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STUDY OF SAME-LANE AND INTER-LANE GVW CORRELATION 
 
B. Enright, Department of Civil & Structural Engineering, Dublin Institute of Technology, Dublin, Ireland 
E.J. OBrien & C.C. Caprani, School of Architecture, Landscape and Civil Engineering, University College 
Dublin, Ireland 
 

ABSTRACT 
 

Extensive work has been done over the last two decades on the simulation of traffic loading on bridges. 
The methodology used is to generate a number of years of simulated traffic and to use extreme value 
statistics to predict more accurately the characteristic loading for a given bridge. The parameters and 
probability distributions used in the Monte Carlo simulation must be based on observed sample traffic 
data. Some previous studies have made unsubstantiated assumptions regarding correlation between the 
Gross Vehicle Weights (GVW) of trucks in the same lane, or between trucks in adjacent, same-direction 
lanes.  
For this paper, an extensive database of Dutch Weigh-in-Motion data is analysed. Data are collected from 
two same-direction lanes and are time-stamped to the nearest 0.01 seconds. The statistical characteristics 
of this set of data are presented, and various techniques are used to establish the nature and extent of 
GVW correlation. 

 
1. INTRODUCTION 
 
1.1 BACKGROUND 
 
It is well established that traffic loading on many 
road bridges is considerably less than for the 
network at large or for roads of the class in which 
the bridge is located. This can be very useful when 
bridges fail a capacity assessment by a small 
margin, as it may cause the bridge to be retained 
where it otherwise would have needed to be 
repaired or replaced. Therefore the load 
assessment of existing highway bridges is an area 
where great savings in maintenance budgets are 
possible. 
 
For 2-lane bridges with traffic travelling in 
opposing directions, the traffic streams in each 
direction can be assumed to be statistically 
independent. Where there are same-direction lanes 
on the other hand, vehicles may be coming from 
the same source and their weights may be 
correlated. For example, there is anecdotal 
evidence of the existence of overweight convoys 
such as a crane and a truck carrying its kentledge. 
Conversely, on such bridges, it is reasonable to 
expect that only lighter trucks occur in the 
overtaking lane, due to better mechanical 
performance. 
 
For this paper, an extensive database of Dutch 
Weigh-in-Motion data is analysed. 
 

 
1.2 SOURCE DATA 
 
The Dienst Weg- en Waterbouwkunde (DWW) 
office of the Dutch Ministry of Transport  
maintain Weigh-in-Motion (WIM) sensors on the 
three westbound lanes of the A12 motorway near 
Woerden in central Holland. Data for truck traffic 
in the two inner lanes for the 20 week period from 
7th February to 25th June, 2005 were made 
available to the Bridge and Transport 
Infrastructure Group in the School of Architecture, 
Landscape & Civil Engineering in University 
College Dublin. No data were supplied for the 
outer lane which only vehicles shorter than 7 m 
are legally permitted to use. 
 
The data were supplied in a series of files. One set 
of files contained the following data for a total of 
725 897 trucks: 
 
• Vehicle number (unique identifier) 
• Date 
• Time (to nearest second) 
• Speed 
• Lane 
• Category (type of truck) 
• Length 
• Individual Axle loads, the sum of which is the 

Gross Vehicle Weight (GVW). 
• Axle spacings 
 

zao
ASRANet stamp



These data files were loaded into a database. A 
second set of log files contained almost 20 million 
records for many different types of events related 
to the operation of the WIM sensors. Among these 
were time stamps to the nearest 0.01 seconds for 
each truck as opposed to the nearest second in the 
original data file. Such accurate time stamps are 
essential for the modelling of the gaps that occur 
between same-lane trucks. These time stamps 
were extracted from the log files and stored with 
the other truck data by using relational database 
join operations.  
 
 
1.3 DATA CLEANING 
 
Data quality issues were identified in consultation 
with DWW, and the original list of trucks was 
reduced by eliminating unreliable readings. The 
criteria used were: 
 
• The time stamp for the truck should be also 

recorded in the log file so that the more 
accurate time stamps (to 0.01 s) are available. 
For various operational reasons, 61 554 trucks 
had not been recorded in the log files, and were 
excluded from the analysis. 

• The recorded speed should be between 60 and 
120 km/h inclusive. Axle weights for trucks 
travelling at speeds outside this range are not 
considered to be reliable. This resulted in the 
exclusion of a further 15 839 trucks. 

• The number of axles should be two or more. 
Some “zero-axle” and “single-axle” trucks were 
mistakenly registered by the WIM sensors. This 
resulted in the exclusion of a further 79 trucks. 

