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Abstract

Abstract

This thesis focuses on the use of microtones in guitar composition. In the course of
this study the physical aspects of musical sound (pitch, loudness and
quality/timbre), vibrational frequencies of strings, and the theory of musical scales
and tuning systems are discussed. Whole-number ratios corresponding to musical
intervals within the twelve-note/equal temperament scale are calculated in relation
to the overtone series for the purpose of surveying consonance and dissonance
within the tempered system. These are compared to the ratios for corresponding
intervals within the overtone series. Whole-number ratios are also calculated for

intervals involving the microtones referred to in this study.

The frequencies of the microtones are theoretically predicted and experimentally
measured using a high-precision sound level meter and frequency analyser. A brief
analysis of the consonant and dissonant quality of five different intervals involving
tempered and microtonal notes played on both electric and acoustic guitars is
carried out on a computer using a Fast Fourier Transform algorithm. Twenty-three
graphs were produced as a result of this experiment. A brief analysis of the
consonant and dissonant quality of a pitch interval involving two microtones was
also taken. Whole-number ratios were calculated for each experiment and

compared to recognized consonant whole-number ratios within the overtone series.

Microtonal musical compositions, Guitar Opus 1 and Guitar Opus 2, show how



Abstract

the measured microtones can be utilized in musical composition. The microtonat
parts of the composition are discussed and illustrated in tabular format using the
information gathered from the physical measurements. Whole-number ratios are
calculated for part of the composition Guitar Opus 1 and the consonant and
dissonant quality of the intervals used are discussed. Etude for Amplified Classical
Guitar illustrates how microtonal notes can be utilized in composition along with
tempered notes of similar loudness. In Etude for Electric Guitar with added frets,
for modified electric guitar (11 extra frets added in between original frets), a
melody is first played using tempered notes and then played as a microtonal melody
by moving up or down a fret utilizing the added microtonal frets. The thesis
concludes with a discussion of the use of different tuning systems in composition,

and their relationship to the microtonal system used in the project.



Summary of Thesis

Summary of Thesis

The search for a system of frequencies outside twelve-note/equal temperament and its
application to guitar composition is the basis of this thesis. By the beginning of the
twenticth century composers were looking beyond the limitations of the ‘closed’
twelve-note/equal temperament system of tuning and began to divide the semitone into
smaller tempered divisions, for example, quarter tones. The tuning system of just
intonation in which all of the intervals can be represented by whole-number frequency
ratios began to appear through the work of Béla Bartok (1881-1945), Charles Ives
(1874-1954), Harry Partch (1901-1974) and Lou Harrison (b 1917). This tuning system
gives the composer an infinite number of frequencies to choose from and is based on

the overtone series.

A microtone refers to any frequency that is not contained in the twelve-note/equal
temperament system of tuning. Microtones feature in many types of folk music
throughout the world. In ancient Greek music, micro-intervals called ‘chroai’ were
used. In Indian music ‘srutis’ or intervals smaller than a semitone are used. Béla Bartok
found divergences from the intervals of the diatonic scale in his study of folk-song in

Hungary, Romania and Bulgaria.

In Irish traditional music microtonal changes in pitch are a normal part of the technique
of instrumentalists and sean-nos singers who slide up to an important note through an

interval that may be greater or less than a semitone. The seventh degree of the scale



Summary of Thesis

with its varying pitch (either natural or sharp or between the two) often figures in

slides.

Microtonal tuning systems can be extracted from a traditionally built classical guitar and
used in guitar composition by plucking the opposite side of a stopped string. The
microtonal frequencies used in the project have been predicted mathematically and
measured using a high precision sound level meter and frequency analyser. Accurate
measurements to within two cents are essential as the ear can hear a change in pitch of
1/50 of a semitone and smaller. A frequency analysis of a single microtonal note is

shown below in Figure 1.

The graph below is a Fast Fourier Transform (FFT) of a measured microtone in Hz.
using a resolution of + 1.6 hertz. The Fast Fourier Transform was carried out using a
frequency analyser [LarsoneDavis SLM and Frequency Analyzer, model 2800] and the

data was imported into a Microsoft Excel Spreadsheet from which the graph was

printed.

The graph shows peaks corresponding to the fundamental frequency (128.1 HZ) of the
microtone and its harmonics. The harmonics are found by the doubling, trebling, et
cetera of the fundamental. For example the 2™ harmonic (1% partial) is 128.1 hertz +
128.1 hertz and equals 256.2 hertz. The departure from exact harmonicity in the higher
partials is expected due to string stiffness.

As in all FFT plots in this thesis, Sound Intensity Level is shown on the vertical axis. As

explained in 1.6, p.17, this does not correspond accurately to the sensation of loudness.

L/
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This is particularly so at low frequencies such as the fundamental frequency of 128
hertz. In fact such maybe heard mainly through it’s harmonics as explained in Chapter 4

of this thesis.
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Summary of Thesis

The twelve-note/equal temperament scale is the tempering of a system of pitch
intervals obtained within the overtone series. There are twelve equidistant pitch
intervals in the system. Whole-number ratios which reflect each pitch interval of
the system, were calculated. The information is compared to ‘special relationship’
intervals-consonant pitch intervals within the overtone series, which are compared
to the consonant/dissonant quality of the equally-tempered scale. Whole-number

ratios were also calculated for the microtones used in the project.

A brief survey of the consonant and dissonant quality of five different intervals
involving tempered and microtonal notes on electric guitar and acoustic guitar is
carried out. Whole-number ratios are calculated for each pitch interval and twenty-
three graphs are produced as a result of this experiment. Also, a brief survey of the
consonant and dissonant quality of a pitch interval containing two microtones is

carried out. Whole-number ratios are calculated and two graphs are produced.

The frequencies of the microtonal notes were measured on a LarsoneDavis Sound
Level Meter and Frequency Analyser. An electrical signal was produced from the
pick-up under the nut, fed into an amplifier, and thence into the frequency analyzer.
This allowed accurate measurements of the microtonal frequencies. The
microtones were then employed in musical experimentation using three different
compositional techniques as follows:

. Guitar Opus 1, Guitar Opus 2 for classical guitar, utlizing plucked
microtones from the opposite sides of a stopped string and tempered notes.

. Etude for Amplified Classical Guitar with pick-ups under the saddle and

10



Summary of Thesis

nut, using hammer-on technique and utilizing both microtones and tempered notes
. Etude for Electric Guitar with added frets utilizing pentatonic tempered

melody and microtonal melody as a basis for improvisation

The microtonal parts of each composition are discussed and illustrated in tabular
format using the information gathered from the physical and mathematical

measurements.

Three different guitars are used in this project. The initial microtonal system was
extracted from a normal classical guitar by plucking the nut-side of stopped strings.
A second classical guitar was fitted with two pick-ups, one under the bridge and
one under the nut, alfowing both normal pitches and microtonal pitches to be
amplified. A third guitar, a 21-fret electric guitar, was fitted with eleven extra frets.
Nine extra frets were added between the first 12 normal frets of the guitar and two
were added above the 12" fiet. These extra frets were measured by reversing the
fret measurements of the fingerboard, i.e. the distance between the 21% and the 20™
fret becomes the distance between the nut and the first fret, the distance between
the 20" and the 19" fret is added as the second fret, the third fret is the original
first fret, the 18" fret is added as the fourth fret, and so on. The frets were added in
addition to the original frets and those frets that were too close to function, were

omitted.

Whole-number ratios for pitch intervals containing a tempered pitch and microtone

from part of the composition Guitar Opus I are discussed in relation to the

i1



Summary of Thesis

“special relationship” whole-numbers of the overtone series. Guitarists are
normally restricted to using the twelve-note/equal temperament scale because of
fixed frets. However, plucking the stopped string on the nut-side can produce
microtonal notes. These microtones, which are related to the guitar’s
measurements, are readily available on a normal guitar. When a certain technique
of ‘hammering’ a finger on to an open string is applied in normal guitar playing,
both the bridge-side (normal frequency) and nut-side (microtonal frequency) notes
sound together. Guitarists are therefore familiar with these sounds and adapt more

easily to a microtonal system than would other instrumentalists.

The four compositions were recorded on CD and have also been performed live. A
number of concerts have been given using the electric guitar with added frets in a
quartet with saxophone, double bass and drums, within the framework of 1950’s
jazz music. The music of Charlie Parker was used to show that the playing
technique was not hampered by the added frets and that microtones could be used
in improvisation within this jazz style. Etude for Electric Guitar with added freis
and Etude for Amplified Classical Guitar were arranged for quartet with

saxophone, double bass and drums and recorded on CD.

|



Chapter 1 Theory

1.1 Sound

When longitudinal waves in air strike the ear, the listener experiences the sensation
of sound. The human ear is sensitive to waves in the frequency range from about
20 hertz (vibrations per second) to 20,000 hertz, although the term sound is
sometimes applied also to similar waves with frequencies outside the range of
human audibility.' If a vibration is regular, the resulting sound is a musical note of
definite pitch; if it is irregular the result is noise. Musical sounds are distinguished

using three broad characteristics: pitch, loudness and quality.

1.2 Pitch

Highness and lowness of pitch depends on the frequency (number of vibrations per
second) of the vibrating source. Frequency of vibration is measured in cycles per
second called hertz. Distinguishing between the highness and lowness of a musical
sound is called pitch perception. The pitch interval or musical interval between two
vibrations, each of a single frequency depends on the ratio of the frequencies. All

frequency ratios of 2:1 correspond to a pitch interval of one octave.

In equal temperament there are twelve notes or semitones in an octave. The ratio

1
between all successive notes is 2'?: 1 or 1.05946:1. The pitch intervals between all

notes are identical in this scale. The pitch interval between successive notes or

semitones is taken to be 100 cents on the equally-tempered scale.

13



Theory

1.3 Definition of Cents

If the note of frequency f, is » cents above the note of frequency f,, then by

definition

£, = £, x1.05946'% <
1 n

= f x{(l .05946)’1"00}

log , 1, = log , f, + log ,,1.05946'®

log 1o 1y =log wfy +i"g—0log ,1.05946

n
Ealog 1.05946 = log ,, 1, —log ,, 1,

.. . log \, f; —log o /)
100 log ,1.05946

a=10 log \, 1, —log /)
log ,1.05946

log o f, —log lﬂfl}
=10
& 0{ 0.02508 (1.2)

For example -:

If £, =3234Hz f, =329.6Hz

. 100(2.51798 ~ 2.50974) _ 0.8247
B 0.02508 " 0.02508

14



= 32.9 cents

1.4 Vibrational Frequencies of Strings

The frequencies of the open strings of a guitar in hertz are: 6"/E ,= 82.4Hz,

5" A;= 110Hz, 4"/D; = 146.8Hz, 3"/G; = 196Hz, 2"/B; = 246.9Hz and 1*/E, =
329.6Hz. The first string frequency is two octaves higher than the 6™ string. The

arrangement of these strings is illustrated in figure 1.1 below.

Figure 1.2 below illustrates a stopped string on the 6® fret. When the string is
plucked on the nut-side a non-standard note or microtone is sounded. When a
string is stopped at the 6" fret and plucked on the nut-side, the string leans against

the fret wire of the 5™ fret.

Figure 1.1 Guitar String Names and Frequencies in hertz

String numbers & names (USA Standard)

e Nut-side
Bridge-side 6th/Ez, 5th/As, 4th/Ds, 3rd/Gs, 2nd/Bs, 1st/Fs

L5



Figure 1.2 A Stopped Microtone at the Sixth Fret

Bridge

6™ fret

:

Nut

Fret wire
of 6" fret

16

Fret wire
of 5™ fret




Theory

1.5 Inverse Proportion Formula

A microtone is a note outside twelve-note/equal temperament scale. Such notes can
be produced by plucking stopped strings on the nut-side rather than on the

conventional bridge-side.

An idealized string, with constant length and tension and having no stiffness, has a

fundamental frequency of vibration:

[ =E g L8 Where

2L Vu
/, = Fundamental frequency in hertz
{, =Length of string between the two fixed points in metres
T = Tension of string in newtons.
= Mass per unit length of string in kg/m

Let /', = Fundamental frequency of the microtone played on the nut-side of the

stopped string.
I
f =" e lih
2N\ p

Where /', is the vibrating length of the string producing the microtone.

T and p are the same for both the bridge-side note and the nut-side note.

AT

A

For example for the bridge-side note of frequency 116.5Hz

II = 459.63mm

17



Theory

I',=163.04mm
. !
Si=hf XE,L
i
459.63
=116 5x——
I *163.04
=328.5Hz

This is the predicted frequency of the nut-side note or microtone.

In this manner, the microtonal frequencies in Table 1.1 below were calculated.

Table 1.1 Predicted Microtonal Frequencies

Strings p] 6th 50 4th 3rd 2nd 1st
Frets Frequency/Hz

no.o

19 127.5 170.2 227.1 303.2 381.9 509.9
18 131.8 175.9 234.7 313.4 395 527

17 136.5 182.2 243.1 324.7 409 546

16 142.2 190 253.3 338.2 426 568.7
15 148.6 198.4 264.7 353.5 445.2 594.4
14 156 208.3 278 371.2 467.6 624.2
13 164.8 220 293.6 392 493.8 659.2
12 175.2 234 3122 416.8 525 700.9
11 187.8 250.7 334.6 | 446.7 562.7 751.2
10 203.3 271.3 362.1 483.5 609.1 813.1
9 222.9 2673 396.7 529.7 667.3 890.8
8 247.8 330.8 4414 589.4 742.4 991.1
7 281.3 375.6 501.2 669.2 843 11254
6 328.5 438.5 585.2 781.4 984.3 1314
5 399.4 533.2 711.6 950.1 1196.9 1597.7
4 518 691.4 922.7 1232 1551.9 2464
3 755.3 1008.3 1345.6 1796.6 2263.1 3021.2
2 1468.21 | 1960 2615.5 34923 4399.3 5872.8

* The frets are numbered in accordance with normal fret numbering

18



Theory

In Table 1.1 above the first row corresponds to predicted microtonal frequencies
produced by stopping strings on the 19™ fret and plucking on the nut-side. The
portion of the string on the nut-side leans on the 18" fret. The frequencies of the
microtones were calculated by reference to the frequencies of the bridge-side notes

on the equal temperament scale.

This calculation assumes that the guitar string when vibrating has constant length
and tension and zero stiffness. Because these assumptions are not exactly true in
practice, the measured frequencies of the microtones will deviate from the

predicted values.

The plucked string, in fact, simultaneously produces notes of a number of

frequencies given approximately by:

Where n=1,2,3,4,5,6, etc.

The notes of higher frequency than the fundamental are called harmonics.

1.6 Loudness

The loudness of a note at a place depends on the amplitude of vibration of a layer

of air at that place and also on the frequency of the vibration. Loudness usually

19



Theory

increases with intensity, but because of the varying sensitivity of the ear with
frequency, there is no simple relation between the two.” Intensity is the quantity of
sound energy crossing unit area perpendicular to the direction of propagation in
one second. It is measured in Watts/m’. The Sound Intensity Level of a sound,

which is related to loudness, is defined as

Sound Intensity Level = 10 log }{m dB

0
1 = intensity of the sound
Io= A reference intensity of 10 WM™
A sound reaching a point causes a variation in the pressure of the air at that point.
The change in the total pressure at that point due to the sound is called the sound
pressure. It is well established that at audience distances the intensity o¢ (Prms)’

where P is the root mean square sound pressure. Here Sound Intensity Level =

fa

]

=20log L

0
Py is the reference sound pressure level corresponding to Io
Py=2x107° WM
When the definition 20log P is used, the quantity is called the Sound Pressure

Level (SPL).

At audience distances the Sound Intensity Level and the Sound Pressure Level are

the same.

20
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Table 1.2 Typical sound levels *

Jet takeoff (60 m) 120 dB

Construction site 110 dB Intolerable

Shout (1.5 m) 100 dB

Heavy truck (15 m) 90 dB Very noisy

Urban street 80 dB

Automobile interior 70 dB Noisy

Normal conversaticn (1 m) 60 dB

Office, classroom 50 dB Moderate

Living room 40 dB

Bedroom at night 30dB Quiet

Broadcast studio 20dB

Rustling leaves 10 dB Barely audible
() dB

The energy involved in any vibration process is proportional to the square of the
amplitude of the vibration. Since intensity is energy per second per m’, intensity is
proportional to amplitude squared. Because of this, a 2-fold increase in amplitude
invoives a 2 x 2 = 4-fold increase in the intensity, while a tripling of the amplitude

is associated with a 9-fold increase. It naturally follows that a 10-fold intensity

change calls for a J10 = 3.162-fold increase in amplitude.' The amplitude of
vibration of the air particles at the ear can be increased, by increasing the amplitude

of vibration of the plucked string.

