
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference papers School of Mathematics and Statistics 

2008-4 

Numerical Modeling of Weakly Ionized Plasmas Numerical Modeling of Weakly Ionized Plasmas 

Stephen O'Sullivan 
Technological University Dublin, stephen.osullivan@tudublin.ie 

Turlough Downes 
Dublin City University 

Follow this and additional works at: https://arrow.tudublin.ie/scschmatcon 

 Part of the Astrophysics and Astronomy Commons 

Recommended Citation Recommended Citation 
O'Sullivan, S. & Downes, T. (2008). Numerical Modeling of Weakly Ionized Plasmas. ASP Conference 
Series, vol. 385. doi:10.21427/hvd8-qz20 

This Conference Paper is brought to you for free and open access by the School of Mathematics and Statistics at 
ARROW@TU Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of 
ARROW@TU Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschmatcon
https://arrow.tudublin.ie/scschmat
https://arrow.tudublin.ie/scschmatcon?utm_source=arrow.tudublin.ie%2Fscschmatcon%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/123?utm_source=arrow.tudublin.ie%2Fscschmatcon%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


**FULL TITLE**
ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION**
**NAMES OF EDITORS**

Numerical modeling of weakly ionized plasmas.

Stephen O’Sullivan

UCD School of Mathematical Sciences, University College Dublin,
Dublin 4, Ireland

Turlough P. Downes

School of Mathematical Sciences, Dublin City University, Glasnevin,
Dublin 9, Ireland
National Centre for Plasma Science and Technology, Dublin City
University, Glasnevin, Dublin 9, Ireland

Abstract.
Multifluid magnetohydrodynamics is not a well explored field of numerical

astrophysics. The reasons for this have been largely pragmatic due to the inher-
ent difficulties of applying conventional numerical methods; explicit techniques
range in efficiency from low to none, and implicit techniques are notoriously
problematic for codes which rely on distributed architectures and adaptive mesh
refinement (AMR) as is de rigeur for modern large scale simulations.

In this paper, a novel explicit technique is presented which does not suffer
the same strong efficiency constraints as conventional explicit methods. The
symmetric and skew-symmetric components of the multifluid diffusion operator
are multiplicatively operator split and integrated via an accelerated substepping
scheme, and an unconditionally stable explicit method respectively. Crucially,
unlike implicit methods, the technique is also easily implemented in existing
AMR driven and parallelised code frameworks.

1. Introduction

In a weakly ionized plasma the bulk mass of the gas is in the neutral component.
Under conditions typical of many astrophysical environments the pressure and
inertia of the charged species in the gas may be neglected. In order to expedite
the discussion of the numerical method, we assume an isothermal three-fluid
plasma, with no mass transfer between species. These restrictions are easily
relaxed as described in (O’Sullivan & Downes 2006, 2007, hereafter OSD06 and
OSD07 respectively).

The importance of magnetic forces on each charged species, relative to colli-
sional drag on the neutral gas, is parametrized by the Hall parameter βz ≡ αzB

Kzρn
,

where the subscripts n, e, i indicate properties relating to the neutral gas, elec-
trons, and ions respectively and z represents the charged species index e or i.
αz are the charge-to-mass ratios and and Kz are the collisional coefficient with
respect to the neutral gas of charged species z.

The diffusion of the magnetic field through the bulk plasma may occur in
one of three different regimes according to the relative magnitudes of the Hall
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2 O’Sullivan and Downes

parameters: βi ≪ |βe| ≪ 1 indicates the Ohmic regime where the charged
species are decoupled from the magnetic field; 1 ≪ βi ≪ |βe| corresponds to the
ambipolar regime where the charged species are tightly coupled to the field; and
βi ≪ 1 ≪ |βe| describes the Hall regime where the electrons are tied to the field
lines but the ions are not.

In protostellar disks, for example, Wardle (2007) concludes that each of
these regimes may be present itself. It is therefore crucial to our understanding of
star and planet formation to properly treat multifluid processes in weakly ionized
plasmas. Problematically, it has been pointed out that conventional explicit
techniques are inappropriate in treating such systems (Falle 2003, hereafter F03).