• The GVW should be 3.5 t or greater. 200 trucks 
in the original list were mistakenly registered 
by the WIM sensors as having zero GVW, but 
all of these had already been excluded by 
applying the first three conditions above. 

 
The number of trucks was thus reduced from 
725 897 to 648 425. Of these, 598 292 (92.3%) 
were in the inner slow lane, and 50 133 (7.7%) 
were in the overtaking “fast” lane. All subsequent 
analysis described herein was carried out on this 
reduced set of clean data.  
 
 
 

2. KEY CHARACTERISTICS OF DATA 
 
2.1 GROSS VEHICLE WEIGHT (GVW) 
 
2.1. (a) Overall GVW 
 
Two histograms of GVW distribution in the slow 
lane are shown below – for 0 t to 60 t (tonnes) in 
Figure 1a, and for 60 t to 170 t in Figure 1b using 
a magnified vertical scale. The first histogram 
supports the often-used assumption of a bimodal 
Normal distribution, with one peak at 16 t and a 
second peak for fully loaded trucks at 36 t. The 
legal limit for trucks in the Netherlands is 50 t, 
with a limit of 11.5 t for an individual driven axle.  
Special permits are required for heavier trucks [1]. 
It is interesting to note the significant tail of very 
heavy trucks in the second histogram which 
supports the view [2] that different models must 
be used for the general population of trucks and 
for the tail of very heavy trucks. As would be 
expected, the tail of heavy trucks in the fast lane 
(not shown here) is much smaller, with just 89 
trucks over 60 t, compared with 1 750 in the slow 
lane, and the heaviest truck observed in the fast 
lane is 90 t, compared with 166 t in the slow lane. 
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Figure 1a. GVW Distribution 0 t to 60 t – Slow Lane 
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Figure 1b. GVW Distribution – 60 t to 170 t – Slow Lane 
 



To illustrate the nature of the very heavy trucks, a 
summary of all trucks with GVW of 140 t or 
greater is shown in Table 1 (all are in the slow 
lane).  

Table 1. All trucks over 140 t 

GVW 
(t) 

Number of 
Axles 

Wheelbase 
(m) 

Speed 
(km/h) 

166 12 28.7 78 
165 12 27.3 85 
152 13 28.4 80 
150 12 28.8 79 
148 13 19.5 76 
147 12 28.8 81 
146 13 36.6 76 
145 11 24.8 82 
145 13 29.4 80 
143 12 28.8 77 
140 13 28.3 84 
140 13 28.2 86 

 
 
2.1. (b) GVW by number of axles 
 
Further analysis of the GVW distribution is shown 
in Figure 2 for 5-axle trucks and in Figure 3 for 9-
axle trucks. These illustrate the fact that whereas 
the distribution of 5-axle trucks is well-behaved, 
the distribution becomes more fragmented as the 
number of axles increases. This can be attributed 
to both sparseness of data and the non-standard 
nature of trucks with high numbers of axles. 
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Figure 2. GVW Distribution - 5-axle trucks (249 303 
vehicles) 
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Figure 3. GVW Distribution – 9-axle trucks (646 vehicles) 
 
2.1. (c) Hourly GVW variations. 
 
There are significant variations in truck weight 
over the 24 hours each day in both lanes, as can be 
seen in Figure 4. The average GVW shows a sharp 
peak of 24 t in the slow lane in the early morning 
between 03:00 and 04:00. The daily maximum 
average hourly flow (not shown here) also occurs 
around 04:00 – at 353 trucks per hour in the slow 
lane, and 44 trucks per hour in the fast lane. The 
average weight dips to 20 t by 06:00, and rises 
back up to nearly 24 t by 18:00. This reflects 
patterns of commercial activity in the area.  In the 
fast lane, the variation is even more dramatic, 
from a peak average of over 22 t at 03:00 to under 
16 t at 21:00. This hourly variation in GVW gives 
rise to positive correlation between the weights of 
trucks travelling at around the same time of day. 
This point is discussed in more detail in Section 
3.2. 
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Figure 4. Hourly GVW  

 
 
 



2.2 HEADWAY  
 
Trucks are assigned a time stamp based on the 
point when the first axle is detected by the WIM 
sensors. The inter-axle spacings are recorded, and 
these can be summed to give the wheelbase for the 
vehicle. The overall length of the body of the truck 
is also measured by inductive loop detectors. The 
gaps between successive trucks in the same lane 
can be measured in different ways. Headway is 
defined as the time gap in seconds between the 
first axle of the leading truck and the first axle of 
the following truck [3]. The headway between 
vehicles has been used in many studies [4] as the 
basis for generating simulated traffic arriving on a 
bridge. The gap may also be measured as the time 
between the rear axle of the leading truck and the 
front axle of the following truck. Driver behaviour 
is related to the clear gap between the bodies of 
the two trucks. However, the measurement of 
bumper to bumper truck body lengths is not 
particularly reliable, and this lack of reliability is 
evident in the analysed data.  
 
