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Figure 2: A near-infrared image of an Einstein rings ob-
tained using the Hubble Space Telescope near-infrared
camera [7].

ies that radiate electromagnetic waves over a vast
spectrum.

Einstien rings were first predicted by Albert Ein-
stein in 1936 [10] and although he originally
judged that ‘there is no hope of observing this
phenomenon directly’, the phenomena is now a
relatively routine observation. There are many
examples of Einstein rings with diameters up
to an arcsecond as shown in Figure 1. How-
ever, because the mass distribution of the lenses
is not perfectly axially symmetrical, or because
the source, lens and observer are not perfectly
aligned, many of the observation are of imper-
fect or partial Einstein rings. The study of Ein-
stein rings has become an important aspect of cos-
mology in general. This includes the bending of
starlight by the gravity of intervening foreground
stars which is now commonly referred to as ‘gravi-
tational microlensing and has become a technique
to detect planets orbiting stars [12].

Einstein rings are caused by the gravitational
lensing which in turn is a consequence of Ein-
stein’s theory of General relativity. A fundamen-
tal consequence of this theory is that mass dis-
torts space-time and thus, instead of a ray light
from a source travelling in a straight line through
a three-dimensional space, it is bent as a result of
the distortion generated by the presence of a mas-
sive body. An Einstein Ring is a special case of
gravitational lensing which is caused by the exact

Figure 3: A 5 GHz radio image of a possible com-
pound gravitational lens obtained using the MERlIN
(Multi-Element Radio-Linked Interferometer Network)
radio telescope [8].

alignment of the source, lens and observer. This
results in a symmetry around the lens, causing
a ring-like structure with an ‘Einstein Radius’ in
radians, given by [11]

θ =

√
4GM
c20

DLdS
DLS

where G is the gravitational constant M is the
mass (of the lensing object) DL is the angular di-
ameter distance to the lens, DS is the angular
diameter distance to the source, DLS is the an-
gular diameter distance between the lens and the
source and DLS 6= DS −DL over cosmological dis-
tances in general. The angular diameter distance
to a cosmological object is defined in terms of an
object’s actual size divided by the angular size of
the object as viewed from earth. This result is in-
dicative of the theory of general relativity being
a ‘geometric’ interpretation of gravity which does
not include effects that depend on the wavelength
of the light that is bent. Consequently, general
relativity is not able to explain why an Einstein
ring is blue. This paper attempts to explain the
colour phenomena using a linear systems theory
approach based on scalar Helmholtz scattering to
evaluate the effect of light being not just bent but
‘diffracted’ from a ‘thin’ gravitational field of the



Figure 4: A near complete Einstein ring showing the dis-
tinctive blueness of the phenomenon [9].

type produced by a spiral galaxy, for example,
where the gravitational field is taken to be due
to the scattering of low frequency scalar waves.
The diffraction effect generates an expression for
the intensity of an Einstein ring that depends on
the wavelength of light according to a λ−6 power
law where λ is the wavelength. The paper then
explores the consequences of this result in terms
of a ‘wavefield theory’ of gravity.

2 Helmholtz Scattering

The three-dimensional inhomogeneous Helmholtz
equation for a scalar wavefield u is given by [13]

(∇2 + k2)u(r, k) = −k2γ(r)u(r, k) (1)

where ∇2 is the Laplacian operator, k = ω/c0 is
the wavenumber, ω is the angular frequency. Con-
sider a scattering function γ which is of compact
support, i.e. γ(r) ∃ ∀ r ∈ V where V is a volume
of arbitrary shape. The Green’s function trans-
formation of equation (1) [13] yields the solution

u = ui + us

where ui is the incident wavefield, us is the scat-
tered wavefield given by

us(r, k) = k2g(r, k)⊗3 γ(r)u(r, k), r =| r |

and ⊗3 denotes the three dimensional convolution
integral over r. With regard to this integral equa-
tion, g is the ‘out-going’ Green’s function given by
[14]

g(r, k) =
exp(ikr)

4πr
which is the solution of

(∇2 + k2)g(r, k) = −δ3(r)

and it is assumed that

u(r, k) = ui(r, k), ∀ r ∈ S

where S is the surface of V and

ui(r, k) = exp(ikn̂i · r)

satisfying the homogeneous Helmholtz equation

(∇2 + k2)ui(r, k) = 0

Note that
g(r, k) =

1
4πr

, k → 0

and thus,

∇2

(
1

4πr

)
= −δ3(r) (2)

