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country.

Table 1.6 The Different Foot Measurements found in Organ Building.

Foot Measurements mm
Long old French foot, or pied de roi 325
Long German, or Rhenish foot 314
Long Austrian foot 316
English foot 305
Old Nurnberg foot 304
Old Roman foot (medieval) 295
Old Augsburg foot 296
Bavarian foot 202
Short Saxon foot 283
Short Brunswick foot and Frankfort foot 285
Short Hamburg and Danish foot 286
Very short old Brabant foot of 11 inches 278
13 Rhenish inches 340
13 Saxon inches 307
12 old Brabant inches 303

A difference of 12 per cent in the lengths of two pipes will, for the same scale,
make a difference in pitch of nearly a whole meantone in their pitch. Thus a pipe of
length equal to the short Saxon foot was a meantone sharper than the long
Austrian or Rhenish foot. The percentage difference in lengths converted to pitch
difference is as follows: 6 per cent, corresponds to an equal semitone, 3 per cent to
an equal quartertone, 5.75 per cent, to a semi-meantone, 4.5 per cent, to a small
meantone semitone and 7 per cent to a great meantone semitone.

Thus it can be seen from the Table 1.6 above that a pipe an English foot long is
nearly a great semitone sharper than a French foot and about an equal quarter of a
tone sharper than a Rhenish foot, while a pipe a Rhenish foot long is about a smalt
semitone sharper than a French foot. Throughout Germany there was a wide
variety of foot measurements which accounted for extensive variation in organ

pitch."
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1.9 Musical Scales and Tuning Systems in Western Music

A musical scale is a succession of notes arranged in ascending or descending order.
The number of notes contained in a scale can vary. The most common numbers of
notes in a scale are 5 and 7, (see Appendix B). The white notes played on a piano
from the notes C, to Cs (C,D.EF,G,A.B,C) form a C major scale. A C major
pentatonic is equal to a C major scale minus the 4™ and 7" notes, (C.D,E,G,A.C).
The chromatic scale contains all of the 12 notes used in western music (the black

and white notes on a piano between two similar notes an octave apart) for

example, from C, to C;. (C,C#,D,D#.EF.F#,G,G#,A,A#,B,C)

Table 1.7 shows the ascending chromatic scale. ‘S’ shows an equal pitch difference

of a semitone (the smallest pitch interval in western music).

Table 1.7 The Chromatic Scale

o2 3 14 5 6 |7 8 19 10 | 11 12 211
C, |C#Db |D |D#Eb |E F |F#Gb |G | G#Ab |A | A#/Bb | B Cs
S S S 5 S 5 5 § | S S

Moving up a semitone from the lower C in Table 1.7 above, each movement is
equivalent to a pitch interval of 100 cents. Arriving at the higher Cs again, up an

octave, the total pitch interval is 1200 cents above the lower C,.

Table 1.8 below shows the C major scale (middle row), ‘tonic-solfa’ syllables

which are used when singing a major scale (top row), and the distances between

each note (bottom row).
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Table 1.8 C Major Scale

Mi Ti

E

Do Fa So

o

Re
D

La

Cs

L1
)

In the above scale “t” is a tone (two semitones) and is a semitone. The

movement in cents from C; to the other notes of the scale is illustrated in Table

1.9.

Table 1.9 helow shows the movement in cents from C, to the other notes of the
scale, the intervals between the notes in cents of the major scale, the nearest

equivalent just intonation intervals and the corresponding whole-number ratios.

Table 1.9 C Major Scale and Equivalent Just Intonation Pitches

C D E F G A B Cs
200 400 500 700 900 1100 1200
Just Intonation (ratio and cents):
1 9:8 5:4 4:3 30 5:3 15:8 2:1
Cs D E F G A B Cs
204 386 498 702 884 1088 1200

The distances or intervals from the first note C,4 to the other notes of the chromatic
scale are named in Table 1.10 below. The nearest whole-number ratios (converted

to cents) of the just intonation tuning system are also shown for comparison.

