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ABSTRACT

Weiser’s [111] vision of pervasive computing describes a world where tech-
nology seamlessly integrates into the environment, automatically responding
to peoples’ needs. Underpinning this vision is the ability of systems to au-
tomatically track the situation of a person. The task of situation recognition is
critical and complex: noisy and unreliable sensor data, dynamic situations, un-
predictable human behaviour and changes in the environment all contribute
to the complexity. No single recognition technique is suitable in all environ-
ments. Factors such as availability of training data, ability to deal with uncer-
tain information and transparency to the user will determine which technique
to use in any particular environment.

In this thesis, we propose the use of Dempster-Shafer theory as a theoretically
sound basis for situation recognition - an approach that can reason with un-
certainty, but which does not rely on training data. We use existing operations
from Dempster-Shafer theory and create new operations to establish an evi-
dence decision network. The network is used to generate and assess situation
beliefs based on processed sensor data for an environment. We also define
two specific extensions to Dempster-Shafer theory to enhance the knowledge
that can be used for reasoning: 1) temporal knowledge about situation time
patterns 2) quality of evidence sources (sensors) into the reasoning process.

To validate the feasibility of our approach, this thesis creates evidence decision
networks for two real-world data sets: a smart home data set and an office-
based data set. We analyse situation recognition accuracy for each of the data
sets, using the evidence decision networks with temporal/quality extensions.
We also compare the evidence decision networks against two learning tech-
niques: Naïve Bayes and J48 Decision Tree.

x



LIST OF PUBLICATIONS

The following is a list of the publications related to this dissertation.

1. Susan McKeever, Juan Ye, Lorcan Coyle, Chris Bleakley and Simon Dob-
son. Activity recognition using temporal evidence theory, Journal of Ambient
Intelligence and Smart Environments, Volume 2, Issue 3, August 2010.

2. Juan Ye, Lorcan Coyle, Susan McKeever, and Simon Dobson (2010).
Dealing with activities with diffuse boundaries. Proceedings of Pervasive
2010 workshop on How to do good activity recognition research? Exper-
imental methodologies, evaluation metrics, and reproducibility issues .
Helsinki, Finland. May 17-21, 2010.

3. Susan McKeever, Juan Ye, Lorcan Coyle, and Simon Dobson. Using
Dempster-Shafer theory of evidence for situation inference. In Proceedings of
the 4th European Conference on Smart Sensing and Context, (EuroSSC
’09), Lecture Notes in Computer Science, Springer Verlag. Guildford, UK.
September 2009.

4. Susan McKeever, Juan Ye, Lorcan Coyle and Simon Dobson A Con-
text Quality Model to Support Transparent Reasoning with Uncertain Context,
In Proceedings of the 1st international workshop on Quality of context
(QuaCon’ 2009), LNCS, Springer Verlag, Stuttgart, Germany, June 2009

5. Lorcan Coyle, Juan Ye, Susan McKeever, Stephen Knox, Matthew Sta-
beler, Simon Dobson and Paddy Nixon (2009). Gathering data sets for Ac-
tivity Identification. Workshop on Developing Shared Home Behaviour
data sets to Advance HCI and Uniquitous Computing Research at CHI
2009.

xi



6. Juan Ye, Susan McKeever, Lorcan Coyle, Steve Neely and Simon Dob-
son. Resolving uncertainty in context integration and abstraction. In Proceed-
ings of the International Conference on Pervasive Services, Domenico
Cotroneo and Julie McCann (ed), pages 131-140, Sorrento, IT. 2008.

7. Susan McKeever, Juan Ye, Lorcan Coyle and Simon Dobson. A multi-
layered uncertainty model for context aware systems. In Adjunct Proc’ of the
international conference on Pervasive Computing: Late Breaking Result,
pages 14, May 2008.

xii



ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor, Professor Simon Dobson for his
expert advice and upbeat encouragement throughout this work - and for stick-
ing with me on the Ph.D when various obstacles presented themselves.

I would also like to acknowledge the Systems Research Group in UCD Dublin.
I would especially like to thank my colleagues Dr. Juan Ye (Erica) and Dr.
Lorcan Coyle for their expertise and willingness to help at all times.

I would like to thank my extended family - my mum, my auntie Peig, sisters
and brothers for their support, interest and encouragement. And finally, to my
own gang. Thank you Patrick, Hugh, Louise and baby Sam for your unfailing
knack of helping me to keep things in perspective. And to my husband Ed -
thanks for his love, pride and support throughout the busy years of the Ph.D.,
without which I couldn’t possibly have tackled this work.

1



Dedicated to my dad, Joe McKeever, who would have loved all of this.



CHAPTER

ONE

Introduction

“The most profound technologies are those that disappear.
They weave themselves into the fabric of everyday life until they
are indistinguishable from it. In our experimental embodied virtu-
ality, doors open only to the right badge wearer, rooms greet people
by name, telephone calls can be automatically forwarded to wher-
ever the recipient may be, receptionists actually know where peo-
ple are, computer terminals retrieve the preferences of whoever is
sitting at them, and appointment diaries write themselves” (Mark
Weiser, Scientific American, 1991) [111]

1.1 Pervasive Computing

Less than twenty year ago, Mark Weiser described a world where technol-
ogy, seamlessly integrated into the environment, delivers the correct service to
the correct user at the correct time and place. His description was visionary.
In 1990, no Wireless Local Area Network standards existed, mobile devices
were limited to processors running at a few tens of megahertz, PDAs had tiny
amounts of memory, and PCs hosted 30-Mbyte discs [94]. Weiser’s articu-
lated vision initiated the field of ubiquitous or pervasive computing. Since
then, dramatic improvements in wireless networking, intelligent mobile de-
vices and the availability of cheap sensors have combined to make pervasive
computing a realisable vision.

At the core of Weiser’s vision is the concept of computers providing services
without the need for people to explicitly instruct them or indeed, be aware of
them. This vision includes two concepts: invisibility of technology and context-
awareness. Computers are gradually achieving invisibility as they spread be-

3



Figure 1.1: Layers of Perception for a context aware system [18]

yond the flat screened machine paradigm into tiny devices embedded in our
physical environment. Users’ attention and effort no longer needs to be fo-
cused in providing explicit input. Instead, intelligent devices embedded into
everyday objects and worn by people sense input by detecting aspects of
the environment. With the notion of context-awareness, a system automati-
cally senses relevant information in its environment, and responds in some
appropriate way to offer the appropriate service. It is this notion of context-
awareness - the ability to automatically detect and make sense of an environ-
ment - that we will focus on in this thesis.

1.2 Context-Awareness

Context awareness is a prerequisite for pervasive computing. For computers
to be invisible and calm, they are monitoring “context” in some way, in or-
der to determine what behaviour they should execute. Early context-aware
systems required applications closely bound to sensor output, such as the Ac-
tive Badge Location System [110]. As context-aware systems evolved, the pro-
vision of a middleware context-service layer that encapsulates sensor details
emerged. Thus, the application developer is shielded from the details of con-
text gathering and interpretation and reusability of context is simplified. The
Context Tookit [28], for example, provides sensor widgets that abstract sensor
data into more meaningful, higher level contexts. More recently, the aggrega-
tion of context into the higher level abstraction of situation [26, 121, 47, 70] has
provided a common semantics for higher level context of interest to applica-
tions. This layered approach to context detection is illustrated by Coutaz et al.
[18]. In their conceptual view of context-aware systems, they separate context
detection into sensing, perception and situation/context identification layers,
as shown in figure 1.1.
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Applications can therefore be completely decoupled from lower level sensor
data, responding to or querying for situations that are monitored in a common
middleware context services layer. For example, an office activity application
that monitors an employee’s location does not need to understand or interact
with the underlying sensor tracking technologies. It is simply notified as the
user goes from one situation to another such as ’busy at desk’, ’gone to lunch’,
’out of office’ and so on.

This task of situation recognition is a critical, continuous dynamic process for perva-
sive applications that adapt their behaviour in or close to real time.

One of the first real context-aware systems was the Active Badge Location sys-
tem [110] in the Olivetti Research Labs UK. The purpose of the system was to
forward calls to the phone nearest to an employee, based on tracking the user’s
current location with infra red badges. Since then, various landmark real-life
and research lab-based applications have appeared, grouped into two streams:
(1) smart environments embedded with sensors (such as the RADAR office
user tracking location system [6], the Cricket office user support system [83],
the Gator Tech assisted living laboratory smart home [45] and MIT’s Placelab
live-in laboratory [53] that aim to sense people’s activities or environmental
conditions and (2) the use of smart mobile devices that can sense and respond
to aspects of their environment, such as Schilit’s mobile Parctab handheld de-
vice that detects nearby services and people [90], the Lancaster location-based
tour guide [13] and Project Aura’s continuous mobile services vision [36]. Our
interest is in the smart environment category. In smart environments, sensors
are embedded into everyday objects. Monitoring how these objects are used
then provides clues as to what activities they are being used for. The trend is to
move away from intrusive sensors that directly monitor people, such as cam-
eras and motion detectors to cheaper, simpler, less intrusive sensors embedded
into everyday objects.

1.3 Situations are key

As part of being context-aware, pervasive applications interpret the various
states of the environment as situations. Situations are human understandable
representations of the environment that are of interest to a pervasive applica-
tion. Early examples of situation abstraction of context is found in Schmidt’s
work on context-aware infrastructure [91]. For example:

5



User sleeps: It is dark, room temperature, silent, type of location is indoors, time is
nighttime, user is horizontal, specific motion pattern, absolute position is stable;

User is watching TV: Light level/color is changing, certain audio level (not silent),
room temperature, type of location is indoors, user is mainly stationary.

As illustrated by Schmidt’s examples, a situation will typically be composed
of multiple pieces of context, each of which may in turn be derived from (mul-
tiple) sensor readings. By responding to situations (rather than lower level
context or sensors), applications are shielded from the intricacies of sensor or
low level context data. Therefore, promising context-aware applications tend
to be situation-aware [121].

1.3.1 Recognising situations

Situation recognition is the ability of the pervasive system to assess the sit-
uation(s) that are occurring at any particular point in time. To illustrate the
subtleties of situation recognition, we look at a particular scenario from a mon-
itored smart home. The smart home is equipped with sensors in various loca-
tions throughout the house. In the kitchen, the cupboard doors, kettle, toaster
and fridge are equipped with sensors that trigger when they are used.

