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WEAK GRADIENT INVERSE SCHRÖDINGER
SCATTERING

JONATHAN M. BLACKLEDGE

Abstract. The paper briefly reviews formal methods and associated
conditions for solving the forward and inverse Schrödinger scattering
problem for a three-dimensional elastic scattering potential. These meth-
ods are based on an application of the Green’s function and are condi-
tional upon the properties of the scattering potential, e.g. that the
scattering potential is a ‘weak scatterer’. In this paper, we explore an
alternative route to solving the problem which depends on properties
imposed on the scattered wavefield rather than the scattering potential.
In particular, we explore the case when the gradient of the scattered
wavefield is weak relative to its frequency. An inverse scattering solu-
tion is then derived from which iterative forward scattering solutions
can be formulated. The properties of this solution are studied including
various simplifications that can be made and the conditions upon which
they rely. This includes a phase only condition that is used to compute
the Rutherford scattering cross-section with a second order correction.
Finally, it is shown how the approach can be applied to the relativistic
case when the scattering problem is determined by the Klein-Gordon
equation and for electromagnetic scattering problems that are based on
the inhomogeneous Helmholtz equation.

1. Introduction

The scattering of an incident wave from an elastic scattering potential V

is determined by the general solution of the three-dimensional Schrödinger

equation [1], [2]

(1) (∇2 + k2)ψ(r, k) = V (r)ψ(r, k), r ∈ R3

where k is the wavenumber and ψ is a complex wavefunction. The incident

wavefunction, which is taken to describe a unit plane wave ψi, is assumed

to have a narrow-band spectrum so that k is, effectively, a constant.

Equation (1) is derived from the time-dependent Schrödinger equation

(2) i~
∂

∂t
Ψ(r, t) =

−~2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t)

where m is the mass of a particle described wavefunction Ψ. This is

the non-relativistic ‘energy equation’ E = V+ | p |2 /(2m) for poten-

tial energy V with energy E and momentum p operators E → i~∂t and

p→ −i~∇, respectively, where h = 2π~ is Planck’s constant. For Ψ(r, t) =

ψ(r, ω) exp(−iωt) and with k2 = 2mω/~ = 2mE/~2 and V := 2mV/~2, the
1



2 JONATHAN M. BLACKLEDGE

time-independent version of equation (2) given by equation (1) is obtained.

THE POROBLEM. We require a solution to equation (1) for the scattered

wavefunction ψs from which the ‘scattering cross-section’ given by | ψs |2

can be evaluated.

Let ψ = ψ±i + ψs where ψ±i is the solution of

(3) (∇2 + k2)ψ±i (r, k) = 0

Then, ψ±i = exp(±ikn̂i · r) where n̂i is a unit vector that points in the

direction of the incident plane wave with unit amplitude.

For the condition

(4) V (r)→ 0 as r ≡| r |→ ∞

the Green’s function transformation of equation (1) yields the Lippmann-

Schwinger equation [3]

(5) ψ(r, k) = ψ±i (r, k) + ψs(r, k)

where

(6) ψs(r, k) = g(r, k) ◦ V (r)ψ(r, k) and g(r, k) = −exp(ikr)

4πr

is the ‘out-going’ free space Green’s function which is the solution of

(7) (∇2 + k2)g(r, k) = δ3(r)

The symbol ◦ denotes the three-dimensional convolution integral, i.e. for

two piecewise continuous functions f1(r) and f2(r),

(8) f1(r) ◦ f2(r) ≡
∫
R3

f1(r− s)f2(s)d3s

and

(9) f1(r) ◦ f2(r) ≡
∫
R3

f1(| r− s |)f2(s)d3s

Formally, equation (5) requires that

(10) ψ(r, k)→ 0 and ∇ψ(r, k)→ 0 as r →∞

so that, by Green’s theorem (where S is the surface associated with spatial

domain D),

(11)

∫
D

∇ · (g∇ψ − ψ∇g)d3r =

∮
S

(g∇ψ − ψ∇g) · n̂d2r = 0

given that the scattering potential is not of compact support by condition (4)

but in the infinite domain with a surface at infinity.
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Equation (6) allows us to define the forward and inverse scattering prob-

lems as follows:

Forward Scattering Problem: Given V calculate ψs
Inverse Scattering Problem: Given ψs calculate V

We note that equation (5) is the fundamental basis for the Schrödinger

(elastic) scattering problem but that if condition (4) holds, the problems

defined above can be stated in terms of equation (1). In other words, under

condition (4), Equations (1) and (5) define the same problem since it is

clear that

(∇2 + k2)ψ(r, k) = (∇2 + k2)ψ±i (r, k) + (∇2 + k2)[g(r, k) ◦ V (r)ψ(r, k)]

= δ3(r) ◦ V (r)ψ(r, k) = V (r)ψ(r, k)

(12)

2. Formal Scattering and Inverse Scattering Solutions

Given equation (6), a solution for ψs can be obtained by iteration to give

the (Born) series solution

(13) ψs(r, k) = g(r, k)◦V (r)ψ±i (r, k)+g(r, k)◦V (r)[g(r)◦V (r)ψ±i (r, k)]+...

