such as prostanoids results in chain-shortening in peroxisomes, which are

subsequently excreted in urine as the free carboxylic acid (for review see (15)).

Similarly the β-oxidation of dicarboxylic acids results in a chain-shortening in

peroxisomes with the dicarboxylic acid being excreted in urine as the free acid or as

glycine conjugates. Several of these carboxylic acids are only slowly β-oxidized,

implying that intraperoxisomal CoASH may be sequestered to such an extent that it

becomes limiting. In order to maintain appropriate CoASH levels and to facilitate

excretion of chain-shortened carboxylic acids, acyl-CoA thioesterases are likely to play

important roles (for review see (16)). The hydrolysis of CoA esters to the free acids

requires the presence of an acyl-CoA thioesterase, an enzyme which functions to

hydrolyze CoA esters to the free acid and CoASH. To date however, the specific

thioesterase(s) active on CoA esters of prostanoids or dicarboxylic acids have not

been identified.

Another important reaction that occurs in liver peroxisomes is the formation of bile

acids. The primary bile acids, cholic acid and chenodeoxycholic acid, are formed by a

number of enzymatic modifications of the cholesterol backbone by P-450 enzymes.

The di- or trihydroxycoprostanoyl-CoA (DHCA-CoA or THCA-CoA) formed

undergoes a final β-oxidative cleavage of the side-chain in peroxisomes with the

release of propionyl-CoA, to form chenodeoxycholoyl-CoA and choloyl-CoA,

respectively (17,18). The peroxisomal bile acid-CoA:amino acid N -acyltransferase

(BAAT) then catalyzes the conjugation of the CoA-activated bile acid to taurine or

glycine prior to secretion from liver into bile. Recently, a multiorganellar bile acid-

CoA thioesterase activity which hydrolyzes the bile acid-CoA esters to free bile acids

and CoASH, has been characterized in human liver peroxisomes (19,20). This bile

acid-CoA thioesterase activity described may compete with the BAAT enzyme for
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the bile acid-CoA substrate, thereby influencing intracellular levels of free and

conjugated bile acids.

The existence of selective acyl-CoA thioesterases or a "broad range" acyl-CoA

thioesterase could provide important control points in the oxidation of many

peroxisomal substrates, and to regulate intracellular levels of CoA esters and

CoASH. This may be especially important during times of high β-oxidation and fatty

acid overload, to generate free CoASH necessary for fatty acid β-oxidation to proceed.

Acyl-CoA thioesterase activity has indeed been shown to be present in peroxisomes

(21-24) and isolated rat brown adipose tissue peroxisomes contain acyl-CoA

thioesterase(s) active on short- and medium-chain acyl-CoAs, which are inhibited by

CoASH (23). Rat liver peroxisomes showed broad acyl-CoA thioesterase activity on

C2-C22  acyl-CoAs and one enzyme was partially purified, which was shown to be

most active on myristoyl-CoA (24). To date, several peroxisomal acyl-CoA

thioesterases have been cloned from yeast, mouse and human. PTE-Ia and -Ib have

been cloned from mouse, which belong to a novel family of Type-I acyl-CoA

thioesterases, with related enzymes also in cytosol and mitochondria (25). Acyl-CoA

thioesterases have been identified in yeast and human peroxisomes, named PTE1

(26). The human homologue of PTE1 was previously identified as hACTEIII/hTE, a

protein that interacted with and activated the HIV-1 Nef protein (27,28). In the

present study we have cloned the mouse homologue of PTE1/hACTEIII/hTE, which

we have named mouse peroxisomal acyl-CoA thioesterase 2 (PTE-2). We have

characterized this enzyme in detail, in order to examine its putative function in

peroxisomal β-oxidation. Characterization of PTE-2 suggests that it is a major

thioesterase with an array of functions in peroxisomal lipid metabolism.

EXPERIMENTAL PROCEDURES

Chemicals

[24-14C]-Chenodeoxycholoyl-CoA and [24-14C]-choloyl-CoA (specific activity 48.6

Ci/mol), trihydroxy-cholestanoyl-CoA, 2-methylstearoyl-CoA and prostaglandin F2α-

CoA were synthesized by the mixed anhydride procedure (29), and the former two

CoA esters purified by high-pressure liquid chromatography (HPLC). [24-14C]-

Chenodeoxycholic acid and [24-14C]-cholic acid were purchased from DuPont NEN.

Optiprep and Maxidens were from Nycomed Pharma AS, Oslo, Norway. Taurine,
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chenodeoxycholic acid, cholic acid, all other acyl-CoAs and coenzyme A were from

Sigma. Prostaglandin F2α was from Cayman Chemical, Ann Arbor, Michigan.

Animals and treatments

Diurnal variation was investigated in adult male C57 BL/6 mice (B & K, Sollentuna,

Sweden). The mice were maintained on a normal chow diet and sacrificed at the

time-points indicated. The dark periods were between 18.00 and 06.00 hours. All

other treatments were carried out on ten to twelve week old male wild-type or

PPARα-null mice on a pure Sv/129 genetic background (derived from the original

colony of mixed background mice) (5). These animals were housed in a temperature

and light controlled environment. In fasting experiments, mice were maintained on

a normal chow diet (R36 Lactamin, Vadstena, Sweden) prior to the start of the

experiment and then transferred to new cages and fasted for 24 hours. Alternatively

mice were treated with 0.1% WY-14,643 (Calbiochem-Novabiochem International)

in the diet for one week. All mice had access to water ad libitum. Animals were

sacrificed by CO2 asphyxiation followed by cervical dislocation, and weighed

immediately. Tissues were then excised, weighed and frozen in liquid nitrogen. For

subcellular fractionation experiments, livers from untreated wild-type mice were

homogenized directly after sacrifice.

Northern blot analysis

Total RNA was isolated from mouse tissue samples using QuickPrepR Total RNA

Extraction Kit (Amersham Pharmacia Biotech Sverige, Uppsala, Sweden) and

Northern blot analysis was carried out as described (7). Blots were probed with the

full-length cDNA for mouse PTE-2 or a probe for β-actin and were exposed to X-ray

film at -70oC.

Identification of human PTE-2 gene

Using human hACTEIII/hTE/hPTE1cDNA sequence (26-28) as search templates, a

PAC clone containing approximately 86 kb of human genomic sequence was found

to contain the gene encoding PTE-2. This human genomic sequence (Accession No.