Let us now assuming that u ∼ ui∀r ∈ V so that the
scattered field is given by

us(r0, k) = k2g(r, k)⊗3 γ(r)ui(r, k)

This assumption provides an approximate solu-
tion (the Born approximation) for the scattered
field which is valid if k2‖γ(r)‖ << 1. The result
can be considered to be a first approximation to
the (Born) series solution given by

us(r, k) = ui(r, k) + k2g(r, k)⊗3 γ(r)ui(r, k)

+k4g(r, k)⊗3 γ(r)[g(r)⊗3 γ(r)ui(r, k)] + ...

which is valid under the condition k2‖γ(r)‖ < 1.
Each term in this series expresses the effects due
to single, double and triple etc. scattering events
and because this series scales as k2, k4, k6, ..., for
k << 1 (i.e. low frequency wavefields), the Born
approximation becomes an exact solution.

3 Low Frequency Scattering

If a Helmholtz wavefield oscillates at lower and
lower frequencies, then we can consider an asymp-
totic solution of the form

us(r, k) =
k2

4πr
⊗3 γ(r)ui(r, k), k → 0.



This is a consequence of the fact that the higher
order terms in the Born series can be ignored
leaving just the first term as k → 0 and because

exp(ikr)
4πr

=
1

4πr
, k → 0

giving an exact solution to the problem.

If the incident field is a unit plane wave, then

u(r, k) = 1 + us(r, k)

where

us(r, k) =
k2

4πr
⊗3 γ(r), k → 0

Here, the wavelength of the incident plane wave-
field is assumed to be significantly larger than the
spatial extent V of the scatterer. For a given scat-
tering function γ(r) the wavefield is a ‘weak field’
because of the low values of k required to pro-
duce this (asymptotic) result. But this result is
the general solution to Poisson’s equation

∇2us(r, k) = −k2γ(r)

since, from equation (2), we have

∇2u = ∇2us = k2∇2

(
1

4πr
⊗3 γ

)
= −k2γ.

By considering us to be a potential, we can write

∇ ·Us(r, k) = k2γ(r), Us(r, k) = −∇us(r, k).

Integrating over the volume of the scatterer V and
using the divergence theorem, we can write∮

S

Us(r, k) · n̂d2r = k2Γ, Γ =
∫
V

γ(r)d3r.

If we now consider a scatterer that is a sphere,
then the field U will have radial symmetry, i.e.
Us = n̂Us. In this case, the surface integral be-
comes 4πr2Us and we obtain

Us =
k2Γ
4πr2

, k → 0.

Hence, in the limit as k → 0, Helmholtz scattering
provides an exact solution for a weak scattered
field whose gradient (for the radially symmetric
case) is characterized by a 1/r2 scaling law.

4 Diffraction from a Low Frequency
Scattered Field

For k → 0, us(r, k), which we now denote by
u0
s(r, k0), is the solution to

∇2u0
s(r, k0) = −k2

0γ(r)

where k0 denotes a value for k, k → 0. Consider
a Born scattered Helmholtz wavefield us(r, k) for
k >> 1 given by

us(r, k) = k2g(r, k)⊗3 γ(r)ui(r, k)

We can then write

us(r, k) = −k
2

k2
0

g(r, k)⊗3 ui(r, k)[∇2u0
s(r, k0)]

from which we can derive an expression for the far
field scattering amplitude generated by the field
U0
s given by

us(r, k) = −k
2

k2
0

g(r, k)⊗3 ui(r, k)[∇ ·U0
s(r, k0)]

=
exp(ikr0)

4πr0
A(n̂0, n̂i),

r

r0
<< 1

where, with ui(r, k) = exp(ikn̂i ·r), writing n̂0 = r0/ |
r0 | and with

U0
s = n̂U0

s = n̂
k2
0Γ

4πr2

we obtain
A(n̂0, n̂i) =

−k
2Γ

4π

∫
V

exp[−ik(n̂0 − n̂i) · r]∇ ·
(

n̂
r2

)
d3r

Hence, the wavefield us(r, k) (for k >> 1) gener-
ated by a scatterer that is simultaneously gener-
ating a scattered wavefield u0

s(r, k0) is, in the far
field (under the Born approximation) determined
by the Fourier transform of the scattering func-
tion (assuming radial symmetry) f(r) = ∇· (n̂r−2).
In other words, the weak field generated by very
low frequency scattering will diffract a high fre-
quency Helmholtz wavefield, the diffraction pat-
tern (i.e. the far field scattering pattern) being
determined by f(r).