33



Table 1.160 The Chromatic Scale and Equivalent Just Intonation Pitches

Interval Name Equal Temperament | Just Intonation
Cents Cents
Min. 2™ 100 112 (16:15)
Maj. 2™ 200 204 (9:8)
Min, 3" 300 316 (6:5)
Maj. 3" 400 386  (5:4)
Perf 4" 500 498 (4:3)
Aug 4™/Dim 5" 600 590 (45:32)
Perf 5" 700 705 (3:2)
Min. 6® 300 814 (8:5)
Maj. 6" 900 884 (5:3)
Min. 7" 1000 996 (16:9)
Maj. 7™ 1100 1088 (15:8)
Perf. octave 1200 1200 (2:1)

From Table 1.10 above it can be seen that there is a considerable difference in pitch
between the notes derived from the ratios of the overtone series (the template for
just intonation} and the notes of equal temperament. The ratios, 16:15, 15:14 and
14:13 are three different pitch intervals for a semitone. The ratio 16:15 or 112
cents is the closest to the equal temperament semitone of 100 cents. The ear is able
to distinguish a pitch difference of 2 cents (and lower), therefore, 12 cents is a

substantial difference.

The most important scale systems are the Pythagorean scale system, the tempered
scale systems (equal and meantone temperament), and just intonation. In the sixth
century B.C. Pythagoras is credited with introducing whole-number ratio tunings
for the octave, perfect fourth and perfect fifth (based on the ratios of the numbers
1, 2, 3 and 4) into Greek music theory. The octave, perfect fourth and perfect fifih
were deemed consonant or pleasing to the ear, all other intervals were deemed

dissonant or not pleasing to the ear. In the early Middle Ages Western music was
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based on Pythagorean intonation (see Appendix B p.170). In the later Middle
Ages, and early Renaissance period as music became more complex, and aural
perception developed, thirds and sixths were deemed consonant intervals. With the
development of independent instrumental music based on fixed pitch instruments
this tuning became inadequate because of modulation difficulties. Eventually
theorists were forced to partially abandon the Pythagorean framework in order to
explain the existence of consonant thirds and sixths, because the most consonant

possible thirds and sixths were based on ratios involving the number five. "'

When two or more notes are sounded and their frequencies are in the ratio of small
whole-numbers, our ears perceive them as consonant. For instance: if an A is
sounded at 440Hz along with an E at 660Hz, the frequencies are in a ratio of 660
to 440 or 3 to 2 (3/2) and the human ear will perceive this as consonant. They have
a common factor (220 Hz) in the musical range of frequencies. In Table 1.11 below

a list of small whole-number ratios commonly considered consonant are listed.

Table 1.11 Consenant Whole-number Ratios

Ratio Cents Note/difference Interval Tempered
in Cents (Cents)
1/1 0.00 C+0 Unison 0
6/5 316 Eb +16 Min. 3" 300
5/4 386 E-13.8 Maj. 3™ 400
4/3 498 F-2 Perf. 4" 500 =
32 702 G+2 Perf 5" e —— - -
8/5 814 Ab +14 Min 6" 800
5/3 884 A—16 Maj 6™ 900
2/1 1200 C +0 Perf, octave 1200

The ratio 7:4 is 31cents narrower than a tempered minor seventh and is deemed

consonant whereas a tempered minor seventh is deemed a mild dissonant pitch
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interval. The ratio 7:4 is not contained in Table 1.11 above as it deviates
substantially from equal temperament and demands a departure from common

practice."”

The concept of equal temperament provided the solution to the problem of
intonation on fixed pitch instruments. The basic advantage of equal temperament is
that the number of pitches required to play in different keys can be reduced by
compromising the tuning of certain tones so that they can perform different
functions in different keys, whereas in just intonation, a slightly different pitch
would be required for each function. Equal temperament compromises the quality
of intervals and chords in the interest of simplifying instrumental design and
construction and playing technique." It can also be seen as the slightly lessening or
enlarging of musical intervals away from the ‘natural scale’ in order to fit them for

practical performance, as shown in Table 1.9, p. 33.