AL008726) was downloaded from NCBI (    http://www.ncbi.nlm.nih.gov)   . The gene
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structure was compiled using Lasergene Software Package and 5' splice donor sites

and 3' splice acceptor sites conformed to the general consensus sequences.

cDNA cloning and expression of PTE-2 in Escherichia coli

The sequence for hACTEIII/hTE/hPTE1 (26-28) was used to search the mouse EST

database and several hits were obtained. The full-length cDNA sequence was

compiled from overlapping EST-sequences. The mPTE-2 cDNA was amplified using

the following primers: 5’-CATATGTCAGCGCCAGAGGGTCTG-3’ and 5’-

CATATGCTATAGCTTACTCTCTGACACCAG-3’. Both primers were constructed

with the addition of an Nde I site, indicated in bold. The full-length cDNA was

amplified by RT-PCR using a template of clofibrate-treated mouse liver total RNA.

PCR was performed in a Perkin-Elmer 2600 using the Gene-Amp XL PCR kit (PE

Biosystems). Thermal cycling was performed at 98oC for 10 minutes followed by 35

cycles of 94oC for 1 min, 64oC for 1 min and 72oC for 4 minutes. The resultant PCR

product was cloned into the pCR-Script Amp (SK+) vector (Stratagene) and was

subsequently sequenced.

The full-length cDNA for PTE-2 was excised from pCR-Script using Nde I restriction

enzyme and cloned into the Nde I site in pET16b vector (Novegen Inc.). Sequence

analysis was carried out to confirm the correct orientation. This plasmid was then

used to transform BL21(DES3)pLysS cells (Novagen Inc.). For expression of PTE-2,

bacteria were cultured in 1 litre Luria-Bertani medium at 37oC, with addition of

ampicillin (50 µg/ml) and chloramphenicol (34 µg/ml) until an A 600nm of about 0.6

was reached. Induction of protein expression was performed by addition of 1 mM

isopropyl-1-thio-β-D-galactopyranoside and growth was continued overnight at

room temperature. The bacteria were centrifuged at 8,000 x gmax for 10 min at 4oC and

the pellets were washed with 20 mM Tris, pH 8.0. The pellets were then frozen at -

20oC. Pellets were thawed and resuspended in 20 mM phosphate, 0.5 M sodium

chloride and 10 mM imidazole, pH 7.4, and sonicated 5 X 5 seconds, at 5 second

intervals. The sonicated bacteria were then centrifuged at 36,000 x gmax for 1 hour and

the supernatant was used for purification of PTE-2 on a HiTrap™ column

(Amersham Pharmacia Biotech Sverige). Following equilibration of the column, the

supernatant was applied and the column was washed stepwise with 50 mM, 100

mM, 200 mM and 300 mM imidazole in 20 mM phosphate, 0.5 M sodium chloride,

to remove contaminating proteins. The PTE-2 protein was eluted using 500 mM
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imidazole, 20 mM phosphate, 0.5 M sodium chloride and was subsequently used for

acyl-CoA thioesterase activity measurements. The purity of PTE-2 was examined by

SDS-PAGE analysis and Coomassie brilliant blue staining.

Localization of PTE-2 using green fluorescent fusion protein and cell transfection

experiments.

Oligonucleotides were designed based on the sequence of the full-length cDNA for

mouse PTE-2 for cloning as a fusion protein with green fluorescent protein (GFP), to

examine targeting of the protein to peroxisomes. The full-length cDNA was

amplified by One Step RNA PCR kit (AMV) (Takara Biomedicals) using the

following primers; 5'-ATGTCAGCGCCAGAGGGTC-3' and 5'-

CGAGCCAGGCATCTTTCAC-3', and was cloned into the pcDNA3.1/NT-GFP vector

(Invitrogen), in-frame with the GFP at the N-terminal end. Sequence analysis was

performed using Big Dye Terminator (ABI Prism, PE Biosystems) and was sequenced

by Cybergene (Novum, Sweden).

Human skin fibroblasts from a control subject and a Zellweger patient were grown

in Eagles Minimum Essential Medium (Sigma), supplemented with 10% Fetal Calf

Serum (Life Technologies) and 100 U penicillin/100 µg streptomycin in an

atmosphere of 5% CO2. The Zellweger patient was a first-born, full-term female with

muscular hypotonia, convulsions, and dysmorphic characteristics of Zellweger

syndrome. The clinical diagnosis was verified by the accumulation of very long-

chain fatty acids with a highly elevated C26/C22  ratio in cultured fibroblasts. Both

control and Zellweger cells were grown overnight in 60 mm dishes on glass

coverslips and were transfected with 8 µg mPTE-2/GFP plasmid using Calcium

Phosphate method. Transfected cells were grown for 48 hours, washed twice with

PBS and fixed in 3.7% paraformaldehyde in PBS for 20 minutes on ice. Cells were

permeabilized in 0.5% Triton X-100 in PBS and rewashed in PBS. Following blocking

in 2% BSA in PBS, 0.1% Tween-20 for 1 h, cells were incubated with rabbit green

fluorescent protein antibody (Molecular Probes, Leiden, The Netherlands) for 1 h

and washed 4 times with PBS, 2% BSA and 0.1% Tween-20. Cells were then

incubated with CY3 conjugated affinity pure donkey anti-rabbit IgG (Jackson

ImmunoResearch) for 1 h. Cells were washed once with PBS, 0.1% Tween-20 (PBS-T)

and nuclei were stained with Hoescht 33342 in PBS-T for 10 minutes. Cells were

again washed twice in PBS-T and were mounted on glass slides using PPD (100 mg p-
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phenylene diamine, 90% glycerol and 10% PBS) and examined in Leica DM IRBE

fluroescence microscope, using Hamamatsu C4742-95 camera and C4742-95 Twain

Interface software.

Determination of acyl-CoA thioesterase activity

Acyl-CoA thioesterase activity was measured spectrophotometrically at 412 nm with

5,5’-dithiobis(2-nitrobenzoic acid) (DTNB). The medium contained 200 mM

potassium chloride, 10 mM Hepes and 0.05 mM DTNB (pH 7.4). An E412=13,600 m-

1cm-1 was used to calculate the activity. Since PTE-2 thioesterase activity was

inhibited at substrate concentrations higher than 5-10 µM with acyl-CoAs longer

than C10 , bovine serum albumin (BSA) was added to a molar ratio of BSA/acyl-CoA

of 4.5:1. The effect of CoASH, DTNB and p-chloromercuribenzoic acid (pCMB) on

enzyme activity was measured at 232 nm in phosphate buffered saline. The enzyme

kinetics were calculated using Sigma Plot enzyme kinetics programme.