The actual sensation of loudness is also effected by frequency. Above 20,000Hz
and below 20Hz, a vibration will not be heard no matter how great it’s intensity. In
addition, the sensitivity of the ear varies within the frequency range (20Hz-
20,000Hz). In particular, the loudness decreases sharply at very low frequencies in
the region of 100Hz and below. To take account of this a Loudness Level is
defined. The Loudness Level, measured in Phons, of a given sound is equal to the

number of Decibles (dB) of a 1000Hz tone that is judged by an average listener to

21



Theory

be equally loud. A sound intensity level of 80dB, for example, will give rise to a
Loudness Level of 80 Phons at a frequency of 1000Hz but to a much lower
Loudness Level at 100Hz. Sound Intensity Levels in Decibels and Loudness Level
in Phons due to a number of sounds heard simultaneously cannot be added

arithmetically. A scale of Loudness which is linear is defined as follows:

(P - 40)
10

B =2

If P is the Loudness Level in Phons, S is the Loudness in Sones. If sounds of
Loudness S, S, S; etc. Sones are heard simultaneously the combined Loudness S
is given by

S=5 +Sg +§; etc.

1.7  Quality/Timbre

A sounded string vibrates with many frequencies simultaneously as mentioned in
Section 1.5, p. 17. The term harmonics refers to modes of vibration of a system
that are whole-number multiples of the fundamental mode, and also to the sound
that they generate. It is customary to stretch the definition so that it includes
modes that are nearly whole-number multiples of the fundamental: 2.005 times the
fundamental rather than 2 times, for example. The modes of vibration of an ideal
vibrating string are harmonics of the fundamental. The modes of a real string are
usually so close to being whole-number multiples of the fundamental that they are

also spoken of as harmonics. Note that the term “first harmonic™ refers to the

2



fundamental.

Many vibrators do not have modes that are whole-number multiples of the
fundamental frequency. However, the term overtone is used to denote their higher
modes of vibration. Harmonics are therefore described as overtones whose
frequencies are whole-number multiples of the fundamental frequency. The second
harmonic is the first overtone and the third harmonic is the second overtone etc.
Partial is another term in common use that refers to modes of vibration of a system
or components of a sound. Partials include all the modes or components, the
fundamental plus all the overtones, whether they are harmonic or not. The term

upper partials excludes the fundamental and is thus a synonym of overtones.

If the harmonics of a note have different intensity distributions, the resulting sound
will differ in quality or timbre, but the perceived pitch of the note will be the same.
The main reason that the same fundamental note played on different instruments
sounds differently is because of this phenomenon.’ The first thirty-five partials of
the overtone series, from which the just intonation tuning system is derived, are

shown in Table 1.3 below:

Column 1 shows each partial number. Column 2 shows the frequency ratio
between adjacent partials. Column 3 shows the interval between the partials in
cents. Column 4 shows the nearest tempered interval to each partial ratio. Column
5 shows the tempered intervals in cents. Column 6 shows the difference between

the intervals corresponding to the partial ratios and the tempered intervals. The
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frequency of upper partial 3 is exactly double the frequency of upper partial 1. The
frequency of upper partial 7 is exactly double the frequency of upper partial 3. The

doubling of frequency corresponds to a pitch interval of 1200 cents or one octave.
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Table 1.3 Frequency Ratios and Nearest Fempered Intervals

Upper Frequency Ratio | Pitch intervals Name of Tempered | Difference

Partial no. | between between nearest interval between
successive successive tempered {Cents) Columns
partials partials intervat (3-(5)

{Cents) (Cents)

1 ] 1200 Perf. octave 1200 0

2 3:2 702 Perf, 5" 700 +2

3 4:3 498 Perf. 4™ 500 2

4 5:4 386 Maj.3"™ 400 -14

5 6:5 315.6 Min.3™ 300 +15.6

6 7:6 266.8 Min.3™ 300 -33

7 8:7 231.2 Maj.2™ 200 +31.2

8 9:8 204 Maj.2™ 200 +4

9 10:9 182 4 Maj.2" 200 -17.6

10 11:10 165 Maj.2"’ 200 -35

11 12:11 150.6 Maj.2" 200 -49

12 13:12 138.6 Min.2™ 100 +38.6

13 14:13 128.3 Min.2™ 100 +28.3

14 15:14 119.4 Min.2™ 100 +19.4

15 16:15 i11.7 Min.2™ 100 +11.7

16 17:16 105 Min.2™ 100 +5

17 18:17 99 Min.2" 100 -1

18 19:18 93.6 Min.2™ 100 -6.4

19 20:19 88.8 Min.2™ 100 -11.2

20 21:20 84.5 Min.2™ 100 -15.5

21 22:21 80.5 Min.2™ 100 -19.5

=3 23:22 77 Min.2™ 100 -3

23 24:23 73.7 Min.2" 100 [ -26.3

24 25:24 70.7 Min.2™ 100 | 203

25 26:25 68 Min.2™ 100 -32

26 27:28 65.3 Min 2™ 100 -34.7

27 28:27 63 Min.2™ 100 237

28 29:28 60.7 Min.2™ 100 -39.3

29 30:29 58.7 Min.2™ 100 -41.3

30 31:30 56.8 Min.2™ 100 -43.2

31 32:31 55 Min.2™ 100 -45

32 33:32 53.3 Min.2™ 100 -46.7

33 34:33 51.7 Min. 2 100 -48.3

34 35:34 50.2 Min.2™ 100 -49.8

35 36:35 48.7 Q. tone 50 -1.3
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Figure 1.3 The first 16 harmonics of the Overtone Series when a C; (65.4 Hz) frequency
is sounded

Figurel.3 above shows the first 16 harmonics that are present when a C frequency
is sounded After the seventh harmonic, traditional notation is not adequate for
notating these frequencies, and completely inadequate for the frequencies afier the

twelfth harmonic which are shown in black.

In Table 1.4 below the frequencies and octave designations on the equal

temperament scale are shown, A=440 hertz (American standard-A,, Helmholtz-a").
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Table 1.4 Frequencies and Qctave Designations (Equal Temperament , A=440hertz}
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(Equal Temperament, A=440hertz)
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1.8 Evolution of Pitch Measurement

In the baroque period pitch levels for musical performance varied by as much as
400cents (four semitones). The first declaration of standard pitch was made in
France in 1859, when A; was set at 435Hz by ministerial decree (today A4 =
440Hz). A similar standard was adopted by several other countries but
international agreement was not reached until 1939 when A, = 440Hz became

standard, although today many symphony orchestras exceed this pitch.’

In the 17" century both pitch and the relative tuning system varied considerably.
Even within the same city, church organs were tuned to different pitches, and
music for the opera or for other secular uses was also performed at different
pitches. Players adapted their instrument with either crooks, extra joints or
different strings in order to perform in different surroundings. String and keyboard
instruments were the most flexible in pitch as this depended on the density and

thickness of their strings.

During 1.S. Bach’s lifetime (1685-1750), two pitch levels were in use: Chor-ton or
*Choir pitch’ and Cammer-ton or ‘Chamber pitch’. Cammer-ton was lower than
Chor-ton by a whole step (200 cents) or sometimes by a minor third (300 cents).
Organs and brass instruments were constructed to play in Chor-ton, while
woodwind and strings were often tuned to Cammer-ton. Scholars have differed on
the pitch levels of As. Some put A, at a pitch of approx. 490Hz (almost Bs) while
others suggested that the pitch A4 should be 460Hz (almost Bby), or even between

445Hz and 460Hz.
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The common pitches that were present in Bach’s day can be summarized as

follows:
Chor-ton Ay =445 - 4607
High Cammer-ton a tone lower
Low Cammer-ton a minor third lower

In France A4 was pitched between 392Hz and 420Hz (The modemn
equally-tempered frequency Gy = 392Hz). The English musician, John Playford
(b.1623), directed viol players to tune the top string as high as it “conveniently

would bear” without breaking, and then to tune the other strings to it.”

The following Table 1.5 presents a chronological outline of musical pitch.® Column
1 shows the variation of pitch from 0.0 semitones to 7.4 semitones. Column 2
shows the different A note frequencies in hertz. Column 3 gives information on the
uses of the different A frequencies. Columm 4 shows the different musical idioms in

which particular ‘A’ pitches were used.
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Table 1.5 An Qutline of Musical Pitch

Diff. in A note Uses of the different A frequencies The idioms where
semitones | in Hz the diff. A notes were
used
0.0 370 Ideal Lowest or zero-point. Church Pitch Lowest
0.2 374 Hospice Comtesse, 1700,
0.3 377 Schlick low, 1511; Bedos, 1766.
1.0 392 Euler’s Clavicord, 1739 Church Pitch Low
1.t 395 R.Smith, 1759; Roman pitch pipes, 1720.
1.2 396 De Caus, 1615; Versailles Chapelle, 1789.
1.4 403 Mersenne Spinet, 1648.
1.6 407 Sauveur, 1713. Chamber Pitch Low
1.7 408 Mattheson, Hamburg, 1762.
1.7 409 Pascal Taskin, court tuner, 1783,
2.0 415 Dresden chained fork, 1722. European Mean Pitch
2.2 420 Freiburg, 1714; Seville, 1722. for two centurics
23 422 Mozart, 1780.
2.3 423 Handel, 1751.
2.4 424 Praetorius’ suitable pitch. 1619; original Phitharmonic,
AN 428 1813.
R. Harris, 1696; Opera Comique, 1823.
7 433 Sir George Smart’s fork, 1820-26. Compromise Pitch
2.8 435 French Diapason Normal, 1859.
3.0 440 Scheibler’s Stuttgart Standard, 1834. Modern Orchestral
3.1 442 *Bernhardt Schmidt, low, 1690. Pitch, and
3.2 445 Madrid, 1858; San Carlo, Naples, 1857. *Ancient Medium
3.2 446 Broadwood’ s Medium, 1849; French Opera, 1856; Church Pitch.
Griesbach’s A, 1860= C534.
34 449 Griesbach’s C 528, 1860.
35 451 Lille Opera, 1848; British and Belgian Army,1879.
35 453 Mean Philharmonic, 1846-54.
3.6 455 Highest Philharmonic, 1874; Broadwood, Erard, and
(English) Steinway, 1879,
3.6 456 Vienna, high. 1859.
37 457 {American) Steinway, 1879.
3.8 458 Great Franciscan Organ, Vienna, 1640, Church Pitch high
4.0 466
43 474 Tomkins, 1668; B. Schmidt, high, 1683.
4.5 481 St. Catherine’s, Hamburg, 1543.
4.8 489 St.James’s, Hamburg, 1688.
5.0 494 St.James’s, Hamburg, 1879, Church Pitch highest
5.1 496 Rendsburg, 1668.
5.3 504 Schlick, high, 1511; Mersenne, ton de chapelle, 1636,
5.4 306 Halberstadt Cathedral, 1361.
6.0 523
7.0 354 Chamber Pitch highest
7.3 563 Mersenne, ton de chambre, 1636
7.4 567 Praetorius, North German, very old.

Table 1.6 below gives some insight into why there were pitch differences

throughout Europe.” Organs were constructed using the ‘foot-rule’ of each
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Table 1.6 The Different Foot Measurements found in Organ Building.

Foot Measurements mm
Long old French foot, or pied de roi 325
Long German, or Rhenish foot 314
Long Austrian foot 316
English foot 305
Old Nurnberg foot 304
Old Roman foot (medieval) 295
Old Augsburg foot 296
Bavarian foot 202
Short Saxon foot 283
Short Brunswick foot and Frankfort foot 285
Short Hamburg and Danish foot 286
Very short old Brabant foot of 11 inches 278
13 Rhenish inches 340
13 Saxon inches 307
12 old Brabant inches 303

A difference of 12 per cent in the lengths of two pipes will, for the same scale,
make a difference in pitch of nearly a whole meantone in their pitch. Thus a pipe of
length equal to the short Saxon foot was a meantone sharper than the long
Austrian or Rhenish foot. The percentage difference in lengths converted to pitch
difference is as follows: 6 per cent, corresponds to an equal semitone, 3 per cent to
an equal quartertone, 5.75 per cent, to a semi-meantone, 4.5 per cent, to a small
meantone semitone and 7 per cent to a great meantone semitone.

Thus it can be seen from the Table 1.6 above that a pipe an English foot long is
nearly a great semitone sharper than a French foot and about an equal quarter of a
tone sharper than a Rhenish foot, while a pipe a Rhenish foot long is about a smalt
semitone sharper than a French foot. Throughout Germany there was a wide
variety of foot measurements which accounted for extensive variation in organ

pitch."

37



Theory

1.9 Musical Scales and Tuning Systems in Western Music

A musical scale is a succession of notes arranged in ascending or descending order.
The number of notes contained in a scale can vary. The most common numbers of
notes in a scale are 5 and 7, (see Appendix B). The white notes played on a piano
from the notes C, to Cs (C,D.EF,G,A.B,C) form a C major scale. A C major
pentatonic is equal to a C major scale minus the 4™ and 7" notes, (C.D,E,G,A.C).
The chromatic scale contains all of the 12 notes used in western music (the black

and white notes on a piano between two similar notes an octave apart) for

example, from C, to C;. (C,C#,D,D#.EF.F#,G,G#,A,A#,B,C)

Table 1.7 shows the ascending chromatic scale. ‘S’ shows an equal pitch difference

of a semitone (the smallest pitch interval in western music).

Table 1.7 The Chromatic Scale

o2 3 14 5 6 |7 8 19 10 | 11 12 211
C, |C#Db |D |D#Eb |E F |F#Gb |G | G#Ab |A | A#/Bb | B Cs
S S S 5 S 5 5 § | S S

Moving up a semitone from the lower C in Table 1.7 above, each movement is
equivalent to a pitch interval of 100 cents. Arriving at the higher Cs again, up an

octave, the total pitch interval is 1200 cents above the lower C,.

Table 1.8 below shows the C major scale (middle row), ‘tonic-solfa’ syllables

which are used when singing a major scale (top row), and the distances between

each note (bottom row).
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Table 1.8 C Major Scale

Mi Ti

E

Do Fa So

o

Re
D

La

Cs

L1
)

In the above scale “t” is a tone (two semitones) and is a semitone. The

movement in cents from C; to the other notes of the scale is illustrated in Table

1.9.

Table 1.9 helow shows the movement in cents from C, to the other notes of the
scale, the intervals between the notes in cents of the major scale, the nearest

equivalent just intonation intervals and the corresponding whole-number ratios.

Table 1.9 C Major Scale and Equivalent Just Intonation Pitches

C D E F G A B Cs
200 400 500 700 900 1100 1200
Just Intonation (ratio and cents):
1 9:8 5:4 4:3 30 5:3 15:8 2:1
Cs D E F G A B Cs
204 386 498 702 884 1088 1200

The distances or intervals from the first note C,4 to the other notes of the chromatic
scale are named in Table 1.10 below. The nearest whole-number ratios (converted

to cents) of the just intonation tuning system are also shown for comparison.
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Table 1.160 The Chromatic Scale and Equivalent Just Intonation Pitches

Interval Name Equal Temperament | Just Intonation
Cents Cents
Min. 2™ 100 112 (16:15)
Maj. 2™ 200 204 (9:8)
Min, 3" 300 316 (6:5)
Maj. 3" 400 386  (5:4)
Perf 4" 500 498 (4:3)
Aug 4™/Dim 5" 600 590 (45:32)
Perf 5" 700 705 (3:2)
Min. 6® 300 814 (8:5)
Maj. 6" 900 884 (5:3)
Min. 7" 1000 996 (16:9)
Maj. 7™ 1100 1088 (15:8)
Perf. octave 1200 1200 (2:1)

From Table 1.10 above it can be seen that there is a considerable difference in pitch
between the notes derived from the ratios of the overtone series (the template for
just intonation} and the notes of equal temperament. The ratios, 16:15, 15:14 and
14:13 are three different pitch intervals for a semitone. The ratio 16:15 or 112
cents is the closest to the equal temperament semitone of 100 cents. The ear is able
to distinguish a pitch difference of 2 cents (and lower), therefore, 12 cents is a

substantial difference.