Meantone temperament is based on a succession of thirds (5/4 ratio), which leaves
an out-of-tune octave. In the equally tempered tuning system a movement of three
consecutive third pitch intervals (400 cents) span an octave (1200 cents).
Meantone temperament is based on pure thirds which are in ratio 5/4 and equal to
386 cents. A succession of three pure thirds (386 cents) will span 1158 cents
leaving an out-of-tune octave. The difference is 48 cents ncarly a quarter of a
semitone less than a just or tempered octave (2/1 or 1200 cents).

Meantone temperament was the preferred tuning system in the building of

keyboard instruments. This tuning system was based on perfect major thirds but it
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presented difficulties when modulating to non-related keys and as a result the
system of equal temperament was adopted. Twelve-note/equal temperament
tuning, unlike meantone tuning, alters all the intervals except the octave. Meantone
temperament gave a nearer approXimation to natural tuning (just intonation) than

equal temperament for C major and keys related to it.

If pitch is increased within equal temperament in the cycle of fifths starting at C, a
higher C will be reached afier 12 equal fifths. In meantone temperament, an
increase of approximately 31 perfect fifths would lead back to a similar higher C.
According to the Pythagorean Laws of Acoustics, 12 perfect fifths are equivalent
to seven octaves. But actually the distance of seven octaves is a little larger. For
example: the ratio for a fifth is 3:2 and when multiplied by itself twelve times a
figure of 129.746 is reached. The ratio for an octave is 2:1 and when multiplied by
it self seven times a figure of 128 is reached. The ratio difference is 129.746:128,
which is 1.01364 or 23.5 cents larger. This difference is called the Pythagorean

commda,

Meantone temperament, as stated above, is based on a succession of pure thirds
which leaves an out-of-tune octave. The difference between third intervals in
Pythagorean tuning and pure thirds (thirds, which are strictly based on the
appropriate whole-number ratios) is called a synfonic comma. A Pythagorean third

has a ratio of 81:64 which is equal to 1.265625. A pure third is 5:4 and is equal to
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1.25. The difference is a frequency of 1.0125 (a syntonic comma). This syntonic

comma when expressed in cents is equal to 21.506 cents or rounded off to 22

cents, and is shown by the Greek letter 8.

A syntonic comma is slightly smaller than a Pythagorean comma. All the notes of
the Pythagorean scale are raised or lowered by fractions of this syntonic comma to
form a meantone tempered scale called the quarter-comma meantone temperament
scale. These fractions are 1/4, 3/4, 1/2, 5/4 of a syntonic comma.

See Table 1.12 below.

Table 1.12 Quarter-comma Meantone Scale

Equivalent
note names
in C D E F G A B C
Pythagorean
Intonation

Quarter- C D E F G A B C
commaMean -1/2 & -8 +1/4 & -1/4 8 | -3/4 8 -5/4 &

tone Scale

Table 1.13 below shows the equal temperament scale, just intonation scale,
Pythagorean intonation scale and the quarter-comma meantone temperament scale.
The bottom row of each scale shows the difference in cents in relation to the just

"l scale below) except for the quarter-comma meantone scale

intonation scale (2
where the information is in the third row. The fourth row of the quarter-comma

meantone scale shows the difference in cents between it and the Pythagorean scale

and illustrates the information given in Table 1.12 above.