Preparation and characterization of mouse liver subcellular fractions

Livers from wild-type and PPARα-null mice were homogenized as previously

described (30) and bile acid-CoA thioesterase activity was measured as in (19). Livers

from untreated wild-type mice were fractionated as described (19). The peroxisome-

enriched fraction was further fractionated using a 15-45% Optiprep gradient to obtain

highly purified peroxisomes. Protein concentrations were determined according to

Bradford (31).  

Bile acid-CoA:amino acid N -acyltransferase assay (BAAT)

The possible interference of PTE-2 on peroxisomal BAAT activity was tested by

addition of recombinant PTE-2 to incubations for BAAT activity. The reaction

mixture contained the following: 50 mM potassium phosphate buffer (pH 8.0), 25

µM [24-14C]chenodeoxycholoyl-CoA, 20 mM taurine, 60 µg BSA, 2.27 µg mouse liver

peroxisomal protein, and 0.6 µg of purified recombinant PTE-2 in a total volume of

150 µ l. Control samples were as above, but with inclusion of an equal volume

HiTrap elution buffer (500 mM imidazole, 0.5 M sodium chloride and 20 mM

phosphate, pH 7.4) instead of PTE-2 protein. Following a 10 min preincubation at

37
o
C, the reaction was started by addition of [24-14C] chenodeoxycholoyl-CoA, and

allowed to proceed for 1 hour. The reaction was terminated by addition of 45 µ l 1 M
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KOH. After 30 min hydrolysis at 70
o
C, the mixture was acidified using HCl and

applied to a Sep-Pak C18-cartridge. The radioactive compounds were eluted with 2-

propanol and methanol and analyzed by HPLC using a Beckman ODS 5µ  (4.6 mm x

25 cm) column with 20% 30 mM trifluoroacetic acid (adjusted to pH 2.9 with

triethylamine) in methanol as mobile phase. The eluents were fractionated and

assayed for 14C-radioactivity by liquid scintillation counting.

RESULTS

PTE-2 cloning and sequence analysis

The cDNA isolated for PTE-2 encodes a protein of 320 amino acids, with a calculated

molecular mass of 35,886 Da. Alignment of the deduced amino acid sequence for

PTE-2 to the homologues in human (26-28), yeast (26), and E. coli (32), show the

degree of sequence identity between the enzymes (Fig. 1). The mouse and human

sequences show 85% sequence identity, the mouse and E. coli enzymes show 40%

identity at amino acid level, while the yeast and mouse enzymes show 26% sequence

identity. The amino acids elucidated to be involved in the active site catalytic triad

(33), Asp 233 (D), Ser 255 (S), and Gln 305 (Q) are conserved between species, except

for substitution of a threonine for serine in the E. coli enzyme. However this

substitution should not alter the catalytic site capacity in view of the fact that both

amino acids are polar.

Using bioinformatic techniques, we also identified the gene for human PTE-2. The

gene was identified on human chromosome 20q12-q13 and comprised 6 exons,

spaced by 5 introns, covering approximately 15.5 kb genomic DNA (Fig. 2). The 5'

splice donor sites and 3' splice acceptor sites conformed to recognized exon/intron

consensus sequences. Sequence analysis of the 5' flanking region of the human PTE-

2 identified a putative direct repeat 1 (DR1) element of GGGTCAaAGGTCA, at -438

upstream of the ATG start methionine.

PTE-2 is localized in peroxisomes

The mouse PTE-2 contains a well-characterized consensus peroxisomal Type 1

targeting signal (PTS1) of -SKL (serine, lysine, leucine) at its C-terminal end, which

has been shown to target proteins to peroxisomes (34). Previously,  human PTE-2 has
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been shown to be localized in peroxisomes (26,35) and to test if mouse PTE-2 is

peroxisomal, we cloned PTE-2 in-frame with GFP, which leaves the C-terminal -SKL

sequence accessible. We transfected this vector into both control fibroblasts and

fibroblasts from a Zellweger patient, which are unable to import peroxisomal matrix

proteins. Using immunofluorescence microscopy for GFP detection, mPTE-2 showed

a punctate pattern of expression in control fibroblasts, indicative of a peroxisomal

localization (Fig. 3A). This localization was confirmed with a Tritc-labeled

fluorescent secondary antibody to GFP (Fig. 3B). However, in Zellweger fibroblasts,

transfection of mPTE-2 resulted in a diffuse GFP expression (Fig. 3D). The

transfection of the Zellweger cells was confirmed using a Tritc-labeled fluorescent

secondary antibody to GFP, which identified the transfected cells (Fig. 3E). Phase

contrast microscopy is also shown in both cases (Fig. 3C & 3F) as a control, indicating

other untransfected cells. The strong staining present in the nucleus is Hoescht

staining.

Recombinant expression and characterization of PTE-2

The cloning of the cDNA encoding PTE-2 into the Nde I site of the pET16B vector

results in expression of the PTE-2 as a His-tagged fusion protein, to allow for

purification using affinity chromatography. Following purification of PTE-2 on a

HiTrap™ column, the purified protein was detected as a single band of

approximately 36 kDa in mass on SDS-PAGE gel stained with Coomassie brilliant

blue (Fig. 4A). An antibody towards the human PTE1 (a kind gift from Jacob Jones)

cross-reacted with the mouse PTE-2, confirming the correct protein (data not shown).

The expressed protein was further analyzed by size-exclusion chromatography as

described previously (36), using a Superdex HR 200 10/30 column operated in a

SMART micropurification system (Amersham Pharmacia Biotech). The

recombinant PTE-2 protein eluted as an approximately 70 kDa protein, indicating a

dimeric structure of the expressed PTE-2, similar to the crystal structure of the E. coli

Thioesterase II enzyme (33).

Following initial enzyme activity characterization of the recombinant protein, it was

evident that PTE-2 activity was inhibited at substrate concentrations > 5-10 µM for

long-chain acyl-CoAs. However, addition of BSA to an albumin/acyl-CoA ratio of

4.5:1 to the reaction prevented inhibition (Fig. 4B). Recombinant PTE-2 was analyzed

for acyl-CoA thioesterase activity, which was determined at several concentrations
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with substrates of different chain lengths. Surprisingly, PTE-2 showed similar

activity towards all acyl-CoAs tested ranging from C2 up to C20  straight-chain acyl-

CoAs, together with activity towards long-chain unsaturated acyl-CoAs (Fig. 4C).

