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This paper presents a validated TRNSYS model for forced circulation solar water heating systems used in
temperate climates. The systems consist of two flat plate collectors (FPC) and a heat pipe evacuated tube
collector (ETC) as well as identical auxiliary components. The systems were fitted with an automated unit
that controlled the immersion heaters and hot water demand profile to mimic hot water usage in
a typical European domestic dwelling. The main component of the TRNSYS model was the Type 73 FPC or
Type 538 ETC. A comparison of modelled and measured data resulted in percentage mean absolute errors
for collector outlet temperature, heat collected by the collectors and heat delivered to the load of 16.9%,
14.1% and 6.9% for the FPC system and 18.4%, 16.8% and 7.6% for the ETC system respectively. The model
underestimated the collector outlet fluid temperature by —9.6% and overestimated the heat collected
and heat delivered to load by 7.6% and 6.9% for the FPC system. The model overestimated all three
parameters by 13.7%, 12.4% and 7.6% for the ETC system.
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1. Introduction

In developed countries, fuel consumption in the building sector
accounts for 40% of the world’s energy end use. Most of this
consumption is used for heating, cooling, ventilation and sanitary
hot water of which two-thirds is used in households where heating
alone accounts for more than 50% [1]. Hot water is required for
taking baths and for washing clothes, utensils and other domestic
purposes in urban as well as in rural areas. Water is generally
heated by burning non-commercial fuels, namely, firewood as in
the rural areas and commercial fuels such as kerosene oil, liquid
petroleum gas (LPG), coal and electricity (either by geysers or
immersion heaters) in urban areas [2]. In this regard, utilization of
solar energy through solar water heating (SWH) systems plays a big
role in the quantity of conventional energy required [3]. Solar water
heaters therefore have significant potential to reduce environ-
mental pollution arising from the use of fossil fuels [4].

* Corresponding author. Department of Civil and Structural Engineering, School
of Civil and Building Services, Dublin Institute of Technology, Bolton Street, Dublin
1, Ireland.

E-mail address: lacour.ayompe@dit.ie (L.M. Ayompe).
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Solar water heaters are the most popular means of solar energy
utilization because of technological feasibility and economic
attraction compared with other kinds of solar energy utilization.
Solar water heater technology has been well developed and can be
easily implemented at low cost [5].

Almost all solar water heating systems used in temperate
climates are active systems that make use of pumps to circulate the
heat transfer fluid. These systems commonly use flat plate or
evacuated tube collectors, which absorb both diffuse and direct
solar radiation and function even under clouded skies. Water is
heated in the collectors and a pump is used to circulate a water
glycol mixture used as the heat transfer fluid. A solar controller
triggers the pump when the difference between the temperature of
water at the bottom of the tank and the heat transfer fluid at the
outlet from the collector exceeds a set value. A solar coil at the
bottom of the hot water tank is used to heat water. This fluid has
some desirable properties such as low freezing and high boiling
points. Their ease of operation and low cost makes them suitable
for low temperature applications below 80 °C. An auxiliary heating
system is used to raise the water temperature during periods when
there is less heat available from the solar collector.

Temperate climates are those without temperature extremes
and precipitation (rain and snow) with changes between summer
and winter being generally refreshing without being frustratingly

Please cite this article in press as: L.M. Ayompe, et al., Validated TRNSYS model for forced circulation solar water heating systems with flat plate
and heat pipe evacuated tube collectors, Applied Thermal Engineering (2011), doi:10.1016/j.applthermaleng.2011.01.046
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Fig. 1. Evacuated tube and flat plate collectors.

extreme. A temperate weather however, can have a very change-
able weather in both summer and winter. One day it may be
raining, the next it may be sunny. These climates are located in
zones in the range of latitudes between 40 and 60/70°North.

Solar water heating collectors have been studied both experi-
mentally and theoretically by a number of researchers. Azad [6]
investigated the thermal behaviour of a gravity assisted heat pipe
solar collector experimentally and theoretically using the effec-
tiveness-NTU method. Hussein [7] developed and validated
a simulation model for a wickless heat pipe flat plate solar collector
with a cross flow heat exchanger. Riffat et al. [8] constructed a thin
membrane flat plate heat pipe solar collector and developed an
analytical model that was used to simulate heat transfer processes
occurring in the collector and calculate its efficiency. Bong et al. [9]
presented a validated theoretical model to determine the efficiency,
heat removal factor, and outlet water temperature of a single
collector and an array of flat plate heat pipe collectors. Ezekwe [10]
analysed the thermal behaviour of solar energy systems using heat
pipe absorbers and compared them with systems using conven-
tional solar collectors. Boji¢ et al. [11] modelled and simulated the
performance of a forced circulation solar water heating system
using a time marching model.