Each term in equation (13) expresses higher order scattering effects which

‘reflects’ their causal nature, i.e. a (n+ 1)th-order scattering effect can not

occur before nth-order scattering has taken place.

LEMMA 2.1 Equation (5) converges under the condition

(14) ‖g(r, k) ◦ V (r)‖2 < 1

where ‖ • ‖2 denotes the (Euclidean) norm in L2(R3; d3r).

Proof. Consider an iterative solution to Equation (5) of the form

(15) ψn+1(r, k) = ψ±i (r, k) + ÎV (r)ψn(r, k)

where

(16) ψ0(r, k) ≡ ψ±i (r, k)

and Î is the convolution integral operator

(17) Î = g(r, k)◦

For each iteration n, consider the solution to be given by ψn = ψ+ εn where

εn is the error associated with the solution at iteration n and ψ is the exact
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solution. A sufficient condition for convergence is that εn → 0 as n → ∞
and since

(18) ψ + εn+1 = ψ±i + Î[V (ψ + εn)] = ψ±i + Î(V ψ) + Î(V εn)

we have

(19) εn+1 = Î(V εn)

since ψ = ψ±i + Î(V ψ). Thus,

(20) εn = ÎV [ÎV (ÎV...ε0)]

from which it follows that

(21) ‖εn‖2 ≤ ‖ÎV ‖n2‖ε0‖2

The condition for convergence therefore becomes

(22) lim
n→∞

‖εn‖2
‖ε0‖2

≤ lim
n→∞

‖ÎV ‖n2 = 0, =⇒ ‖ÎV ‖2 < 1

COROLLARY 2.1. Under the condition

(23) ‖g(r, k) ◦ V (r)‖2 << 1,

(24) ψs(r, k) = g(r, k) ◦ V (r)ψ±i (r, k)

which is the first iterate corresponding to the first term of equation (13).

REMARK 2.1. Equation (24) is an expression for the scattered wavefunc-

tion under the weak scattering condition - the Born approximation - which

is equivalent to assuming that ‖ψs‖2 << ‖ψ±i ‖2 in equation (6). Similarly,

the convergence criterion associated with equation (13), i.e. ‖ÎV ‖2 < 1, is

equivalent to assuming that ‖ψs‖2 < ‖ψ±i ‖2 in equation (6)

REMARK 2.2. If V (r) is of compact support so that V (r) exists ∀r ∈ D
and is additionally a sphere with radius R, then, since

(25) ‖g(r, k) ◦ V (r)‖2 ≤ ‖g(r, k)‖2 ‖V (r)‖2,

(26)

‖g(r, k) ◦ V (r)‖2 ≤
1√
3
R2 〈V (r)〉 where 〈V (r)〉 =

√√√√√√
∫

r∈D
| V (r) |2 d3r∫
r∈D

d3r
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and condition (23) becomes 〈V (r)〉 << R−2.

REMARK 2.3 Equation (24) is an exact solution to the equation

(27) V = (ψ±i )−1(∇2 + k2)ψs

since

(∇2 + k2)ψs(r, k) = (∇2 + k2)g(r, k) ◦ [V (r)ψ±i (r, k)]

= δ3(r) ◦ V (r)ψ±i (r, k) = V (r)ψ±i (r, k)(28)

LEMMA 2.2. Let ψs(r, k) = g(r, k) ◦ V (r)ψ+
i (r, k), then

(29) ψs(rs, k) =
exp(ikrs)

4πrs
Ṽ [k(n̂s − n̂i)], rs →∞

where

(30) Ṽ [k(n̂s − n̂i)] =

∫
R3

V (r) exp[−ik(n̂s − n̂i) · r]d3r, n̂s = rs/rs

and rs is the vector position at which the scattered field ψs is detected.

Proof.

(31) | rs − r |= rs

(
1− r · rs

r2
s

+
r2

2r2
s

+ ...

)
= rs − r · n̂s, rs →∞

so that

(32) g(| rs − r |, k) =
exp(ikrs)

4πrs
exp(−ikn̂s · r), rs →∞

and, for ψ+
i , equation (24) transforms to

(33) ψs(rs, k) =
exp(ikrs)

4πrs

∫
R3

V (r) exp[−ik(n̂s − n̂i) · r]d3r, rs →∞

REMARK 2.4. Equation (33) shows that the forward scattering and in-

verse scattering problems are reduced to forward Fourier and inverse Fourier

transformations respectively, i.e. for ‖g(r, k) ◦ V (r)‖2 << 1, analysis of the

solution in the far-field (i.e. when rs → ∞) is equivalent to Fourier space

analysis.