The most important scale systems are the Pythagorean scale system, the tempered
scale systems (equal and meantone temperament), and just intonation. In the sixth
century B.C. Pythagoras is credited with introducing whole-number ratio tunings
for the octave, perfect fourth and perfect fifth (based on the ratios of the numbers
1, 2, 3 and 4) into Greek music theory. The octave, perfect fourth and perfect fifih
were deemed consonant or pleasing to the ear, all other intervals were deemed

dissonant or not pleasing to the ear. In the early Middle Ages Western music was
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based on Pythagorean intonation (see Appendix B p.170). In the later Middle
Ages, and early Renaissance period as music became more complex, and aural
perception developed, thirds and sixths were deemed consonant intervals. With the
development of independent instrumental music based on fixed pitch instruments
this tuning became inadequate because of modulation difficulties. Eventually
theorists were forced to partially abandon the Pythagorean framework in order to
explain the existence of consonant thirds and sixths, because the most consonant

possible thirds and sixths were based on ratios involving the number five. "'

When two or more notes are sounded and their frequencies are in the ratio of small
whole-numbers, our ears perceive them as consonant. For instance: if an A is
sounded at 440Hz along with an E at 660Hz, the frequencies are in a ratio of 660
to 440 or 3 to 2 (3/2) and the human ear will perceive this as consonant. They have
a common factor (220 Hz) in the musical range of frequencies. In Table 1.11 below

a list of small whole-number ratios commonly considered consonant are listed.

Table 1.11 Consenant Whole-number Ratios

Ratio Cents Note/difference Interval Tempered
in Cents (Cents)
1/1 0.00 C+0 Unison 0
6/5 316 Eb +16 Min. 3" 300
5/4 386 E-13.8 Maj. 3™ 400
4/3 498 F-2 Perf. 4" 500 =
32 702 G+2 Perf 5" e —— - -
8/5 814 Ab +14 Min 6" 800
5/3 884 A—16 Maj 6™ 900
2/1 1200 C +0 Perf, octave 1200

The ratio 7:4 is 31cents narrower than a tempered minor seventh and is deemed

consonant whereas a tempered minor seventh is deemed a mild dissonant pitch
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interval. The ratio 7:4 is not contained in Table 1.11 above as it deviates
substantially from equal temperament and demands a departure from common

practice."”

The concept of equal temperament provided the solution to the problem of
intonation on fixed pitch instruments. The basic advantage of equal temperament is
that the number of pitches required to play in different keys can be reduced by
compromising the tuning of certain tones so that they can perform different
functions in different keys, whereas in just intonation, a slightly different pitch
would be required for each function. Equal temperament compromises the quality
of intervals and chords in the interest of simplifying instrumental design and
construction and playing technique." It can also be seen as the slightly lessening or
enlarging of musical intervals away from the ‘natural scale’ in order to fit them for

practical performance, as shown in Table 1.9, p. 33.

Meantone temperament is based on a succession of thirds (5/4 ratio), which leaves
an out-of-tune octave. In the equally tempered tuning system a movement of three
consecutive third pitch intervals (400 cents) span an octave (1200 cents).
Meantone temperament is based on pure thirds which are in ratio 5/4 and equal to
386 cents. A succession of three pure thirds (386 cents) will span 1158 cents
leaving an out-of-tune octave. The difference is 48 cents ncarly a quarter of a
semitone less than a just or tempered octave (2/1 or 1200 cents).

Meantone temperament was the preferred tuning system in the building of

keyboard instruments. This tuning system was based on perfect major thirds but it
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presented difficulties when modulating to non-related keys and as a result the
system of equal temperament was adopted. Twelve-note/equal temperament
tuning, unlike meantone tuning, alters all the intervals except the octave. Meantone
temperament gave a nearer approXimation to natural tuning (just intonation) than

equal temperament for C major and keys related to it.

If pitch is increased within equal temperament in the cycle of fifths starting at C, a
higher C will be reached afier 12 equal fifths. In meantone temperament, an
increase of approximately 31 perfect fifths would lead back to a similar higher C.
According to the Pythagorean Laws of Acoustics, 12 perfect fifths are equivalent
to seven octaves. But actually the distance of seven octaves is a little larger. For
example: the ratio for a fifth is 3:2 and when multiplied by itself twelve times a
figure of 129.746 is reached. The ratio for an octave is 2:1 and when multiplied by
it self seven times a figure of 128 is reached. The ratio difference is 129.746:128,
which is 1.01364 or 23.5 cents larger. This difference is called the Pythagorean

commda,

Meantone temperament, as stated above, is based on a succession of pure thirds
which leaves an out-of-tune octave. The difference between third intervals in
Pythagorean tuning and pure thirds (thirds, which are strictly based on the
appropriate whole-number ratios) is called a synfonic comma. A Pythagorean third

has a ratio of 81:64 which is equal to 1.265625. A pure third is 5:4 and is equal to
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1.25. The difference is a frequency of 1.0125 (a syntonic comma). This syntonic

comma when expressed in cents is equal to 21.506 cents or rounded off to 22

cents, and is shown by the Greek letter 8.

A syntonic comma is slightly smaller than a Pythagorean comma. All the notes of
the Pythagorean scale are raised or lowered by fractions of this syntonic comma to
form a meantone tempered scale called the quarter-comma meantone temperament
scale. These fractions are 1/4, 3/4, 1/2, 5/4 of a syntonic comma.

See Table 1.12 below.

Table 1.12 Quarter-comma Meantone Scale

Equivalent
note names
in C D E F G A B C
Pythagorean
Intonation

Quarter- C D E F G A B C
commaMean -1/2 & -8 +1/4 & -1/4 8 | -3/4 8 -5/4 &

tone Scale

Table 1.13 below shows the equal temperament scale, just intonation scale,
Pythagorean intonation scale and the quarter-comma meantone temperament scale.
The bottom row of each scale shows the difference in cents in relation to the just

"l scale below) except for the quarter-comma meantone scale

intonation scale (2
where the information is in the third row. The fourth row of the quarter-comma

meantone scale shows the difference in cents between it and the Pythagorean scale

and illustrates the information given in Table 1.12 above.



Table 1.13 Comparing Scales in Cents

Equal Temperament Scale

Note names

(S

E

| F

e

LA |

B |

i

seale in cents

Pitch intervals
between C and the
other notes in this

200 400

500

700 960

1160 1200

Difference in cents
from the just
intonation scale

-4 +14

+2

-2

+16

+12

Nearest notes in Just Intonation (ratio and cents)

Just intonation
whole no. ratios

1

9:8 54

4:3

3:2

5:3

15:8

2:1

Equivalent note
nanes

G

D E

F

Pitch intervals
between C and
the other notes in
this scale in cents

204 386 498

702

884

1088 1200

Pythagorean Intonation (ratio and cents)

Pythagorean
intonation whole
no. ratios

1

9:8 | 81:61

4:3

3:2

27:16

243:128

o |

Equivalent note
names

C

D E

F

A

C

Pitch intervals
between C and the
other notes in this
scale in cents

204 408

498

702

906

1110

1200

Difference in cents
from the just
intonation scale

22

+22
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Quarter-comma Meantone Intonation

Equivalent note C D E F G A B [
names
Pitch intervals 193 386  503.5 696.5 8805 1082.5 1200

between C and the
other notes im this
scale in cents

Difference in cents
from the just -11 0 5.8 -5.5 +5.5 -5.5 0
intonation scale

Difference in cents
from Pythagorean -11 22 | +8.8° =55 -16.5 | -27.5 0

intonation

Just intonation is a tuning system based on the overtone series, which is a set of
frequencies present in the overall sound of a note when played. This series of
frequencies is written as whole-number ratios as shown in Table 1.3 p. 25.

Strictly speaking, just intonation is any system of tuning in which all of the intervals
can be represented by whole-number frequency ratios, with a strongly implied

preference for the simplest ratios compatible with a given musical purpose.'*

Hermann Helmholtz" (1821-1894) was a strong advocate of just intonation as a
tuning system. By the beginning of the twentieth century composers had exhausted
all the possible combinations of twelve-note/equal temperament (12TET) and
began to divide the twelve tones into smaller mathematical divisions (microtones),
for example third-tones (18TET), quarter-tones (24TET), sixth-tones (36TET),
eighth-tones (48TET) etc. As stated earlier, microtones are musical notes, which
are higher or lower in frequency than the notes of the twelve-note/equal
temperament scale. ‘Tempering’ is when a musical interval is slightly lessened or

enlarged away from the ‘natural’ scale . From a physical point of view, the previous
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two statements suggest that the twelve-note/equal temperament scale, could be
regarded as a microtonal scale, relative to the natural scale from which it deviates
(see Table 1.10, p. 34). Clearly, twelve-note/equal temperament has shown its
limitations since composers have begun to divide the 12 tones into smaller equally

tempered intervals so as to find new compositional ideas.

Harry Partch'® (1901-1974) was the first twentieth-century composer to use just
intonation as a basis for composition and was responsible for the revival of this
system. He devised a system of tuning with 43 tones per octave and directly
influenced many contemporary composers who use this system today. The Czech
composer Alois Haba'” (1893-1972) pioneered the use of quarter and sixth-tones in
composition. Charles Lucy'® (b 1917) is the inventor of Lucy Tuning, a hybrid of
just intonation and equal temperament. A number of interesting re-fretting ideas for
the guitar have been developed to accommodate tunings such as:

* The 62 tone Just

* 12-Tone Plus

* Sixth-Tone

* Just Multi-tonic

* 19 per octave

* 24 quarter-tones per octave

Just intonation gives composers an infinite source of notes to choose from and
enables them to meet their compositional/improvisational needs. Consonant

intervals in the system of just intonation are more pure than in the system of equal
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temperament and there are more strikingly dissonant intervals in just intonation

than in equal temperament.

More dissonance is available in the just intonation tuning system because of the
infinite number of frequencies possible within that system and more consonance is
available because in equal temperament the pitch intervals of the scale have been
tempered and deviate from the recognized consonant whole-number ratios of just

intonation.

The limitations of the twelve-note/equal temperament system have prompted
composers to divide the 12 tones into smaller equally tempered intervals in order to
find new compositional ideas. Just intonation provides the obvious template for

composers moving outside the limits of other tuning systems.

1.10 Microtonal System in Composition

As stated in the Introduction the object of this work is to facilitate the use of
microtones in composition and in improvisation. When a guitarist hammers a finger
(a common guitar technique) on to the open sixth string, for example at the twelfth
fret, the sound produced will be a combination of the tempered E note (164.8 Hz)
and the microtone 171.1Hz sounded on the lower fret (11th fret). This microtone is
nearest in pitch to a tempered F note (174.6Hz). The difference is 35.1 cents,

which is 14.9 cents less than a quarter-tone.

For this project a pick-up has also been placed under the nut of the guitar so that
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the microtones can be amplified and measured for use in composition. They can
also be used in composition without being amplified. 11 extra frets have been
added to an electric guitar. These frets represent the maximum amount of
microtones available (functional added frets) using the reverse fingerboard
measurements from a 21-fret electric guitar. The remaining 12 frets from a

possible addition of 21, were either too close to or matched existing frets.

Guitarists are aurally familiar with these microtonal sounds - even if they are not
aware of their origin. These microtones contribute to the overall sound of a note
especially when using the hammering technique described above, regardless of
whether the guitar is acoustic or electric. Therefore guitarists should adapt more

easily to these sounds than players of other instruments.
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Chapter 2 Methodology

21 Overview

It is desired to measure the exact pitch of each of the 108 microtones found on a
classical guitar. The predicted pitches were found using a mathematical formula.
The frequencies of the microtonal notes were measured on a LarsoneDavis Sound
Level Meter and Frequency Analyser. An electrical signal was produced from the
pick-up under nut-side, fed into an amplifier, and thence into the frequency
analyzer. This allowed accurate measurements of the microtonal frequencies. The
microtones were then experimented with using three different compositional

techniques and improvisation ideas.

2.2 Methodology

The predicted frequencies of the microtones were initially calculated using the
method outlined in Section 1.5 of this thesis. These frequencies are set out in Table
1.1, p.18. The frequencies of the microtones were calculated by reference to the

frequencies of the bridge-side notes on the equal temperament scale.

The frequencies of the same microtones were measured using a LarsoneDavis
model 2800 Real-Time Sound level Meter. This meter performs two measurements
simultaneously; that of a Precision Sound level meter and that of a real-time
frequency analyser. As a single channel real-time analyser, it can perform frequency

analysis using digital 1/1 and 1/3 octave bandwidths and FTT analysis using, 100,
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200, 400 and 800 line resolution. For example, if a base frequency is set at 0-2500

Hz and 800 line resolution is used, the resolution will be %%0 = 3,125Hz. The

meter also has zoom capabilities with real-time zoom: X256 and when operating
on a non-real-time frequency range (buffered) it is capable of X64 (1 channel), X32
(2 channels). A microphone compatible with this instrument was used (model:
2541 free-field microphone, and a pre-amp, model: 900B) to capture the frequency
of a single microtone plucked acoustically {(un-amplified) from the opposite side of
a stopped string. The microtone was Fourier analyzed in the Larson/Davis SLM
and the data was imported into a Microsoft Excel Spreadsheet. Graphs such as that

shown in Figure 1, p.9, were produced.

For the recording of all the microtones on the nut-side, a pick-up was placed under
the nut of the guitar. A pick-up was also placed under the saddle [piece of
ivory/wood fixed to the bridge where the strings sit]. Two pre-amplifiers are used
so as to achieve a similar sound from each pick-up. Both pick-ups are then fed into
two regular guitar amplifiers via two volume pedals. The volume from the pick-up
under the saddle is turned off so that only the nut-side notes are sounding. The
airborne sound is then picked up by the microphone and transferred to the

LarsoneDavis meter.

Experimental arrangements are illustrated in Figure 2.1, and Figure 2.2. The
fundamental frequencies of the microtones are read from the graphs and are

presented in Table 3.2, p.53.
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Figure 2.1 Placement of Bridge and Nut Pick-Ups

Input Jack

Pick-up under nut

Pick-up under saddle

The nut pick-up cable is placed under
fingerboard.

The output signal of the nut-side pick-up gives out approximately four times the
voltage of the pick-up under the saddie. This arrangement is designed to
compensate for the lower resonance amplifications on the nut-side. A stereo lead is
plugged into a four-pole end jack socket, which gives a stereo output from both
pick-ups.
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Figure 2.2 Process of Measuring a Microtone

Guitar

/

f

-~

I

vol. ™

Amplifier 2

T

Bridge Pick-Up

\
\Nut Pick-Up

Computer

Speaker 2

Vol. .‘ Amplifier 1 | Speaker 1

Microphone

v

Larson/Davis

The above schematic diagram shows a guitar signal from both the bridge-side and
nut-side pick-ups being transferred into two separate amplifiers, via two volume
pedals using a stereo lead. Amplifier 1 is fed by the nut-side pick-up and amplifier 2
is fed by the bridge-side pick-up. The bridge-side pick-up is turned off using the
volume pedal, so that only the microtones from the nut-side pick-up are sounded
and picked up by the microphone. The sound is then transferred into the

LarsoneDavis meter. The sound is digitized and analysed. This information is then

Spectrum
analyser

Digitizer

transferred to a computer, translated and analysed in Microsoft Excel.
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2.3 Re-fretting an Electric Guitar
A solid-body electric guitar has been modified by adding 11 more frets to the

existing 21. Electric guitars usually have more frets than acoustic guitars. The
classical acoustic guitar used for measurement above has 19 frets while the electric
guitar has 21. To find the positions of the new frets on the electric guitar, a
template was made of the frets on the fingerboard of the guitar. It was then
reversed (21st fret beginning at the nut of the guitar). The frets that were far
enough away from the existing frets (those able to function properly) were marked
and added to the fingerboard. Ten of the reversed 21 frets were either too near or
matching the existing frets. The result gives 32 frets in total (a 32-fret guitar within

the measured distance of twenty-one frets). See Figure 3.1, p.54.

When adding frets to an electric guitar using a reversed fingerboard, the placing of
the added frets depends on how many original frets the guitar to be modified
contains. The guitar used here contains 21 original frets. If a guitar contains, for
example, 24 frets then a reversed fingerboard would place the added frets in
different positions. The displaced difference between the 21-fret guitar used here
and a 24-fret guitar would be the distance from fret 21 to fret 24 based on a similar
scale length. The first 3 added frets of a 24-fret guitar would be frets 23, 22 and 21
which is the first added fret of a 21-fret guitar. The result of adding frets to a 24-
fret guitar may well result in more added frets being available because of the
different placement of the added frets. The microtonal frequencies based on added
frets were measured in the same manner as in previous experiments. The results are

presented n Table 3.4, p.57.
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Chapter 3 Physical Results

3.1 Introduction

Table 1.1, p.18 shows the theoretically predicted nut-side notes in hertz, which are
calculated using the formula for inverse proportion outlined in Section 1.5, pl7.
These figures do not take into account the fact that a stopped string is a littie
stretched or that the string has some stiffness. Therefore, it is important to measure
the different frequencies using a frequency analyser, as the actual frequencies may

differ significantly from those predicted earlier.