2. Multifluid equations

The equations governing a three-fluid isothermal plasma are

∂ρx

∂t
+ ∇ · (ρxqx) = 0, (1)

∂ρnqn

∂t
+ ∇ ·

(

ρnqnqn + a2ρnI
)

= J × B, (2)

αzρz (E + qz × B) + ρzρnKz(qn − qz) = 0, (3)

∂B

∂t
+ ∇ · (qnB − Bqn) = −∇× E′, (4)

where physical quantities are represented by the usual symbols and x is one of
n, e, i and

E′ = E + qn × B = rOJ‖ + rHJ⊥ × B̂ + rAJ⊥ (5)

is the electric field in the local rest frame of the bulk plasma and a is the
isothermal soundspeed.
The Ohmic (field parallel), Hall and ambipolar (Pedersen) resistivities are given
by

rO =
1

σO
, rH =

σH

σ2
H + σ2

A

, rA =
σA

σ2
H + σ2

A

, (6)

with related conductivities

σO =
N

∑

i=2

αiρiβi, σH =
1

B

N
∑

i=2

αiρi

1 + β2
i

, σA =
1

B

N
∑

i=2

αiρiβi

1 + β2
i

. (7)

Finally, conditions for a solenoidal field, and charge and current neutrality are
enforced via

∇ · B = 0,

N
∑

i=2

αiρi = 0,

N
∑

i=2

αiρiqi = J . (8)
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3. Numerical method

To obtain the full solution at time t + τ , standard finite volume integration
methods are applied to hyperbolic and source terms in the governing equations of
the neutral gas. The time integration is multiplicatively operator split with each
operation carried out to second order accuracy and Richardson extrapolation
invoked for second order temporal accuracy. For further details the reader is
referred to F03, SD06, SD07.

We now consider exclusively the ∇×E′ term on the right hand side of equa-
tion 4 and assume the Ohmic resistivity is negligible (which is often a reasonable
assumption but does not present significant difficulties otherwise). Then, mak-
ing the definitions aO ≡ √

rOb, aH ≡ rHb, aA ≡ √
rAb where b ≡ B/B, and

discarding higher order terms reduces equation 4 to

∂B/∂t = (aH · ∇)J + [aA · (∇× J)]aA − [(aA · ∇)J)] × aA. (9)

In order to examine the stability properties of explicit discretizations of
equation 9 we consider a numerical wave of the form Bl

i j k = B0exp[i (iωx + jωy + kωz)]
where l is the time index of the solution and i, j, k, are the x, y, z spa-
tial indices. This permits substitutions for simple centred difference approx-
imations to the second order spatial derivatives in equation 9 according to
∂2/∂x2 → Λx x ≡ −2(1− cos ωx), ∂2/∂x ∂y → Λx y ≡ − sin ωx sinωy, and similar
expressions for the other terms yielding

Bl+1 = (I − αrHAH − αrAAA)Bl (10)

where α = τ/h2, AA = bζ+ζb−tr(Λ)bb−bT ζI, and AH =





0 ζz −ζy

−ζz 0 ζx

ζy −ζx 0





with ζ ≡ Λb and b ≡ B/B.
In the limiting case of AH = 0, we find the eigenvalues of the corre-

sponding amplification matrix (I − αrAAA) are µ1 = 1 + αrAbT ζ and µ2, 3 =
1 + 1

2αrA[tr(Λ)± |tr(Λ)b− 2ζ|]. The spectral radius of the evolution operator is
then determined by considering ω = π(1, 1, 1) for arbitrary b. We find

τ̄ ≤ 1

2

√

1 + η2

η
for AH = 0 (11)

where τ̄ ≡ τ/τ⊥, τ⊥ = h2

2
√

r2

H
+r2

A

, and η ≡ rA/|rH|. While this timestep goes

as h2 as expected, the integration of symmetric operators can be accelerated
via Super TimeStepping (STS) (Alexiades, Amiez & Gremaud 1996, OSD06,
OSD07).

On the other hand, when AA = 0, (I − αrAAH) is unstable (F03, OSD06,
OSD07). Therefore, conventional explicit methods are inappropriate for prob-
lems for which there is a large Hall term. We circumvent this limitation without
resorting to implicit methods by a component-wise multiplicative operator split-
ting of (I − αrAAH) in an exploit of its skew-symmetry which we call the Hall
Diffusion Scheme (HDS) (see OSD07 for further details). The alternate evolution
operator, (I−αrHkkAH)(I−αrHjjAH)(I−αrHiiAH), has a finite spectral radius
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dictated by a maximum magnitude eigenvalue found at ω = (2π/3)(1, 1, 1) with

b = (1/
√

3)(1, 1, 1). We find

τ̄ ≤ 4√
27

√

1 + η2 (12)

.
Our strategy in general therfore is to multiplicatively operator split the

diffusion operator into symmetric and skew symmetric components and handle
these respectively via STS and HDS techniques.

4. Results

4.1. Oblique shock tube test

We present three one-dimensional shock tube tests oriented obliquely to the
coordinate axes. In each case the test is set up along the (1, 1, 1) direction in a
narrow channel on a cubic mesh with appropriate boundary conditions assigned
to cells outside the channel (see OSD07 for further details).