The person is in the kitchen. It is morning time. They carry out a series of
tasks, such as taking cereal out of the groceries cupboard, using the kettle,
opening the fridge, and using the toaster. A fly-on-the wall observer might
note that they are preparing breakfast. To ’know’ at any point in time that the
person is preparing breakfast, the observer could point to the individual tasks
which in isolation may not confirm that breakfast is in progress, but considered
together, form a picture of the ’preparing breakfast’ situation. The fact that
it is morning time indicates breakfast rather than dinner preparation. Some
activities are particularly informative, such as the use of the toaster which is
hardly ever used outside of breakfast time.

But for an automated situation recognition process, complications can arise:

• The ’preparing hot drink’ situation, identified by the use of just the kettle
and fridge, is also a possibility. Perhaps the process will distinguish this
because looking at the other tasks that went before and after kettle and
fridge makes breakfast a more obvious answer.

• Sensors can breakdown. If the kettle sensor does not trigger, the mon-
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itoring system may be less certain that breakfast is happening, because
the evidence is less compelling.

• Gaps of seconds or minutes might occur between the various tasks where
’nothing’ happens, in terms of sensor activity. At the start of the breakfast
preparation, the first task may not be enough to recognise the situation,
but perhaps the system becomes more certain of breakfast as more tasks
are done.

• The person does not prepare breakfast in the same way every day. The
user sometimes uses the cooker and occasionally uses the microwave.
The tasks are not performed in any particular order.

• Other situations can happen at the same time (’on telephone’) while other
cannot co-occur (’user asleep’) so the system must declare only valid
combinations of situations.

• ’Preparing breakfast’ is a type of meal preparation. The system also
wants meal preparation to be flagged whenever breakfast or dinner
preparation is detected, so there is a hierarchy of situations to consider.

• A second occupant enters the kitchen and opens the fridge to get a drink
(’preparing drink’). The system must now distinguish between the activ-
ities of each person.

Added to these types of considerations is the basic problem of what ’preparing
breakfast’ means in the first place. For some people, breakfast preparation
will just consist of preparing a cup of tea, while for other people, such as our
occupant, it involves more steps. The definition can be obtained in various
ways, such as interviewing the user, applying some sort of general definition of
what preparing breakfast ’usually’ involves, or learning the meaning of sensor
data captured in the person’s house.

1.3.2 Terminology

In the pervasive systems literature, situations are sometimes referred to by the
more specific term of ’activities’, where the focus of interest of an application
is the physical state or task of a person. Monitoring people’s activities is a pop-
ular focus of situation recognition. The term ’situations’ has a wider meaning,
incorporating activities, but which may also refer to other scenarios of interest
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to pervasive applications, such as a person’s state of health, weather condi-
tions, pollution levels and so forth. We use the term situation in this thesis to
mean both activity and the wider meaning of situation.

1.4 Research Challenges

The process of situation recognition divides into two approaches (1) Learning
approaches that require training data to develop a training model. The training
model is then used to detect situation occurrence in real-world sensor read-
ings. (2) Specification-based approaches that require a specification for each
situation, where the specification consists of constraints on context. The con-
straints or rules are defined manually using expert knowledge. With these two
approaches in mind, we highlight two particular research challenges:

1.4.1 Removing the reliance on training data

Pervasive systems need to understand the meaning of sensor events in order to
recognise situations and thus trigger appropriate behaviour. Machine learning
approaches are heavily used in the arena of situation recognition. These ap-
proaches require training data to be collected in the target environment dur-
ing an explicit training phase. However, training data can be difficult and
prohibitively expensive to acquire. Research in the pervasive computing do-
main usually relies on training data that has been captured in research labs or
simulated in smart environments by users who are committed to and knowl-
edgeable of the process [122, 68]. In real-life environments such as smart-home
deployments, the privacy of users, and their willingness/ability to record their
current situations in real time are major obstacles to the collection of reliable,
well-annotated data. Tapia et al. [102], for example, collected training data
in the homes of a 30 and 80 year old occupant. They used experience sam-
pling, whereby users were periodically prompted to annotate their current ac-
tivity. User fatigue, privacy and errors resulted in annotation rates of 17% and
24% respectively. Data can be annotated off-line, but this typically requires the
video sequences for verification with resultant privacy concerns. Training data
requires that each situation occurs during the training period. Some situations,
such as security breaches or emergency scenarios cannot be easily produced.
For these situations, manual specification may be the only option if training
data does not exist.
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A further challenge with training data is that it must be gathered for each indi-
vidual environment in which a pervasive system will be used. User behaviour,
sensor locations and sensor performance will differ across environments. Peo-
ple’s homes and their furnishings have highly variable layouts, and individu-
als perform activities in many different ways. The same activity (e.g. brush-
ing teeth) may result in a significantly different sensor activation profile based
upon the habits, or routines of the home occupant and the layout and organi-
zation of the particular home. Likewise, if new situations are added, or sensor
deployments are changed in an environment, the training data must be col-
lected again to re-train the training model.

1.4.2 Handling uncertainty

Sensor data is inherently unreliable, noisy, prone to delay and imprecise. i.e.
it suffers from uncertainty. For standard computer systems, an input such as
a mouse click is definite. It may be incorrect, but it is definite. For perva-
sive systems which rely on sensor data, the input is ambiguous [32], so sensor
data cannot be treated as fact, but simply evidence of fact. Users’ actions can
contribute to degradation of information quality, such as the failure of users
to carry their locator tags [74]. Uncertainty of sensor information should be
tracked and preserved to determine uncertainty at higher levels of context [48].

Furthermore, the process of interpretation of sensed context is also subject to
ambiguity and approximation [39]. Some context concepts are fuzzy, so are
subject to imprecision, such as the concepts of ’near’, ’warm’. Inference rules
are not constant, such as a user ’sometimes’ using a microwave when engaged
in the ’preparing breakfast’ situation. Situations are aggregations of pieces of
context. These specifications are limited to the available sensed contexts so are
approximations only.

Various approaches are taken to deal with uncertainty. In Dey et al.’s frame-
work [27], users are prompted to mediate in selecting the right context, if
the underlying contexts are considered by the framework to be too uncer-
tain. However, this approach would not be suitable in scenarios where user
interruption is unacceptable or unavailable. Other approaches, such as those
of Clear et al. [16] and Lei et al. [65] use a threshold approach at the appli-
cation level, whereby an application will only select situations that exceed a
particular certainty of confidence level or quality. Chalmers et al. [12] de-
scribe applications requesting a required certainty of context, where the level
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of certainty required drives the ranges of context values returned, with wider
ranges associated with higher certainty. Loke [69] suggests that context uncer-
tainty should be linked directly to application behavioural impact. High risk
behaviour should require greater certainty that the underlying context is cor-
rectly recognised. Numerous researchers include context quality parameters
(such as a context confidence metric) in their work on context-aware systems,
so that uncertainty can be quantified - these are discussed further in Chapter 4.
Underpinning these approaches is the assumption that the reasoning process
can track and quantify certainty levels for recognised situation(s).

For these reasons, a context-aware system should be able to track, quantify
and resolve uncertainty associated with the situation recognition process.

1.4.3 Addressing the challenges

This thesis focuses on addressing the above challenges by applying Dempster-
Shafer (evidence) theory to the problem of situation recognition. Our aim is to
provide a transparent situation recognition approach that reduces or removes
reliance on training data, and that caters for the uncertainty inherent in the
situation recognition process. In order to apply Dempster-Shafer theory to the
problem of situation recognition, we enhance basic Dempster-Shafer theory
with additional evidential operations needed to process evidence. We sepa-
rate evidence processing into belief distribution and decision stages in order to
support the recognition process. We define two extensions to basic Dempster-
Shafer theory in order to improve situation recognition rates: (1) extend evi-
dence over time for detection of situations with duration and (2) encode rich
sensor quality information.

The Dempster-Shafer approach in this thesis does not address situation recog-
nition in multi-occupancy smart environments. It detects situations for single
occupancy only, and thus is evaluated using data sets generated within single
occupant environments. In a multi-occupancy scenario, more than one person
(or entity) is monitored in the environment so situation recognition becomes
more complex [68]. Neither does this approach attempt to deal with environ-
ments where the sensor performance or user behaviour changes over time. It
assumes that parameters for the environment, such as situation definitions, are
static.
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1.5 Thesis Statement

The previous section explained how reliance on training data and handling
uncertainty make situation recognition in pervasive environments a difficult
and complex task.

To address these challenges, we apply an established mathematical theory of
evidence, Dempster-Shafer theory to the problem of situation recognition. Us-
ing Dempster-Shafer theory, we identify a set of existing and create new ev-
idential operations that will be used to generate situation beliefs for an envi-
ronment. In addition, we create two extensions to Dempster-Shafer theory in
order to incorporate additional sources of knowledge into the reasoning pro-
cess: 1) temporal extensions to incorporate time into reasoning and 2) quality
extensions to incorporate sensor performance and usage into reasoning.

The hypothesis of this thesis is that extended Dempster-Shafer theory will sup-
port situation recognition. Given that there are two extensions to Dempster-
Shafer theory, this hypothesis will be tested in two parts:

We hypothesise that (1) the use of temporal knowledge in evidence will im-
prove recognition accuracy (over using evidence only) and that (2) the use of
quality of evidence sources will improve recognition accuracy.

1.6 Research Methodology

In our approach, we apply Dempster-Shafer theory to the problem of situation
recognition. Dempster-Shafer theory is a mathematical theory of evidence [95]
that supports decision making in uncertain conditions. It has been applied in
a variety of domains such as information retrieval, military applications, car-
tography, image processing, expert systems, risk management, robotics and
medical diagnosis [92, 77, 61, 79]. We use Dempster-Shafer theory because it
addresses the main shortcomings of existing situation recognition approaches
that we wish to address. Firstly, it removes the reliance on training data be-
cause it allows us to incorporate knowledge into an evidence reasoning struc-
ture. Secondly, it specifically caters for capturing and preserving uncertainty.
Where uncertainty is known to exist (such as sensor reliability issues or infer-
ence rule uncertainty), this uncertainty can be quantified and separately stored
so that the confidence or certainty of situation recognition is known.