Interestingly, PTE-2 also efficiently catalyzed the hydrolysis of CoA esters of bile

acids, namely choloyl-CoA and chenodeoxycholoyl-CoA, at an approximately 3-

times higher rate than with straight-chain acyl-CoAs, with trihydroxycoprostanoyl-

CoA (THCA-CoA) also being hydrolyzed at a high rate. The CoA esters of other

substrates found in peroxisomes were also analyzed. PTE-2 hydrolyzed 3-hydroxy-3-

methyl-glutaryl-CoA (HMG-CoA), branched-chain CoA esters (4,8-

dimethylnonanoyl-CoA and 2-methylstearoyl-CoA), the CoA ester of prostaglandin

F2α and acetoacetyl-CoA.

If PTE-2 is a major thioesterase in peroxisomes controlling CoASH levels, it is

feasible that it may be directly regulated by CoASH. Indeed PTE-2 activity was

strongly inhibited by CoASH with an IC50  of approximately 10-15 µM (Fig. 4D). PTE-2

activity was also inhibited by DTNB (IC50≈150 µM) and pCMB (IC50≈ 1 µM),  two

cysteine-reactive agents (data not shown), however to date a cysteine involved in the

active site catalysis has not been identified.

Calculation of the Vmax and Km values showed that the Km for medium- to long-chain

acyl-CoAs was in the order of 1.4-6.7 µM, with short chain acyl-CoAs ranging from 8-

30 µM (Table I).  The Km for bile acid-CoA esters was in the range of 9-15 µM. PTE-2

also hydrolyzed β-oxidation intermediates such as 2-trans-decenoyl-CoA and 3-

hydroxypalmitoyl-CoA, although at approximately 20% of the rates of decanoyl-CoA

and palmitoyl-CoA. All Km values are rather low, strongly suggesting that all these

CoA esters are substrates for PTE-2 in-vivo .

Recombinant PTE-2 and isolated mouse liver peroxisomes show strikingly similar

acyl-CoA thioesterase substrate specificities.

The acyl-CoA thioesterase chain-length specificity was measured in isolated mouse

peroxisomes (Fig. 5A). Activity was seen with straight-chain acyl-CoAs from chain

length of C2 up to C20 , together with very high activity towards bile-acid CoA esters,

THCA-CoA and branched-chain-CoA esters. There was a striking similarity between

the acyl-CoA chain-length pattern for the recombinant PTE-2 and the chain length

specificity in isolated peroxisomes (Fig. 5B). Superimposing the curves for the
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substrate specificities of isolated peroxisomes and that of PTE-2 showed that PTE-2

apparently catalyzes most of the activities seen in peroxisomes, with the only

observable difference being the putative presence of an additional acyl-CoA

thioesterase in peroxisomes, mainly catalyzing the hydrolysis of C12-C14-CoA.

Comparison of the specific activities of recombinant PTE-2 and isolated peroxisomes

indicates that PTE-2 constitutes about 1% of total peroxisomal protein.

PTE-2 competes with bile acid-CoA:amino acid N -acyltransferase for bile acid-CoA

We examined the ability of recombinant PTE-2 to compete with BAAT for the bile

acid-CoA substrate chenodeoxycholoyl-CoA. BAAT activity was measured in highly

purified peroxisomes isolated from control mouse liver. Addition of recombinant

PTE-2 caused an approximately 80% inhibition of BAAT activity (Table II). This data

shows that PTE-2 can compete with BAAT for the bile acid-CoA substrate in vitro .

We have also tested the ability of recombinant mouse cytosolic acyl-CoA thioesterase

I (mCTE-I) (37) to hydrolyze CA-CoA or CDCA-CoA. However, this enzyme showed

no detectable activity with CA-CoA or CDCA-CoA, further emphasizing that the

bile-acid CoA thioesterase activity of PTE-2 is specific (data not shown).  

Choloyl-CoA thioesterase activity is induced in mouse liver in a PPAR -dependent

manner

Since PTE-2 very efficiently hydrolyzes CoA esters of bile acids, and PPARα has been

shown to be involved in bile acid biosynthesis (38), we investigated the possible

regulation of bile acid-CoA thioesterase activity by feeding mice WY-14,643, a potent

PPARα activator. In liver homogenates of wild-type mice, choloyl-CoA thioesterase

activity was increased 3.5-fold following treatment with WY-14,643 (Fig. 6). However

in PPARα-null mouse liver homogenates, this increase in choloyl-CoA thioesterase

activity was not evident, showing that the WY-14,643 mediated induction of bile

acid-CoA thioesterase activity in mouse liver was PPARα-dependent.

PTE-2 mRNA expression is PPAR -regulated

In view of the fact that PTE-2 can hydrolyze bile-acid CoA esters, together with the

fact that choloyl-CoA thioesterase activity was shown to be induced in a PPARα-

dependent manner in mouse liver, we used the PPARα-null mouse model to
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examine regulation of the PTE-2 at mRNA level. The basal expression of PTE-2 in

PPARα-null mice was approximately half that detected in wild-type animals.

Treatment of mice with a WY-14,643 containing diet for 1 week resulted in a very

strong (> 10 fold) induction of PTE-2 mRNA (Fig. 7A, upper panel). However, this

up-regulation was not evident in the PPARα-null mice also treated with WY-14,643,

showing that the effect mediated on PTE-2 by peroxisome proliferators is dependent

on the PPARα.

The role of the PPARα in the fasting-mediated induction of several genes has also

been shown (7-10,38). We examined the effect of fasting on PTE-2 mRNA levels in

the PPARα-null mouse model, which resulted in a significant increase in PTE-2

mRNA in liver (Fig. 7A, lower panel). However, this induction was not seen in the

PPARα-null mice that were similarly treated.

PTE-2 shows a diurnal regulation of expression

As PTE-2 is regulated by fasting and is therefore under nutritional regulation, we

examined if this enzyme could also be under a diurnal regulation. Mice were fed a

normal chow diet and were sacrificed every 4th hour commencing at 09.00h.

Quantitation of the mRNA signal showed that during the light period (between

06.00h and 18.00h), when animals are less active, the mRNA levels were increased,

thus indicating an induction by fasting (Fig. 7B). During the dark period, when

feeding mainly takes place (between 18.00h and 06.00h) the mRNA levels declined

rapidly, indicating a rapid nutritional regulation in response to refeeding.

PTE-2 mRNA is ubiquitously expressed

The tissue expression of PTE-2 was examined using Northern blot analysis on

several different tissues from mouse (Fig. 7C). PTE-2 was ubiquitously expressed as a

1.2 kb transcript in all tissues examined, which is similar to results obtained for

expression in human tissues (27). Tissue expression was highest in kidney, liver and

testis, with weaker expression evident in heart and muscle. In testis a second

transcript was evident at approximately 2 kb, which may be due to splicing events.