Case A: Ambipolar regime (rO = 2 × 10−12, rH = 1.16 × 10−5, rA = 0.068, η = 5.86 × 103)
R: ρn = 1 q

n
= (−1.751, 0, 0) B = (1, 0.6, 0) ρe = 5 × 10−8 ρi = 1 × 10−3

L: ρn = 1.79 q
n

= (−0.976,−0.656, 0) B = (1, 1.75, 0) ρe = 8.97 × 10−8 ρi = 1.79 × 10−3

αe = −2 × 1012 αi = 1 × 108 Ke = 4 × 105 Ki = 2 × 104 a = 0.1
ν = 0.05 NSTS = 5 NHDS = 0

Case B: Hall regime (rO = 2 × 10−9, rH = 0.0116, rA = 5.44 × 10−4, η = 0.046 ≪ 1)
R: As case A
L: As case A

αe = −2 × 109 αi = 1 × 105 Ke = 4 × 102 Ki = 2.5 × 106 a = 0.1
ν = 0 NSTS = 1 NHDS = 8

Case C: Neutral subshock (resistivities as in Case A)
R: ρn = 1 q

n
= (−6.72, 0, 0) B = (1, 0.6, 0) ρe = 5 × 10−8 ρi = 1 × 10−3

L: ρn = 10.4 q
n

= (−0.645,−1.09, 0) B = (1, 7.95, 0) ρe = 5.21 × 10−7 ρi = 1.04 × 10−2

αe = −2 × 1012 αi = 1 × 108 Ke = 4 × 105 Ki = 2 × 104 a = 1
ν = 0.05 NSTS = 15 NHDS = 0

Table 1. Shock tube test parameters. Right and left state values are de-
noted R and L.

In each test, with initial conditions described in Table 1, the solution ob-
tained using the dynamic code is compared with solutions obtained via the an-
alytical steady-state solutions. In all cases the agreement between the solutions
is good as can be seen in Figure 1. Cases A and B are found to have convergence
rates close to second order as expected for smooth solutions. The subshock in
the neutral flow of case C is clearly visible as a discontinuity in un, while there
is no corresponding discontinuity in By. As a result of the discontinuity, the
convergence is at first order.

4.2. Unforced and forced turbulence.

In this section, we briefly outline two additional tests of the numerical techniques
described here and refer to the reader to OSD07, and Tanner, O’Sullivan &



Numerical modeling of weakly ionized plasmas. 5

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

u

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

By

x

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

u

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.2  0.4  0.6  0.8  1  1.2

By

x

-7

-6

-5

-4

-3

-2

-1

u

 1

 2

 3

 4

 5

 6

 7

 8

 0.14  0.16  0.18  0.2  0.22  0.24  0.26

By

x

Figure 1. Neutral fluid x-velocity (top) and y-component of magnetic field
(bottom) for oblique shock tube test cases A (left), B (middle), and C (right).
The steady state solution is shown as a line.

Downes (in prep.) for a more complete description. In each case, the behaviour
of a turbulent magnetic field in a three-dimensional volume of a three-fluid
weakly ionized isothermal plasma is examined under different multifluid regimes.

In the first instance the turbulence is imposed as an initial condition under
ambipolar and Hall regimes. The left panel of Fig. 2 shows the density power
spectra of the initially uniform gas after 5 sound crossing times. Clearly there
is far more structure at all scales for the Hall case (except for some low power
grid-scale noise at high frequencies). This behaviour should have significant con-
sequences for any gravitationally unstable system. Note that, in a related study,
turbulent decay under the Hall effect is considered by Downes & O’Sullivan (this
volume).

In a second test, the turbulence is driven by impulses from randomly gen-
erated helical forcing modes (Brandenburg 2001) in Ohmic, ambipolar, and Hall
regimes. Dynamo action is observed as the initially small seed field is pumped
up to equipartition values with the kinetic energy where it saturates. Signifi-
cantly, as seen in the right panel of Fig. 2, the saturation levels of the magnetic
energy for each of the cases are different.

5. Conclusions

We have presented a method for treating diffusion of the magnetic field in a
weakly ionized plasma through explicit techniques. The diffusion operator is
multiplicatively split into its symmetric and skew-symmetric components and
integrated via STS and HDS respectively. The resultant stability properties are
superior to conventional explicit techniques without requiring the complexity
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Figure 2. Left panel: Density power spectra for Hall (solid line) and am-
bipolar (dashed line) unforced turbulence test cases. A Kolmogorov power
law (solid straight line) is also shown for reference. Right panel: Magnetic
energy against time for random forcing turbulent dynamo in three different
multifluid regimes.

of implicit methods. Implementation in conjunction with distributed domain
decomposition and adaptive mesh refinement is trivial.

Finally, we have described results of shock-tube tests, and forced and un-
forced turbulence problems which demonstrate the accuracy and efficacy of the
methods presented here.
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