REMARK 2.5. The function exp[ikrs/(4πrs)] in equation (33) is a complex

scaling constant and we may therefore define the ‘scattering amplitude’ as

(34) A[k(n̂s − n̂i)] =

∫
R3

V (r) exp[−ik(n̂s − n̂i) · r]d3r
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This Fourier transform relationship between the scattering potential V and

the scattering amplitude A is fundamental to Schrödinger scattering appli-

cations such as ion beam analysis [4], [5], for example, but implicitly relies

on condition (23).

REMARK 2.6. Strictly speaking, we should define the scattering ampli-

tude in terms of the integral

(35) A[k(n̂s − n̂i)] =

∫
r∈D

V (r) exp[−ik(n̂s − n̂i) · r]d3r

This is because the Fourier transform is obtained via the argument that

r/rs → 0 as rs → ∞ ∀r which is inconsistent if r ∈ [0,∞). However, if

we do define the Fourier integral for r ∈ D to make this argument strictly

consistent, then the surface integral given in equation (11), should, strictly

speaking, be taken to be non-zero. Instead, we consider the scattering

amplitude to be defined in terms of equation (35) on the understanding

that the contribution of this surface integral is negligible. This ‘balancing

act’ allows us to formally define the inverse scattering solution to be given

by

(36) V (r) =
1

(2π)3

∫
R3

A[k(n̂s − n̂i)] exp[ik(n̂s − n̂i) · r]d3[k(n̂s − n̂i)]

under the conditions that: (i) ‖ψs‖2 << ‖ψi‖2; (ii) rs →∞

LAMMA 2.3. An inverse solution to equation (5) is

(37) V (r) =
∞∑
n=1

Vn(r),

(38) V1 = Ĵψs, V2 = Ĵ [ÎV1(ÎV1ψ
±
i )], ...

where Ĵ is an operator such that

(39) Ĵ(ÎVnψi) = Vn

Proof. (Jost-Kohn [6])

Let

(40) V =
∞∑
n=1

εnVn and εψs := ψ − ψ±i
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Substitution of these equations into equation (13) gives

(41) εψs = Î(εV1 + ε2V2 + ε3V3 + ...)ψ±i

+Î(εV1 + ε2V2 + ε3V3 + ...)[Î(εV1 + ε2V2 + ε3V3 + ...)ψ±i ] + ...

Equating terms with common coefficients ε, ε2, ... we have

For n = 1 :

(42) ψs = ÎV1ψ
±
i ,⇒ V1 = Ĵψs

For n = 2 :

(43) 0 = ÎV2ψ
±
i + ÎV1(ÎV1ψi),⇒ V2 = −Ĵ [ÎV1(ÎV1ψ

±
i )

and so on for n = 3, 4, .... Evaluating Vn for n = 1, 2, ...,∞, V (r) is obtained

from equation (37) with ε = 1.

REMARK 2.7. This iterative inverse solution is not unconditional; it re-

quires convergence of the series solution to the forward scattering problem

- equation (13)

REMARK 2.8. For n = 1, the formal inverse solution is given by equa-

tion (36) for rs →∞.

DISCUSSION. This section has assembled the principal results associated

with formal solutions to the forward and inverse scattering problems [7].

The following points are noted: (i) All the results presented are based on

the Green’s function transformation of equation (1); (ii) both forward and

inverse scattering solutions are based on iterative series solutions. In the

latter case, an iterative (inverse scattering) solution is formulated to an

iterative (forward scattering) solution. Consequently many practical appli-

cations associated with inverse scattering solutions only utilize equation (35)

under condition (23). In the following section, we consider a conditional ap-

proach to this problem that avoids using a Green’s function transformation

and is based a weak gradient condition.

3. Green’s Function Independent Solutions

Under condition (4), Equations (1) and (5) are entirely inter-operable.