PTE-2 is therefore widely expressed in tissues, similar to that of the peroxisomal β-

oxidation enzymes acyl-CoA oxidase, L-bifunctional enzyme and 3-ketoacyl-CoA

thiolase (39).
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DISCUSSION

In this study we have cloned and characterized the mouse peroxisomal acyl-CoA

thioesterase 2, called PTE-2, which is localized in peroxisomes. This enzyme is the

mouse homologue of human PTE1 (26) which was first identified by the yeast two-

hybrid system as hACTEIII and hTE, a HIV-1 Nef binding protein (27,28). There is a

lot of confusion regarding the nomenclature of acyl-CoA thioesterases, and based on

a recent attempt to accomplish a more uniform terminology (16), we propose the

name PTE-2 for this acyl-CoA thioesterase, as the nomenclature PTE-I has already

been assigned to two enzymes which are members of a novel multi-gene family,

with other members in mitochondria and cytosol (25) (Table III). However, the rule

applied to the nomenclature of yeast enzymes states that they remain known by the

name applied when they were first identified, therefore this enzyme will remain

known as PTE1. A PTE2 cloned as a putative peroxisomal enzyme (40) (Table III)

shows 100% identity to MTE-I (mitochondrial acyl-CoA thioesterase) without its N-

terminal sequence. This MTE-I belongs to a novel family of acyl-CoA thioesterases in

human, with localizations also in cytosol and peroxisomes (Hunt et al. Manuscript

in preparation).

The HIV-1 Nef which interacts with the thioesterase PTE-2, is a cytosolic 27-kDa

myristoylated protein that is required for high viral load and full pathological effect

of HIV (41). It is thought that Nef activity triggers endocytosis of CD4 and major

histocompatibility complex class-I molecules. Although the interaction of Nef with

the acyl-CoA thioesterase is not fully understood, it has been shown that Nef

contains sites critical for binding of the human thioesterase, which results in down-

regulation of CD4 (35). The binding of Nef to the thioesterase also targets Nef to

peroxisomes in-vivo  and increases thioesterase activity in-vitro (27). It was also

shown that abolishment of the interaction of the thioesterase with Nef resulted in

impairment of Nef biological functions (42). It then became evident that although

this thioesterase may have a putative function in the pathogenesis of HIV, the

enzyme may also be involved in fatty acid metabolism. In 1999, Jones et al. again

characterized this enzyme in human, which they named PTE1, together with a yeast

homologue, showing these proteins are targeted to the peroxisomal lumen (26). The

yeast PTE1 identified showed regulation at mRNA level by growth on oleate. In



16

yeast, β-oxidation of fatty acids is confined only to peroxisomes, and growth of yeast

on oleate as sole carbon source results in increased expression of peroxisomal

enzymes and proliferation of peroxisomes. Disruption of PTE1 in yeast resulted in a

loss of approx 80% of total cellular thioesterase activity, demonstrating that PTE1 is

the major long-chain acyl-CoA thioesterase in yeast grown on oleate. Furthermore,

this deletion impaired growth on oleate, suggesting that efficient β-oxidation in yeast

requires the expression of this thioesterase, possibly to closely regulate the

intraperoxisomal CoASH levels. Our data now suggest that PTE-2 is in fact a major

acyl-CoA thioesterase which can hydrolyze a wide variety of CoA esters in

peroxisomes also in the mouse. The difference in acyl-CoA chain-length specificity

of PTE-2 in our study compared to previous studies is due to the inclusion of

albumin to the thioesterase assay when measuring activity with acyl-CoAs longer

than decanoyl-CoA. With addition of albumin, it became evident that PTE-2

hydrolyzes all acyl-CoAs of two carbons up to twenty carbons with very similar Vmax.

The inhibition of PTE-2 activity by CoASH indicates that this enzyme can ‘sense’

intraperoxisomal CoASH levels and thus when there is a requirement for CoASH,

PTE-2 is active, whereas during times of high free CoASH, PTE-2 can be inhibited.

Peroxisomes contain a distinct pool of CoASH (43,44), which has been reported to

change during fasting and treatment with peroxisome proliferators (45). The extent

of CoASH-sequestration may therefore depend on the size of the CoASH-pool, the

amount and type of lipids being trapped in the β-oxidation systems in the

peroxisome as well as activities of acyl-CoA thioesterases and possibly a recently

cloned peroxisomal nudix hydrolase which apparently can hydrolyze CoASH to

yield 3’,5’-ADP and the corresponding 4’-phosphopantetheine derivative (46).

PTE-2 can have a multitude of functions in regulating peroxisomal lipid metabolism

In the present study we have cloned and characterized the mouse PTE-2 with respect

to regulation of expression and kinetic activity. Recombinant PTE-2 hydrolyzed all

tested CoA esters, showing an almost complete lack of substrate specificity with

respect to the carboxylic acid moiety. The enzyme catalyzes the hydrolysis of straight-

chain, saturated and unsaturated acyl-CoAs of two-carbons to 20 carbons in chain-

length with roughly similar Vmax. The enzyme also hydrolyzed other CoA esters

such as acetoacetyl-CoA, malonyl-CoA, HMG-CoA, clofibroyl-CoA, THCA-CoA and

CoA esters of bile acids, and β-oxidation intermediates. This apparent lack of

substrate specificity suggests that the binding site of the enzyme is rather non-specific
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with respect to the acyl-moiety and that the enzyme may recognize the CoASH

moiety for binding. This is in line with the observed inhibitory effect of free CoASH,

the kinetics of which suggested a competitive mode of action, although the data

were not fully conclusive. Notably, all the CoA esters tested as substrates for PTE-2

can be expected to be present in peroxisomes as substrates, intermediates or end-

products in lipid metabolism. In combination with the strong regulation of

expression via PPARα, the PTE-2 thioesterase may have a multitude of functions in

peroxisomes as outlined in Fig. 8. Fatty acids and other substrates for β-oxidation in

peroxisomes must first be esterified to their CoA ester. CoASH that is appended to

poorly oxidizable substrates may cause a trapping of CoASH and thereby prevent the

β-oxidation cycle to continue. Thus, PTE-2 may temporarily hydrolyze substrates for

the β-oxidation to release CoASH. We also tested CoA esters of β-oxidation

intermediates, 2-trans-decenoyl-CoA and 3-hydroxypalmitoyl-CoA. Both these CoA

esters were poorer substrates compared to the corresponding straight-chain acyl-CoA:

2-trans-decenoyl-CoA was hydrolyzed at a rate of about 22% of that observed with

decanoyl-CoA with the Km being increased 6-fold and Vmax being decreased, and 3-

hydroxypalmitoyl-CoA which was hydrolyzed at a rate of about 18% of the rate of

hydrolysis of palmitoyl-CoA, with the Km being similar but Vmax being much lower.