The first row of Table 1.1, p. 18 contains the lowest microtonal frequency for each
string of a standard classical guitar (this is where a string is stopped on the 19" fret

and plucked on the opposite side, sounding the 18" fret microtone).

3.2 Measurement of Microtonal Frequencies on Sixth
string

The frequencies of the microtones on the sixth string are measured using the
LarsoneDavis sound level meter in Fourier analysis mode. The frequency
resolution was in all cases +1.6Hz or better. The guitar was tuned with a reliable
chromatic tuner. The results of the measurements presented in Table 3.1 below
show the microtonal frequencies and the difference in cents between the

microtones and the nearest tempered notes.

The first microtone is measured at 171.1Hz and the nearest tempered note is
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174.6Hz (F) the pitch difference in cents is 35.1. This microtonal pitch can also be
seen as 164.9cents situated above D#; (155.6Hz), See fret numbers 14, 13 and 12
in Table 3.1 below. The pitch interval corresponds to the just intonation whole-
number ratio 11:10, which is 165cents. The interval is also 65 cents narrower then

the tempered interval of a major second.

Row 2 of Table 3.1 contains a list of the measured microtonal frequencies in hertz
measured on the sixth string using a resolution of +1.6Hz. The microtones are
numbered 19-2, counting the frets normally. A list of the nearest tempered notes in
hertz, and the USA standard Octave Designations, is shown in Row 3. Row 4
shows the difference in cents between the microtonal frequencies and the nearest

tempered frequencies.
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Table 3.1 Measured Micretonal Frequencies on the sixth string , (Resolution = £1.6Hz)

Fret No. 19 18 17 16 15 14 13 12 11
Measured 1246 | 1285 |[133.6 | 139.1 [1457 |153.1 | 1613 [171.1 | 183.6
Freg/Hz
Nearest 1235 | 1308 [ 1308 [138.6 [ 1468 [1556 | 1649 [1746 | 185
i 73 1 o= S L - C#3 |D3 |D#3 |E3 F3 F#3

reqg/tlz
Difference in | [5.4 | -30.7 |[36.7 |6.2 -13 -28 G Al T =
Cents

10 9 8 7 6 3 | 4 3 2
1992 | 216 2414 2758 |3234 [3922 5086 | 7453 | 14625
196 220 2469 | 2772 [ 3296 | 392 5233 | 740 1480
1G3 A3 B3 C#4 E4 G4 Cs F#5 F#6
-28 31.8 [ -39 -8.8 329 [09 1-493 | 124 -20.6

A smaller resolution is needed for more accurate measurements and measurements

for all the microtones on all strings using a resolution of 2 cents are shown in

Table 3.2, p.53. Using the measurements in Table 3.2 the first microtone in Guitar

Opus I (see Table 5.1, p.122) is measured at 176.6Hz with a resolution of 2 cents,

and the nearest tempered note is 174.6Hz (F;), the pitch difference is 19.7 cents.

This microtonal pitch can also be seen as 119.7 cents situated above E; (164.8Hz),

this pitch interval of 119.7 cents corresponds to the just intonation whole-number

ratio 15:14. See Table 1.3, p.25.
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33 Measurement of all Microtonal Notes

Using the LarsoneDavis sound level meter in Fourier Analysis Mode,
measurements were made of the fundamental frequencies of the microtonal notes
on all strings. These frequencies together with the frequency resolutions used are
set out in Table 3.2, p.53. The measured frequencies are compared with the

predicted frequencies set out in Table 1.1, p.18.

The frets are numbered normally. By stopping the strings at the nineteenth fret the
lowest microtonal pitches are produced on each string. The human ear can detect
pitch differences of 2 cents or less. The microtonal frequencies were measured
using frequency resolutions corresponding to pitch intervals less than 2 cents. The
data is set out in Table 3.2 below. From the lowest nut-side note 124.6Hz to
220Hz a resolution of £ 0.1Hz is needed. The limit of resolution can be then
doubled for the frequencies 220Hz-440Hz so as to achieve the same accuracy. The
limit of resolution can be increased in a similar manner for measurements in the

higher frequency region.
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Table 3.2 Measured Microtonal Frequencies on All Strings, (Pitch resolutions are
under two cents).

Strings P~ | 6th 5 [ 4m | [~ [ 1t

Frets ' FrequencyHz

Resolution | +0.1Hz +0.1Hz +0.2Hz +0.2Hz +0.2Hz +0.4Hz
19 (normal) | 128.3 (C;) 170.9 (Fs) 228 S(A#s) 306.8( D) 384 6 (Ga) 5125 (Cs)
18 132.6(C%) 1765 (F3) 235.9(A#3) 317.2(D#,) 3979 (Gy) 5305 (Cs)
17 1375 (CH#y) 183 . 1(Fis) 2447 (B) 3293 (Ey) 412.1(G#,) 549.2(C#s)
16 143.1 (Dy) 190.3(F#5) 255.3 {Cy) 3432 (Fy) 429 3(G#s) 570.7(C#s)
15 149.6(Dy) 199 (Gs) 2662 (Cy) 358.8 (F,) 447.9 (Ag) 5396.5 (I}
Resolation | +0.1Hz +0.1Hz +0.2Hz 302Hz +0.4Hz +0.4Hz

14 156.8(D#) 200 HGi) 280.1(C#,) 376.8(F#s) 471 1(A#,) 627.3(D#s)
13 165.8 (E3) 221 (Ag) 296.7 (D) 398.4(Gy) 498.8 (B.) 662.9 (Es)
Resolution | +0.1Hz +0.2Hz +02Hz +0.2Hz +04Hz +0.4Hz

12 176.6 (F3) 234 4(A#) 315.4(D#,) 423 8(G#,) 5293 (Cs) 706.3 (Fs)
11 189.5(F#) 253.1 (Bs) 337.7 (Ey) 454 7(A# ) 569.5(C#s) 736.6(Fi;)
Resolution | +0.1Hz +0.2Hz +0.2Hz +0.4Hz +0.4Hz +0.4Hz
10 205 2(G#) 273 4(CH,) 364.3(F#,) 490.6 (B,) 613.7(D#.) 818.8(G#;)
L 224 (A} 2992 (Dy) 4004 (Gy) 338.3 (Cs) 675 (Es) 8973 (As)
Resolution | +0.2Hz +02Hz +0.2Hz +0.4Hz +0.41z +0.8H=

8 248.8 (B3) 3332 (Eg) 4.5 (Ag) 6012 (Ds) T50.8(F&;) 999 (Bs)
Resolution | +0.2Hz +0.2Hz +0.4Hz +0.4Hz +0.4Hz +0.8Hz

7 281.8(C#,) 377.7(FHa) 505.9 (Ba) 684 (Fs) 833 5{G#&,) 11359 (C#y)
Resolation | +0.2Hz +0.2Hz +0.4Hz +0.4Hz 10.8Hz +.8Hz

6 331.6 (Ey) 4418 (Aq) 5922 (Ds) 801.2 (Gs) 995 (Bs) 1325 (Eq)
Resolution | +0.2Hz +0.4Hz 10.4Hz +0.8Hz +0.8Hz +0.8Hz

5 403.1 (Gy) 537 (Cs) 718 (Fs) 977 (Bs) 1214.8 (D¥#s) | 1617 (GHe)
Resolution | +0.4kz +0.4Hz +0.8Hz +0.8Hz +0.8Hz, +01.6Hz
4 521 (Cy) 695 (Fs) 930.5 (A#s) 1275.8 (D#;) 1578.9(Gy) 2104 (Cy)
Resolution | +0.4Hz +0.8Hz +0.8Hz +01.6Hz +01.6Hz +01.6Hz
3 7711 (Gs) 1017.2(Cs) 1351.6(E¢) 1873 (Aq) 2305 (Dy) 3054 (Gy)
Resolution | +0.8Hz +01.6Hz +01,6Hz +3.2Hz +3.2Hz +3.2Hz

2 1492 (F%5) 1977 (By) 2641 (E,) 3825 (A) 4591 6006

Table 3.2 above includes the USA standard octave designations in brackets (see
USA standard octave designation frequencies in hertz in Table 1.4, p.27). Figure
3.1 below shows the fingerboard of an electric guitar with added frets numbered
21-2. Two of eleven added frets are shown (lines with arrows at each end) in the
diagram and are accommodated within the normal first fret. The two frets

cotrespond to frets 20 and 19 indicated by the arrows underneath the fingerboard.
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Physical Results and Analysis

Table 3.4 below shows the note frequencies that are produced by the added frets.
The normal frequencies are in italics. There are sixty-six in total (eleven on each
string). The measurements were made using a LarsoneDavis Sound Level Meter as
in previous SLM experiments, The differences in cents between the notes produced
by using the added frets on the sixth string, and the notes produced by using the
normal frets were calculated and are shown below each microtone in brackets. The

differences will be approximately the same for the other five strings.
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Physical Results and Analysis

Table 3.5 below shows the outcome when Es (659.3 Hz) is played twenty times using
normal pressure. The experiment was taken to see if there is a marked variation in

pitch.

Table 3.5 Recording E; (659.3 Hz)
Es (659.3 Hz)-1* string on 12" fret

Resolution - +0.39Hz (1.03 cents)
659.8
659.2
658.8
6557.2
660.6
658.8
658.8
659.6
659.8
658.8
659.8
658.8
658.4
658.8
659.4
659.0
661.2
658.8
659.8
660.0

659.3Hz (mean)
0.87Hz
(2.3 cents)
{1 Std Deviation)
1.74Hz
(4.6 cents)
(2 Std Deviations)
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Physical Resulis and Analysis

The frequencies in Rows 1 — 20 in Table 3.5 above were measured on a LarsoneDavis
Sound Level Meter in Fourier analysis mode. For each pluck, frequencies less than 3dB
below the peak frequency power were recorded. The mean was found, and the resulting
figures are illustrated in rows 1 — 20. Row 21 shows the average (mean) of Rows 1 — 20.
Row 22 shows one standard deviation, and Row 23 shows two standard deviations. The
notes played appeared to be identical in pitch. It is evident that random pitch differences
up to 4.6 cents can occur while playing. It was necessary to tune the string during this

experiment as it would be during a performance.

3.4 Calculating Whole-number Ratios for Tempered Note
Frequencies

Finding the tempered pitches as whole-number ratios within the overtone series is
important because the results show that the tempered pitches are not contained within
the recognized consonant small whole-number ratios except in the case of the octave,

perfect fourth and perfect fifth.
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Table 3.6 Calculating the 12 tempered pitch intervals as whole-number ratios in the overtone series

(£2 cents).

Tempered Tempered Lowest equivalent Equivalent whole

interval names intervals in cents | whole no. ratios (+2 no, ratios in cents
cents) (£2 cents)

Min. 2 100 18:17 99

Maj. 2™ 200 37:33 198.1
(9x4)+1:(8x4)+1

Min. 3 300 25:21 301.9
(6x4)+1:(5x4)+1

Maj. 3 400 29:23 401.3

Perf. 4" 500 4:3 498

Dim. 5" 600 41:29 599.5

Perf, 57 700 3:2 702

Min. 6" 800 27:17 800.9

Maj. 6 900 3122 900

Min. 7" 1000 41:23 1000.8

Maj. 7" 1100 $7:9 (inversion of 18:17) | 1101

Perf. octave 1200 2:1 1200

Table 3.6 above shows where the 12 tempered intervals, as whole-number ratios, are
found in the overtone series. An accuracy of £2 cents is used because the ear can hear a
change of two cents or less. The lowest whole-number ratios with a resolution of +2
cents are shown in column 3 above, and the equivalent cents are shown in column 4.The
main ratios above are 2:1, 3:2, 4:3 and 18:17 and when possible these ratios are added or
divided to find the other 8 ratios. The method of finding some of the higher figured ratios

is shown after each ratio.

It is concluded that apart from the perfect fourth, the perfect fifth and the perfect octave,
the intervals of the twelve-note/equal temperament tuning system will be expressed as

large whole-number ratios. They therefore exhibit considerable dissonance.

The physicist Arthur Benade'® tested professional musicians on their ability to distinguish
between three different third pitch intervals, (a) pure third, (b) tempered third and (c)

Pythagorean third. An interesting response to the dissonance quality of the tempered
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third and Pythagorean third compared to the pure third was found. Musicians found that
the tempered third was more dissonant than the pure third and the Pythagorean third

more dissonant than the tempered third.

3.5 Calculating Whole-number Ratios for Microtonal Frequencies

To find the measured microtonal frequencies within the overtone series, the microtones
in ratio with the sixth string frequency are calculated within two cents. The ratios

calculated in Table 3.6 above were used to find the following ratios in Table 3.7 below.
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Table 3.7 Calculating the Measured Microtones as Whole-Number Ratios in the Overtone Series

(£2 cents).
Norm | Measured Sixth Interval in | Ratio and calculation method
al microtonal string cents used to obtain the lowest whole-
fret frequencies in | frequency | (&2 cents) | number ratio between each
numb | hertz and | 82.4Hz microtonal frequency in colummn 2,
ers nearest and the sixth string frequency
tempered note (82.4Hz) in column 3 (2 cents)
(in brackets)
19 128.32 (Cy) 324 766.8 14:9 (764.9 cents)
18 132.62 (C3) 82.4 823.9 29:18 (825.7 cents)
17 1375 (Ci) 82.4 §86.45 45:27 (884.4 cents)
16 143.07 (Ds) 824 955.2 33:19 (955.8 cents)
15 149.61 (Dx) 82.4 1032.58 49:27 (1031.8 cents)
14 156.84 (Di#s) 8§24 1114.28 59:31 (1114.2 cents)
13 165.82 (Es) 82.4 1210.67 145:72 (1212 cents)
12 176.56 (F;) 824 1319.3 15:7 (1319.5 cents)
11 18945 (F#3) 824 1441.3} 85:37 (1440 cents)
10 | 205.18 (G#a) 82.4 1579.4 97:39 (1577.5 cents)
9 224.02 (Aj) 824 1731.49 106:39
2:1+4:3=8:3, (8x13)+2:(3x13) =
(1731.02 cents)
8 248.83 (B.) 82.4 1913.32 151:51
2:143:2 = 3:1, (3x100)+2(1x100) =
{1913.45 cents)
7 281.84 (C#y) 824 2128.98 89:26 (2130.46 cents)
6 331.64 (Ey 82.4 2410.67 145:36 (2412:1 cents)
5 403.13 (Gy) 82.4 2744 .33 39:8
4:1+120:101=480:101,
(480x2)+15:(101x2)-2 = (274247
cents)
4 521 (Cs) 824 3192.67 215:34
4:1+27:17=108:17, (108x2)-1(17x2) =
{3192.87 cents)
3 771.09 (Gs) 824 3871.41 215:23(3869.6 cents)
2 1492  (Fke) 82.4 5014.13 181:10
16:1+55:49=880:49, 880+25:49+]1 =
(5013.48 cents)

The tuning of the guitar strings from the lowest E string frequency (82.4) hertz to the highest
E string frequency (329.6) is perfect 4™ (4:3), perfect 4™ (4:3), perfect 4® (4:3), major 3"
(29:23) and perfect 4" (4:3). These ratios correspond to those in Table 3.6, p.61. To find the
corresponding microtonal notes on the fifth string, multiply the ratios in column 5, Table 3.7
above by 4:3, this gives a pitch interval on the fifth string. For example, the interval 14:9 +
4:3= 1.56+1.33 = 1263.6 cents corresponds to the pitch interval between the open 6" string

and the frequency on the 5" string in the 19™ fret.
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Chapter 4 Analysis

4.1 Beats

It is well established in elementary physics that when an object vibrates with two nearly
equal frequencies simultaneously, the resultant vibration occurs at the mean of the two
frequencies and the intensity varies at a ‘beat’ frequency equal to the difference between
the two frequencies. In sound, loudness is mainly affected by intensity which is
proportional to the square of the resultant amplitude. The more nearly equal the two
original amplitudes, the bigger the variation in loudness. When two sound waves of
nearly equal frequency fall on the ear drum simultaneously beats are heard if the
amplitudes are comparable. This can occur due to two sound sources, such as two
vibrating strings amplified by the instrument body, sounding together. But, very
importantly for musical performance, it also occurs for notes played consecutively when
there is an overlap in the time intervals for which both impinge on the ear. This will
occur in any room or auditorium with a significant reverberation time, provided the two
notes are sounded at a sufficiently small time interval. As the interval between the
frequencies of two pure tones increases, the beat frequency increases until separate beats
can no longer be heard. This takes place at a beat frequency of 15-20 Hz. However a
sensation of roughness and musical unpleasantness continues until a frequency separation
of the pure tones called the critical band is reached. Over most of the musical range this
interval falls between a minor third and a whole tone. The presence of roughness arising
from interference beats is generally recognized as the principal cause of musical

dissonance.
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Musical notes normally contain a fundamental and harmonics whose frequencies are
nearly whole-number multiples of the frequency of the fundamental. Consequently, when
two musical notes of nearly the same fundamental frequency overlap, for example, the
frequencies 600Hz and 601Hz (difference of 2.8 cents) there will be considerable
roughness. Both fundamental frequencies will beat at one beat a second but upper partial
number 1 will beat at two beats a second and upper partial number 2 will beat at three

beats a second, et cetera. This will be musically unpleasant.