This property underlies an approach that is based on developing an inverse

solution for V given ψ based on equation (1) avoiding the use of a Green’s

function transformation.
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THEOREM 3.1. Given equations (1) and (5) and under condition (4),

(44) V (r) =
ψ∗(r, k)

| ψ(r, k) |2
∇2

[
k2

4πr
◦ ψs(r, k) + ψs(r, k)

]

Proof. From equation (5), we can write

(45) (ψ − ψ±i ) = g ◦ V ψ

Let q be a piecewise continuous auxiliary function such that

(46) q ◦ (ψ − ψ±i ) = q ◦ (g ◦ V ψ)

Taking the Laplacian operator of this equation,

(47) ∇2[q ◦ (ψ − ψ±i )] = ∇2(q ◦ g ◦ V ψ) = ∇2(q ◦ g) ◦ V ψ = V ψ

provided

(48) ∇2(q ◦ g) = δ3

But

(49) ∇2(q ◦ g) = q ◦ ∇2g = q ◦ (−k2g + δ3) = −k2q ◦ g + q

and hence

(50) q = δ3 + k2q ◦ g

so that

(51) ∇2[q ◦ (ψ − ψ±i )] = ∇2[δ3 ◦ (ψ − ψ±i ) + k2q ◦ g ◦ (ψ − ψ±i )]

= ∇2[(ψ − ψ±i ) + k2q ◦ g ◦ (ψ − ψ±i )] = V ψ

Thus,

(52) V =
1

ψ
∇2
[
k2q ◦ g ◦ (ψ − ψ±i ) + (ψ − ψ±i )

]
where q is determined by the solution of

(53) ∇2(q ◦ g) = δ3

given by

(54) q ◦ g = − 1

4πr
so that

(55) V =
1

ψ
∇2

[
(ψ − ψ±i ))− k2

4πr
◦ (ψ − ψ±i )

]
Finally, since ψ = ψ±i + ψs, we can write

(56) V =
1

ψ
∇2

[
ψs −

k2

4πr
◦ ψs

]
=

ψ∗

| ψ |2
∇2

[
ψs −

k2

4πr
◦ ψs

]
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This proof requires that the auxiliary function q exists, i.e. that there exists

a solution to equation (54). A general solution for q is therefore provided

in the following Theorem.

THEOREM 3.2. Given equation (54), the solution for q is

(57) q = δ3 − k2

4πr

Proof. Taking the Laplacian of equation (54), we have

(58) g ◦ ∇2q = δ3

Taking the Fourier transform of equation (58), we obtain

(59)
u2

u2 − k2
Q(u) = 1

where

(60) Q(u) =

∫
R3

q(r) exp(−iu · r)d3r

Thus, using spherical polar coordinates,

q(r) =
1

(2π)3

∫
R3

(
1− k2

u2

)
exp(iu · r)d3u

= δ3 − k2

(2π)3

2π∫
0

dφ

1∫
−1

d(cos θ)

∞∫
0

du exp(iur cos θ)

= δ3 − k2

2π2r

∞∫
0

sin(ur)

u
du

= δ3 − k2

4πr
,

∞∫
0

sinx

x
dx =

π

2
(61)

COROLLARY 3.1. Since

(62) (∇2 + k2)ψ±i = 0

and noting that

(63) ∇2

(
1

4πr

)
= −δ3(r)



10 JONATHAN M. BLACKLEDGE

it follows that

V =
1

ψ
∇2

[
(ψ − ψ±i )− k2

4πr
◦ (ψ − ψ±i )

]
=

1

ψ

[
k2δ3 ◦ (ψ − ψ±i ) + (∇2ψ −∇2ψ±i )

]
=

1

ψ

[
k2(ψ − ψ±i ) +∇2ψ +∇2ψ±i

]
=

1

ψ

[
(∇2ψ + k2ψ) +∇2ψ±i + k2ψ±i

]
=

1

ψ
(∇2 + k2)ψ(64)

which recovers the Schrödinger equation - equation (1).

3.1. Weak Gradient Condition. We consider the algebraic equation

(65) V ψ = k2ψs

or

(66) V = k2[(ψ±i )∗ψs+ | ψs |2]Ψ−1

where

(67) Ψ−1 =| ψ |−2=| ψ±i + ψs |−2

Physically, this result requires that the gradient of the scattered wavefield

is significantly smaller than the wavenumber, i.e. for a normal unit vector

n̂

(68) | n̂ · ∇ψs |<< k

which is a ‘weak gradient’ condition.

REMARK 3.1. Equation (66) relies on on the condition:

(69) | ψ(r, k) |2=| ψ±i (r, k) + ψs(r, k) |2> 0 ∀r ∈ R3

This condition is satisfied if ψ is a phase only function, i.e.

(70) ψ(r, k) = exp[iθψ(r, k)]

where θψ is the phase function which is taken to be a real only function.

3.2. Fourier Analysis. Consider equation (66) for the case when ψ+
i =

exp(ikn̂i · r) and take the Fourier transform with respect to r for spatial

frequencies k(n̂s − n̂i). Using the convolution theorem, i.e.