Figure 5 shows the distribution of headways in the 
range from zero to 4 seconds. A commonly used 
assumption [5] is that the coincidence of a number 
of very heavy trucks in free-flowing traffic 
represents the critical loading for bridges of 
relatively short spans (up to perhaps 45 m), 
whereas for longer spans congested traffic is more 
likely to produce the critical loading.  A vehicle 
travelling at 80 km/h travels 89 m in 4 seconds, 
and in the bridge spans of interest (below 45 m) 
trucks separated by longer headways will not be 
on a bridge at the same time. Critical multi-truck 
bridge loading events happen when the headways 
are very small. Of particular interest in the 
distribution shown here is the small peak between 
0.4 and 0.6 seconds. Previous studies [6] have 
reported that the headway distribution drops to 
zero around 0.7 s, whereas these results indicate a 
small but significant number of apparently 
“tailgating” trucks. It is possible that this is a 
result of some inaccuracies in the recording of the 
gaps, and this is currently the subject of further 
investigation.  The peak includes trucks of all 
weights and, should it prove to be true, is likely to 
be a key issue for bridge loading. The distribution 
is otherwise very similar to what has been used in 
recent studies [6] – a negative exponential 

distribution from 4 s upwards, with a range of 
polynomial curves fitted to the data between 0.7 s 
and 4 s. 
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Figure 5. Headway distribution – Slow lane 

 
3. GVW CORRELATION 
 
3.1 CONTOUR PLOTS 
 
The relationship between the leading truck GVW 
and the following truck GVW in all truck pairs is 
analysed for trucks travelling together in the same 
lane, and for pairs of trucks travelling beside each 
other in both lanes. The statistical model used here 
is the bivariate bimodal Normal distribution. The 
joint probability density function for this 
theoretical distribution is shown in both 3-D form 
in Figure 6a and as a contour plot in Figure 6b 
which show contours of constant probability 
density. Both of these use the GVWs of leading 
and following trucks in the same lane as the two 
variables, and are based on zero correlation.   
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Figure 6a.  Bivariate bimodal Normal joint probability 
density 
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Figure 7b.  Bivariate bimodal Normal Contour plot 

 
If linear correlation is introduced into the 
theoretical data by means of simulation, the shape 
of the contour plot changes. This is particularly 
noticeable for pairs of heavy leading and heavy 
following trucks where the contours become 
elliptical rather than circular (“heavy” is defined 
for the purpose of this study as over 25 t). This can 
be seen in Figure 7 where the data have a 25% 
coefficient of linear correlation. 
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Figure 7.  Contour plot – 25% correlation 

 
The contour plot for the slow lane at Woerden is 
shown in Figure 8. This shows that the heavy-
heavy zone in the slow lane has a distinctly 
elliptical shape, which indicates correlation 
between heavy trucks travelling together in the 

slow lane. Similar plots for the fast lane and for 
inter-lane traffic do not show the same pronounced 
elliptical shape, and this supports the analysis in 
Sections 3.2 and 3.3. 
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Figure 8. Contour plot – Slow Lane 
 
3.2 AUTOCORRELATION – SAME LANE 
 
Autocorrelation is used in the analysis of time 
series in areas such as economics [7] and signal 
processing. The term autocorrelation (or serial 
correlation) denotes the correlation of a random 
variable with a time-shifted version of itself. A 
typical time series contains observations of a 
random variable X at equally spaced time intervals. 
The value of the random variable at each time t, Xt, 
is compared with the value of the variable at time 

st − , Xt-s, where s is some time lag. The 
coefficient of correlation is then calculated as a 
function of the time lag s, and this is referred to as 
the autocorrelation function: 
 

( ) ( )( )[ ]
stt

ststtt XXE
s

−

−− −−
=

σσ
µµ

ρ  (1) 

 
A series of truck GVWs can be considered as a 
time series at randomly spaced time intervals. In 
this study, the autocorrelation function is 
calculated using the variable “number of trucks 
apart” instead of a time lag. The coefficients of 
correlation are calculated between the weight of 
each truck (the leading truck) and the truck 
following it, between the leading truck and the 



second truck behind it, between the leading truck 
and the third truck behind it and so on. The results 
of this are shown for all trucks in the slow lane in 
Figure 9. 
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Figure 9. Autocorrelation – Slow Lane 

This shows that there is an underlying correlation 
of about 2.0% between trucks travelling at the 
same time of day, and that there is significantly 
more correlation (5.1%) between pairs of 
consecutive trucks. The underlying correlation can 
be attributed to the hourly variation in GVW 
shown earlier in Figure 4, and also to some form 
of platoon effect whereby heavy trucks tend to be 
found travelling in groups. Corresponding 
correlation coefficients for the fast lane are 7.6% 
(underlying) and 9.7% (pairs). Further analysis 
shows that the correlation in the fast lane is mainly 
due to lighter trucks. In both lanes, trucks 
travelling very close together (less than 4 s apart) 
show higher pair correlation (8.7% in the slow 
lane and 12.4% in the fast lane). 
 