4.2 Implied Tone or Periodicity Pitch

If sinusoids representing a fundamental frequency of vibration and all its harmonics are
added together by the principle of superposition, the resultant will be a vibration of the
same frequency as the fundamental. This resultant frequency will remain the same despite
alterations to the amplitudes and phases of the sinusoids. Further, the resultant frequency
will remain the same even if the fundamental frequency is omitted from the
superposition. This can be demonstrated by superposing electrical signals and displaying
them on an oscilloscope. Indeed, it can be shown mathematically®™ that if any two
components of a harmonic series are superposed, the resultant frequency will be the
highest common factor of the component frequencies. Thus, if vibrations of frequencies
300Hz and 200Hz (ratio 3:2) were superposed, the resultant frequency would be 100Hz,
In the case of component frequencies 600Hz and 400Hz, the resultant frequency would

be 200Hz.

When a musical note is sounded, the fundamental and the low-numbered harmonics are
normally audible. When the human auditory system encounters a number of harmonically
related pure tones with comparable amplitudes sounding simultaneously, it assigns the

composite sound a single pitch. The pitch assigned is in accordance with the resultant
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frequency outlmed above. This pitch will be unchanged whether the fundamental or
indeed any particular harmonic is missing. This pitch is called the periodicity pitch of the

sound and the phenomenon is sometimes called the missing fundamental.

While the periodicity pitch corresponds to the overall repetition rate of vibration of the
ear drum, no sinusoidal component of this frequency can be detected in the ear , if the
fundamental is missing from the source of sound. Also for example, if a pure tone of
frequency 300Hz is applied to one ear and a pure tone of frequency 200Hz is applied to
the other ear, the auditory system will assign a pitch corresponding to 100Hz, the highest
common factor, to the sound perceived. It is important to note that even though 100Hz
is the difference between 300Hz and 200Hz, this is not the same phenomenon as the sum
and difference tones which arise due to non-linearity of the response of the ear drum
which is discussed below. Periodicity pitch is the subject of continuing research and
controversy. This can be illustrated by the perception of the chimes of bells.”’ The human
auditory system appears to attempt to arrange and identify incoming complex sounds as
portions of harmonic series, supplying the fundamental when it is absent. Though this is
not fully understood, it is as if the auditory system compares incoming sounds with a

template containing harmonic series.

Consonance of musical notes is associated with frequencies in the ratio of small whole-
numbers and consequently high periodicity pitch. Above a base note 0f 256Hz, let us
consider the intervals corresponding to ratios 2/1, 3/2, 4/3, 5/3, 5/4, 7/4, 6/5, 7/5, 8/5, 7/6--
--------- 13/11--.These are in ascending order of integers. The periodicity pitch is found by
dividing 256Hz by the denominators which generally tend to increase. In the case of the
ratio 2/1 (1 octave), the periodicity pitch is 256Hz, whereas in the case of the ratio 13/11

the periodicity pitch is approximately 23Hz. This frequency is at the lower limit of the
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sensitivity of the human ear. In general for two pure tones with the frequencies f; and f3,
where f, = m/n x fi and m and » are integers, the result is a wave pattern with a period #;,
that is equal to #, x n, where ¢, is the period of the lower tone; and a frequency, fo, that is

equal to fi/n. Two extreme examples are set out below.

Example 1: when,
f2=304Hz, f =256Hz

3O4=1—9x 256
16

1
I‘I:—

256

= "—LX i6
256

256
= —=16Hz
S 16

This frequency is below the human auditory range. The periodicity pitch is low therefore it
produces a dissonant pitch interval.
Example 2: when,

f,=384Hz,  f, =256Hz

384 =§x 256
2
I
tlz e L =
256
hh = sz
256
A= 2—;£= 128H

This frequency is significantly above the lower limit of the human auditory range. The
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periodicity pitch in Example 2 above is high therefore it produces a consonant pitch interval.

Although any pair of tones having a frequency ratio corresponding to consecutive
degrees of a harmonic series has a repetition rate corresponding to the fundamental of
that harmonic series, not all such pairs produce an unambiguous sensation of periodicity
pitch corresponding to that repetition rate. Above denominators of 8 or 9 it is difficult
for the human auditory system to unambiguously identify periodicity pitch. Such

unambiguous identification is necessary for musical consonance.”
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4.3 Heterodyne Components and Specially related Tone Pairs

When a single sinusoid is sounded at normal musical amplitude the ear drum vibrates not
only with the frequency of the sinusoid but also at frequencies which are integer
multiples of the frequency of the sinusoid. A harmonic series with the incoming sinusoid
as fundamental is physically created in the ear. This is due to the non-linearity of the
response of the ear above low amplitudes of incoming sound. When two or more tones
are supplied simultaneously, further vibrational frequencies called sum and difference
tones are generated. This effect is well known in other branches of science and
engineering. The components generated due to non-linear response of a system are called

heterodyne components. These can be found in the ear by the use of a search tone.”

When two musical notes, each with its fundamental and partials, enter the ear
simultaneously several additional vibrational frequencies are created by this mechanism.

Beating can take place between any pair of frequency components whether they be
heterodyne components or supplied components. The existence of heterodyne
components has, therefore, important consequences for the consonance/dissonance of
musical intervals. The calculations of the simplest heterodyne components when two
sinusoidal components are sounded are shown below. Experiments using surgical
techniques to probe into the fleshy parts of the middle and inner ear have found this
phenomenon to be the case. The fourth row of heterodyne components was added to

Arthur Benade’s original schema.™
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Table .4.1 Heterodyne component schema

Original Simplest Heterodyne Next — Appearing Next — Appearing
Components Components Heterodyne Heterodyne
Components Components
(P) (2P) (3P) (4P)
(P+Q), (P-Q) (2P+Q), (2P-Q) (3P+Q), (3P-Q)
(2Q+P), 2Q-P) (3Q+P), (3Q-P)
Q) 2Q (3Q) (4Q)

The above schema shows that the net response due to the two stimuli is not the sum of
the responses due to each separately. Pitches such as (P+Q), (P-Q), (2P+Q), (2P-Q)

etc. are also heard.

The amplitudes of the heterodyne components depend on the amplitudes original input

signals.

4.4 Pitch Matching

The following experiment titled Beat Phenomenon and the “Almost unison” between

two musical tones, was conducted by Arthur Benade.”

If two tones are sounded labeled J and K, one having its four harmonic partials (J,, J,,
J3, and J,) based on a 250Hz fundamental frequency, the other having its four harmonic
partials (K, etc) based on 252Hz. Beats can take place in the neighborhood of four

frequencies. The beating pairs (leaving aside heterodyne components) are as follows:

Tone J 250 500 750 1000 Hz
Tone K 252 504 756 1008 Hz
Beat frequency - 4 6 8§ Hz

As tone J is moved closer to tone K, the strongly marked beat between the
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fundamental components eventually become so slow as not to be easily heard. The
second and higher harmonics are still beating vigorously, however, so that our
attention is drawn to them as the next guide to the tuning process. This successive
transfer of auditory attention to beats of the higher partials is very useful because it
provides even finer indications as we approach an exact match. For instance, an almost
unhearable Y4Hz beat between the fundamental components is associated with an easily
detected rate of 1 Hz at the fourth harmonic. The presence of heterodyne components
adds to the complexity of the beating phenomenon.

For example:

(J.- Ky) = (248) Hz

(Ky-Ji) = (254) Hz

{J;-K;)=(498) Hz

(Ks-Ji)= (506) Hz

Two of the above heterodyne components beat near the fundamental and two near the
second harmonic. Table 4.2 below shows a list of special relationship pitch intervals and
the grouped (clumped) heterodyne components that occur. The specially related tone
pairs decrease in definition in the table as the ratios move up the overtone series. The ear
automatically clumps together heterodyne components which are nearly similar in
frequency (when the tones are out of tune), for example, in Table 4.2 below, 1 quintuple
stands for five partials in the first clump of heterodyne components, the second clump of
heterodyne components contained in a unison is labelled 1 sextuple-a clump of six
partials. These groups illustrate the amount of partials that will beat if the tones are out
of tune. The more partials there are in each clump the finer the tuning (zero-beat) will be
achieved. The ratio 8/5 and 7/6 contain only 3 clumps of only two heterodyne

components. It can be deduced that the special relationship diminishes the further up the
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overtone series a ratio is found.

Table 4.2 Specially related tone pairs and indicators (amount of clumps and clump sizes)

Frequency Ratios for Specially Related Tone Pairs
Ratios Musical Names Cents Indicators
1/1 Unison 000 1 quintuple
1 sextuple
1 septuple
1 octuple
2/1 Perf. octave 1200 1 triple
4 quadruple
3 quintuple
312 Perf. 5" 702 3 double
9 triple
4/3 Perf. 4™ 498 12 double
1 triple
5/3 Maj. 6" 884 14 double
5/4 Maj. 3" 386 10 double
6/5 Min. 3 316 6 double
7/4 - 969 6 double
7/5 - 583 4 double
8/5 Min. 6" 814 3 double
716 - 267 3 double

Table 4.3 below shows four different groups of two tones. The first group in a whole-
number ratio 3/2 which equals a ‘special relationship’ ratio produced by the frequencies
200 and 100Hz. Group 2 contains two frequencies that are not in special relationship
and form a whole-number ratio 45/33. Group 3 contains two tempered frequencies
produced by the frequencies 329.6 and 261.6Hz spanning a tempered pitch interval of a
major third. The frequencies are in a whole-number ratio 29/23, and group 4 contains a
microtonal frequency 137.5Hz in relation to the open E; string 82.4Hz. The whole-

number ratio relationship produced by the pitch interval is 45/27.

The first column contains the simple mathematical devices for working out harmonics

and heterodyne components. The heterodyne components are shown under each group.
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When two tones having a special relationship (zero-beat), for example, the 3/2
(Group 1 above), are sounded, the auditory system assigns an implied tone of
frequency equal to the highest common factor of the two supplied frequencies. In
the case of two frequencies with an octave relationship such as 100Hz and 200Hz,
the implied tone coincides with the difference tone (P-Q).The implied tone is only
unambiguously assigned when frequencies are in special relationship. As two
frequencies come into special relationship (ratio of small integers) all the
harmonics, the heterodyne components and the implied tone become aligned in a

single harmonic series.

The first four harmonic partials for (P-Q) are shown in italics. The calculated tone
of 100 Hz is in octave relationship with the lower tone. If the tones are not in
special relationship of this sort as shown by (P-Q) in Groups 2, 3 and 4 in Table
4.3 above the sub-collection of harmonics will be heard as a rough sounding low-
pitched ‘difference tone’ along with the original tones P and Q. The simplified
heterodyne components for group 2 are (19 [4Q-3P], 54 [2P-2Q)], 73, 127, 146
Hz). Three components are harmonic multiples of the 73Hz component. Another
tone normally inaudible is the summation tone (P+Q) as shown in Table 4.3 above
and it can be found (including harmonics) by using a search tone. It is not
necessarily heard by the ear but is present in the overall outcome of the tones
make-up. If the tones, for example, in Group 2 were progressively moved towards
a special relationship with one another, the difference tone, the summation tone,

the unclassified other components, and the partials of the original tones all align
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themselves into a single harmonic relationship—the one associated with the implied

tone.

4.5 Dissonant and Consonant Qualities of Combined
Microtonal/ Tempered Frequencies

Table 4.5 p. 79 and Table 4.6, p. 80 below, give information on measurements
taken to produce the first twenty-one graphs-Figure 4.2-Figure 4.23.Measurements
are of single and combined frequencies. The experiment shows that a combined
microtone and tempered pitch interval can be more consonant than a tempered
pitch interval. The measurements were taken on an electric guitar with added frets
and amplified acoustic guitar in relation to the normal tempered guitar frequencies.
Frets were added in between the normal frets on an electric guitar using a reversed
fingerboard as shown in Figure 3.1. Whole-number ratios were found and
compared to the calculated whole-number ratios for the equally-tempered system

in Table 3.6, p.61.

A similar experiment was done on an acoustic guitar with added pick-ups under
both bridge and nut shown in Figure 2.1, p.46. The nearest equivalent frequencies
to those measured on the electric guitar were found by plucking the opposite side
of a stopped string and are illustrated in Table 4.6, p. 80. This experiment was
taken to find whole-number ratios for pitch intervals involving microtones only

which are compared to pitch intervals involving tempered frequencies.

Five notes were measured on the electric guitar spanning from the second fret, fifth
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string (B,) to the added fret above the semitone C; (normal third fret). Between B,
and C; two frets are added and one above C;. The five notes are: (1) B,, (2)
microtone, (3) microtone, (4) Cs, (5) microtone. These five notes were measured

singly and as pitch intervals with Bs.

The following accurate measurements were taken on an instrument that records the

fundamental and harmonic partials only as it is processing airborne sound.

The produced graphs are visual aids to show the harmonics from a single tone, and
the closeness of the upper partial of two specific measured notes when sounded
together. The graphs give information on upper partials beating phenomenon.
Heterodyne components are calculated using the calculations on Table 4.1, p.70.
The calculations were taken in the light that a major 7™ tempered pitch interval is
the single most dissonant pitch interval after a minor 2™ pitch interval. Each
calculated pitch interval was compared to the ratio of the major 7. The major 7"
pitch interval is shown in Table 3.6, p. 61 as the whole-number ratio (within 2
cents) 17/9-an intervallic inversion or complement of the minor 2™ pitch interval
ratio 18/17, the most dissonant pitch interval in the equally tempered system. An
interval of a major seventh, 130.8 (C3) - 246.9 (B,), 1100 cents, was used as an
example of a tempered dissonant interval in, Table 4.5, p.79. The lower frequency
of the pitch interval in Column 5, is moved to five different frequencies spanning
from 123.5 Hz (B;) to the microtone 133.2 Hz above 130.8 (C;) utilizing 3
microtones produced by three added frets. Each frequency was produced in graph

form and measured singly starting with the highest frequency 246.9 (B;)} down to
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the lowest frequency (right to left when referring to Table 4.5 and Table 4.6). Then
each of the frequencies in Column 2 of each table was measured together with the
higher tempered frequency Bs, 246.9 Hz. starting from the highest to the lowest. In
Table 4.5, p.79 below, the whole-number ratios for each pitch interval are shown

and also the equivalent measurements in cents.

It was found that the microtone 133.2 Hz combined with the tempered frequency
246.9 Hz (B;) in column six gives a lower ratio (13/7) than the tempered major ™
pitch interval (17/9) produced by the frequencies 130.8 Hz (Cs) and 246.9 Hz (B,)
which indicates that the tempered pitch interval is more dissonant than the pitch
interval containing a microtone which produces the ratio 13/7 as discussed above.
This is significant because it shows that some pitch intervals involving microtones
can be less dissonant then some pitch intervals produced by two tempered notes.
The ratio 13/7 is 1068.5 cents — 31.5 cents less than a tempered minor 7" pitch
interval and is therefore not near a tempered interval but it is still more consonant.
The remaining pitch intervals in Columns 3 and 4 are more dissonant and produce
ratios, 25/23 and 63/32 respectively. The frequencies in the Column 2 in both

Table 4.5 and Table 4.6 produce an octave-ratio 2/1 (1200 cents).