(71) ψ∗s(r)ψs(r)↔ (2π)3ψ̃∗s [k(n̂s − n̂i)] ◦ ψ̃s[k(n̂s − n̂i)]
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we then obtain

(72) Ṽ [k(n̂s − n̂i)]

= k2
{
ψ̃s(kn̂s) + (2π)3ψ̃∗s [k(n̂s − n̂i)] ◦ ψ̃s[k(n̂s − n̂i)]

}
◦ Ψ̃−1[k(n̂s − n̂i)]

where

(73) Ṽ [k(n̂s − n̂i)] =

∫
R3

V (r) exp[−ik(n̂s − n̂i) · r]d3r,

ψ̃s(kn̂s) =

∫
R3

ψs(r, k) exp(−ikn̂i · r) exp[−ik(n̂s − n̂i) · r]d3r

=

∫
R3

ψs(r, k) exp(−ikn̂s · r)d3r,

(74)

(75) ψ̃∗s [k(n̂s − n̂i)] =

∫
R3

ψ∗s(r) exp[−ik(n̂s − n̂i) · r]d3r

and

(76) Ψ̃−1[k(n̂s − n̂i)] =

∫
R3

Ψ−1(r, k) exp[−ik(n̂s − n̂i) · r]d3r

CORROLARY 3.1.1. Under the condition ‖ψs‖2 < ‖ψ+
i ‖2,

Ψ−1(r) = | ψ+
i (r) + ψs(r) |−2

= 1− 2ψ+
i (r)ψ∗s(r)− 2ψs(r)[ψ+

i (r)]∗ − 2 | ψs(r) |2 +...(77)

Thus, noting that

(78) δ3[k(n̂s − n̂i)] =
1

(2π)3

∫
R3

exp[ik(n̂s − n̂i) · r]d3r

and

(79) δ3[k(n̂s − n̂i)] = δ3[−k(n̂s − n̂i)]

and taking the Fourier transform,

(80) Ψ̃−1[k(n̂s − n̂i)] = (2π)3δ3[k(n̂s − n̂i)]− 2ψ̃∗s [k(n̂s − 2n̂i)]

−2ψ̃s(kn̂s)− 2ψ̃s[k(n̂s − 2n̂i)] ◦ ψ̃∗s [k(n̂s − n̂i)] + ...

and equation (72) can be written as

(81) Ṽ [k(n̂s − n̂i)] =

(2π)3k2
{
ψ̃s[k(n̂s − n̂i)] + (2π)3ψ̃∗s [k(n̂s − n̂i)] ◦ ψ̃s[k(n̂s − n̂i)]

}
+ ...
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REMARK 3.1.1. Taking the first term on the RHS of equation (81) and

ignoring all other terms, we have

(82) Ṽ [k(n̂s − n̂i)] = (2π)3k2ψ̃s[k(n̂s − n̂i)]

This is the case under the assumption that

(83) ‖ψs‖2 << ‖ψi‖2

which is equivalent to equation (34), if (2π)3k2ψ̃s is taken to be equivalent

to scattering amplitude defined by equation (34). This observation leads to

the following proposition.

PROPOSITION 3.1.1. Under the condition ‖ψs‖2 < ‖ψi‖2, if the function

(2π)3k2ψ̃s given in equation (81) is taken to be the scattering amplitude

(i.e. when rs → ∞), then, equation (81) can be considered to provide an

inverse scattering solution for the potential

(84) V (r) =
1

(2π)3

∫
R3

Ṽ [k(n̂s − n̂i)] exp[ik(n̂s − n̂i) · r]d3[k(n̂s − n̂i)]

In otherwords, we consiter the following:

(2π)3k2ψ̃s[k(n̂s − n̂i)] ≡ A[k(n̂s − n̂i)], rs →∞

and

(2π)3k2ψ̃∗s [k(n̂s − n̂i)] ≡ A∗[k(n̂s − n̂i)], rs →∞

The rationale for this ‘Proposition by Induction’ is as follows: Multiply-

ing by ψ+
i and then convolving equation (66) with the free space Green’s

function,

(85) g(r, k) ◦ V (r) exp(ikn̂i · r) =

k2g(r, k) ◦ exp(ikn̂i · r){[exp(−ikn̂i · r)ψs(r, k)+ | ψs(r, k) |2}Ψ−1(r, k)

and as rs →∞,

(86)
exp(ikrs)

4πrs

∫
R3

V (r) exp[−ik(n̂s − n̂i) · r]d3r = k2 exp(ikrs)

4πrs

×
∫
R3

{[exp(−ikn̂i · r)ψs(r, k)+ | ψs(r, k) |2}Ψ−1(r, k) exp[−ik(n̂s− n̂i) · r]d3r

which yields equation (72). By this proposition, from equation (81), we

consider the equation for the scattering amplitude to be given

(87) Ṽ [k(n̂s− n̂i)] = A[k(n̂s− n̂i)] +k−2A∗[k(n̂s− n̂i)] ◦A[k(n̂s− n̂i)] + ...
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3.3. Solution for Ψ̃−1 = (2π)3δ3. The condition

(88) Ψ̃−1[k(rs − ri)] = (2π)3δ3[k(n̂s − n̂i)]

provides an inverse and forward scattering solution that is radically simpli-

fied, equation (87) being reduced to

(89) Ṽ [k(n̂s − n̂i)] = A[k(n̂s − n̂i)] + k−2A∗[k(n̂s − n̂i)] ◦ A[k(n̂s − n̂i)]

so that, for n = 1, 2, 3, ...