Table 1.13 Comparing Scales in Cents

Equal Temperament Scale

Note names

(S

E

| F

e

LA |

B |

i

seale in cents

Pitch intervals
between C and the
other notes in this

200 400

500

700 960

1160 1200

Difference in cents
from the just
intonation scale

-4 +14

+2

-2

+16

+12

Nearest notes in Just Intonation (ratio and cents)

Just intonation
whole no. ratios

1

9:8 54

4:3

3:2

5:3

15:8

2:1

Equivalent note
nanes

G

D E

F

Pitch intervals
between C and
the other notes in
this scale in cents

204 386 498

702

884

1088 1200

Pythagorean Intonation (ratio and cents)

Pythagorean
intonation whole
no. ratios

1

9:8 | 81:61

4:3

3:2

27:16

243:128

o |

Equivalent note
names

C

D E

F

A

C

Pitch intervals
between C and the
other notes in this
scale in cents

204 408

498

702

906

1110

1200

Difference in cents
from the just
intonation scale

22

+22
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Quarter-comma Meantone Intonation

Equivalent note C D E F G A B [
names
Pitch intervals 193 386  503.5 696.5 8805 1082.5 1200

between C and the
other notes im this
scale in cents

Difference in cents
from the just -11 0 5.8 -5.5 +5.5 -5.5 0
intonation scale

Difference in cents
from Pythagorean -11 22 | +8.8° =55 -16.5 | -27.5 0

intonation

Just intonation is a tuning system based on the overtone series, which is a set of
frequencies present in the overall sound of a note when played. This series of
frequencies is written as whole-number ratios as shown in Table 1.3 p. 25.

Strictly speaking, just intonation is any system of tuning in which all of the intervals
can be represented by whole-number frequency ratios, with a strongly implied

preference for the simplest ratios compatible with a given musical purpose.'*

Hermann Helmholtz" (1821-1894) was a strong advocate of just intonation as a
tuning system. By the beginning of the twentieth century composers had exhausted
all the possible combinations of twelve-note/equal temperament (12TET) and
began to divide the twelve tones into smaller mathematical divisions (microtones),
for example third-tones (18TET), quarter-tones (24TET), sixth-tones (36TET),
eighth-tones (48TET) etc. As stated earlier, microtones are musical notes, which
are higher or lower in frequency than the notes of the twelve-note/equal
temperament scale. ‘Tempering’ is when a musical interval is slightly lessened or

enlarged away from the ‘natural’ scale . From a physical point of view, the previous
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two statements suggest that the twelve-note/equal temperament scale, could be
regarded as a microtonal scale, relative to the natural scale from which it deviates
(see Table 1.10, p. 34). Clearly, twelve-note/equal temperament has shown its
limitations since composers have begun to divide the 12 tones into smaller equally

tempered intervals so as to find new compositional ideas.

Harry Partch'® (1901-1974) was the first twentieth-century composer to use just
intonation as a basis for composition and was responsible for the revival of this
system. He devised a system of tuning with 43 tones per octave and directly
influenced many contemporary composers who use this system today. The Czech
composer Alois Haba'” (1893-1972) pioneered the use of quarter and sixth-tones in
composition. Charles Lucy'® (b 1917) is the inventor of Lucy Tuning, a hybrid of
just intonation and equal temperament. A number of interesting re-fretting ideas for
the guitar have been developed to accommodate tunings such as:

* The 62 tone Just

* 12-Tone Plus

* Sixth-Tone

* Just Multi-tonic

* 19 per octave

* 24 quarter-tones per octave

Just intonation gives composers an infinite source of notes to choose from and
enables them to meet their compositional/improvisational needs. Consonant

intervals in the system of just intonation are more pure than in the system of equal
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temperament and there are more strikingly dissonant intervals in just intonation

than in equal temperament.

More dissonance is available in the just intonation tuning system because of the
infinite number of frequencies possible within that system and more consonance is
available because in equal temperament the pitch intervals of the scale have been
tempered and deviate from the recognized consonant whole-number ratios of just

intonation.

The limitations of the twelve-note/equal temperament system have prompted
composers to divide the 12 tones into smaller equally tempered intervals in order to
find new compositional ideas. Just intonation provides the obvious template for

composers moving outside the limits of other tuning systems.