We explain how to create an evidence decision network. An evidence decision
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network is specific to an environment. It consists of the evidential operations
needed to capture sensor evidence, propagate that evidence up to the various
situations, and to determine which situation(s) are occurring. We capture the
evidence operations needed to recognise situations for a particular environ-
ment diagrammatically, using our own diagramming notation, termed situa-
tion Directed Acyclic Graphs (DAGs).

We define our own extensions to Dempster-Shafer theory to cater for two
sources of knowledge that inform the situation recognition process: (1) the
inclusion of temporal knowledge and (2) the inclusion of rich sensor quality
information. Both of these are used to enhance the accuracy of situation recog-
nition.

To evaluate our approach, we use two real-life sensor data sets from a smart
home environment and an intelligent office environment.

1.7 Contributions of this thesis

This thesis presents a novel evidence decision network approach based on
Dempster-Shafer theory to enable dynamic situation recognition from sensor
data. This offers improvements over existing recognition techniques because
it enables situation recognition from uncertain information, using a theoreti-
cally sound framework that supports the encoding of domain knowledge. It
also supports the use of temporal knowledge and sensor quality to enhance
recognition.

The main contributions of this thesis are the following:

1. A situation recognition approach based on Dempster-Shafer theory to
enable dynamic situation recognition from sensor data;

2. The selection of existing operations from Dempster-Shafer theory and
the creation of new evidential operations and algorithms that propagate
and process sensor evidence throughout an evidence decision network;

3. Extensions to Dempster-Shafer theory to enable both temporal evidence
and sensor quality knowledge to be used in the situation recognition pro-
cess. The extensions include the mathematical formalisms required to
apply temporal and quality knowledge.
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4. A diagramming technique (situation Directed Acyclic Graphs) to capture
knowledge and structure for the evidence decision network;

5. Application of the evidence decision network approach and situation
DAGs to two real-world sensor data sets;

6. Evaluation of situation recognition accuracy using our evidence decision
network approach. This includes the evaluation of the temporal and
quality extensions, and a comparison of evidential fusion rules.

1.8 Structure of this Thesis

The next chapter, Chapter 2, explores the research done on inferring context
from sensor data. As part of this, we explore the nature and imperfections
of context information. We examine the layers of context that exist from sen-
sor level to situation level. We then examine the research done on defining
situations. We select the specific features of situations, leading us to a list of
features that our recognition approach will be required to cater for. We anal-
yse the learning and specification based approaches from the body of research,
examining their strengths and weaknesses.

Chapter 3 describes the structure and theoretical basis for the evidence deci-
sion network that we will use for situation recognition. Firstly, we explain the
basic concepts of Dempster-Shafer theory. We explain how we document evi-
dential knowledge for situations using a diagramming notation that we term
situation DAGs. We explain how evidence from the situation DAG will be pro-
cessed in two stages: belief distribution and decision making. We then explain
the various evidential operations that we will use to process the knowledge
in these two stages. Where no existing operation exists, we define new opera-
tions.

In Chapter 4, we define two extensions to Dempster-Shafer that we will apply
in our evidential model to improve situation recognition: temporal and quality
extensions. Temporal extensions use time patterns of situations to improve the
reasoning process. We describe how to incorporate situation durations and
absolute times of situation occurrences into the evidential reasoning process.
We then describe how knowledge of sensor quality, both static and dynamic
quality parameters, can be incorporated into evidence theory.

In Chapter 5, we demonstrate our evidential approach by creating situation

13



DAGs for two real-world data sets. We describe the data sets, and explain their
temporal and quality characteristics. The creation of the DAG for each data set
enables us to show how inference knowledge is captured and the evidence
decision network populated.

In Chapter 6, we evaluate the accuracy of our evidential model for situation
recognition, using the data sets and situation DAGs from Chapter 5. We test
whether the inclusion of temporal and quality knowledge using our extensions
significantly improves situation recognition results. We also compare the ac-
curacy of our evidence decision network to two learning techniques, Naïve
Bayes and J48 decision tree.

Conclusions, summary and directions of future work are contained in Chapter
7.
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CHAPTER

TWO

Background and Related Work

2.1 Introduction

Since Weiser articulated his vision of pervasive computing in the early 1990s,
a body of research has been devoted to developing the ability of a system to be
’context-aware’ - i.e. the ability to automatically sense aspects of its environ-
ment in order to tailor the behaviour of applications.

In this chapter, we examine related work in the field of situation recognition
in pervasive systems. As background, we first briefly explore the definition
of context-awareness. We look at the concept of context more closely, ex-
plaining the separation of context information from sensors up to higher level
of contexts, or situations. From this, we will examine the features of situa-
tions: temporal features, uncertainty, hierarchies and specifications. Finally,
we will examine the approaches taken to recognising situations and identify
the strengths and weaknesses of existing work to date.

2.2 Context Awareness

Pervasive computing implies an ability of technology to automatically deter-
mine its own behaviour based on detecting its input or instructions in some
automated way. This notion of context-awareness requires an explicit evalu-
ation and interpretation of context by the system. Therefore, to understand
context-awareness, we need to examine how context is defined.
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2.2.1 Context

The term context has been defined in pervasive computing research in a va-
riety of ways. In earlier definitions, the focus of context was focused on de-
scribing the state of an ’entity’, where an entity was usually a user. Schilit and
Theimer [89] have one of the first references to the term ’context-awareness’ of
applications. They describe context as the user’s location, identities of nearby
people, objects and changes to those objects. Ryan et al. [87] also describe
context in terms of the user, referring to context as the user’s location, envi-
ronment, identity and time. Other definitions are more general, and are based
on the environment in which the application is set. Hull et al. [51] describe
context in a more general way as the ’aspects of the current situation’. Ebling
et al. [34] describe the context of an application as ’the environment in which a
computation takes place’. Brown [9] defines context to be the elements of the
user’s environment which the computer knows about. In our opinion, defini-
tions that are generalised descriptions of the environment are difficult to use,
because there are aspects of the environment which may not be relevant to the
application. The most useful definitions are application focused. Applications
are the consumers of context, and therefore any definition of context should be
focused on what the application needs to know in order to drive its behaviour.
A heavily used definition of context comes from Dey et al. [28] and is described
as:

“Any information that can be used to characterize the situation of an entity. An entity
is a person, a place, or a physical or computational object that is considered relevant to
the interaction between a user and an application, including the user and application
themselves”.

Dey’s definition is useful because it narrows the definition to include infor-
mation (via entities) that is relevant to the application. Winograd [112] re-
views this definition, arguing that in using open-ended phrases such as ‘‘any
information’’ and ‘‘characterize’’, it becomes so broad that context covers ev-
erything without boundary. According to Winograd, ‘‘something is context
because of the way it is used in interpretation, not due to its inherent proper-
ties. The voltage on the power lines is a context if there is some action by the
user and/or computer whose interpretation is dependant on it, but otherwise
is just part of the environment.’’ This supports the view of context in terms of
its relevance to application(s) in the environment. However, Dey’s definition
does impose a boundary by limiting entities to those that are of relevance to
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the application. Henricksen [47] also imposes a boundary on context based on
relevance to the application, stating: “the context of a task is the set of circum-
stances surrounding it that are potentially of relevance to its completion”.

In our work, we are interested in situations. Situations are the lens through
which pervasive applications view the world i.e. the states of the world to
which the application will respond. Therefore, we will use a definition of con-
text that is based around situations. This definition is close to Dey’s and Hen-
ricksen’s because it incorporates the concept of relevance to application, but it
also incorporates the concept of situations. We also specifically refer to context
information:

“Context information is any information that is used to identify situations,
where situations represent views of the world of interest to the application”.

2.2.2 Nature of Context

There are two particular aspects of context that are relevant to our work on
situation recognition. Firstly, context information can be divided into a set
of layers, ranging from sensor readings at the lowest layer, through to higher
levels of abstracted and fused context. We will examine context as a layered
hierarchy as this will provide the basic structure for our evidence-based ap-
proach. Secondly, context information is imperfect. This is a key factor in the
uncertainty associated with situation recognition. We will examine the types
of context imperfections that occur so that we can address the issue of uncer-
tainty in our situation recognition approach.

2.2.3 Layers of context: sensors, abstracted context, situa-
tions

In earlier work on context aware systems, applications directly interpreted sen-
sor readings. As context-aware systems matured, approaches included a sepa-
rate middleware layer that shielded application developers from the complex-
ities of sensor data or smaller fragments of context data. Dey’s Context Toolkit
[28] was the first seminal work to provide application developers with an ab-
stracted view of sensors, using the concept of context widgets. Each widget,
such as a user location widget based on GPS location, supplies context infor-
mation to the application using a uniform interface. As context-aware systems
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Figure 2.1: Context layers: sensors, context values, situations

have matured, this abstraction layer has become more functional, with the aim
of providing applications with a higher situation level view of context, such
as the work done by Loke [70], Ye et al. [119] and Padowitz et al. [80]. The
description of context as a layered hierarchy is described variously in Coutaz
et al. [18], Henricksen et al. [46] and our own work [73]. Looking at figure 2.1,
we explain the layers of context as follows:

Sensor layer: Traditionally sensors refer to physical sensors such as those that
detect temperature, heat or motion. We use Loke’s [70] broader definition of
sensor that refers to ’any device or mechanism that is used to provide con-
textual information’. An electronic calendar that indicates whether the owner
of the calendar is in a meeting or not is a sensor when it is used to detect the
location of the user. The sensor layer produces information that is typically un-
readable to humans, requiring sampling and translation in order to use. The
information suffers from noise, time decay and is prone to breakdown.

Abstracted context: Raw sensor readings are translated to more human un-
derstandable forms of context by abstraction. Abstracted context is also some-
times referred to as ’secondary’ context to differentiate it from primary context
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(sensor readings) [28, 31]. For example, coordinate readings from a GPS lo-
cation system are translated to street locations and temperature readings are
translated to states of ’hot’, ’warm’ or ’cold’ using a look-up process. Ab-
stracted context is represented formally in the literature as part of context mod-
elling work in a variety of ways, including: context predicates [84, 119], tuples
[59] and object models [47]. For our purposes, we are interested in sensor val-
ues abstracted to context at specific points in time. We are not concerned with
the modelled representation of abstracted context. We represent abstracted
context diagrammatically using situation DAGs as described in Chapter 3.