(90)

A(n+1)[k(n̂s− n̂i)] = Ṽ [k(n̂s− n̂i)]−k−2(A∗)(n)[k(n̂s− n̂i)]◦A(n)[k(n̂s− n̂i)]

It is then apparent that higher order effects are compounded in a single

term, namely, the term

(A∗)(n)[k(n̂s − n̂i)] ◦ A(n)[k(n̂s − n̂i)]

and the Born approximation in the far-field can now be attributed to the

case when

(91) (A∗)(n)[k(n̂s − n̂i)] ◦ A(n)[k(n̂s − n̂i)] = 0

which ‘translates’ to the auto-convolution of the scattering amplitude being

zero. The physical interpretation of this result is that multiple scattering

processes can be expected to produce replicating patterns. These ‘matching

features’ will then contribute to a non-zero auto-convolution function.

REMARK 3.2.1. The condition Ψ̃−1 = (2π)3δ3 provide a ‘phase-only’ solu-

tion, i.e. for a unit amplitude, if we assume that ψ = exp(iθψ) where θψ is

the characteristic phase function, then Ψ−1 = 1.

REMARK 3.2.2. In ‘real-space’ equation (90) translates to

(92) a(n+1)(r) = V (r)− 1

k2
| a(n)(r) |2, a(1)(r) = V (r)

where

(93) a(n)(r) =
1

(2π)3

∫
R3

A(n)[k(n̂s − n̂i)] exp[ik(n̂s − n̂i)]d
3[k(n̂s − n̂i)]

which has the convergence criterion

(94) ‖a(r)‖2 <
1

2
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3.4. Example Application: Rutherford Scattering. We compute the

scattering cross section associated with a screened Coulomb potential V (r) =

α exp(−ar)/r where α is a constant. In this case

(95) a(1)(r) = V (r), A(1)[k(n̂s − n̂i)] =

∫
R3

V (r) exp[−ik(n̂s − n̂i)]d
3r,

(96) a(2)(r) = V (r)− 1

k2
| V (r) |2,

(97) A(2)[k(n̂s − n̂i)] =

∫
R3

V (r) exp[−ik(n̂s − n̂i)]d
3r

− 1

k2

∫
R3

| V (r) |2 exp[−ik(n̂s − n̂i)]d
3r,

(98) a(3)(r) = V (r)− 1

k2

[
V (r)− 1

k2
| V (r) |2

]2

and so on. For illustrative purpose, we now consider the computation of

just the first and second order terms a(1) and a(2), respectively.

Computation of A(1). Using spherical polar coordinates (r, φ, ψ),

(99) A(1)(θ) =

2π∫
0

dψ

1∫
−1

d(cosφ)

∞∫
0

dr r2 exp(−ik | n̂s − n̂i | r cosφ)V (r)

Further

(100) | n̂s− n̂i |=
√

(n̂s − n̂i) · (n̂s − n̂i) =
√

2(1− cos θ), cos θ = n̂s · n̂i

where θ is the scattering angle (the angle between the incident and scattered

fields). Using the half angle formula 1 − cos θ = 2 sin2(θ/2) so that | n̂s −
n̂i |= 2 sin(θ/2) and integrating over ψ and cosφ, the scattering amplitude

is

(101) A(1)(θ) =
2π

k sin(θ/2)

∞∫
0

sin[2kr sin(θ/2)]V (r)rdr

For a screened Coulomb potential V (r) = α exp(−ar)/r, the scattering

amplitude becomes

(102) A(1)(θ) =
2απ

k sin(θ/2)

∞∫
0

sin[2kr sin(θ/2)] exp(−ar)dr =
πα

k2 sin2(θ/2)

where we have used the result

(103)

∫
exp(−ax) sin(bx)dx = −exp(−ax)[a sin(bx) + b cos(bx)]

a2 + b2
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and then let a→ 0. The scattering cross-section is given by

(104) | A(1)(θ) |2= π2α2

k4 sin4(θ/2)

which is the characteristic ‘signature’ for Rutherford scattering, i.e. scat-

tering from a Coulomb potential.