Table 4.4 below’ illustrates ratios that are recognized consonants involving the
first eight harmonic partials of the overtone series. Outside the special relationships
stated here, pitch relationships become dissonant. Pitch intervals further up the
overtone series have closer harmonics and thus produce roughness and are

therefore more dissonant.
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Table 4.4 Special Relationships in Consonant order

Special Relationships

2:1 (1200cents)

3:2 (702 cents),

4:3 (498 cents),

5:3 (884.4 cents)
5:4 (386.3 cents)
6:5 (315.6 cents),
7:4 (968.8 cents)
7:5 (582.5 cents)

8:5 (813.7 cents)

7:6 (266.9 cents)

11:5 (1365 cenis)

11:4 (1751.3 cents)

11:3 (2249.4 cents)

11:2 (2951.3 cents)

11:1 (4151.3 cents)
13:6 (1338.5 cents)

13:5 (1652.4 cents)

13:4 (2040.5 cents)

13:3 (2538.6 cents)

13:2 (3240.5 cents)

13:1 (4440.5 cents)

Apart from the first three ratios, 2:1, 3:2 and 4:3 in Table 4.4 above all the other
special relationships deviate dramatically from the tempered system, for example,
11:4 and 11:3 are equivalent to tempered quarter tones (50 cent divisions). The
notes of the equal temperament system do not fit into the scheme of consonance
and dissonance within the overtone series. The tempering of notes dramatically
altered the consonant quality of the pitch intervals that are derived from the
overtone series. When pitch intervals are formed using the numbers 17 and 19 the
results show that some intervals are close to tempered pitches. If pitch intervals
formed high up in the overtone series are close to a special relationship then the ear

will hear the interval as a ‘slightly off’ special relationship because of the nature of
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the aural mechanism.

Table 4.5 Measured frequencies on an electric guitar with added frets (see Figure

The frequencies in Table 4.5 above were measured singly starting with the highest

frequency in Column 6. See Figure 4.2 - Figure 4.7 and each frequency in row 2

3.1,p.54)
Higher 246.9Hz (B3)
Frequency which
forms each
interval (open T
2" string)
Frequencies 123.5 Hz 125 Hz 129.3 Hz 130.8 Hz 133.2 Hz
which form pitch | (B,) (Cy)
intervals with
B;. Whole- Ratio 2/1 Ratio 63/32, | Ratio 25/13 Ratio 13/7
number ratios (octave}, Ratio 17/9
for each pitch 1200 cent | 1174.5cent | 1119.9 cent (Major 7'%), | 1068.5 cent
interval are also 1100 cent
shown and
equivalent cents
(£ 2cent).
String and fret | 5" string, | 5" string, 5™ string, 5" string, 5" string,
where each note | normal added fret added fret normal added fret
is found 2" fret above 2" fret | below 3" fret | 3% fret above 3" fret
Type of tempered microtone microtone tempered microtone
frequency

was measured in combination with the tempered frequency 246.9Hz (B;) in row 1.

See Figure 4.8 - Figure 4.12.

The foliowing Table 4.6 illustrates a similar experiment taken on an acoustic nylon
string guitar. Single measurements (highest to lowest) are shown by Figure 4.13 -
Figure 4.18, and in combination with 246.9Hz (B;), see Figure 4.19 —Figure 4.23
Graph produced by tempered frequencies 246.9Hz (Bs, open 2™ string) and

123.5Hz (B,, 5" string, 3" fret), played simultaneously on a nylon string acoustic

guitar.
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Table 4.6 Measured frequencies on acoustic guitar with added pick-ups under the
bridge and nut (see Table 2.1, p.46)

Frequency 246.9Hz (Bs)

which forms

each interval T \

{open 2" string)

Frequencies 123.5Hz (B,) | 125 Hz 128.3 Hz 130.8 Hz 132.6 Hz
which form (Cy)

pitch intervals Ratio 2/1 Ratio 63/32, | Ratio 25/13 Ratio 41/22
with B;. Whole- | (octave), Ratio 17/9

number ratios 1200 cent 1174.5 cent | 1133.3 cent | (Major 7™), | 1076.1 cent
for each pitch 1100 cent

interval are also

shown and

equivalent cents

(+ Zcent).

String and fret | 5" string, 6" string 6" string, 5™ string, 6" string,
where each note | 2™ fret 19™ fret, 18" fret 3™ fret 17" fret

is found

Type of tempered microtone microtone tempered microtone
frequency

Because there are no added frets on the acoustic guitar, the microtones were found
by plucking the stopped string on the opposite side and will produce slightly

different pitches. The guitar was amplified.

In the experiment in Table 4.6 above it is found that the three pitch intervals
containing a microtone produced higher ratios indicating that they form more
dissonant pitch intervals than the tempered dissonant major 7" pitch interval (ratio
17/9). The graphs were measured on a LarsoneDavis Meter. See LarsoneDavis
measurement information before each set of graphs. The first seven graphs, Figure
4.1 - Figure 4.7, show the following information as measured on an electric guitar.
The first Graph, Figure 4.1, shows the background noise at the time of

measurement.
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Figure 4.1 = background noise at time of measurements

Figure 4.2= tempered frequency 246.9Hz (B,)
Figure 4.3 = microtone 133.2Hz (above Cs)
Figure 4.4 = tempered frequency 130.8Hz (Cs)
Figure 4.5 = microtone 129.3Hz (below Cs)
Figure 4.6 = microtone 125Hz (above Bs)

Figure 4.7 = tempered frequency 123.5Hz (B,)

In the following five graphs two notes are played together as explained in Table

4.5, p. 79 above.

Figure 4.8 = interval produced by the frequencies 133.2Hz and 246.9Hz (B;)
Figure 4.9 = interval produced by the frequencies 130.8Hz (Cs) and 246.9Hz (Bs)
Figure 4.10 = interval produced by the frequencies 129.3Hz and 246.9Hz (B,)
Figure 4.11 = interval produced by the frequencies 125Hz and 246.9Hz (B;)
Figure 4.12 = interval produced by the frequencies 123.4Hz (B.) and 246.9Hz

(Bs). This pitch interval is a tempered octave.
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In the following eleven graphs the measurements are similar to the measurements
on electric guitar with added frets except that they were taken on an acoustic

guitar:

Figure 4.13 = tempered frequency 246.9Hz (B;)
Figure 4.14 = microtone 132.6Hz (above C;)
Figure 4.15 = tempered frequency 130.8Hz (Cs)
Figure 4.16 = microtone 128.3Hz (below Cs)
Figure 4.17 = microtone 125Hz (above B;)

Figure 4.18 = tempered frequency 123.5Hz (B3)

In the following five graphs two notes played together as explained in Table 4.6, p.

80 above.

Figure 4.19 = interval produced by the frequencies 132.6Hz and 246.9Hz (B3).
Figure 4.20 = interval produced by the frequencies 130.8Hz (C;) and 246.9Hz
(Bs).

Fig. 4.21 = interval produced by the frequencies 128.3Hz and 246.9Hz (B;).

Fig. 4.22= interval produced by the frequencies 125Hz and 246.9Hz (Bs).

Fig. 4.23= interval produced by the frequencies 123.4Hz (B;) and 246 9Hz (B;).

This pitch interval is a tempered octave,
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Physical Results and Analysis

The previous graphs show clearly the presence of background noise. This is
illustrated separately in Figure 4.1. For example, 43.8Hz or 48.4Hz or 46.9Hz,
100Hz and 150Hz are often prominent in addition to the overtones corresponding

to each frequency measurement.

The following five graphs, Figure 4.8-Figure 4.12 contain the
measurements of two notes played together as explained in Table 4.5, p.79,

above.

Figure 4.8 = interval produced by the frequencies 133.2Hz and 246.9Hz (B;).
Figure 4.9 = interval produced by the frequencies 130.8Hz (C3) and 246.9Hz (B;).
Figure 4.10 = interval produced by the frequencies 129.3Hz and 246.9Hz (B3).
Figure 4.11 = interval produced by the frequencies 125Hz and 246.9Hz (B3).
Figure 4.12 = interval produced by the frequencies 123.4Hz (B,) and 246.9Hz

(B3). This pitch interval is a tempered octave.

90



16

006Gl 0001

ZIAUg' | F = UOHN{osay Zuay ut Asuanbaiy

00G

0

CLEh

[ 8899

)

g'toy

001

6'9%C

(o]
00

0¢c
0i%

Pred

i

| s

(Fg puE JTUOULIBY JST UIIMIY SIUID §'OCT) ALHRT 1432942 uk uo A|snosueynuns pakeld (Surys g 4oy ¢ jewiion

3A0¢e 1243 pappe Aq paanpoad) ZHT €¢ ] 2U0I0INW pue (SuLs | 7 uado tg) ZHg opT serouanbaay £q pasnpoxd ydeary gp aandiy

U8
08
001

gp Ul [3A97] AJISUaju] punog

SIsAppu Y pup spnsay [poisAyJ




00G1

0001 00G 0

ZMAYQ' [ F = U0nNNjosay "Zuoy ul Asuanbaug

FHETl

g€l

8'86L

(¥q pue dIToULIBY )T UIIM)IIQ S1UII [°9Q[) 18nnd JL13d3]3 ue uo L[snoaue)nuis pased

(Bupns , ¢ 994} | € [EWI0U ) ZHROF | PuR (BuLnys 7 uado “g) ZHE'OKT sa1auanbayy pasaduray 4q paanpoad yderny g sansdig

08

4P Ul [2497 £)SUA)U] punog

00}

sisAppuy pun spynsay jpasdyg




0001

ZUAYY' [T = UOUN[osay 711y ul Aouanbali,]

000G 0

PrEOL

TLI1E

£900

TLIS

g'tot

0c

0)7

i

¥'8r

691

(g pue JUOWLIBY )S] UIIMIIQ SIUID §'p.) “1e)INT JLIIII e o Lsnodueynuis paield ‘(Bmas ¢ a1y

L€ [BULIOU MO[aq

1045 pappe Aq paanpoad) ZHE 67T au0I0ad1w puk (BuLns .7 uado “g) ZH6 9rZ satduanbaiy Aq padnpoad :%EO 01y dansg

9
08

4P Ul 94977 AJSUJU] pUNoOy

00l

sisdppuy pub spnsay patsdy g




v6

0061

0001

ZUBYY | F = Uonmossy ‘zuay ul Lousnbarg

005

geor

gp ul [9A27 A)ISUUT pUnog

(g puE JUOWLIBY }§] UIIMIIG SHIID 9°| 7) ~Jenund L4393[2 ue uo Asnodur)nuns pakeid ‘(s WS WY T [euon
aA0qE 1243 pappe &q padnpod) ZyST | 2100101 pue (SuLys 7 uado tg) ZHg 0pZ saduanbayy g pasnpoud ydeisy |y aandig

sisdppuy pup siynsay jpoisdy g




$6

0051 000}

ZUNG | F — Uonm|osay zuay ul Asuanbarg

009

0

el

Prezl
[ ]

1'6EL

0°9%

001

TLI9

69t

Quaunmosd 210U 218 SOIUOWLIBY Yl PUE Q1L ‘YIS ‘PIC IST) Ju)INs dLIII3[d Uk uo A[snoauryjnwis paseld ‘aaenQ
(Buiags G920y 7 [BULIOU “°g) ZHS €71 pue (3uLns 7 uado ‘tq) ZHg 97 saduanbazy pasadwa) Aq paonpoad ydesin 71'p 2andig

P Ul [2437] A)ISUdU] punog

sisdppuy pup spnsay paisAyg




Physical Results and Analysis

In the following eleven graphs the measurements are similar to Figure 4.2-Figure

4.12, except that they were taken on an acoustic guitar:

Figure 4.13 = tempered frequency 246.9Hz (B3).
Figure 4.14 = microtone 132.6Hz (above C;).
Figure 4.15= tempered frequency 130.8Hz (C3).
Figure 4.16 = microtone 128.3Hz (below Cs).
Figure 4.17 = microtone 125Hz {above Bj).

Figure 4.18 = tempered frequency 123.5Hz (B3).
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Physical Results and Analysis

In the following five graphs Figure 4.19 — Figure 4.23 two notes were

played together as explained in Table 4.6, p.80 above.

Figure 4.19 = interval produced by the frequencies 132,61z and 246.9Hz (B3).
Figure 4.20 = interval produced by the frequencies 130.8Hz (C3) and 246.9Hz
(B3).

Figure 4.21= interval produced by the frequencies 128.3Hz and 246.9Hz (B;).
Figure 4.22= interval produced by the frequencies 125Hz and 246.9Hz (B3).
Figure 4.23= interval produced by the frequencies 123.4Hz (B;) and 246.9Hz (B3).

This pitch interval is a tempered octave.

In the following graph Figure 4,19 the simplest possible heterodyne components
are mapped out in italics; at these points peaks would occur and add to the overall
beating of partials. Since the machine measures in a linear mode, it cannot register
the heterodyne components that are produced by the non-linear auditory system of

the ear when two overlapping frequencies are presented to it.

They can be arranged together with their ancestors in a tabular schema as shown

in Table .4.1, p.70.
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Physical Results and Analysis

4.6 Dissonant and Consonant Qualities of Combined
Microtonal Frequencies

Figure 4.24 and Figure 4.25 are examples of a minor 7" pitch interval (1000 cents)
distance on a guitar produced by microtones (133.2 Hz-238.3) on electric guitar
and {132.6Hz-235.9Hz) on acoustic guitar. The experiment was taken to see if two
microtones from the system of microtones used in this thesis are more consonant
than a dissonant equally-tempered interval, for example, the tempered major F
(In the tempered system a minor 7" interval is more consonant than a major 7"
interval), see Figure 4.9, and Figure 4.20, See also information supplied in Table
4.5, p.79 and Table 4.6, p.80 about the graphs. The experiment shows that a
microtonal pitch interval produced on an acoustic guitar was found to be more
consonant than all of the tempered pitch intervals except the main ratios 2:1, 3:2

and 4:3.

The fact that both notes are outside the tempered system has no bearing on the
dissonant quality of the pitch interval but the whole-number ratio they produce.
The just intonation whole-number ratio 7:4 is an example of a consonant minor 7™
pitch interval spanning 968.8cents which is 31.1 cents (see Table 4.4, p.78) less
than the 1000 cent equivalent tempered minor 7". The tempered minor 7" is
deemed a mild dissonant™ pitch interval within the tempered system but a more

dissonant pitch interval (41/23) within the overtone series.
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Physical Results and Analysis

In the experiment the microtone pitch interval-133.2 Hz-238.3 (Figure 4.24,
p.111), produced on electric guitar was measured, and a whole-number ratio was
calculated as 23/13. A similar microtone pitch interval -132.6Hz-235 9Hz (Figure
4.25), produced on acoustic was measured, and a whole-number ratio was
calculated as 16/9. The ratio 23/13 is dissonant while the ratio 16/9 is lower in the
overtone series than all of the ratios calculated for the equally-tempered system
(Table 3.6, p.61), except for the main consenant whole-number ratios, 2/1, 3/2 and

4/3 as stated above.

Ratios based on the numbers 17, 19 are shown to be very close to tempered
frequencies. Generally speaking the ratio 8/7 is on the border of dissonance and
consonance. When composing within a tempered system using microtones, it is
important to realize that microtones are not part of the system, therefore all
microtones are equal within the system unless a microtone is close to a tempered
frequency, then it will have the effect of a resolving note. If it is within two cents
then it will be difficult to distinguish between it and the tempered frequency. The
closeness of fundamentals and upper partials is important when considering
harmony within microtonal composition. When improvising in a small group
without a harmonic instrument the process of improvising with microtones

becomes less restricted.
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Physical Results and Analysis

4.7  Guitar Opus 1: Dissonance and Consonance Involving
Microtones

Microtones are utilized in bar 17 of Guitar Opus 1. See, Appendix A, p.155.
Whole-number ratios were found for pitch intervals involving the three microtones.
The pitch interval on the last quarter beat of bar 16 is a tempered major 2™ and is a
mild dissonant pitch interval with a ratio of 37:33. The following Table shows the

three pitch intervals involving the microtones.

Table 4.7 Ratios and Cents of the Pitch Intervals involving Micretones in Bar 17, Gritar
Opus 1

Frequencies Pitch intervals in | Pitch interval ratic
cents

Pitch Interval 1 Microtone

403.1 hertz 2249.4 11:3

Tempered

A, - 110 hertz

Pitch Interval 2 Microtone

537 hertz 1907.5 3:1 (+5.5 cents)

Tempered

= = D; — 146.8 hertz
Pitch Interval 3 Microtone

441.8 hertz 1806.8 54:19

Tempered

Eb; — 155.6 hertz

The first pitch interval in the above Table is actually a “special relationship”
interval with a ratio 11:3 (see Table 4.4, p.78). The second pitch interval is even
more consonant producing a ratio 3:1 (octave of 3:2). Even though the pitch
interval is larger than 3:1 by 5.5 cents the ear will hear the interval as a special
relationship because of the nature of the aural mechanism. The information in the
above Table again shows that more consonant pitch intervals can be achieved by a

combining a microtone and a tempered frequency. Pitch interval number three is
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Physical Results and Analysis

dissonant with a ratio 54:19.