Situations - Situations are high-level abstractions of context and serve as a
more natural view for a developer. Situations can rarely be characterised using
a single dimension of context, and are typically defined by fusing multiple
information sources together. Situations have a hierarchy: situations can be
subsets of other situations. Some situations can occur together at the same
time (’preparing a meal’ and ’using phone’). Some cannot co-occur (’person
asleep’ and ’person leaving house’). These and other features of situations are
described in Section 2.3.1.

We are interested in the layered structure of context because our evidence-
based approach will propagate evidence from sensors to abstracted context
and then through to each situation in the situation hierarchy. This is explained
further in Chapter 3.

2.2.3.1 Context Uncertainty

Context information suffers from a variety of imperfections that comprises the
ability of a system to recognise context. Imperfections in context information
have a number of causes including inaccurate and noisy sensor data, sensor
failures and network delays and failures [73]. Henricksen’s work [46] on mod-
elling uncertain context provides a useful summary of the nature of context
imperfection. Context is imperfect when it is:

• unknown when no information about the property is available; (for exam-
ple, when a sensor battery expires);

• ambiguous when several different reports are available but the reports are
conflicting (for example, when two distinct location readings for a given
person are supplied by separate positioning devices);
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• imprecise when the reported state is a correct yet inexact approximation
of the true state (for example, when a person’s location is known to be
within a limited region, but the position within this region cannot be pin-
pointed to the required degree of precision); Imprecision results from the
inherent limitation of sensors in precisely capturing a real world phe-
nomenon [20];

• erroneous when there is a mismatch between the actual and reported
states of the property.

The imperfection of context information is described via context quality met-
rics, such as precision, accuracy, confidence and freshness. We describe and
use these metrics in our evidential approach, as described in Chapter 4.
The uncertainty that results from using uncertain context is captured in our
Dempster-Shafer based approach, as explained in Chapter 3.

2.3 Using situations

The purpose of our work is to develop an evidence-based approach to situa-
tion recognition. To recognise situations, we need to understand their charac-
teristics or features. We then treat the list of features as a set of requirements
for our recognition approach.

2.3.1 Features of situations

So far, we have discussed situations as high level abstractions of context that
the application uses to drive their behaviour. A substantial amount of work
has been carried out on defining and modelling situations. Earlier work on
situations from Schmidt [91], Dey [26], Henricksen [47] and Loke [70] focus
on the concept of situations as combinations of logical constraints on context
information. More recent approaches from Costa et al. [17], Yau et al. [118],
Ye [119] and Padovitz et al. [80] extend earlier work by adding temporal as-
pects, uncertainty and inter-relationships of situations. We analyse their work
to distill out the features of situations that they have identified. This provides
us with a target list of requirements for our situation recognition approach.

• Situations can be learned or specified. For learning techniques, training
data is used to determine the underlying sensor (or abstracted sensor)
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data that is associated with each situation, typically using a probabilistic
model to represent occurrences of each situation. The main disadvantage
of learning situations is the requirement for training data. Specifications
of situations are required for non-learning approaches, where forward
reasoning is used - inferring sensor data upwards to situation level. A
situation specification consists of a set of constraints that capture the in-
variant characteristics of context and context combinations. A specifi-
cation is typically represented in the following form: s : φ(ϕ1, .....ϕn),
where s is the symbolic name for a situation, ϕi(1 ≤ i ≤ m) is a con-
straint on a certain context, and φ is a logical expression that composes
all the context constraints using logical operators such as ’AND’ or ’OR’
[119]. Specification-based approaches rely on the availability of expert
knowledge, and can suffer from the subjective and adhoc way of defin-
ing situations by experts [103].

• Situations are dynamic with a variety of temporal characteristics. A funda-
mental temporal aspect of situations is that they are dynamic, with con-
tinuous transition from one situation(s) to another over time as condi-
tions in the environment change. They occur over a period of time or
duration (such as a user in a ’prepare dinner’ situation for 40 minutes)
as captured in situation models by Costa et al. [17], Matheus et al. [60],
and Yau et al. [118]. Thomson et al [103] identifies a minimum duration
for some situations, to avoid ad-hoc identification of situations that must
last longer then a single point in time. Situations can have an identifi-
able sequence or natural flow, as described by Padowitz [80]. For exam-
ple a user with high blood pressure may indicate either sick or running.
By looking at the previous situation, such as ’walking’ the more cred-
ible transition (walking to running) can be used to help inference. Ye
[119] also identifies situation sequences as important. A situation may
be required to precede another with an obligatory sequence [119]. Situ-
ation may take place at particular times, and this can boost our ability
to recognise them [120], such as a user’s ’prepare breakfast’ situation oc-
curs in the morning. Situations can be co-occurring (such as a user can
be ’reading’ and ’watching TV’ at the same time), or can be impossible to
occur together such as ’asleep’ and ’leaving home’ [119]. This knowledge
of co-occurrence is important because an application can become unsta-
ble if conflicting situations are declared by the system to be occurring at
the same time. We view temporal aspects of situations as a rich source
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of knowledge for reasoning so we incorporate temporal knowledge into
our evidence based approach as described in Chapter 4.

• Situations are inter-related in a hierarchy. Situations can be atomic or com-
posite [118]. An atomic situation is one that cannot be decomposed
into other situations. A composite situation is one that consists of other
atomic or composite situation, such as ’user asleep’ consists of ’bed oc-
cupied’ and ’nighttime’ and ’room is dark’. The composite ’user asleep’
situation is detected (at a particular time), if each of its component situa-
tions holds for the same time interval. Ye et al. [121] note that situations
can be a generalisation of other situations. For example, a meeting can be
a generalisation of a conference meeting or a supervisor meeting. Each
of these is a type of ’meeting’. If a conference or supervisors meeting
is occurring, then a meeting is occurring. This concept is also used by
Thomas et al. [103] who defines re-usable situation specifications. This
is based on the premise that situations are generalisations of other more
specific situations. The inter-relationships of situations is important in
our evidence based approach. We transfer evidence from sensors up to
situations so we use the situation hierarchy as a routing method for prop-
agating evidence. We use the nature of their inter-relationships to select
the appropriate evidential operation, as described in Chapter 3.

• Situations have an associated certainty or confidence: Situations are approx-
imations of the world only, and are detected from imperfect context.
Therefore, there is a conceptual certainty or confidence associated with
their recognition at any point in time. If available from a reasoning
scheme, the confidence that a situation is occurring is typically expressed
as a number between 0 and 1 [47, 63, 34, 74]. The notion of certainty
of a situation that is made available to an application is supported in
the situation specification modelling approach of Matheus et al. [60] and
McKeever et al. [74]. However, it is usually associated with learning ap-
proaches that automatically supply some quantified certainty or proba-
bility with their output classifications. For example a Bayesian approach
will output each situation (classification) with a posterior probability.

2.3.2 Discussion

Situations act as the ’interface’ between applications and the lower level con-
text information from which applications derive their behaviour. Specifica-
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tions of situations are used when situations are recognised using a transparent,
non-learning based approach. When learning techniques are used, the concept
of situations is needed but a formal specification is less relevant.

Situations are dynamic, inter-related, and uncertain. They are detected from
uncertain information and only represent approximations of the real-world. To
recognise situations successfully, each of these features needs to be taken into
account. In the next section, we examine related work on situation recognition.
We examine the extent to which the various techniques consider the situation
features in their recognition process.

2.4 Related work - situation recognition ap-

proaches

We categorise situation recognition approach into learning approaches and
specification approaches [122]. Learning techniques rely on training data col-
lected in the target environment in order to create a training model. Specifi-
cation techniques such as logic approaches typically rely on domain knowl-
edge to define how sensor data is interpreted as situations. We examine the
various techniques applied by researchers in each category and discuss their
relative merits and weaknesses in the discussion section 2.5.Our Dempster-
Shafer based approach caters for uncertainty, does not rely on training data
and includes temporal information in reasoning. Therefore, as we examine
approaches from other researchers, we will highlight the extent to which their
work is addressing these three features. We summarise the various techniques
examined against these three criteria in Table 2.1.

A summary of the approaches, mapped against their requirement for knowl-
edge, ability to deal with uncertainty and visibility of reasoning approach is
shown in figure 2.2.

2.4.1 Learning approaches

A variety of machine learning techniques have been applied to the problem of
recognising situations in pervasive environments. To apply such techniques,
training data for the environment must be captured, where the data consists
of sensor readings captured over a period of time. For supervised learning,
the target situations to be recognised are defined in advance. The data is then
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Figure 2.2: Situation recognition approaches

annotated by a participant in the environment, such as a user in a home. Alter-
natively, annotation is done as an off-line process by, for example, examining
camera footage of the environment. The learning algorithm uses the anno-
tated training data to establish a training model, which is used to infer future
situations. For unsupervised learning methods, the learning algorithm can de-
termine what situations are identifiable, and how to identify them [113]. The
main strands of work on applying learning techniques are described next.

2.4.1.1 Bayes Models

A variety of techniques based on Bayes theorem have been applied to the prob-
lem of recognising situations, such as work from Castro et al. [11], Tapia et al.
[102], Fox et al. [35], Korpippa et al. [62], Ranganthan et al. [84], Troung et al.
[106, 105, 107], Albinali et al. [1]and van Kasteren et al. [109]. We will examine
the three leading Bayes techniques applied to situation recognition.

Naïve Bayes Classifier

The Naive Bayes classifier is a supervised learning method that creates a prob-
abilistic model of the environment from the training data. It assumes that all
inputs (sensors) are independent. The situation with the highest probability at
a point in time is typically assumed to be the recognised situation. Korpippaa
et al. [62] used a Naïve Bayes classifier to recognise nine contexts for a user’s
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mobile device, such as walking, driving a car and running. Their results indi-
cate that situations were extracted with 96% true positives in restricted scenar-
ios of 9 situations. However, in real-world situations where they encountered
situation transitions and undefined phenomena, the recognition accuracy fell
to 87% true positives. Tapia et al. [102] use a Naïve Bayes classifier to clas-
sify the activities of two people in their own homes. Their main focus is the
process of collecting training data and using simple easy-to-install sensors. In
their implementation, they employed a large number of simple sensors, where
the sensors were attached to objects in the home, such as beds, doors and win-
dows. Their approach, whilst reliant on training data, incorporates temporal
information in the recognition process. They consider two types of tempo-
ral information: duration and sequencing. They encode temporal information
into their Naïve Bayes classifier to allow for average duration times of activ-
ities, and for sequences of sensor firings within an activity. They found that
the capture of sensor firing during an activity duration was more useful in in-
creasing recognition than using sensor firing sequences. Their focus on activity
durations is interesting as we will also apply activity durations to Dempster-
Shafer theory in a similar way. The real limitation for Tapia et al. was the
capture of the initial training data. Their two participants were prompted to
annotate their activity every 15 minutes using a technique called Experience
Sampling Method (ESM). The response rates were 17% and 24% which made
it difficult to get extensive and reliable data.