Computation of A(2). The second term required to compute A(2) is given

by

(105) lim
a→0

2πα2

k3 sin(θ/2)

∞∫
0

sin[2kr sin(θ/2)]

r
exp(−2ar)dr

=
2πα2

k3 sin(θ/2)

∞∫
0

sin(x)

x
dx =

π2

k3 sin(θ/2)

and the scattering cross section is now given by

(106) | A(2)(θ) |2= π2α2

k4

∣∣∣∣ 1

sin2(θ/2)
− πα

k sin(θ/2)

∣∣∣∣2
4. Klein-Gordon Scattering

The Klein-Gordon (KG) equation is a wave equation whose wave func-

tion ψ describes spin-less scalar Bosons (such as the Higgs Boson) and is a

consequence of applying the energy E and momentum p operators E → i~∂t
and p→ −i~∇, respectively, to the relativistic energy equation

(107) E2 = p2c20 +m2c40

to give [8]

(108)

(
∇2 − 1

c20

∂2

∂t2

)
Ψ(r, t) =

m2c20
~2

Ψ(r, t)

Using natural units ~ = 1 and c0 = 1 with Ψ(r, t) = ψ(r, ω) exp(±iωt), we

can consider the time-independent KG equation

(109)
(
∇2 + ω2

)
ψ(r, ω) = m2ψ(r, ω)

For a potential V (r), the energy is given by ω = E − V and thus

(110)
[
∇2 + (E − V )2 − E2

0

]
ψ(r, ω) = 0

where E0 = m is the rest-mass energy. This equation can then be written

in the form

(111) (∇2 + k2)ψ(r, ω) = W (r, E)ψ(r, ω)
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where k = ±
√
E2 − E2

0 and

(112) W = 2E

(
V − V 2

2E

)
is the ‘Effective Potential’.

REMARK 4.1. Solutions to this equation are important in the analysis

of pionic systems, for example, where the potential V may be real or com-

plex [9]. In many cases, the term V 2/E is neglected on the grounds that the

energy range considered is such that V 2/E is small. The omission of this

term reduces equation (111) to the Schrödinger equation with an energy-

dependent potential. Thus, for E0/E << 1, neglecting the term V 2/2E

and with ψ = ψ±i + ψs, equation (111) becomes

(113) (∇2 + E2)ψs(r, ω) = 2EV (r)[ψ±i (r, ω) + ψs(r, ω)]

with

(114) (∇2 + E2)ψi(r, ω) = 0

In this case, from Theorem 3.1

2EV =
ψ∗

| ψ |2
∇2

[
ψs −

E2

4πr
◦ ψs

]
=

−E2

ψ±i + ψs
ψs ◦ ∇2

(
1

4πr

)
, E →∞

=
E2

ψ±i + ψs
ψs ◦ δ3

= E2Ψ−1[(ψ±i )∗ + ψ∗s ]ψs(115)

so that we can then write

(116) V =
E

2
Ψ−1[(ψ±i )∗ + ψ∗s ]ψs

to which the same analysis used for the Schrödinger equation given in Sec-

tion 3.2 can be applied (with k2 = E/2).

REMARK 4.2. If the potential V is complex, then the magnitude of the

imaginary part can be substantial [10]. This is because the ‘effective poten-

tial’ W = 2E[V − V 2/(2E)] is such that the magnitude of the imaginary

part contributes to the real part in determining the effective potential. With

V = Vr + iVi, we have

(117) Wr = 2E

(
Vr +

(V 2
i − V 2

r )

2E

)
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and

(118) Wi = 2E

(
Vi −

2VrVi
2E

)
Thus, if the magnitude of Vi is substantially greater than that of Vr and E,

then V 2
i /E becomes the dominant part of Wr and the inclusion of V 2/E in

the effective potential becomes necessary.

5. Helmholtz Scattering

Consider the inhomogeneous wave equation for variable wavespeed c(r)

given by

(119)

(
∇2 − 1

c2(r)

∂2

∂t2

)
Ψ(r, t) = 0

With

(120)
1

c2(r)
=

1

c20
[1 + γ(r)]

where c0 is a constant wave speed, we can write

(121)

(
∇2 − 1

c20(r)

∂2

∂t2

)
Ψ(r, t) = − 1

c20
γ(r)

∂2

∂t2
Ψ(r, t)

Thus, with Ψ(r, t) = ψ(r, ω) exp(±iωt) we obtain the inhomogeneous Helmholtz

equation given by

(122) (∇2 + k2)ψ(r, k) = −k2γ(r)ψ(r, k)

where k = ω/c0 and γ is the scattering function. Applications of this equa-

tion include electromagnetism where ψ denotes the scalar electric wave-

field [11]. However, unlike the scattering potential associated with the

Schrödinger and Klein-Gordon equations, the scattering function γ is gen-

erally taken to be of compact support, i.e. γ(r) exists ∀r ∈ D. The Green’s

function transformation for scattering functions that are of compact sup-

port must include the surface integral which is taken over the surface of D
so that the transformation becomes