Most of the studies carried out on solar water heating systems
have been focused on solar collectors rather than the complete
systems with very few studies reported in literature. However,
several researchers have carried out studies on hybrid PV-thermal
systems as reported in Kalogirou [12]. He modelled and simulated
the performance of a hybrid PV-thermal solar system using TRNSYS
and typical meteorological year (TMY) conditions for Nicosia,
Cyprus.

Hotwatercylinders,

e

controllers, pump stations
and monitoring kit

Fig. 2. In-door installation of the experimental rig.
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Fig. 3. Schematic diagram of a heat pipe evacuated tube collector.

The objective of this paper is to develop a TRNSYS simulation
model for forced circulation solar water heating systems with flat
plate and heat pipe evacuated tube collectors and validate the
model using measured field performance data. The validated model
will be useful for long-term performance simulation under
different weather and operating conditions. The model could also
be used for system optimisation under different load profiles.

2. System description

Typical solar water heating systems used in temperate climates
consist of a hot water storage tank, control unit, pump station and
either flat plate, evacuated tube or concentrating parabolic collec-
tors. The collectors used in this study were installed on a flat roof of
the Focas Institute building, Dublin Institute of Technology, Dublin,
Ireland. They were south facing and inclined at 53° equal to the
local latitude of the location. The hot water cylinders were installed
nearby in the building’s plant room. The solar circuits consisted of
12 mm diameter copper pipes insulated with 22 mm thick Class O
Armaflex. All pipe fittings were also insulated to reduce heat losses.
The solar circuit pipe lengths for the heat pipe evacuated tube
collector supply and return were 14 m and 15.4 m respectively,
while they were 14 m and 15.6 m respectively for the flat plate
collector system. Figs. 1 and 2 show pictures of the evacuated tube
and flat plate collectors as well as the in-door installations of the
experimental rig.

The evacuated tube collector was a Thermomax HP200 con-
sisting of a row of 30 heat pipe evacuated tubes and an insulated
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g. 5. Volume of hot water draw-off at different times of the day.

water manifold. The collector had an absorber surface of 3 m? and
the tubes had a vacuum level of 10~ mbar. These solar collectors
consist of a heat pipe inside a vacuum-sealed tube, as shown in
Fig. 3. The vacuum envelope reduces convection and conduction

losses, so the collectors can operate at higher temperatures than
FPC. Like FPC, they collect both direct and diffuse radiation.
However, their efficiency is higher at low incidence angles. This
effect tends to give ETC an advantage over FPC in day-long
performance [13]. Heat pipes are structures of very high thermal
conductance. They permit the transport of heat with a temperature
drop, which are several orders of magnitude smaller than for any
solid conductor of the same size. Heat pipes consist of a sealed
container with a small amount of working fluid. The heat is
transferred as latent heat energy by evaporating the working fluid
in a heating zone and condensing the vapour in a cooling zone, the
circulation is completed by return flow of the condensate to the
heating zone through the capillary structure which lines the inner
wall of the container [14,15].

The FPC system consisted of two K420-EMZ2L flat plate collectors
each with a gross area of 2.18 m? and aperture area of 2 m? con-
nected in series giving a total area of 4 m?% Each collector had
maximum operating and stagnation temperatures of 120 °C and
191 °C respectively, a maximum operating pressure of 10 bar and
fluid content of 1.73 L.

Each system was equipped with a 300 L stainless steel hot water
cylinder (model HM 300L D/coil U44332). The cylinder height and

Global in-plane solar
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Ambient air temperature
(TRNSYS Type l4e)

Wind speed
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> Flat plate collector <_|_|
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- Pipe duct
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Fig. 6. TRNSYS information flow diagram for the forced circulation solar water heating systems.
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Table 1 Table 3

Hot water cylinder parameters. Pump parameters.
Parameter Value Unit Parameter Value Unit
User specified inlet positions 2 Rated flow rate (FPC) 212 kghr~!
Tank volume 0.3 m3 Rated flow rate (ETC) 330 kghr!
Tank height 1.68 m Fluid specific heat capacity 3.708 kJkg 1 K1
Height of flow inlet 1 0.2 m Rated power 226.8 KkJhr!
Height of flow outlet 1 1.6 m
Fluid specific heat 419 Kkg~ ' K!
Fluid density 1000 kgm 3
Tank loss coefficient 03 Wm 2K a total volume of 200 L at 60 °C daily. It is based on the European
Fluid thermal conductivity 14 (‘)(Jhrfl m K Union mandate for the elaboration and adoption of measurement
Elo{l'“g temperature 100 N standards for household appliances EU M324EN [16]. Fig. 5 shows

eight of 1°' auxiliary heater 1 m .