Bayesian Network

Bayesian networks are Directed Acyclic Graphs, where the nodes are random
variables representing various events and the arcs between nodes represent
causal relationships [44]. Bayesian networks have been applied by a number
of researchers in scenarios where the causal links between sensors and situ-
ations are understood, and where training data is available to supply prior
and conditional probabilities for the network. For example, Ranganathan et
al. [84] applied a Bayesian network for detecting the activity in a meeting
room, based on capturing the states of relevant aspects of the room, such as
sound level, whether the projector is in use, the lighting level and number of
people in the room. They trained the network on data collected in the smart
room over a week,achieving recognition rates of 84% for activities in the room.
Ranganathan’s et al’s work demonstrated how Bayesian networks can be used
for activity recognition, with high recognition rates. However, they acknowl-
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edge that the environment was an artificial research based environment with
limited scope for unexpected events and good annotation. Their approach re-
quires training data and does not consider temporal information. Gu et al. [40]
use Bayesian networks in tandem with ontologies to identify a person’s cur-
rent activity (i.e., birthday party, reading, watching TV, dining, sleeping) in
their home. They trained the network with data captured over a two week pe-
riod. They do not supply actual recognition results but state that the network
performs reasonably well, identifying the correct activity in most cases.This
demonstrated that with a limited set of states to be recognised, a Bayesian net-
work in combination with an ontology can gain ’good’ recognition rates on
two weeks of training data. Albinali et al. [1] address the issue of generat-
ing learning models from sparse data. They apply a set of optimisation steps
to compensate for the lack of sensor data available for some situations - and
then generate the Bayesian networks that best fit the resultant data. This is in-
teresting because it addresses the difficulty of understanding the causal links
between sensors and situations where sensor data is noisy or sparse [1].Whilst
requiring training data, their approach reduces reliance on a full set of training
data. A Bayesian network is a suitable scheme where training data is avail-
able and single higher level states are being detected without consideration of
transitions between states over time. These approaches are not suited to en-
vironments where training data is difficult or impossible to obtain. Note that
the Bayesian approaches address static state detection only, so do not include
temporal sequence information in the reasoning process.

Hidden Markov Models and temporal learning approaches

In the following approach, temporal information is included in the recognition
process in the form of sequences of situations and intervals between situations.

Dynamic Bayesian networks are Bayesian networks that also consider the se-
quence of states being detected. Therefore, they are useful when there is a
pattern of situation occurrence over time. This is relevant in scenarios such
as smart home environments where users perform activities in an identifiable
order, such as take a shower, have breakfast and so on. The most common dy-
namic Bayesian network is the Hidden Markov Model (HMM). The HMM is a
probabilistic model consisting of a hidden variable (situation) and an observ-
able variable (context events/ sensor readings) at each time step. A known
transition probability distribution is used to support the identification of a sit-
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uation at time t, based on readings at previous time slices [20]. HMMs have
been applied to detect activities with temporal patterns. Van Kastersen et al.
apply HMMs to the detection of activities of a person in their home. They
achieve up to 79.4% recognition of activity recognition. They also note that
for their particular scenarios, a minimum of twelve days of training data were
required to maximise their situation recognition results. Clarkson et al. [15]
used HMMs for context recognition methods for wearable computers with the
means of a wearable camera, and environmental audio signal processing. They
achieve recognition rates for a simple set of situations of between 85 and 99%.
HMMs consider short term sequences only, based on the previous state.

Choujaa et al. [14] employ temporal knowledge in their approach. They ob-
serve that long term sequences (such as activities from an earlier part of the
day) are also useful, and employ both short term and long term sequences
in their activity inference approach, using a probabilistic framework obtained
from training data. Their approach also caters for gaps in the data. They
evaluate using a data set generated from mobile phones. With eight weeks
of training, user activities can be inferred with over 70% accuracy when every
other hour is missing in the day.Their approach therefore alleviates the require-
ment to have a complete training data set, allowing for missing training data
to be managed, although reliance on training data is not completely removed.
Jakkula et al. [55] apply temporal knowledge about activities in order to detect
anomalies in real time in a smart home, such as a cooker left on. The purpose of
detecting anomalies is to monitor resident safety. They use training data to dis-
cover frequent sequences of sensor patterns, and temporal relations between
sequences. Their approach supported the detection of anomalies occurring
over a day, using 59 training days from their MavHome smart home environ-
ment, although exact results are not provided. These approaches [14, 55] are
of interest to use because they illustrate the value of reasoning with tempo-
ral knowledge. Choujaa et al. [14] use the temporal sequence of activities to
improve recognition, whilst Jakkula et al. [55] employ both sequence of activ-
ities and the length of time between sequences to detect when an exception or
anomaly occurs. However, they both rely on the availability of training data
for development of a probabilistic learning model.

Discussion of Bayes approaches

Bayes models allow higher level states (situations) to be captured based on a
probabilistic model of lower level and/or sequence of states. Both Naïve Bayes
and Bayesian networks identify situations at specific points in time. Naïve
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Bayes takes a universal view across the environment, not requiring any causal
links between lower and higher level states to be specified. Bayesian networks
(including HMMs) require that causal links between sensor values and situ-
ations are known, so this can reduce the number of conditional probabilities
that need to be encoded into the network. Because a Bayesian network and
Naïve Bayes classifier do not necessarily require a transition from one state to
another in order to compute the global or local state of the network, they can
be useful schemes for computing a single higher level context as an abstraction
of numerous primitive contexts. However, the disadvantage of this approach
is that they do not explicitly support temporal knowledge about situation tran-
sition. If situation recognition is dynamic, with recognition being carried out
over time (such as monitoring activities of a person throughout the day), then
the inclusion of temporal knowledge using a dynamic Bayesian network, such
as HMMs, may be very useful, as demonstrated by the temporal learning work
of van Kasteren [109], Choujaa and Dujaa [14]

Bayesian approaches allow for context uncertainty because they build a prob-
abilistic model based on correlating lower level context values against higher
level situation occurrences. Uncertainty of sensor data and inference rules are
absorbed ’invisibly’ into the model, with no requirement to explicitly quantify
uncertainty for the training model. This ’black box’ approach, however, makes
it difficult to scrutinize the reasoning process. For environments where people
need to understand the reasoning process, this lack of transparency of how
situations are inferred from sensor data may be problematic.

A common feature of the Bayes models is their requirement for training data
to establish a model of the environment. If supervised learning is used, data
must be annotated. If training data cannot be collected, then an alternative
method will be required. We summarise the Bayes approaches against knowl-
edge acquisition, transparency and ability to cater for uncertainty in table 2.1.

2.4.1.2 Decision Trees

Decision trees, built on information entropy, have also been used to classify
sensor data into activities based on features extracted from sensor data. Using
a training data set, decision rules are determined from the training information
by finding the link between individual values and classifications (situations).
The resultant decision tree forms a model for future test classifications. Bao
et al. [7] compare classification results using decision tree and Naïve Bayes
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classifier. Their experiment classifies user activities based on accelerometers
attached to users that track movements. They noted that the rule-based ap-
proach of decision trees seems to capture combinations of feature values that
result in good recognition accuracy. For example, the tree distinguishes “win-
dow scrubbing” from “brushing teeth” because the first activity involves more
energy in hip acceleration even though both activities show high arm accel-
eration. The Naïve Bayes classifier, on the other hand, may not be able to
model such rule combinations adequately. Their approach, however, relies on
the availability of training data to determine decision rules. Also, it detects
static states only, without considering temporal information such as activity
sequences. Logan et al. [68] tested activity classification for a smart home envi-
ronment using both Naïve Bayes and J48 decision tree. The decision tree classi-
fication had consistently superior performance over Naïve Bayes although the
reason for this is not explained. They also noted that decision trees have the
added advantage of relative transparency - allowing visibility of which sen-
sor inputs contribute to classification.However, as with Bao et al.’s [7] work,
their approach requires training data to determine decision rules and does not
consider temporal information.

2.4.1.3 Situation lattices

Ye [121, 119] applied lattice theory to the organisation and recognition of situ-
ations. A situation lattice is a data structure which consists of a set of nodes,
where each node corresponds to the set of contextual information relating to
a set of situations. The situation lattice captures the relationship between situ-
ations, capturing both the generalisation relation of situations and the depen-
dence between situations. Its structure supports the identification of situations
that can occur concurrently, or that are impossible to occur together. A com-
bination of learning and specification are used to establish and optimise the
situation lattice. Given the (partial) reliance on training data, we have cate-
gorised it under learning techniques. Learning is used to uncover the rela-
tionship between abstracted context and situations. Expert knowledge is used
to define how abstracted context is derived from sensor data (termed context
predicates by Ye), and to tweak the lattice manually to boost recognition accu-
racy. Ye compares the recognition accuracy of the lattice against Naïve Bayes
and J48 decision trees, with the lattice providing comparable accuracy to the
other techniques. Ye notes however that the lattice computation load during
recognition may be huge when faced with many situations.
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Ye’s work on situation lattices was completed as part of the work of the Sys-
tems Research Group, University College Dublin. It is a separate, parallel
strand of work to the work in this thesis, with no overlap with the contri-
butions of this thesis. Situation lattices are based on lattice theory whereas
our approach in this thesis uses Dempster-Shafer theory. Ye’s work on situa-
tion recognition using situation lattices, however, uses transparent, repeatable
methodologies with a publicly available data set. Therefore, it provides a use-
ful basis for comparing situation recognition results using situation lattices
with results using the extended Dempster-Shafer approach of this thesis. This
comparison is included in the evaluation work in Chapter 6 of this document.