4.1 Diffraction by an Infinitely Thin
Scatterer

Consider the case where an incident plane wave-
field is travelling in the z-direction, i.e. ui =
exp(ikz) and is incident on an infinitely thin scat-
terer defined by the function γ(r) = γ(x, y)δ(z).
The scattered wavefield is then given by

us(x, y, z, k) = k2 exp(ik
√
x2 + y2 + z2

4π
√
x2 + y2 + z2

⊗2 γ



where ⊗2 denotes the two-dimensional convolu-
tion integral over area S and γ(x, y) ∃ ∀(x, y) ∈ S.
Writing out this result in the form

us(x0, y0, z0, k) = k2

∫ ∫
dxdy

exp[ik
√

(x− x0)2 + (y − y0)2 + z2
0 ]

4π
√

(x− x0)2 + (y − y0)2 + z2
0

γ(x, y)

it is clear that if the scattered wavefield is now
measured in the far field, i.e. for the case when
x/z0 << 1 and y/z0 << 1, then

z0

(
1 +

(x− x0)2

z2
0

+
(y − y0)2

z2
0

) 1
2

' z0 −
xx0

z0
− yy0

z0
+

x2
0

2z0
+

y2
0

2z0
and thus,

us(x0, y0, z0, k) =

exp(ikz0)
4πz0

exp
(
ik
x2

0 + y2
0

2z0

)
A(u, v)

where

A(u, v) = k2γ̃(u, v) = k2F2[γ(x, y)]

= k2

∫ ∫
exp(−iux) exp(−ivy)γ(x, y)dxdy

with spatial frequencies u and v being defined by

u =
kx0

z0
=

2πx0

λz0
and v =

ky0
z0

=
2πy0
λz0

Here, F2 denotes the two-dimensional Fourier
transform operator, the result being the standard
expression for a diffraction pattern in the far field
or Fraunhofer zone [13] and has been derived in
preparation to the following section.

4.2 Diffraction by an Infinitely Thin
Field

In the previous section, we derived the far field
diffraction pattern for an infinitely thin scatterer.
However, suppose this scatterer also radiates a
field generated by low frequency Helmholtz scat-
tering from the same scattering function. What
is the contribution of this field to the diffraction
of the same incident plane wave within and be-
yond the extent of the scatterer given that the
scattered wavefield u0

s is taken to exist within and
beyond the finite spatial extent of the scatterer

γ(r), r ∈ V (i.e. u0
s is not of compact support as it

is given by the convolution of a function of com-
pact support with r−1)? In this case, the scattered
wavefield is given by (under the Born approxima-
tion)

us = −k
2

k2
0

g ⊗3 ui∇2u0
s, u0

s =
k2
0

4πr
⊗3 γ.

For an infinitely thin scatterer given by γ(x, y)δ(z),

u0
s(x, y, z, k0) =

k2
0

4π
√
x2 + y2 + z2

⊗2 γ(x, y)

so that in the (x, y) plane located at z = 0,

u0
s(x, y, k0) =

k2
0

4π
√
x2 + y2

⊗2 γ(x, y).

For an incident plane wave ui = exp(ikz), the scat-
tered wavefield us is thus, given by

us(x, y, z, k) = −k2g(r, k)⊗3 exp(ikz)×(
∂2

∂x2
+

∂2

∂y2

)(
1

4π
√
x2 + y2

⊗2 γ(x, y)

)
.

Repeating the calculation given in the previous
section (for z → 0), the diffracted wavefield now
becomes

us(x0, y0, z0, k) =

exp(ikz0)
4πz0

exp
(
ik
x2

0 + y2
0

2z0

)
A(u, v)

where
A(u, v) = −2zk2

×F2

[(
∂2

∂x2
+

∂2

∂y2

)
1

4π
√
x2 + y2

⊗2 γ(x, y)

]
.