4.8 Conclusion

The microtonal system of frequencies used in this project was measured accurately
within two cents and compared to the equally-tempered system and just intonation
system Microtones were used along with tempered frequencies in four musical
compositions as set out below in Section 5.1, p.118. Whole-number ratios were
found for the equally-tempered scale. Whole-number ratios were calculated for the
microtonal system in relation to the open string frequencies where they were
found. The ratios were compared to “special relationships” (consonant pitch
intervals) within the overtone series and their consonant and dissonant quality
discussed. It was found in experiments taken in Section 4.5, p.75 and illustrated in
Table 4.5, p.79, that a pitch interval between a microtone and tempered note was
more consonant than the recognized dissonant pitch intervals within the tempered
system. In Section 4.6, p.109 a pitch interval containing two microtones was found
to be more consonant than all the tempered pitch intervals of the tempered system
except for the main consonant ratios 2:1, 3:2, and, 4:3. In Section 4.7, p.113,
whole-number ratios were found for the three pitch intervals containing a
microtone in bar 17 of Guitar Opus I (set out in Table 5.2, p.123). Two of the

three pitch intervals were “special relationship” intervals (see Table 4.4, p.78).
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Physical Results and Analysis

It is important to realize that apart from the harmonic partials of two tones
sounded together, other components also have a large contributing factor to the
overall sound produced. Heterodyne components including difference tones,
summation tones, et cetera, as discussed in Section 4.3, p.69 affect the outcome of
the resultant sound reaching the brain through the non-linear mechanism of the
auditory system. It is a complex issue that is the subject of continuing research.
Harmonic partials and heterodyne components of similar frequencies are clumped
into groups by the ear when two tones are sounded together. Frequencies which
are in a special relationship (see Table 4.2, p.72, and Table 4.3, p.73) for exampie,
the wnison (1/1), octave (2/1) or fifth (3/2), will contain clumps with larger
numbers of heterodyne components than those which are not in a “special
relationship”. Frequencies in “special relationship” can be fine tuned to produce
zero beating and are therefore more consonant. The smaller the number of
components in each clump; the less fine-tuning can be achieved. Frequencies that
produce whole-number ratios high up in the overtone series are not in “special

relationship™ (see Table 4.2, p.72), and are therefore more dissonant.

When measuring the consonance/dissonance of two frequencies sounded together
it is not important whether the frequencies of a pitch interval are outside the
tempered system. What is important is the ratio between the frequencies. This
implies that if a series of measurements of similar pitch intervals, for example, if

100 measurements were taken of similar pitch intervals at distances of one cent
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Physical Resulls and Analysis

(spanning a semitone), all of the intervals will have similar ratios therefore similar
consonant/dissonant quality. Aurally and physically the pitch intervals are the same

when sounded singly.

Finding whole-number ratios for the equally-tempered system is important because
they show that the limiting twelve pitch intervals are dissonant except for 2:1, 3:2
and 4:3 (octave, perfect fifth and perfect fourth respectively). Tempered pitches
sounded together with microtones can form more consonant pitch intervals than
tempered pitch intervals. Also, two microtones forming a pitch interval can be

more consonant than some pitches found within the equally-tempered system.

Musically the overtone series gives an infinite number of frequencies to choose
from with the most consonant intervals found at the beginning of the series. Any
frequency combination can be extracted from the overtone series by finding a

whole-number ratio that corresponds to those frequencies

Through the experience of performance using an electric guitar with added frets
(see Figure 3.1, p.54), it is realized that because the microtones produced by the
added frets are not part of the tempered system they are musically equal when
sounded together with any tempered frequency or harmony. None of the
microtonal frequencies are related to the tempered system. When a microtone is

very close to a tempered frequency, then it will have the effect of a resolving note
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Physical Results and Analysis

and will aurally want to resolve to the nearest tempered note. This is especially true

when a composition is more tempered than microtonal.

Because of musical conditioning to the tempered system a person is most likely to
be guided-within the framework of a mainly tempered composition with added
microtones-towards tempered pitch resolution. To become familiar with the sounds
of microtones in composition it is important to have constant exposure to these
unfamiliar sounds. The physical analysis of the microtone system here and the
tempered system is essential to the analytical process of the compositions produced
in this thesis. The new system found and measured physically in this thesis gives
composers for guitar new melodic and harmonic material to work from and new
ideas in re-fretting a guitar, using unique guitar based microtones and

measurements.
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Musical Results and Commentary

Chapter 5  Musical Results and Commentary

5.1 Introduction

A good understanding of dissonance and consonance is essential for composers. In
Guitar Opus I and Opus 2 the intervallic structure is very important. The use of
microtones in certain sections of Guitar Opus 1 and Guitar Opus 2 suggests that
these passages are more dissonant than some passages using only tempered notes. In
fact this is not the case because all the intervals of the twelve-note/equal
temperament scale have been altered with the exception of the octave from the
natural scale. Table 3.6, p.61 shows that when the pitch intervals of the tempered
system are converted to whole-number ratios they are considerably higher than the
recognized consonant frequencies of the overtone series (see Table 1.11, p.35). The
natural scale contains more consonance and more striking dissonances than the

twelve-note/equal temperament scale.

In Guitar Opus | and Guitar Opus 2 microtones are extracted using a nut-side pluck
from a normal classical guitar without any modifications or without the use of
amplification techniques. The microtones are measured and compared to the nearest
tempered notes. The bars that contain the microtones are isolated and commented
on, and physical information is shown in tabular format. This particular approach to

microtonal composition, using microtones readily available on a normally built and
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Musical Results and Commentary

normally tuned classical guitar, does not appear to have been previously explored.
Guitar Opus 1 and Guitar Opus 2 were composed in order to blend microtones into
the dissonant and consonant quality of a twelve-note/equal temperament piece, and
to develop sections that would be more microtonal than tempered in content (see
Section B of Guitar Opus 1 and Section D of Guitar Opus 2). The microtones in the

score are illustrated by the use of square-headed notes.

5.2  Guitar Opus 1

This piece consists of four sections:

4— 4
Section A Section B Section C Section D
Bars 1-19 Bars 20-37 Bars 38-83 Bars 84-102

Section A is based around the tonality of E. The use of harmonics in Section A,
especially in bar 19, establishes the texture which follows in Section B. Section A
contains microtones in bar 10 and bar 17. The dissonant and consonant quality of
the piece is carefully constructed to enable the microtones to blend in with the
overall texture of the piece. In Section B a microtonal melody is used in the lower
voice, accompanied by a tempered repeated motif of artificial harmonics in 9/8
time. The notes shown in brackets in the first bar form a chordal shape, which
descends in semitone steps. The microtonal melody is in a polymetre of 2:9. The

melody changes to a polymetre of 3:9 in bar 26 line 4. At bar 28 line five the metre
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is in 7/8 changing to 3/4 at bar 30 line six with the melody staggered by an eighth
note

Section C is the longest section of the piece. It begins in 3/4 time building up from
bar 38 to a fortissimo climax in 11/8 at bar 56. A repeated eighth note pattern is
used, with a regular accent on the second eighth note of beat two; this suggests a
polymetre of 3:2. Bars 60 and 61 are in 5/4 and 11/8 respectively and set up the
next part of Section C, which alternates from 5/4 to 11/8 and 5/4 to 9/8. Bars 72
and 73 break the previous pattern which resumes in bar 74. The change to 13/4 at

bar 82 signals the end of section.

The first four bars of Section D (bars 84-87) serve the function of an interlude
leading back to a reprise of Section A starting in the fourth bar. Harmonics are
again utilized leading to the final chord, which is the same as the opening chord of
the piece. The texture of the composition is influenced by the use of harmonics,
which blend well with the microtones because both are similar in volume, and by

the use of strong polyrhythmic motifs and sudden changes of measures.
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Microtonal Examples: Guitar Opus 1

The following example utilizes plucked microtones, indicated by square-headed
notes from the nut-side of a stopped string. The motif has a descending tempered
line starting on the note E; (164.8Hz). When this line is plucked on the nut-side of
the stopped string it creates an ascending line of microtones. Table 5.1 below
shows the microtones in cents on the top row. The second row shows the nearest
tempered note (and its octave designations) to each microtone. The third row
shows the difference in cents between the microtones and the nearest tempered
notes. The fourth line shows the descending tempered line in cents and equivalent
octave designations. The microtones in the following tables are shown with fret
and string numbers. The frets are numbered in accordance with normal fret

numbering. (see Table 3.2, p.53)

L d



Musical Results and Commentary

Figure 5.1 Section A Bar 10

Table 5.1 Section A Bar 10

line of music bar

Microtonal 176.6 205.2 224 2488 3316

Melody (6" string, 12™ | (6™ string, | (6" string, 9™ (6" string, 8" | (6™ string,
fret) 10™ fret) fret) fret) 6" fiet)

Nearest temp 174.6 (F3) 207.7 (Gi#s) | 220 (As) 246.9 (Bs) 329.6 (Ea)

notes

Difference in 19.7 cents -21 cents -31.2 cents 13.3 cents 10.5 cents

cents

Descending temp | 164.8 (Ea) 146.8 (D) 138.6 (Dbs) 130.8 (Cs3) 116.5 (Bba)

The next three microtones used in Guitar Opus 1, illustrated by square-headed

notes, G, C, and A, above the stave, are shown in Table 5.2 below. The top row

gives the microtones in cents, the second row shows the nearest tempered note

(and its octave designations) to each microtone. The third row shows the

difference in cents between the microtones and the nearest tempered notes. The

fourth line shows the tempered line of the bar in cents and equivalent octave

designations.
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Figure 5.2 Section A Bar 17
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Table 5.2 Section A Bar 17

Microtonal 403.1 537 441.7

Melody (6" string, 5" fret) | (5" string, 5" fret) | (5™ string, 6" fret)
Nearest temp 392 (Ga) 5233 (Cs) 440 (Ay)

notes

Difference in 48.3 cents 44.7 cents 6.7 cents

cents

Descending 110(A2) 146.8 () 155.6 (Ebs)

temp line of

mausic bar

In Section B below a pattern of artificial harmonics in a repeated descending figure
[bars 22-35] is combined with a microtonal melody from bar 22 in a polymetre
ratio of 2:9. In bars 26-29 the microtonal melody is in a polymetre ratio of 3:9. The
metre changes to 7/8 in bars 28 and 29 and to 3/4 at bar 26. There are artificial

harmonics on the downbeat and a microtonal melody, which is staggered by an

eighth note. The last two bars do not contain any microtones.
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Figure 5.3 The following musical passage is Section B in total.
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Tables 5.3 — 5.7 below illustrate the notes from bars 22- 35 converted to cents.
Row 1 illustrates the artificial harmonics in cents, Row 2 shows the microtonal
notes of the melody, Row 3 shows the nearest tempered notes to the microtones

and Row 4 shows the difference between the two.

Table 5.3 Section B Bars 22 and 23

Artificial Harmonics | 370 (F#4) 525.3(Cs) 659.3 (Es)
Microtonal Melody 281.8 333.2

(two notes) (7" fret, 6" string) | (8™ fret, 5™ string)

Nearest temp. note 277.2 (CH4) 329.6 (Es)

Difference in cents 28 18.8

Table 5.4 Section B Bars 24 and 25

Artificial Harmonics | 293.7 (D) 493.9 (B4) 622.3 (D#s)
Microtonal Melody 3316 371

(two notes) (6" fret, 6" string) | (7™ fret, 5™ string)

Nearest temp. note 329.6{E4) 370 (F#a)

Difference in cents 10.5 35.6

Table 5.5 Section B Bars 26 and 27

Artificial Harmonics 329.6 (E4) 466.2 (Bba) 587.3 (Ds)
Microtonal Melody 403.1 441.8 718

(three notes) (5" fret, 6™ string) | (6™ fret, 5" string) | (5™ fret, 4™ string)
Nearest temp. note 392 (Gy) 440 (A4) 698.5 (Fs)
Difference in cents 48 7 J 47
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Table 5.6 Section B Bars 28 and 29

Artificial Harmonics 311.1(Eb4) 440 (A4) 554.4 (Dbs)

Microtonal Melody 521 337 930.5

(two notes) (4" fret, 6" string) | (5™ fret, 5" string) | (4™ fret, 4 siring

Nearest temp. note 523.3 (Cs) 523.3 (Cs) 932.3(As)

Difference in cents -7.6 44.7 -3.3
Table 5.7 Section B Bars 30 -35

Artificial Harmonics | 293.7(Da) 415.3 (Aba) 523.3(Cs)
Microtonal Melody F71.1. 695

(two notes) (3" fret, 6™ string) | (4" fret, 5" string)

Nearest temp. note 784 (Gs) 698.5 (Fs)

Difference in cents -28.7 -8.7

There are no microtones in Section C.

D.

Table 5.8 below illustrates bar 86 of Section
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Figure 5.4 Section D bar 86
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Table 5.8 Section D bar 86

=

Temp. notes 123.5 130.8 174.6 185 207.7 196

(B2} (& (F3) (F#s) {(G#) (Gs)
Micro. Notes 331.6 248.8 333.2 299.2 253.1 273.4

7M. 6"st. | 8%fr. 6%t | 8% 5Mst. | 9™fr 5%t | 11™f 5%t 10™fr. 5"st.
Nearest temp. 329.6 246.9 329.6 293.7 246.9 277.2

(Eo) (By) (Eq) (Ds) (Bs) (CHa)
Difference in 10.5 13.3 18.8 32 429 239
cents
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5.3  Guitar Opus 2

Guitar Opus 2 continues the microtonal idea used in Guitar Opus [ and should be
performed afier it. The piece is in five sections and utilizes microtones in the
melody at the end of Section C and throughout Section D.

The form is broken into five sections:

<+ >

Section A Section Az Section B Section C Section D

Bars 1-8 Bars 1-4, 9-12 Bars 13-23 Bars 24-30 Bars 31-40

Sections A and A, are based around the tonality of e minor. There is an e
minor/major tonality throughout Sections A and B. Sections A and A; use repeated
open strings in the treble with a bass melody. The harmonic movement is tonic to
dominant in e minor. The first cadence at bar 7 ends in a minor while the second

cadence at barl2 ends in e minor.

At Section B bar 13 triplet chords are based on a minor ninth interval. A rapid
repeated 5-bar passage from bars 18-22 leads to a dissonant chord based on

clustered seconds for increased dissonance.

Section C acts as an interlude between Section B and the final microtonal Section

D. Harmonics are introduced to blend in with the texture and amplitude of the
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microtones. Microtones are found in bars 29 and 30 leading to Section D.

The microtones in Section D are utilized throughout the melody. The tempered
harmonic choice is consonant so as to feature a microtonal melody within a
consonant tempered harmonic structure. At bar 40 there is a brief reference to the

opening motif from Section A

In composing Guitar Opus 2 it was intended to explore dissonance/consonance
through the harmonic structure and texture of the five sections. The aim was to
balance the dissonant/consonant quality of Sections A, A, and B, which do not
include microtones, and the use of microtones in Sections C and D. Section D in
terms of dissonant quality is intended to be a complement to Section A. The
dissonant quality of the dissonant tempered chords were musically matched by
using more consonant tempered chords to underpin the microtonal melody. The
changes in metre throughout the piece were not preconceived in the creative

process.

Microtonal Examples: Guitar Opus 2

Section C bar 29:
This microtone is found by stopping the fourth string at the eighth fret and

plucking on the opposite side (pluck the opposite side of the tempered Bb, note
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below).