2.4.2 Specification-based approaches

In the non-learning approaches, each situation needs a specification that is de-
rived from expert knowledge. The specification consists of a set of constraints
that define which ’pieces’ of context information indicate the occurrence of the
situation. Such techniques therefore do not rely on training data. Generally,
these approaches do not address uncertainty as part of their approach (with
the exception of Dempster-Shafer theory) but assume that sensor data is fac-
tual and reliable.

2.4.2.1 Logic based approaches

The logic-based approach uses a set of rules to evaluate sensor values and de-
termine which situation of interest is happening. Situations are specified as
constraints on context information linked by a group of logical operators. For
example, the situation of ’preparing breakfast’ might be specified as (’fridge
used’ or ’kettle used’) and ’cup used’. This approach is more typically associ-
ated with earlier work on context reasoning, such as work by Dey [25] . Dey
describes abstracting situations using reasoning modules called ’widgets’. Sit-
uations are abstracted from context information by logically ’AND’ing a set
of context conditions together. The approach however is restrictive because it
cannot cater for alternatives such as ’user in room 309 OR room 208’. Neither
does it cater for the uncertainty of context information. Henricksen ’s work [47]
addresses these restrictions by using a richer set of logical combinations in sit-
uation specifications. Loke et al. [70] uses logic programming for representing
and reasoning about situations. Situations are represented as logic programs,
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Table 2.1: Comparison of recognition approaches: % indicates where knowl-
edge must be found;" indicates capabilities; S indicates ’sometimes’ , such as
HMMs can use sensor readings directly in its probabilities knowledge or it can
use abstracted context values.
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termed ’situation programs’ by Loke. A situation program is a collection of
rules, where each rule specifies constraints on sensor readings. Situation pro-
grams can refer to other situation programs, allowing a hierarchy of inference
to be used. His approach allows for situations that can or cannot co-occur to
be specified, which increases the stability of the situation recognition process.

In more recent work, logic approaches have been combined with ontologies
[41], [84], [105, 106, 107]. Ontologies allow the various relationships between
sensors, context and situations to be captured in a formal way. The ontolo-
gies thus provide the semantic interpretation of the context information and
the logic approach provides the rules evaluation mechanism for combining
knowledge in the ontology. Ranganthan et al. use ontologies combined with
probabilistic logic in their context reasoning infrastructure Gaia [84]. They rep-
resent context information as predicates, such as ’location(jeff, in, room 3105)’ .
The structure and semantics for the various valid predicates are stored in the
ontology. They attach a confidence value to predicates to quantify the certainty
of the statement. Gu et al. [41] use an ontology to capture context information
as context predicates similar to Ranganathan et al. They derive high-level con-
text using both ontology reasoning with description logic and user-defined
reasoning that is defined in specific rules in first-order logic.

Temporal information has been incorporated into specification based ap-
proaches, using temporal logic. Jakkula and Cook [56] use Allen’s temporal
logic relations [2] as the basis for defining temporal rules across activities. The
rules allow the sequence and overlap of activities to be encoded into a rule
base. They compare the predictive accuracy of activities with and without the
temporal rules, noting an improvement when temporal rules are applied. This
indicates that temporal information will help with situation recognition, and
is desirable for us to include into our Dempster-Shafer based reasoning ap-
proach. Augusto et al. [5] introduce the temporal operators ’ANDlater’ and
’ANDsim’ in Event-Condition-Action rules, upon which temporal knowledge
on human activities can be specified. This allows events that co-occur (AND-
sim) and events that happen in a sequence (linked by ANDlater) to be used
in reasoning. For example, if the user in a smart home is detected as in the
kitchen, ’ANDlater’ no movement is detected in the kitchen or moving from
the kitchen, the situation of ’user fainted’ is detected. Therefore, their work in-
dicates that co-occurrence and sequence of situations, if known, will help with
recognition.

Gottfried et al. [38] use temporal logic to describe, constrain, and reason about
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sequences between two events. They use a wider set of temporal operators
than those used by Augusto et al. [5], allowing a richer set of sequence rela-
tionships such as events happening immediately after one another (’meets’),
an event that always happens as another event is finishing (’finishes’), and
events where one event encompasses another (’during’). The thirteen opera-
tors are described fully in [38].

Logic approaches rely on the ability of systems designers to specify rules in
advance. This can be problematic in scenarios where the number of sensors
is high and situations become more complex. This will be the case with our
proposed approach. However, logic approaches generally assume that data
sources are reliable, with data treated as fact rather than potentially uncertain.
Dempster-Shafer theory as used in our approach is a sound basis for encoding
uncertainty of data sources.

2.4.2.2 Fuzzy membership and logic

Fuzzy logic, supported by fuzzy set theory, accommodates imprecise states or
variables. Fuzzy set theory allows a precise but subjective membership value
to be applied to indicate the extent to which a value is part of a fuzzy group
[58]. For example, if an activity sensor monitors the keyboard activity of a
user at a desktop, the activity level may be described as ’active’ or ’inactive’.
The human understanding of these states is that ’active’ gradually descends
into ’inactive’ rather than a hard ’sudden’ boundary between them. The fuzzi-
ness membership of a state is expressed as a number between 0 and 1, where
1 indicates full membership of a state, and all below 1 indicates the degree of
membership of the state. This interpretation of ’degree of membership’ de-
pends on the purpose of the fuzzy membership function. For example, fuzzy
membership applied to the fuzzy concept of activity allows the ’nearness’ to
a state to be specified. Whereas, applying fuzzy membership to a crisp con-
cept such as location of a person conveys the certainty that a person is in a
particular location.

Fuzzy membership is useful in context-aware systems to define the level of im-
precision associated with a context value. Preuveneers et al. [82], Ranganathan
et al. [84], Korpippa et al. [62], Mantyjarvi et al. [72] all use fuzzy membership
functions to quantify the extent of imprecision of context. Anagnostopoulos
et al. [3, 4] define fuzzy inference rules to deal with imprecise knowledge
about situational context. They use ontologies to hold situation specifications
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and a fuzzy function to calculate the degree of membership of a situation i.e.
the extent of belief that a user is involved in a particular situation. Their ap-
proach caters for the uncertainty of imprecise context states, and propagates
this imprecision to situation belief level.Moon et al. [93] capture the uncer-
tainty of temporal information by combining fuzzy and temporal logic, using
fuzzy branching temporal logic. This temporal logic can model dynamic sys-
tems with uncertain temporal information and a branching time model. It has
fuzzy events and fuzzy states in its temporal model. It can express fuzzy logi-
cal formulae and fuzzy temporal relationships among those formulae, such as
sequences. The degree of satisfaction of the constraints on a system can then
be represented as a truth value of a Fuzzy Branching Temporal Logic foru-
mula. Moon et al’s approach is interesting because it captures uncertainty of
temporal information, in additional to encoding temporal information into the
reasoning process.

Fuzzy membership is a useful way to quantify imprecision and uncertainty.
We see that fuzzy membership is complementary to other approaches, such
as temporal logic [93]and ontologies [4, 3]. In Dempster-Shafer theory, fuzzy
membership will be useful in supporting the allocation of belief from sensors
to abstracted context where the context suffers from imprecision or time decay,
so we will incorporate fuzzy membership into our Dempster-Shafer approach.

2.4.2.3 Custom approaches

A number of other approaches fall outside the mainstream theoretical ap-
proaches, whereby researchers have applied their own custom approaches to
the problem of identifying situations from sensor data. For example, Palmes
et al. [81] use an object web mining approach to activity discovery that does
not assume any particular sequence of activities. The important feature of this
work is that it offers an alternative way to discovering knowledge without
using training data or relying on expert knowledge. They use public web-
based descriptors of activities to discover specifications. This does require
that descriptors are both available and representative of the situations to be
detected. Interestingly, they note that activities may have a distinct series of
steps but with no particular sequence. This is an interesting observation be-
cause where it is applicable, the case for using HMMs and other sequence re-
liant approaches is reduced. They note that in such cases, relying on sequence
of events for activity recognition may significantly limit the accuracy and ap-
plicability of models that rely particularly on object sequence.
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Myllymaki et al. [78] uses various uncertainty parameters in their custom algo-
rithm for detecting a user’s location from a number of contributing contexts.
They quantify concepts such as ’association confidence’ (likelihood that an en-
tity is with its ’sensor’) to capture the problem of users not carrying their lo-
cator tag or mobile phone. To cater for conflicting reports from sensors, they
apply a ranking algorithm to determine which report is most likely to be true.
They also incorporate the concept of time decay by applying a time decay to
the various sensors. Their approach is interesting because it quantifies and rea-
sons with the types of quality issues that can occur. We wish to do the same in
combination with Dempster-Shafer theory. The weaknesses of their approach
is that it is difficult to generalise it across different environments. Also, they do
not fuse sensor outputs, but treat one sensor as correct in the face of conflict.
This may lead to less reliable results than fusing results from multiple sensors.

Padovitz et al. [80] define situations as a vector of context attributes, the equiv-
alent of a set of context events. Their reasoning engine matches detected con-
text values to the stored situations. If no matching occurs, they employ a dis-
tance algorithm to detect the closest situation, thereby dealing with the dis-
crepancy caused by uncertain context. Interestingly, they go beyond discrete
state recognition by using ’situation natural flow’ to assist in reasoning. For
example, they prevent unnatural transitions such as walking to sick based on
heart rate detection. Haghighi et al. [43] propose a similar reasoning mecha-
nism to [80] by using a K-nearest neighbor algorithm to find the nearest match-
ing situation if the detected context facts do not cleanly match a situation def-
inition. These algorithms do not rely on training data, and are conceptually
simple. However, their disadvantage is unmatched situations may be deemed
equally or very closely similar, thus making it difficult to distinguish between
uncertain situations.

2.4.3 Dempster-Shafer theory-based approaches

In the previous section, we explained the techniques used for situation recog-
nition. In this section, we will describe why we propose to use Dempster-
Shafer theory for situation recognition, and related work by other researchers
using this technique.

Dempster-Shafer theory is a theory of uncertain reasoning that is widely used
in domains where information (evidence) is known to be imperfect and rea-
soning uncertain, such as medical diagnosis, quality control and process engi-
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neering [92, 77, 61, 79]. The theory supports the combination of evidence from
different sources, arriving at a degree of belief (represented by a belief func-
tion) that takes into account all the available evidence. More extensive details
of Dempster-Shafer theory are described in Chapter 3.