The lower activities of PTE-2 with β-oxidation intermediates indicates that the

thioesterase preferentially removes the CoA esters of substrates and end-products

while β-oxidation intermediates are allowed to be further oxidized.

However, a number of carboxylic acids, such as prostaglandins, leukotrienes and

thromboxanes are chain-shortened in peroxisomes and excreted in the urine as the

free acids, thus requiring an acyl-CoA thioesterase for these processes. The finding in

the present study that PTE-2 readily hydrolyzes the CoA ester of prostaglandin F2α is

the first demonstration of an acyl-CoA thioesterase which can have this function.

In the β-oxidation of pristanic acid, the intermediate 4,8-dimethyl-nonanoyl-CoA

(DMN) is formed and is transported from the peroxisome to the mitochondria as a

carnitine ester, for further oxidation. The high activity of recombinant PTE-2

towards DMN indicates that PTE-2 may also be able to regulate the β-oxidation of

branched chain acyl-CoAs in peroxisomes.

PTE-2 is a PPAR -target gene that may regulate bile-acid formation
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Bile acids are formed in liver peroxisomes by β-oxidative cleavage of the side-chain

of DHCA-CoA or THCA-CoA to chenodeoxycholoyl-CoA and choloyl-CoA,

respectively, with the concomitant production of propionyl-CoA. In the last step, bile

acid-CoAs are conjugated to taurine or glycine, a reaction catalyzed by the BAAT

enzyme that acts as an acyltransferase. In fact the best substrates for PTE-2 were found

to be THCA-CoA, CA-CoA and CDCA-CoA. We have now established that PTE-2 is

the bile acid-CoA thioesterase previously identified (19,20), suggesting that a major

function of the PTE-2 in liver may be in regulation of bile acid formation and

excretion. This conclusion is further supported by the competition experiment

carried out which showed that addition of a small amount of recombinant PTE-2 to

peroxisomes severely suppresses the activity of BAAT, presumably due to

consumption of the substrate CDCA-CoA. PPARα has been established as a key

regulator of lipid metabolism, but was also shown to be involved in regulation of

bile acid metabolism (38), thus connecting the pathways of bile acid and fatty acid

metabolism. Upregulation of PTE-2 by WY-14,643, together with the PTE-2 mediated

suppression of bile acid conjugation with taurine in vitro could imply that PPARα is

also involved in regulating bile acid amidation. Indeed, preliminary data shows a

reduction in conjugated bile acids in mouse liver following treatment with WY-

14,643 (Solaas et al, manuscript in preparation). This functional aspect may be very

important in view of the recent interest in the farnesoid-X-receptor (FXR), a nuclear

receptor which acts as a biological sensor for the regulation of bile acid biosynthesis,

and which is activated by free and conjugated chenodeoxycholic acid (47,48) and

cholic acid (49). The FXR/RXR regulates expression of genes involved in bile acid

metabolism, such as the human ileal bile acid-binding protein (50) and cholesterol

7α-hydroxylase (51,52). Increased PTE-2 activity would therefore result in an increase

in free bile acids, which may subsequently be transported to the nucleus to activate

the FXR/RXR heterodimer complex. In this way, PTE-2 may mediate crosstalk

between the PPARα and the FXR signalling pathways.

With the identification of the gene for the human PTE-2, a putative peroxisome

proliferator-response element (PPRE) was identified at 438 bp upstream of the ATG

start site. This site conforms well to the consensus DR1 (AGGTCAnAGGTCA) which

has been shown to bind both PPAR/RXR heterodimers and hepatocyte nuclear factor

4α (HNF-4α). It will be of interest to identify if this site is functional in the human

promoter in binding these transcription factors, thus leading to possible activation of

human PTE-2 by either peroxisome proliferators or fatty acids (the ligands for PPARs
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(3,4)), or acyl-CoAs and CoA esters of peroxisome proliferators, (the

agonists/antagonists for HNF-4α (53,54)).

Can PTE-2 be considered as an auxilliary -oxidation enzyme?

In addition to bile-acid intermediates, PTE-2 efficiently hydrolyzes methyl-branched

fatty acids (e.g. 4,8-dimethylnonanoyl-CoA and 2-methylstearoyl-CoA) which are

substrates of the ”branched-chain” β-oxidation pathway in peroxisomes. Branched-

chain CoA esters appear to be excellent substrates for PTE-2, but are generally slowly

metabolized via β-oxidation in peroxisomes. At first sight, there appears to be a

paradoxical situation that an acyl-CoA thioesterase should facilitate degradation of

lipids. However, as outlined before, it is probably very important that appropriate

CoASH-levels are maintained in peroxisomes. Such a function is supported by the

findings in yeast that deletetion of the gene encoding the yeast homologue PTE1

impairs growth of the PTE1 knock-out strain on oleate. Therefore, a possible

function of PTE-2 may be to act as an auxilliary enzyme in β-oxidation of branched-

chain fatty acids/bile-acid formation. This β-oxidation pathway is not PPARα-

regulated and therefore the PPARα-mediated upregulation of PTE-2 may function in

salvaging CoASH for β-oxidation of fatty acids, or alternatively function in

(temporarily) decreasing β-oxidation of branched-chain lipids. This could serve to

mediate a metabolic cross-talk between PPARα and degradation of this class of lipids

in the liver. It should be stressed that it is very likely that PTE-2 can play different

functions in different organs which could be related to organ-specific metabolic

function of peroxisomes in different tissues.

Is PTE-2 involved in regulation of cholesterol synthesis in peroxisomes?

As outlined above, the PPARα regulation of PTE-2 may confer a metabolic crosstalk

between fatty acid degradation and cholesterol metabolism. A similar metabolic

crosstalk may occur by PPARα regulation of PTE-2 activity which may interefere

with peroxisomal cholesterol biosynthesis. The initial enzymes involved in

cholesterol synthesis have been demonstrated to be present in peroxisomes. These

enzymes include acetoacetyl-CoA thiolase (55), HMG-CoA synthase (56) and HMG-

CoA reductase (57,58). PTE-2 hydrolyzes acetyl-CoA (substrate for acetoacetyl-CoA

thiolase), acetoacetyl-CoA (substrate for HMG-CoA synthase) and HMG-CoA

(substrate for the HMG-CoA reductase). In addition, while the peroxisomal HMG-
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CoA reductase is upregulated two hours into the light cycle (59), PTE-2 is most highly

expressed at the end of the light cycle/beginning of the dark cycle, indicating a

functionally coordinated regulation of expression i.e. high expression of PTE-2 when

HMG-CoA reductase is expressed at low levels.  