Height of 1%t thermostat 15 m the recommended volume of hot water to be extracted at different
Set point temperature for element 1 60 °C times of the day.
Dead band for heating element 1 5 Delta C
Maximum heating rate of element 1 9900 KJhr!
Fraction of glycol 0.4 3. Modelling
Heat exchanger inside diameter 0.016 m
Heat exchanger outsiQe diameter 0.02 m 3.1. TRNSYS model
Heat exchanger fin diameter 0.02 m
Total surface area of heat exchanger 14 m?
Heat exchanger length 20 m The solar water heating system model was developed using
Heat exchanger wall conductivity 18 Kjhr~ m~' K transient systems simulation (TRNSYS) software, which is a quasi-
Heat exchanger material conductivity 18 Khr ! m K~ steady state simulation program. TRNSYS enables system compo-
Height of heat exchanger inlet 0.4 m ;
Height of heat exchanger outlet 03 m nents represented as proformas to be selected and interconnected

diameter were 1680 mm and 580 mm respectively, with an oper-
ating pressure of 3 bar. Each cylinder was fitted with two immer-
sion heaters of 2.75/3.0 kW capacity located at the bottom and
middle of the tank. The cylinders each had two heating coils with
surface areas of 1.4 m? and 21 kW rating. The bottom coil was used
by the solar heating circuit while the top coil was reserved for use
with auxiliary heating systems such as boilers.

A programmable logic controller (PLC) turned on the immersion
heaters between 5 and 8 am and 6—9 pm daily just before the two
peak hot water draw-offs. Analogue thermostats placed at the top
of the hot water cylinders were set to turn-off the electricity supply
to the immersion heaters when the temperature of water at the top
of the tank exceeded 60 °C. Fig. 4 shows a schematic diagram of the
solar water heating systems.

Hot water was dispensed using solenoid valves that were
opened and closed using signals from the PLC. Pulse flow metres
(1 pulse per litre) installed at the end of the solenoid valves were
used to count the number of litres of water extracted from the hot
water cylinders. The solenoid valves were closed when the required
volume of water was dispensed. The hot water demand profile
employed was the EU reference tapping cycle number 3, featuring
24 draw-offs with the energy output of 11.7 kWh equivalent to

Table 2
Solar collector parameters.

Parameter Unit FPC (Value) ETC (Value)
Number in series 2 1
Collector absorber area m? 3.95 3.021
Fluid specific heat KJkg ' K 3.708 3.708
Tested flow rate kghr—' m—2 80
Intercept efficiency 0.776 0.778
First order efficiency coefficient Khr!'m2K"' 1422 3.276
Second order efficiency coefficient kKhr'm2K? 0059 0.036
Maximum flow rate Kghr~! 212 330
Collector slope Degrees 53 53
Absorber plate emittance 0.7

Absorbance of absorber plate 0.8

Number of covers 1

Index of refraction of cover 1.526

Extinction coefficient thickness product 0.28

in any desired manner to construct a system’s model. In order to
facilitate the selection of the system components, it is important to
develop an information flow diagram. The information flow
diagram for the models is shown in Fig. 6.

The main component of the model is the solar energy collector
which is either a flat plate collector (Type 73) or evacuated tube
collector (Type 538). Additional components to the model include:
Type 31 pipe duct, Type 60d hot water cylinder with 1 inlet and
1 outlet, Type 2b differential temperature controller, Type 110
variable speed pump, Type 14 forcing functions, Type 65 online
plotter and Type 28b simulation summary. Type 14 forcing functions
were used several times in the model to input ambient air temper-
ature and mains water supply temperature (Type 14e), wind speed
(Type 14g), hot water demand profile (Type 14b), immersion heater
control signals and in-plane solar radiation (Type 14h). Tables 1, 2
and 3 show values of parameters for the hot water cylinder, solar
collectors and pump respectively used in the TRNSYS model.