Dempster-Shafer theory has been applied to a limited extent in the domain of
context-aware systems, but has recently received greater attention in the work
of Hong [50] and Zhang [125]. The first use of the theory for context-aware
systems was Wu’s approach [116, 114, 115] to fuse sensor data into higher
level contexts. Wu applies Dempster-Shafer theory to the monitoring of peo-
ple conversing in a meeting room, using an audio and camera sensor to de-
tect the focus-of -attention of a user. Wu’s main contribution is the definition
of a dynamic discount factor for sensors that changes over time. However,
the discount factor is reliant on ground truth availability shortly after fusion
takes place which is not a workable assumption for many situation recogni-
tion scenarios. Wu’s application of Dempster-Shafer theory deals with rea-
soning about lower level context only; it does not address the propagation of
evidence to situation level.

Hong et al. [50, 49] apply Dempster-Shafer theory to define an evidence based
activity (situation) model that uses sensor data for activity recognition in a
smart home. Hong expands on Wu’s work by using evidence propagation to
bring evidence up through a hierarchy, so that activities can be recognised,
as opposed to just abstracted contexts. Hong’s approach advances the ap-
plication of Dempster-Shafer theory to situation recognition by showing how
evidence can be propagated across frames. Their approach is demonstrated
via worked examples with sensors. Their worked examples are from a smart
home, where simple binary sensors are embedded in everyday objects in a
kitchen. As each object is used (such as opening the fridge), it contributed ev-
idence to higher level activities such as ’making a drink’. Hong’s approach
does not address the temporal spread of evidence over time, but treats activity
recognition as if all tasks in the activity happen at the same time. This is a sim-
plification that we address in our approach. Hong’s approach describes how
belief can be distributed to situations, but does not include a decision stage to
determine occurring situations.

Zhang et al. [125] use Dempster-Shafer theory for reasoning about activities.
Their work focuses on resolving two issues (1) computation intensiveness of
evidence fusion (2) Zadeh’s paradox, whereby conflicting evidence sources
can give paradoxical results by granting majority belief to a monority opinion.
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Zadeh’s paradox [124] is a well documented problem with Dempster-Shafer
theory. It, and our solution to it, is described further in Chapter 3, Section
3.5.1. Zhang et al. address computational intensiveness by excluding evidence
sources with small belief contributions, so as to reduce the size of the evidence
set. To address Zadeh’s paradox, they exclude the conflict from the evidence
combination process, which prevents Zadeh’s paradox from occurring.

In terms of temporal information, the existing Dempster-Shafer approaches to
situation recognition do not support the inclusion of temporal information in
the reasoning process. The inclusion of temporal information with Dempster-
Shafer theory is limited to Strat’s work [101] on evidence projection. Projection
determines the impact of a body of evidence at a point in time in the past or
the future. This allows evidence that occurs at a point in time to be projected to
a different time, with some degree of certainty that the evidence is still valid.
For example, if a person A is detected at a location X at time t, this evidence
may be re-used in a location Y at a later time, provided that it is feasible for the
person A to have reached location Y within the elapsed time. In our approach,
we wish to include temporal information to enhance our ability to recognise
situations. Strat’s work on projection was aimed at scenarios where separate
states under detection exist at different times but where evidence may be re-
used to detect these states. Our requirement has some conceptual overlap with
Strat’s approach, as we wish to make evidence last over time. However, it
differs in that we are detecting the same ’state’ or situation that endures over
time. We will use the concept of evidence being re-used over time in order to
support the recognition of situations that have an identifiable duration. This is
described further in Chapter 4.

2.4.4 Our approach in the context of other research

The Dempster-Shafer theory approach to reasoning with uncertainty has a
number of strengths over other approaches: (1) It removes reliance on training
data. (2) It supports the capture and presentation of uncertainty, which is very
useful for environments with noisy data and uncertain reasoning (3) Evidence
can be allocated to more than one hypothesis, which is closer to human reason-
ing than a probabilistic approach where all individual hypotheses are given a
separate probability.

We see a number of gaps in the existing approaches to Dempster-Shafer theory
for situation recognition:
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1. None of the approaches considers the temporal aspect of evidence and
situations. They treat evidence and situations as static states. Evidence is
assumed to co-occur and time of occurrence is not included in reasoning.

2. Sensor reliability can be applied as a simple discount mechanism, de-
fined as part of Shafer’s original work on the theory [95]. However,
richer sensor and context quality semantics that have a variable impact
on sensor performance over time are not incorporated (such as time de-
cay, precision);

3. A decision level is not provided in existing approaches that considers
which situation are/can be occurring.

When considering how our approach improves situation recognition in con-
trast to other (non Dempster-Shafer) approaches described in Section 2.4.1 and
Sections 2.4.2, we summarise as follows:

1. Data-driven machine learning approaches address the issue of uncer-
tainty because they absorb uncertainty of sensor and rule information.
However, if training data is not possible to obtain, a learning approach
cannot be used.

2. Specification-based approaches using logic approaches are heavily used
in situation recognition to support rules-based reasoning. Dempster-
Shafer theory, as applied in this thesis, will also support reasoning with
rules based information. However, Dempster-Shafer theory has the ad-
ditional advantage of explicitly capturing and preserving a generic mea-
sure of uncertainty.

3. Fuzzy logic approaches capture uncertainty by capturing the concepts of
degrees of truth or imprecision. It has been used as a stand alone logic
approach and in combination with other logic approaches to capture con-
text imprecision, situation uncertainty and temporal information uncer-
tainty as explained in Section 2.4.2.2. Dempster-Shafer theory is ideally
suited to capturing fuzzy concepts because it allows uncertainty to be
explicitly quantified and preserved. We exploit this capability by cap-
turing and encoding rich sensor quality and context uncertainty into our
process.

4. Temporal information is used in both learning and specification ap-
proaches to enrich situation recognition. At present, it is not incorpo-
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rated into Dempster Shafer theory for the purposes of situation recogni-
tion. We incorporate both situation duration and time of situation into
our approach to improve situation recognition.

2.5 Conclusion

In this chapter, we explored the background to context information with a view
to understanding the status of approaches in the field to situation recognition.
We explained the link between sensors, abstracted context and situation. Situ-
ations are the states of the environment of interest to application. From look-
ing at situation features identified in the literature, we noted that situations
are hierarchical, dynamic with rich temporal features, and driven by uncertain
sensor data and inference rules. These complexities drive the requirements for
whatever reasoning technique is used for situation recognition. From review-
ing the related work, it is clear that no single reasoning scheme is a panacea for
situation recognition. Each approach has its own advantages and limitations,
so different environments will suit different techniques. Our conclusions on
the existing body of work on situation recognition are:

• No single approach to situation recognition is a solution for all scenar-
ios. Each reasoning scheme is applicable in certain scenarios, depending
upon such factors as the availability of training data, the requirement for
humans to be able to understand the context reasoning process, the ex-
pert understanding of causal links between lower level and higher level
contexts and the requirement to identify multiple situations in a hierar-
chy versus identifying from a ’flat’ set of situations.

• Some researchers provide actual recognition results for their recognition
technique. However, it is not appropriate to compare situation recog-
nition results across different experimental set-ups from different re-
searchers because the sensors, accuracies, situations and complexities are
specific to the environment set-up used in each case. Bao et al. [7], for ex-
ample, note a difference in inference results of 95.6% in a lab environment
versus 66.7% in a naturalistic setting. Direct comparison would require
the same data-set to be used by multiple reasoning schemes, using the
same methodology.

• Temporal factors are not catered for in existing Dempster-Shafer ap-
proaches to situation recognition. Other (non Dempster-Shafer) ap-
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proaches have exploited temporal information in situation detection,
where this temporal information includes relative times of situations,
sequence of two or more situations, and duration of a situation. Dy-
namic Bayesian approaches use sequences of states to boost recognition.
Temporal logic approaches encodes temporal information such as situ-
ation sequences, duration, overlaps and intervals between events to en-
hance recognition. Within the scope of this thesis, our approach will aim
to incorporate duration and time of occurrence of a situation into our
Dempster-Shafer approach. Inclusion of other types of temporal infor-
mation such as sequences and overlaps into our approach is desirable as
indicated by its usefulness in other approaches [5, 56], but is outside the
scope of the work in this thesis.

• Fuzzy sets are applicable if context descriptions are imprecise, and may
be incorporated into with other reasoning schemes; We will use fuzzy
sets to combine sensor quality with Dempster-Shafer theory, as described
further in Chapter 4.

• Learning schemes are a useful technique for situation recognition where
training data is available. They implicitly deal with uncertainty by
blindly absorbing uncertainty of sensor and rule information into the
probabilistic model. However, if training data is an issue, Dempster-
Shafer theory is the only specification-based approach that has strong
theoretical support for processing uncertainty in an environment.

Table 2.1 summarises the requirement for domain knowledge versus training
data, and the functionality of the various techniques.

Our particular interest is in a Dempster-Shafer based approach because it is
not reliant on training data, but can cater for uncertainty. Existing work using
Dempster-Shafer theory does not address the dynamic nature of situation or
the inclusion of sensor quality. In the next chapter, we describe the theoretical
foundations for our evidence based reasoning approach.
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CHAPTER

THREE

Creating evidence decision
networks using Dempster-Shafer

theory

In the previous chapter, we examined approaches to situation recognition. We
will use Dempster-Shafer theory as the basis of our approach. To do this, we
need to describe the process by which sensor data will be processed as evi-
dence, and distributed across situations.