3.3 AUTOCORRELATION – INTER-LANE 
 
For inter-lane autocorrelation, a different approach 
is used in calculating the time lag. Each truck in 
the fast lane is compared first with each truck 
beside it in the slow lane. “Beside” is defined as a 
truck in the slow lane within 4 seconds in front or 
behind the one in the fast lane. This generates a 
number of truck pairs.  The time interval is then 
widened to a range of time intervals to provide the 
autocorrelation function. The results are shown in 
Figure 10. This shows an underlying correlation of 
2.1% and a pair (under 4 s) correlation of 4.0%. 
Again, this shows significant additional 
correlation for pairs of trucks travelling beside 
each other. This may be attributable to trucks 
which are travelling together overtaking one 

another.  Average overtaking times for cars has 
been measured as approximately 8 seconds [8].  
Trucks are substantially longer than cars and their 
relative velocity in overtaking may be lower.  An 
estimate of 20 to 30 seconds overtaking time 
might be considered reasonable for trucks, and this 
lends support to the suggestion that overtaking 
may explain the shape of the autocorrelation 
function for inter-lane traffic. 
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Figure 10. Autocorrelation – Inter-lane 

A more detailed analysis is done to establish 
whether pair correlation is influenced by the 
absolute weights of both trucks. For different 
weight thresholds, correlation coefficients are 
calculated for pairs of truck where both trucks 
exceeded the threshold. A 95% confidence interval 
for the population correlation coefficient (ρ) is 
calculated using the method described in [9,10]. 
The confidence interval depends on both the 
number of data points (N) and on the calculated 
estimate for the coefficient (r). A transformed 
variable z is defined as: 

r
rz e −

+
=

1
1log

2
1   (2) 

The variable z is approximately Normally 
distributed with mean and standard deviation: 

ρ
ρµ

−
+

=
1
1log

2
1

ez  (3) 

3
1
−

=
N

zσ   (4) 

Using these, a 95% confidence interval for z and 
hence r can be calculated.  There is a requirement 
that the two random variables for which the 
coefficient of correlation is being calculated 
should be at least approximately possess a joint 
Normal distribution [9], and this is the case here, 
particularly when correlation is being calculated 
for pairs of heavy trucks or pairs of light trucks. 



The data become sparse as the weight threshold 
increases, particularly when the much lower traffic 
volumes in the fast lane are being analysed, and as 
a result the calculated coefficients become 
unreliable for higher weight thresholds. The 
results are shown in Figure 11. The data point 
plotted here for zero GVW is the coefficient of 
correlation between pairs of light trucks (where 
both are under 25 t). The 95% confidence interval 
for the slow lane is also shown.  For the fast lane 
and inter-lane data, the lower bound of the 
confidence interval drops below zero for weight 
thresholds above 35 t.  It is clear that there is a 
sharply increasing correlation between pairs of 
trucks in the slow lane as the weights of both 
trucks increase.  This corresponds to the distinctly 
elliptical shape evident in the contour plot in 
Figure 8 above.  This is likely to be significant for 
the prediction of critical bridge loading. 
 

0%

10%

20%

30%

40%

50%

60%

70%

 0  10  20  30  40  50  60

GVW threshold (t)

C
oe

ffi
ci

en
t o

f c
or

re
la

tio
n

Slow Fast Inter-Lane

Slow  Upper Bound Slow  Low er Bound
 

Figure 11.  Correlation versus weight threshold 
 
4. CONCLUSIONS 
 
A set of traffic data covering almost 650 000 
trucks over a 20 week period at the Woerden site 
has been analysed. 
 
Some interesting characteristics are identified in 
the data which will have significant implications 
for future traffic simulations for bridge loading. 
These include the number of extremely heavy 
trucks (up to 166 t), and the possible tailgating 
behaviour of some trucks. 
 
Significant correlation is found between the 
weights of pairs of trucks. This is particularly true 
for pairs of very heavy trucks in the slow lane.  
The nature of the correlation for fast lane and 
inter-lane traffic  is quite different from the slow 

lane. Further work is needed to quantify the 
significance of all types of correlation for bridge 
loading.   
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