Role of PTE-2 in regulation of short-chain acyl-CoAs generated from peroxisomal -

oxidation

β-Oxidation of straight-chain and branched-chain fatty acids produces chain-

shortened acyl-CoAs which may be transferred to mitochondria (as carnitine esters)

for further metabolism, or be excreted in urine. However, for each cycle in the β-

oxidation, acetyl-CoA and propionyl-CoA are also produced. Accumulation of

propionyl-CoA can be associated with impaired metabolism (60). Propionyl-CoA is

formed from the β-oxidation of pristanoyl-CoA and other branched-chain acyl-CoAs,

and bile acid intermediates in peroxisomes. This propionyl-CoA may be transferred

to carnitine by peroxisomal carnitine octanoyltransferase (COT) for further

metabolism in mitochondria, or hydrolyzed to propionic acid. Propionyl-CoA

thioesterase activity has previously been identified in peroxisomes (23,24). Our

present data show that PTE-2 can efficiently hydrolyze propionyl-CoA with a Km of

<10 µM and a V max of about 3.45 µmol/min/mg protein. Therefore PTE-2 could

prevent accumulation of propionyl-CoA and thus release free CoASH for other

reactions. In a similar manner, acetyl-CoA units are released during β-oxidation of

both very long- and long-chain acyl-CoAs and dicarboxylic acids, and are then

hydrolyzed to acetate and excreted to cytosol. Free acetate can account for total acetyl-

CoA produced in peroxisomes from dicarboxylic and monocarboxylic acids and

acetate production is increased by peroxisome proliferator treatment (61). The

production of free acetate from acetyl-CoA requires the hydrolysis by an acyl-CoA

thioesterase present in peroxisomes (23,24). Again, recombinant PTE-2 showed high

activity towards acetyl-CoA, which constitutes a mechanism to prevent trapping of

CoASH in the acetyl-CoA unit.

In summary, we have shown that PTE-2 acts as a general acyl-CoA thioesterase that

is responsible for most of the thioesterase activity detected in isolated peroxisomes.

Furthermore, PTE-2 is highly regulated by WY-14,643 and fasting which identifies

PTE-2 as a novel PPARα-target gene. Based on the regulation of expression and

regulation of enzymatic activity by CoASH levels, it is likely that PTE-2 has
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important functions in regulating peroxisomal lipid metabolism. We therefore

propose that PTE-2 is a major thioesterase found in peroxisomes that may regulate

intracellular peroxisomal CoASH levels, controlling β-oxidation of a broad range of

acyl-CoA metabolites and the levels of free and conjugated bile acids in liver. PTE-2

could also be a candidate gene for some of the hitherto unidentified disorders of

peroxisomal fatty acid metabolism. Targeted disruption of the gene for PTE-2 should

provide an interesting model to examine the role of this enzyme in many of the

diverse metabolic pathways in peroxisomes.
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FIGURE LEGENDS

Fig. 1 Sequence alignment of acyl-CoA thioesterases from mouse, human, yeast and

E. coli. Alignment of mouse PTE-2, human PTE1 (26-28), yeast (S.c) PTE1 (26) and E.

coli Thioesterase II (32) amino acid sequences was performed using the Clustal X

method. Amino acids conserved between the thioesterase sequences are boxed in

black. The active site aspartic acid (D) 233, serine/threonine (S/T) 255 and glutamine

(Q) 305 residues of the catalytic triad are all indicated with closed triangles.

Fig. 2 Gene organization for human PTE-2. The gene organization for human PTE-2

was determined as outlined in EXPERIMENTAL PROCEDURES. Individual exon

sizes are shown (boxes) while intron sizes are shown underneath. A putative DR1

element is indicated at -438 upstream of the ATG start site.

Fig. 3: PTE-2 is a peroxisomal matrix protein. Human skin fibroblasts transfected

with mPTE-2/GFP were processed for immunofluorescence microscopy by fixing and

permeabilizing with 0.5% Triton X-100. The distribution of mPTE-2 was examined in

control fibroblasts using GFP fluorescence (A) and Tritc-labeled anti-GFP antibody

(B). The distribution of mPTE-2 in Zellweger fibroblasts was also carried out using

GFP fluorescence (D) and Tritc-labeled anti-GFP antibody (E). Phase contrast

microscopy is shown in (C) and (F).

Fig. 4 Kinetic characterization of recombinant mouse PTE-2. Expression of

recombinant PTE-2 in pET16b vector was induced as described in EXPERIMENTAL

PROCEDURES. (A) Recombinant PTE-2 was purified on a HiTrap™ column and the

purified protein was subjected to SDS-PAGE analysis and staining with Coomassie

brilliant blue. Sizes of molecular weight markers are indicated. (B) Enzyme activity

measurements were determined using purified PTE-2 as an enzyme source. Acyl-

CoA thioesterase activity was measured with various concentrations of palmitoyl-

CoA ± BSA at an albumin to substrate molar ratio of 4.5:1. (C) Acyl-CoA thioesterase

activity on various CoA esters using purified PTE-2 as an enzyme source. Acyl-CoA

thioesterase activity was measured with 10 µM of the indicated CoA ester, in the

presence of BSA at a substrate to albumin molar ratio of 1:4.5 for CoA esters longer

than C10 . Cn, number of carbons; THCA-CoA, trihydroxycoprostanoyl-CoA; CA-CoA,

choloyl-CoA; CDCA-CoA, chenodeoxycholoyl-CoA; DMN, 4,8-dimethyl nonanoyl-

CoA; PGF2α, prostaglandin F2α; 2-CH3-C18, 2-methylstearoyl-CoA; Mal, malonyl-CoA;
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HMG, 3-hydroxy-3-methyl-glutaryl-CoA; AcAc, acetoacetyl-CoA.  (D) Inhibition of

PTE-2 activity by CoASH. Acyl-CoA thioesterase activity was measured at 232 nm as

described in EXPERIMENTAL PROCEDURES. The activity was measured using

octanoyl-CoA as substrate, to avoid the required addition of BSA, which will

strongly interfere at 232 nm when measuring activity with longer acyl-CoAs. CoASH

was added to the enzyme assay at concentrations indicated.