3.2. Weather data

Weather for three days notably clear sky in summer (02/06/
2009), intermittent cloud cover in autumn (25/11/2009) and
heavily overcast in winter (20/01/2010) were chosen to represent
different weather conditions prevalent in Ireland. These data were

30 ——=Windspeed ~—— Ambient air temperature ~ ===Solar radiation 3,500
3.000
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Fig. 7. Solar radiation, wind speed and ambient air temperature.
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Fig. 8. Solar fluid mass flow rate for the FPC and ETC systems.

used as inputs of the TRNSYS model. Fig. 7 shows plots of mean
hourly values of solar radiation, ambient air temperature and wind
speed. The maximum hourly values of in-plane solar radiation were
3234 kjm~2, 1463 kJm~2 and 745 kJm~2 during the three days. The
maximum hourly ambient air temperatures were 25.0 °C, 9.9 °C
and 8.0 °C while the maximum wind speeds were 3.1 ms~ ',

14.6 ms~! and 8.7 ms~! respectively.

3.3. Mass flow rate

Fig. 5 shows plots of the measured solar fluid mass flow rate for
the FPC and ETC systems. It is seen that the solar fluid mass flow
rate was 212.4 kghr~', 85.8 kghr~! and 61.5 kghr~! for the FPC
system and 300.2 kghr~!, 151.5 kghr~! and 54.9 kghr~! for the ETC
system during the clear sky, intermittent cloud covered and heavily
overcast days respectively. For both systems the solar fluid mass
flow rate shows clear dependence on the level of solar radiation.

The variable speed pump (TRNSYS Type 110) operates on an on/
off sequence running at the maximum rate flow rates of 212 kghr~!
and 330 kghr~! for the FPC and ETC systems respectively when on.
This does not take into account the variable nature of the solar fluid
mass flow rates shown in Fig. 8. The solar fluid mass flow rate was
therefore modelled to reflect real-time operation of the actual
pump. The fluid mass flow rate was seen to vary linearly with
in-plane solar radiation and was modelled following the expression
shown in Eq. (1).

r'nf:aGH—b (1)

where, a and b are empirical coefficients with values of 0.0623 and
—2.1394 for the FPC system and 0.0976 and 2.059 for the ETC
system determined using measured data. The correlation coeffi-
cients (R%) for the FPC and ETC systems were 0.97 and 0.93
respectively. The solar fluid mass flow rate model in Eq. (1) was
incorporated into the TRNSYS model using the equation proforma.

3.4. Heat collected

The useful energy collected by the solar energy collector is given
as [17]:

Table 4
PMEA and PME for collector outlet temperature (Tc,), heat collected by the collector
(Qcon) and heat delivered to the load (Qipad)-

PMAE PME

Teo Qeont Quoad Teo Qeont Quoad
FPC 16.9 14.1 6.9 -9.7 7.6 6.9
ETC 18.4 16.8 7.6 13.7 124 7.6

80

70 ~,

60

25/11/2009

20/01/2010

Collector outlet temperature for FPC system (° C)
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Fig. 9. Measured and modelled collector outlet temperature for FPC system.
Qeont = MeCpe(Ty —Tg) (2)

3.5. Heat delivered

The heat delivered by the solar water heating system to the load
was calculated as

Qload = mwcprS,avg (3)

3.6. Hot water demand

Since the hot water tanks used in this study are pressurised, the
hot water demand profile shown in Fig. 5 was modelled using two
TRNSYS Type 14e forcing functions each representing the mains
water supply profile and temperature respectively. The outputs
from the forcing functions were then combined using a TRNSYS
equation proforma that had as output the mains water supply
profile and temperature.

3.7. Model validation

In order to quantify variations between predicted and measured
values, percentage mean absolute error (PMAE) and percentage
mean error (PME) were used. PMAE evaluates the percentage mean
of the sum of absolute deviations arising due to both over-esti-
mation and under-estimation of individual observations. The PME
evaluates the percentage mean of the sum of errors of individual
observations. A negative value of PME indicates a net underesti-
mation while a positive value indicates a net overestimation of the
modelled values. PMAE and PME are given in Eqgs. 4 and 5 as:
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Fig. 10. Measured and modelled collector outlet temperature for ETC system.
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Fig. 11. Measured and predicted heat collected by the FPC system. Fig. 13. Measured and modelled heat delivered to load by FPC system.
4.1. Collector outlet temperature
100 {4 |G — M .
PMAE = Tz‘ll\/lil‘ (4) Fig. 9 shows plots of measured and modelled collector outlet
i=1 ! temperature (Tc,) for the FPC system. It is seen that the modelled
and values follow the same trend as the measured values. The model
however overestimated T., during the bright sunny day (02/06/
100 M C — ML 2009) while it underestimated same during the other two days.
PME = N Z ! M ! (5) Fig. 10 shows plots of measured and modelled values of T, for the

i=1 1

N is the total number of observations while C; and M; are the ith
calculated and measured values, respectively.