Figure 5.5

o = 1
Table 5.9 Section C bar 29
Microtonal Melody 444.35 505.9
(8™ fret, 4" string) | (7" fret, 4™ string)
.Nearest temp. note 440 (Aq) 493 .9(Ba)
Difference in cents 17 cents 41.6

The following bar has one microtone that is found when the opposite side of the

first string is plucked and stopped at the eighth fret (tempered C,)

Figure 5.6
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Table 5.10 Section C Bar 30:
Microtonal Melody 999

(two notes) (8" fret, 1% string)
Nearest temp. note 987.8 (Bs)
Difference in cents 19.5 cents

130



Musical Results and Commentary

The next microtonal example is in Section D.
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Section D bars 31-37:
Table 5.11 Section D bar 31:
Microtonal Melody 759.8 992 i 613.h7 818;18 672
(8" fret, | (8" fret, 1™ | (10" fret, | (10" (9" fret,
(Bivenofes) o string) l 2 string) | frer 1 | 2™
string) string) string)
Nearest temp. note 740 (F¥#s) | 987.8(Bs) | 622.3 830.6 659.3(E
(Ebs) (Gs) s}
Difference in Cents 25.1 19.5 24,1 -24.8 40.7
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Table 5.12 Section D bar 32:

Microtonal Melody 675 897.3 750.8 853.5
{two notes) (0" fret, 2% | (9" fret, 1 | (8™ fret, 2 | (7™ fret,
string) string) string) ik
string)
Nearest temp. note 659.3 (Es) 880(As) 740 (Fis) 830.6
{Abs)
Difference in Cents 40.7 33.7 25.1 47.1
Table 5.13 Section D bar 33
Microtonal Melody 853.5 : 1 135.9 9‘)2 . 52%'3 y
(7" fret, 2 | (7" fret, 1 | (6" fret, 2™ | (12" fret, 2°
(thires motes) string) string) string) string)
Nearest temp. note 830.6 (Abs) 1108.7 (C#s) | 987.8 (Bs) 523.3 (Cs)
Difference in Cents 47.1 42 12.6 19.7
Table 5.14 Section D bar 34
Microtonal Melody 613.7 569.5 818.8 4238 5383 684
(10" fret, | (11" fret, | (10" fret. | (12% fret, | (9% fret, | (7™ firet,
- v in 1* string) | 3" string) | 3 g
string} string) string) string)
Nearest temp. note 622.3 554.4 830.6 (Gs) | 415.3 5233 698.5
(Ebs) (CHs) (GHs) (Cs) (Fs)
Difference in Cents | -24.1 46.5 24.8 351 48.9 -36.3

Notes in Columns 3 and 4 above are sounded together.

Table 5.15 Section D bar 35

Microtonal Melody 801.2 977

(two notes) (6" fret, 3" string) | (5" fret, 3 string)
Nearest temp. note 784 (Gs) 987.8 (Bs)
Difference in Cents 375 -19
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Table 5.16 Section D bar 36

Micretonal Melody | 505.9 364.3 400.4 4445
(two notes) (7" fret, 4® string) | (10" fret, 4™ (9" fret, | (8™ fret,
string) 4" string) | 4"
siring)

Nearest temp. note 493.9 (Bs) 370 {Gha) 392 (Ga) 440 (As)
{Ei"fiéréﬁce in Cents | 41.6 -26.9 36.7 17.6
Table 5.17 Section D bar 37

Microtonal Melody 505.9 4445 400.39

(two notes) (7" fret, 4" string) | (8™ fret, 4" (9™ fret, 4™

siring) siring)
Nearest temp. note 493.9 (By) 440 (A4) 392 (Ga)
Difference in Cents 41.6 17.6 36.7
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E.tude for Electric Guitar with Added Frets

See section 2.3, p.48.

Etude for electric guitar with added frets

Mike Nielsen

INTRODUCTION - CPEN GUITAR IMPROVISATION

134



Musical Results and Commentary
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Table 5.18 below shows the measured microtonal frequencies and normal tempered
frequencies from the composition, Efude for Electric Guitar with Added Frets.
Highlighted coloured figures illustrate the different melodic sections of the

composition.
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Musical Results and Commentary

The frequencies supplied in Table 5.18 above were taken from Table 3.4, p.57. The
highlighted figures illustrate the three different melody sections of the composition,
Etude for electric guitar with added frets. Section B is in red (tempered
frequencies), Section A is in green (microtonal frequencies) and Section C is in
yellow (microtonal frequencies). The exact physical and melodic form of the
melody is moved up a fret (green) from the tempered frequencies (red) and down a

fret (vellow) from the tempered frequencies (red).

The melody of Etude for electric guitar with added frets, was initially conceived as
a tempered melody (red). The composition begins with the melody in microtonal
form in Section A and is shown as green and is up a fret from the tempered
melody, red. The melody is then played as a tempered melody (red) in Section B;
Section C (yellow) is another microtonal form of the melody - down a fret from the
tempered melody. The total melody contains fifty-two notes. The figures in
brackets underneath each melody note show at what point each note is used within

the melody.

For example, the frequencies 392 Hz [red], 398.4 Hz [green] or 385.9 Hz |yellow]
are the first melody note of Sections B, A and C respectively, and occur again as
the 23" melody note of each melodic form. Frequency 159.4 Hz is the only shared
note between the three different forms of the melody and is shared by the green

and yellow microtonal versions. The shared note is melody note 47 in the green
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version The same melody note functions as the melody notes, 30.33,41,48 in the
yellow version. The equivalent tempered melody frequency is Ebs; or 155.6Hz. The
introduction and interludes of Etude for electric guitar with added frets use a
melodic figure of two tempered notes, 293.7 (Ds) and 329.6 (Ei) and one
microtonal note (322.7 Hz) which is approx. Ebs + 35cents. This melodic figure is
the initial springboard for improvisation at these points, smoothly connecting each

melody form. Section D is an improvised ending.

5.4 Etude For Amplified Classical Guitar

This piece was composed using an amplified classical guitar with two specially
designed pick-ups one placed under the saddle and one under the nut. A ‘hammer-
on’ technique is used throughout which demonstrates how both sides of stopped
strings of equal loudness can be utilized in composition. This technique prompted
the initial idea for the system of microtones used in this project. The string when
playing, is more prominent than normal this produces more string noise because of
the two added pick-ups but this can be used to advantage as the string noise can
produce similar sound to drums.

Etude for Amplified Classical Guitar consists of and introduction and eight

sections:

Introduction ~Improvised drum sounds using string noise
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Section A is comprised of eight bars in 5/8 time and uses a left hand hammer-on
technique. The figure 1s composed of a repeated five-note figure in eighth notes.
Table 5.19, p.144 below illustrates the five-note figure and shows the nut-side
microtonal notes and tempered notes that are produced simultaneously by the
hammer-on technique. The tempered notes of the figure are only shown in the
composition. The microtonal notes of the figure can sound because the palm of the
right hand dampens bridge-side. The right hand palm is then rolled back towards
the bridge until both sides of stopped strings are sounded. This process is then

repeated.

Section B continues with the same figure as Section A. The same figure is used
throughout the composition. The nut-side notes are dampened allowing the
tempered bridge-side notes to sound. Then the strings are released allowing both
sides of stopped strings to sound. The process is then repeated. Section C
continues with the same figure as Sections A and B except that it is notated on the
lower stave. The figure is repeated while a chord is tapped on to the 4" fret on the
nut-side. The tempered bridge-side notes sound throughout. The chord is shown as

whole notes but the rhythm of the chord is improvised.

Section D continues with the same figure as Section A and Section B on the lower
stave. The figure is repeated while a chord is tapped on to the 11™ fret. The thythm

of the chord is improvised as in the previous chord. The nut-side notes of the
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repeated figure sound throughout. Section E continues with the same repeated
figure as the previous sections. The figure is repeated while a three-note chord is
tapped on to the 4" fret. This chord is similar to the upper three notes of the chord
in Section C. Both sides of stopped strings of the repeated figure sound

throughout.

Section F continues with the same figure as in the previous sections. The figure
repeats while a three-note chord is tapped on to the 11" fret. This chord is similar
to the upper three notes of the chord in Section D. Both sides of the stopped
strings of the figure sound throughout. Section G contains a new microtone, 441.8
hertz which is 7cents higher that the tempered A note 440hertz. After Section G is
played the performer repeats back to any section and improvises on the written
musical material. After the improvisation the performer plays Section G again and
finishes with Section H. Section H starts with an improvisation in 5/8 on the given
material and finishes with the percussive string noise as in the Introduction.

The nine sections are used as a basis for improvisation. Variations and instant
composition of new material based on this composition should be improvised. The

sections can also be repeated in any order and be of any length.
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ETUDE
For amplified classical guitar
Introduction- Open improvisabion using peraissive smng neise over 6th string, Sth fret,
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23 Repeat to any section andimprovise @ ! ) g
2 Improvise Improvised percussive string nois

"
o
4
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After section G, repeat to any section and improw se using the written musical material.
To finush play G again and then H section which ends with percussive string noise like introduction.
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Table 5.19 Microtonal and tempered notes sounded by the repeated figure

Microtonal Notes in hertz

Tempered Note in hertz

1 |[281.8 =C#, +28.5 cents (7" fret, 6" string) | 123.5 (B,)
2 [333.2 =E, +188cents (8" fret, 5" string) | 174.6 (F»)
3 | 224 =A; +31.2cents (9" fret, 6" string) | 138.6 (C#)
4 |377.7 =F#, +357 cents (7" fret, 5" string) | 164.8 (Es)
5 | 2488 =B;+ 133 cents (8" fret, 6" string) | 130.8 (Cs)

The five notes in the repeated figure in Efude for Amplified Classical Guitar are

contained in Table 5.19 above.
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Conclusions

In the course of this research project the theories of sound, pitch, loudness,
quality/timbre were studied. The vibrational frequencies of strings, and physics of
musical pitch and the evolution of pitch measurement, musical scales and tuning
systems in western music were discussed. The search by composers for alternative

scale systems was studied in the historical context.

The microtonal system used in composition in this project was measured on a high
precision sound lever meter and frequency analyzer and the results were illustrated.
Whole-number ratios were also calculated in relation to the open strings from
which they originated. Inverse proportion was used to calculate the predicted
microtones used here and cent (1/100 of a semitone) measurements were defined
and used when calculating the pitch intervals between two frequencies to within an

accuracy of two cents.

Microtones are musical notes that are higher or lower in frequency than the notes
of the twelve-note/equal temperament scale. ‘Tempering’ is when a musical
interval is lessened or enlarged away from the ‘natural’ scale (that deducible by
physical law). From a physical point of view, the previous two statements suggest
that the twelve-note/equal temperament scale is in fact a microtonal scale, relative
to the natural scale from which it deviates. Equal temperament was developed to
enable composers to modulate to different keys using fewer notes; it also simplified

the construction of musical instruments and playing technique.
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The microtonal system used for this research project was extracted from a normal
classical guitar and then compared to the overtone series. The consonant/dissonant
quality of the tempered system was found by converting the pitch intervals to
whole-number ratios. The results were compared to the “special relationship™ pitch
intervals of the overtone series. The microtonal system was compared to the
“special relationship” pitch intervals of the overtone series and the tempered

system.

It was found that some pitch intervals containing a tempered note and a microtone
and some pitch intervals comprised solely of microtones were less dissonant than
some of the dissonant intervals of the tempered system. It is shown that bar 17 of
Guitar Opus I contains two pitch intervals comprised of tempered and microtonal
notes that are “special relationship” whole-number ratios and therefore more
consonant than any of the tempered interval except the octave-2:1, fifth-3:2 and

fourth-4:3.

During the medieval period the foot rule, used throughout Europe, had an
important influence on organ building and pitch levels. A foot was a different
measurement in different countries and even within a country the measurement
could vary. As a result, different pitched organs were built depending on the foot
size. The pitch A, varied throughout Europe changing between 0 and 7.4
semitones (0 and 740cents) until the recognized international standard pitch for A4

= 440 hertz was agreed in 1939.
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On fixed pitch instruments like the guitar and piano these enbarmonic pitches are
played at the same pitch, but on non-fixed pitch instruments such as the violin
enharmonic notes, are played at different pitches, for example an F# note is played
sharper than a Gb note. When a violinist performs with a pianist the violinist must
alter the pitch aurally to suit the equally-tempered pitch of the piano. Tuning a
piano is a process of tempering the natural intervals in order to have equidistant

tempered intervals that will make the pitch intervals more dissonant.

If brass or woodwind instruments based on a conical tube are blown to produce
their natural notes, the frequencies produced are those of the harmonic series.
Performers of such instruments need to adjust their embouchure throughout a
performance in order to produce equally-tempered pitches. It is important to note
that if a similar frequency is played on different instruments the frequency will have
different degrees of dissonance because of the distribution of the upper partials.
Different instruments sounding together will affect the sound produced, for
example, an oboe and a clarinet or saxophone and clarinet playing two different
frequencies simultaneously will produce a different quality of sound because of the
distribution of the upper partials of each instrument. The combined sound of each

pairing will be different because of the upper partial phenomenon.

Changes of spacing, timbre and register will affect the consonant and dissonant
response also. According to theorists ‘perfect consonance’ would be total silence.
So total dissonance must be noise - the inability to distinguish a single pitch - the

loudness and quality of the noise would also be a factor in determining the
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dissonant quality of a noise. With the natural scale as the basis of musical pitch, a
fixed pitch tuning system like the equally-tempered system can never be set in
stone because it is only one system of tuning formulated from the overtone series.
A composer could formulate an infinite number of microtonal systems using
frequencies solely from the overtone series or using a mixture of microtonal and

tempered notes.

Conditioning within the equally-tempered system will initially affect the ability of
listeners exposed to microtonal music to come to terms with such music. The
calculation of whole-number ratios for the equally-tempered intervals shows that
the pitch intervals are quite high up in the overtone series showing the tempered
system to be dissonant. The whole-number ratios found for the pitch intervals
involving microtones in bar 17 of Guitar Opus 1 showed that two of the pitch
intervals were very consonant as they were ‘special relationship’ whole-number
ratios. This is an important discovery and further work in analyzing all the pitch
intervals and harmony containing microtones in the compositions produced here

would further explain the consonant/dissonant quality of the compositions.

In this project, microtonal notes, which can be extracted from a normal classical
guitar, are used in composition. It was the initial intention to introduce microtones
to tempered composition and gradually become more microtonal. This was realized
in the compositions Guitar Opus I and Guitar Opus 2 (CD tracks 1 and 2). The
increased aural perception developed during the project is evident in the later

compositions: Efude for Amplified Classical Guitar (CD track 3) is more
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microtonal and Efude for Electric Guitar with Added Frets (CD track 4) contains

two different microtonal versions of the tempered melody.

The microtonal notes are found by plucking the opposite side of a stopped string
and when a ‘hammer-on’ technique is used, both sides of the string sound. Since
the overtone series is infinite, the frequencies found by plucking the opposite side
of the stopped string are obviously part of this system and calculations show them
to be mostly dissonant but in combination with tempered notes the produced pitch
intervals can be more consonant than the tempered system. The first task was to
find whole-number ratios for the pitch intervals of the equally-tempered system
within the overtone series using a resolution of two cents. Apart from the octave,
perfect fifth and perfect fourth, the other calculated ratios are dissonant and quite
high up in the overtone series. The calculation of whole-number ratios for the
equally-tempered pitch intervals was very important in understanding the dissonant
quality of the equally-tempered system. Tempering has lessened the consonant

quality of the frequencies of the equally tempered scale.

In this project equally-tempered notes along with the microtonal notes are used as
a source for composition. The idea is to allow the listener to gradually become
used to microtonal notes that are outside the familiar sound of equal temperament.
They are already audible to guitarists as component frequencies of some sounded
notes on the guitar. A survey of the consonance and dissonance quality within the
tempered scale shows that pitch intervals containing microtones can be less

dissonant than pitch intervals containing tempered notes. Using the information
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from the calculated whole-number ratios for both the equally-tempered system and
the microtonal system shows clearly that they are not within the recognized
consonant whole-number ratios of the overtone series. Some of the whole-number
ratios calculated for the measured microtones are lower down the overtone series

than some of the ratios of the tempered system, making them more consonant.

Experimentation in microtonal music provides composers today with new
directions in composition. The outcome of this research project confirms that the
guitar is particularly suited to further exploration in microtonality. As shown by the
compositions Guitar Opus I and Guitar Opus 2 modification is not necessary
because microtones can be extracted from a normal classical guitar. The system of
microtones that is present on a guitar, does not fit into any other microtonal system
used by composers. As highlighted in Etude for Amplified Classical Guitar these
microtonal notes are heard together with a tempered note when a finger is
hammered on to an open string - a common guitar technique, The application of
this research project provides an exciting challenge for composers of guitar music

who wish to explore further the uncharted realms of microtonal composition.
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ETUDE

For amplified classical guitar

Intreduction- Open improvisation using percussive string noise over 6th string, 9th fret,
and 5th string, 7th fret. All the sections should utlize improvisation and are not played MIKE NIELSEN
exactly as written.
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This chord contains the top 3 notes of the chord in section C leaving the 4th, 5th.& 6th stings
frec. This allowsthe repeated figare to sound on both sides of the stopped string.
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Etude for electric guitar with added frets

Mike Nielsen
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INTERLUDE - OPEN GUITAR IMPROVISATION
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Notes not showing a plus sign are lower in pitch than the watten notation

Improvise end end with rusical maenal from inroduction
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