(123) ψ(r, k) = k2g(r, k) ◦ γ(r)ψ(r, k)

+

∮
S

[g(r, k)∇ψ(r, k)− ψ(r, k)∇g(r, k)] · n̂d2r

where n̂ is the unit vector perpendicular to the orientation of the surface

element d2r and g is the solution of

(124) (∇2 + k2)g(r, k) = −δ3(r)

The ‘elimination’ of the surface integral is based on the following theorem.
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THEOREM 5.1. If r ∈ S where S is the surface of the scattering func-

tion γ which is of compact support r ∈ D then, if and only if,

(125) ψ(r, k) = ψ±i (r, k)∀r ∈ S

where

(126) (∇2 + k2)ψ±i = 0

then

(127) ψ(r, k) = ψ±i (r, k) + k2g(r, k) ◦ γ(r)ψ(r, k)

Proof. Applying the boundary condition ψ(r, k) = ψ±i (r, k)∀r ∈ S, the

surface integral becomes

(128)

∮
S

[g(r, k)∇ψ±i (r, k)− ψ±i (r, k)∇g(r, k)] · n̂d2r

=

∫
D

[g(r, k)∇2ψ±i (r, k)− ψ±i (r, k)∇2g(r, k)]d3r

using Green’s Theorem. But since

(129) ∇2ψ±i = −k2ψ±i and ∇2g(r, k) = −δ3(r)− k2g(r, k)

then

(130)∫
D

[g(r, k)∇2ψ±i (r, k)− ψ±i ∇2g(r, k)]d3r =

∫
D

δ3(r)ψ±i (r, k)d3r = ψ±i (r, k)

REMARK 5.1 From equation (122), by Theorem 3.1

−k2γ =
ψ∗

| ψ |2
∇2

[
ψs −

k2

4πr
◦ ψs

]
=

−k2

ψ±i + ψs
ψs ◦ ∇2

(
1

4πr

)
, k →∞

=
k2

ψ±i + ψs
ψs ◦ δ3

= k2Ψ−1[(ψ±i )∗ + ψ∗s ]ψs(131)

and hence

(132) γ(r) = −Ψ−1[(ψ±i )∗ + ψ∗s ]ψs
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6. Conclusion

Formal methods of solution to the forward and inverse Schrödinger scat-

tering problems are based on iterative solutions. The Jost-Kohn method,

which is compounded in Lemma 2.3, is based on an iterative inverse scatter-

ing solution to an iterative forward scattering solution. This is because the

forward scattering problem is solved first which a common theme associated

with inverse scattering problems in general.

In this paper, we have developed a ‘direct approach’ to solving the inverse

Schrödinger scattering problem based on Theorem 3.1 and Proposition 3.1.1.

The weak gradient condition used to obtain equation (66) is compatible

with applications in high energy ion-beam analysis, for example. From an

analytical point of view, this condition requires that the scattered field is a

smooth function [12]. However, if we relax this condition, then the potential

can be written as (for ψ+
i )

(133) V = Ψ−1[(ψ+
i )∗ + ψ∗s ](∇2 + k2)ψs

Taking the Fourier transform of this equation for spatial frequencies k(n̂s−
n̂i), with Proposition 3.1.1, we obtain

Ṽ [k(n̂s − n̂i)] = (2π)3k2{− | n̂s − n̂i |2 ψ̃∗s [k(n̂s − n̂i)] ◦ ψ̃s[k(n̂s − n̂i)]

+ (2π)3ψ̃∗s [k(n̂s − n̂i)] ◦ ψ̃s[k(n̂s − n̂i)]}

= −| n̂s − n̂i |2

(2π)3k2
A∗[k(n̂s − n̂i)] ◦ A[k(n̂s − n̂i)]

+
1

k2
A∗[k(n̂s − n̂i)] ◦ A[k(n̂s − n̂i)]

(134)

under the phase only condition

(135) Ψ̃−1 = (2π)3δ3[k(n̂s − n̂i)]

We then obtain an ‘inverse scattering solution’ for V given by

(136) V (r) =
1

(2π)3k2
[| a(r) |2 +k−2a∗(r)∇2a(r)]

which has a Green’s function transformation for a given by

(137) a(r) =
k2

4πr
◦ a(r)− 4π2k4

r
◦ a(r)V (r)

| a(r) |2

The forward scattering solutions then rely on iteration. Further by consid-

ering equation (77), it is possible to obtain an inverse solution based on an

infinite series that is independent of both the weak gradient and phase only

conditions, relying solely on Proposition 3.1.1.
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