1.10 Microtonal System in Composition

As stated in the Introduction the object of this work is to facilitate the use of
microtones in composition and in improvisation. When a guitarist hammers a finger
(a common guitar technique) on to the open sixth string, for example at the twelfth
fret, the sound produced will be a combination of the tempered E note (164.8 Hz)
and the microtone 171.1Hz sounded on the lower fret (11th fret). This microtone is
nearest in pitch to a tempered F note (174.6Hz). The difference is 35.1 cents,

which is 14.9 cents less than a quarter-tone.

For this project a pick-up has also been placed under the nut of the guitar so that
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the microtones can be amplified and measured for use in composition. They can
also be used in composition without being amplified. 11 extra frets have been
added to an electric guitar. These frets represent the maximum amount of
microtones available (functional added frets) using the reverse fingerboard
measurements from a 21-fret electric guitar. The remaining 12 frets from a

possible addition of 21, were either too close to or matched existing frets.

Guitarists are aurally familiar with these microtonal sounds - even if they are not
aware of their origin. These microtones contribute to the overall sound of a note
especially when using the hammering technique described above, regardless of
whether the guitar is acoustic or electric. Therefore guitarists should adapt more

easily to these sounds than players of other instruments.
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Chapter 2 Methodology

21 Overview

It is desired to measure the exact pitch of each of the 108 microtones found on a
classical guitar. The predicted pitches were found using a mathematical formula.
The frequencies of the microtonal notes were measured on a LarsoneDavis Sound
Level Meter and Frequency Analyser. An electrical signal was produced from the
pick-up under nut-side, fed into an amplifier, and thence into the frequency
analyzer. This allowed accurate measurements of the microtonal frequencies. The
microtones were then experimented with using three different compositional

techniques and improvisation ideas.

2.2 Methodology

The predicted frequencies of the microtones were initially calculated using the
method outlined in Section 1.5 of this thesis. These frequencies are set out in Table
1.1, p.18. The frequencies of the microtones were calculated by reference to the

frequencies of the bridge-side notes on the equal temperament scale.

The frequencies of the same microtones were measured using a LarsoneDavis
model 2800 Real-Time Sound level Meter. This meter performs two measurements
simultaneously; that of a Precision Sound level meter and that of a real-time
frequency analyser. As a single channel real-time analyser, it can perform frequency

analysis using digital 1/1 and 1/3 octave bandwidths and FTT analysis using, 100,
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200, 400 and 800 line resolution. For example, if a base frequency is set at 0-2500

Hz and 800 line resolution is used, the resolution will be %%0 = 3,125Hz. The

meter also has zoom capabilities with real-time zoom: X256 and when operating
on a non-real-time frequency range (buffered) it is capable of X64 (1 channel), X32
(2 channels). A microphone compatible with this instrument was used (model:
2541 free-field microphone, and a pre-amp, model: 900B) to capture the frequency
of a single microtone plucked acoustically {(un-amplified) from the opposite side of
a stopped string. The microtone was Fourier analyzed in the Larson/Davis SLM
and the data was imported into a Microsoft Excel Spreadsheet. Graphs such as that

shown in Figure 1, p.9, were produced.

For the recording of all the microtones on the nut-side, a pick-up was placed under
the nut of the guitar. A pick-up was also placed under the saddle [piece of
ivory/wood fixed to the bridge where the strings sit]. Two pre-amplifiers are used
so as to achieve a similar sound from each pick-up. Both pick-ups are then fed into
two regular guitar amplifiers via two volume pedals. The volume from the pick-up
under the saddle is turned off so that only the nut-side notes are sounding. The
airborne sound is then picked up by the microphone and transferred to the

LarsoneDavis meter.

Experimental arrangements are illustrated in Figure 2.1, and Figure 2.2. The
fundamental frequencies of the microtones are read from the graphs and are

presented in Table 3.2, p.53.
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