Fig. 5 Acyl-CoA thioesterase substrate specificity in purified peroxisomes and for

recombinant PTE-2. (A) Acyl-CoA thioesterase activity measurements were

determined in 2.27 µg purified peroxisomes from wild-type mice treated with 0.1%

WY-14,643 for one week, using 25 µM of various acyl-CoA esters. (B) Enzyme activity

measurements were determined using purified PTE-2 as an enzyme source, using

0.3-1.2 µg of recombinant PTE-2 and 25 µM acyl-CoA as substrate. THCA,

trihydroxycoprostanoyl-CoA; CA, choloyl-CoA; CDCA, chenodeoxycholoyl-CoA;

DMN, 4,8-dimethyl nonanoyl-CoA.

Fig. 6 Bile acid-CoA thioesterase activity is increased in mouse liver homogenates by

WY-14,643 treatment. Specific choloyl-CoA thioesterase activity was measured as

described in EXPERIMENTAL PROCEDURES in homogenates from untreated

PPARα wild-type (+/+) and null (-/-) mice and mice treated with 0.1% WY-14,643

(WY) for one week.

Fig. 7 Northern blot analysis of PTE-2 mRNA expression in mouse liver. (A) Upper

panel. Groups of six PPARα-null mice (-/-) or age matched wild-type mice (+/+)

were fed 0.1% WY-14,643 for one week, while control animals had access to normal

chow diet ad libitum. Mice were sacrificed and total RNA was isolated from liver.

Northern blot analysis was carried out on 20 µg total RNA using α-32P-labeled

cDNA probe for PTE-2 as described in EXPERIMENTAL PROCEDURES. A

representative blot with two samples per group is shown together with the ethidium

bromide staining of the blot with positions of the 28S and 18S bands indicated. Lower

Panel: Northern blot analysis of mouse liver total RNA from control mice or mice

fasted for 24 hours. (B) PTE-2 mRNA expression shows diurnal variation. C57 BL/6

mice were maintained on a normal chow diet ad libitum and were sacrificed at the

time-points indicated. The light period was between 06.00 and 18.00 and the dark

period between 18.00 and 06.00. Northern blot analysis was carried out on 20 µg total

RNA using α-32P-labeled probes for PTE-2 and β-actin. Filters were exposed to X-ray
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film and signals were quantified using Image Master Software 3.0. The mean of PTE-

2/actin mRNA ± range for two animals is shown. (C) Tissue expression of PTE-2

mRNA. Total RNA was isolated from various tissues of Sv129 male mice. Northern

blot analysis was carried out on 20 µg total RNA using α-32P-labeled cDNA probe for

PTE-2 as described in EXPERIMENTAL PROCEDURES. Ethidium bromide (Et Br)

staining of the gel shows even loading of samples.

Fig. 8 Model for putative functions of PTE-2 in peroxisomes. PTE-2 may function as

an auxillary enzyme in β-oxidation of a number of substrates in peroxisomes.

Abbreviations used: VLCFA, very long-chain fatty acids: THCA-CoA,

trihydroxycoprostanoyl-CoA; BAAT, bile acid-CoA:amino acid N -acyltransferase;

PTE-2, peroxisomal acyl-CoA thioesterase 2; COT, carnitine octanoyl-transferase; PG,

prostaglandins: LT, leukotrienes; Tb, thromboxanes; FFA, free fatty acid; Cn,

carnitine; DMN-CoA, 4,8-dimethyl nonanoyl-CoA.
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Table I: Calculated Km and Vmax values for recombinant PTE-2.
Thioesterase activity with different CoA esters were measured at different substrate
concentrations. Activities were measured as described under ‘EXPERIMENTAL
PROCEDURES’ using 0.3-1.2 µg purified recombinant PTE-2. Km and V max values
were calculated using Sigma Plot Enzyme Kinetic programme.The activity of PTE-2
with two β-oxidation intermediates, 2-trans-decenoyl-CoA and 3-hydroxy-palmitoyl-
CoA, were compared to the activities with decanoyl-CoA and palmitoyl-CoA,
respectively, all measured at 25 µM.

CoA ester Km Vmax

Straight chain acyl-CoA M mol/min/mg

Acetyl 29.4 4.6
Propionyl 8.0 3.45
Butyryl 22.6 2.6
Hexanoyl 23.4 5.6
Octanoyl 6.9 3.9
Decanoyl 2.9 3.8
Lauroyl 2.8 3.0
Myristoyl 2.5 3.6
Myristoleoyl 3.5 3.2
Palmitoyl 1.7 3.4
Palmitoleoyl 1.4 2.7
Stearoyl 2.7 3.2
Oleoyl 1.6 3.1
Linoleoyl 2.3 2.3
Arachidoyl 4.2 2.2
Arachidonoyl 6.7 1.6

”Bile acids”
Trihydroxycoprostanoyl 6.3 8.1
Choloyl 14.6 17.9
Chenodeoxycholoyl 8.8 17.1

Others
4,8-dimethyl nonanoyl 5.5 10.69
Prostaglandin F2α 0.92 2.25
2-methyl stearoyl 1.9 1.65
Malonyl 12.9 1.19
3-hydroxy-3-methyl-glutaryl 22.9 2.85
Acetoacetyl 22.9 6.0
Clofibroyl-CoA n.d. 1.65

-oxidation Intermediates
2-trans-decenoyl 17.3 2.55
3-hydroxypalmitoyl 2.7 0.77



Table II: Specific activity of bile acid-CoA:amino acid N-acyltransferase (BAAT) in purified peroxisomes from

untreated wild-type mice. Addition of recombinant PTE-2 to the incubation mixture and detection of tauro-

chenodeoxycholic acid formation was as described in 'EXPERIMENTAL PROCEDURES'. All samples were measured in

duplicate.

BAAT activity (nmol/mg/min) BAAT activity (%)

Control                         6.10                    100

+ PTE-2 (0.6 µg)                         1.06                      17



Table III: Nomenclature for peroxisomal acyl-CoA thioesterases

Enzyme Species Localization Other Name Cloned Reference
(Proposed 
Name)

mPTE-Ia mouse peroxisomal -- gene (25)

mPTE-Ib mouse peroxisomal -- gene (25)

hPTE-I human peroxisomal -- gene Hunt et al. Manuscript in preparation.

MTE-I human putative PTE2 cDNA (40)
mitochondrial

PTE1 yeast peroxisomal -- cDNA (26)

PTE-2 human peroxisomal hTE cDNA (28)
peroxisomal hACTEIII cDNA (27)
peroxisomal PTE1 cDNA (26)
peroxisomal gene this article

mouse peroxisomal cDNA this article
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