4. Results and discussions

Table 4 presents percentage mean absolute errors (PMAE) and
percentage mean error (PME) for collector outlet temperature (T¢,),
heat collected by the collector (Qcop) and heat delivered to the load
(Qioad) for both the FPC and ETC systems. The results show that the
model performed slightly better in all six cases for the FPC system.
It however, predicted Qjoaq for the FPC system with the least PMAE
of 6.9% while it predicted T, for the ETC system with the highest
PMAE of 18.4%. The negative value of PME for the FPC indicates an
underestimation of T, by the model.

Much of the discrepancies between the simulated and experi-
mental results can be attributed to experimental errors which are
a function of the accuracy of the measurement devices used. Also,
the existing TRNSYS proformas for evacuated tube collectors might
not be fully representative of heat pipes. Detailed plots of the
results are presented in Sections 4.1—4.3.
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Fig. 12. Measured and modelled heat collected by the ETC system.

ETC system. Again it is seen that the modelled values follow the
same trend as the measured values. The model however, over-
estimated T, during all three days.

4.2. Heat collected

Fig. 11 shows plots of measured and modelled heat collected
(Qcon) by the FPC. It is seen that the modelled values follow the same
pattern as the measured values. The model slightly overestimated
Qcoi1 on the bright sunny day (02/06/2009) and underestimated Qcoj
during the other two days. Fig. 12 shows plots of measured and
modelled heat collected (Qcop) by the ETC. It is seen that the
modelled values follow the same pattern as the measured values.
The model slightly underestimated Qo on the bright sunny day (02/
06/2009) and overestimated Q.o during the other two days.

The high discrepancy between the modelled and measured Qo
for the ETC system was as a result of the nature of operation of the
heat pipe evacuated collector which has two different circuits. The
evaporation and condensation cycle of the primary heat transfer
fluid in the primary circuit as well as heat removal through the
secondary circuit causes the pump to intermittently switch on and
off in quick succession. This sometimes results in energy loss from
the hot water tank thereby reducing the net energy collected.
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Fig. 14. Measured and modelled heat delivered to load by ETC system.
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4.3. Heat delivered to load PMAE percentage mean absolute error (%)
PME percentage mean error (%)
Figs. 13 and 14 show plots of measured and modelled heat Qcoll heat collected by solar collector (kJ)
delivered to the load for the FPC and ETC systems. It is seen that the Qioad heat delivered to load (kJ)
model predictions for both the FPC and ETC systems closely fol- Ty solar fluid temperature at collector outlet (K)
lowed the same trend as the measured heat delivered to the load Ts solar fluid temperature at collector inlet (K)

during the three days with the model slightly overestimating the
quantity of heat delivered to the load.

5. Conclusions

A TRNSYS model was developed for forced circulation solar
water heating systems with flat plate and heat pipe evacuated tube
collectors. The model was validated using field trial data for
systems installed in Dublin, Ireland. Results obtained showed that
the model predicted the collector outlet fluid temperature with
percentage mean absolute error (PMAE) of 16.9% and 18.4% for the
FPC and ETC systems respectively. Heat collected and delivered to
the load was also predicted with PMAE of 14.1% and 6.9% for the FPC
system and 16.9% and 7.6% for the ETC system respectively. The
model underestimated the collector outlet fluid temperature by
—9.6% and overestimated the heat collected and heat delivered to
load by 7.6% and 6.9% for the FPC system. The model overestimated
all three parameters by 13.7%, 12.4% and 7.6% for the ETC system.

The validated TRNSYS model can be used to:

e Predict long-term performance of the solar water heating
systems in different locations

e Simulate system performances under different weather and
operating conditions

e Optimise solar water heating system sizes to match different
load profiles.

Nomenclature

Cof specific heat capacity of solar fluid (kjkg~! K1)
Cpw specific heat capacity of water (kjkg~! K1)
ETC evacuated tube collector

FPC flat plate collector

Gt in-plane solar radiation (kjm~2)

i solar fluid mass flow rate (kghr!)

My water mass flow rate (kghr—!)

Ts avg average hot water temperature delivered to load (K)
TRNSYS transient systems simulation
SWH solar water heating
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