Note that although the scatterer is taken to be
‘infinitely thin’ because γ(r) = γ(x, y)δ(z), we still
consider the physical thickness of the scatterer to
be finite, i.e. z 6= 0 (z being taken to be a positive
real ‘infinitesimal’ for all real k). Now, for an
arbitrary function f ↔ f̃ , where ↔ denotes the
transform from real space to Fourier space,(

∂2

∂x2
+

∂2

∂y2

)
f ↔ −(u2 + v2)f̃ ,

1√
x2 + y2

↔ 2π√
u2 + v2

,

and we obtain

A(u, v) = zk2
√
u2 + v2γ̃(u, v).



Consider a Gaussian diffactor (a unit amplitude
Gaussian function with standard deviation σ)
given by

γ(r) = exp(−r2/σ2), r =
√
x2 + y2

Figure 5 shows numerical simulations of the
diffraction patterns compounded in the (inten-
sity) functions

| γ̃(u, v) |2 and (u2 + v2) | γ̃(u, v) |2

using a two-dimensional Discrete Fourier Trans-
form. The analytical solutions for the intensity

Figure 5: Numerical simulation of the intensity patterns
generated by a Gaussian diffractor with σ = 1.5 for a
1000 × 1000 regular mesh. Top: Surface plot (left) and
image (right) for | γ̃(u, v) |2; Bottom: Surface plot (left)
and image (right) for (u2 + v2) | γ̃(u, v) |2

| us |2 generated by diffraction from the scatterer
γ and diffraction from the field ∇2u0

s are by

I1(r0, λ) =
π4σ2

z2
0λ

4
exp

[
−
(

2π2σ2r20
λ2z2

0

)]
and

I2(r0, λ) = z2 4π6σ2r20
z4
0λ

6
exp

[
−
(

2π2σ2r20
λ2z2

0

)]
respectively. Note that the diffraction for a scat-
tering function produces a pattern whose inten-
sity peaks at the centre of the image plane (a stan-
dard result in Fourier optics) but that diffraction
from a low frequency scattered field produces a

pattern characterised by a ring which has a max-
imum when r0 = z0λ/(

√
2πσ) as illustrated in Fig-

ure 5. Also, observe that the magnitude of the
intensity patterns generated by the field ∇2u0

s is
significantly less than that generated by scatterer
γ, e.g.

I2
I1

=
4z2π2r20
z2
0λ

2

and only if r0/λ ∼ z/z0 will the magnitude become
of the same order. However, with regard to the
principal remit of this paper, note that the in-
tensity generated by the scatterer γ scales as λ−4

whereas the intensity generated by the field ∇2u0
s

scales as λ−6.

5 Colour Analysis

If we accept an Einstein ring to be a gravitational
diffraction phenomena, then the intensity of the
diffracted light scales as λ−6 which explains the
colour of the rings (blue light having the short-
est wavelength in the visible spectrum). This is
analogous to the explanation of why the Earth’s
atmosphere is blue in colour. Under the Rayleigh
scattering [17] condition in which the wavelength
is significantly larger than the physical size of the
scatterer (when the Born approximation is valid),
the scattering amplitude becomes independent of
the scattering angle and the intensity of the scat-
tered field is proportional to λ−4. Thus, the sky
is blue, because sunlight is scattered by the elec-
trons of air molecules in the terrestrial atmo-
sphere generating blue light preferentially around
in all directions [18]. Further, as the Sun ap-
proaches the horizon, we have to look more and
more diagonally through the Earth’s atmosphere.
Our line of sight through the atmosphere is then
longer and most of the blue light is scattered out
before it reaches us, especially as the Sun gets
very near the horizon. Relatively more red light
reaches us, accounting for the reddish colour of
sunsets.

The λ−6 scaling law associated with gravitational
diffraction provides a method of validating or oth-
erwise the theoretical model presented in this pa-
per. We require a scenario in which the same Ein-
stein ring is recorded simultaneously over a broad
frequency spectrum (e.g. using radio, infrared,
visible and ultraviolet imaging) in such a way that
the intensities of each image (relative to a known
source that can be used for calibration) can be
compared on a quantitative basis. However, data
available to undertake such an analysis are not yet