The purpose of this chapter is to explain the concepts of Dempster-Shafer the-
ory and how we apply it to reasoning about situations. We define the evi-
dence processing needed to determine situation occurrence based on sensor
evidence, using a variety of evidential operations. In Section 3.2, we describe
the basic elements of Dempster-Shafer theory: frames of discernment, mass
functions, evidence fusion and sensor discounting. In Section 3.3, we explain
how we document the relationships between sensors and situations using our
own diagramming technique, situation Directed Acyclic Graphs (DAGs). We
also explain the architecture of the evidence decision network. Section 3.4 ex-
plains the evidential operations that will be required to process evidence for
belief distribution and decision making. These operations consist of opera-
tions from basic Dempster-Shafer theory, extensions to the theory by other
researchers, and our own new operations where none exist to meet our re-
quirements. Issues with evidence combination are discussed in Section 3.5,
and our solution to these issues are explained in Section 3.6. A summary of
the finalised set of evidence operations to support evidence based reasoning is
presented in Section 3.8.
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3.1 Introduction

The term evidence theory is used interchangeably in the literature with
Dempster-Shafer theory. Dempster-Shafer theory concepts was originally in-
troduced by Arthur Dempster [23, 22] and refined by Glen Shafer[95]in the
1970s. Since then, various extensions to Dempster-Shafer theory have ap-
peared in the literature to cater for alternative scenarios. These are usually
referred to under the term of Dempster-Shafer theory. An exception to this
is Smet’s [100] transferable belief model (TBM), which is described further in
section 3.4.3. We will use the term Dempster-Shafer theory to refer to evidence
theory, but we will distinguish where we use aspects of Smet’s TBM.

3.2 Concepts of Dempster-Shafer theory

Dempster-Shafer theory combines separate pieces of information (evidence) to
calculate the belief in an event. Its key features are (1) its ability to specifically
quantify and preserve ignorance, (2) its facility for assigning evidence to com-
binations of choices - such as user in “’kitchen OR bedroom” as well as single-
tons (unlike probability theory which must allocate probability to singletons),
and (3) its use of domain knowledge as a method for belief distribution [37].
These features are relevant to situation recognition in context aware systems
for several reasons:

• Sensors are unreliable; an ability to quantify this lack of reliability and
preserve the resulting uncertainty will support the quantification of situ-
ation uncertainty;

• Rules are uncertain, and this uncertainty can be used to contribute to
situation uncertainty calculations;

• The theoretically sound basis for incorporating domain knowledge offers
us a way to encode knowledge without relying on training data.

Each evidence source has a total available amount of belief to be allocated, to-
talling to a value of 1. The mass function for each evidence source allocates
a source’s belief across a set of choices. These choices are collectively called
the Frame of Discernment. In this section, we describe the basic concepts of
Dempster-Shafer theory: frames of discernment, mass functions, rule of evi-
dence combination and discounting.
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3.2.1 Frames of Discernment and mass functions

In a Dempster-Shafer theory reasoning scheme, the set of possible hypotheses
are collectively called the frame of discernment. This frame Ω represents the set
of choices {h1,h2,...hn} available to the reasoning scheme, where sources (such
as sensors) assign belief or evidence across the hypotheses in the frame. Hy-
potheses can be any subsets of the frame. i.e. to singletons in the frame or to
combinations of elements in the frame. For example, a calendar sensor that
monitors whether a user is scheduled to be in a meeting or not assigns belief
across a frame of discernment that includes hypotheses {meeting, coffee break,
busy at desk}. When the calendar indicates that the user does not have a meet-
ing, belief is assigned by the calendar sensor to ’not meeting’ situations i.e. the
combination of {coffee break, busy at desk}. It assigns zero belief to {meeting}.

Formally, 2Ω denote the set of all subsets of Ω to which a source of evidence
can apply its belief. The function m : 2Ω → [0, 1] is called a mass function that
defines how belief is distributed across the frame, if the function satisfies the
following conditions, for hypotheses A:

m(φ) = 0 (3.1)

∑
A⊆Θ

m(A) = 1 (3.2)

Based on these conditions, belief from an evidence source cannot be assigned
to an empty or null hypothesis, and belief from the evidence source across
the possible hypotheses (including combinations of hypotheses) must sum
to 1, similar to probability theory. The least informative evidence (uncer-
tainty) is the assignment of mass to a hypothesis containing all the elements
{h1, h2, ...hn}, because this evidence does not commit to any particular hypoth-
esis. This ’uncertainty’ is denoted by the symbol J.

3.2.2 Combining evidence

A crucial part of the process of assessing evidence is the ability to fuse evi-
dence from multiple sources. In Dempster-Shafer theory, the combination of
evidence from two different independent sources is accomplished by Demp-
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ster’s combination rule:

m12(A) =

∑
X∩Y=Am1(X).m2(Y )

1−
∑

X∩Y=φm1(X).m2(Y )
(3.3)

where m12(A) is the combined belief for a given hypothesis A, and X and Y
represent all possible subsets of the frame. The numerator in equation 3.3 rep-
resents evidence for hypotheses whose intersection is the exact hypothesis of
interest, A. i.e. the agreement across the two sources about hypothesis A. The
denominator, 1−K is a normalisation factor, where K is a conflict factor repre-
senting all combined evidence that does not match the hypothesis of interest,
A. The value of conflict, K, when combining evidence is indicative of the level
of disagreement amongst the sources of their belief in hypothesis A.

Dempster’s rule can be considered as a strict AND operation of the evidence
sources [92]. An alternative will be required to cater for where sources are
combined as OR scenarios.

3.2.3 Sensor discounting

Shafer defined an evidential operation for discounting sensor evidence [95].
When an evidence source is known to be less than 100% reliable, a discount-
ing factor between 0 and 1 is applied to the source’s beliefs. Unused be-
lief as a result of discounting is assigned to uncertainty. If a source is com-
pletely reliable (r = 0) discounting has no effect. For example, a location
sensor identifies a user’s location with belief distribution of 0.3 in Room A,
and 0.7 in Room B or C. If a discount factor of 0.2 is applied (i.e. the sen-
sor is 80% reliable), the belief assignments are discounted and the leftover
discounted belief is assigned to uncertainty. The re-distributed belief is then
RoomA = 0.24, RoomB ∨ C = 0.56,Θ = 0.2. The impact of the discounting
factor on beliefs is represented formally by Lowrance as [71] as follows:

For a discount factor, d, where (0 ≤ d ≤ 1), where Θ represents uncertainty:

md(A) =

(1− d)m(A) if A 6= Θ

d+ (1− d)md(Θ) if A = Θ
(3.4)
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3.2.4 Example of evidence combination

We use a worked example based on our own intelligent office data set to ex-
plain the concepts of mass functions, frames of discernment and evidence com-
bination.

Two sensors are used to detect user location in an office. The locations of
interest to an application are the cafe, the user’s desk, the meeting room
and ’anywhere else’ in the building. Each of our sensors are capable of
discerning these locations. The frame of discernment for each of the sen-
sors includes the singleton hypotheses {desk, cafe,meetingRoom, other}. It
also, in theory, includes all possible combinations of the singletons, such
as{desk ∧ cafe, desk ∧ cafe ∧ other} and the complete ignorance hypothesis
{desk ∧ cafe∧meetingRoom∧ other}which is represented as Θ. The first sen-
sor detects the user’s location in the cafe. The sensor is 70% reliable, so its
belief is assigned across the frame as {cafe 0.7, Θ 0.3}. The allocation of 0.3 to
ignorance is generated by discounting the sensor evidence by 70%, as calcu-
lated using equation 3.4. The second sensor has conflicting evidence, assigning
its belief across the frame as: {meetingRoom0.2, desk∧ cafe∧other 0.6, Θ0.2}.

Combining those beliefs using Dempster’s rule of combination in equation
3.3, the calculations are shown in table 3.1. Prior to normalisation, the un-
normalised masses as captured in the combined evidence from table 3.1 are:

massCafe = 0.42 + 0.14 = 0.56;

massmeeting = 0.06;

massdesk,cafe,other = 0.18;

massΘ = 0.06;

conflict = 0.14

The conflict of 0.14 represents the conflicting evidence from the sensors which
has no overlap (i.e. desk versus meeting).

To normalise out conflict, the normalising factor is k = 1− 0.14 = 0.86

The revised masses after normalisation, using equation 3.3 are:

masscafe = 0.65;

massmeeting = 0.07;
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Mass Assignment from
sources

Cafe
0.7

Uncertainty
0.3

Desk, cafe, other
0.6

Cafe
0.42

Desk, Cafe,
Other 0.18

Meeting
0.2

Conflict
0.14

Meeting
0.06

Uncertainty
0.2

Cafe
0.14

Uncertainty
0.06

Table 3.1: Evidence combination example

massdesk,cafe,other = 0.21;

massuncertainty = 0.07

3.3 Evidential approach for situation recognition

In order to apply Dempster-Shafer theory to situation recognition, we will ap-
ply evidential operations that will propagate sensor evidence through a hier-
archy of higher level context states. For each environment, these operations
will be applied using an evidence decision network that reflects the sensors, con-
text values and situations specific to that environment. We will be incorporat-
ing knowledge about the situation features identified in Chapter 2: the situa-
tion specification, temporal knowledge, situation hierarchies and known un-
certainties, such as sensor quality and inference rule frequencies. We want to
capture this knowledge in a clear, unambiguous way that can be used by sys-
tem developers and designers when creating the evidence decision network.
To do this, we use a Directed Acyclic Graph (DAG), which we term a situa-
tion DAG, to document this knowledge and to annotate the evidential opera-
tions that will be needed. Once complete, the evidential operations required
to propagate evidence can be read from the DAG.

3.3.1 Situation DAGs

The situation DAG captures knowledge about the environment that is relevant
to the evidential reasoning process: sensors, sensor quality, abstracted context,
inference rules, temporal information and situation hierarchies. The notation
for the situation DAG is shown in figure 3.1. Sensors are the root nodes at
the base of the diagram. Sensor readings are abstracted or mapped to more
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Figure 3.1: Situation Directed Acyclic Graph

47



human-understandable context values. A context value is meaningful infor-
mation about an entity, abstracted from sensor data, that is relevant to detect-
ing situations. Moving up the hierarchy, each context value will be mapped to
one or more situations, indicating that the occurrence of a particular context
value ’is evidence’ of the situation occurring; i.e. an inference rule. Depending
upon the complexity and range of situations in the system, higher-level situ-
ations may also be inferred from lower level situations. Each solid directed
arrow in the graph is interpreted as ’is evidence of‘’.

At sensor level, if a sensor is known to have a particular quality or reliability,
this quantified reliability is included as a sensor discount, as described previ-
ously in section 3.2 . Inference rules frequency or uncertainty are also denoted
on the DAG. For example, in the home data set that we will examine in Chap-
ter 5, a user ’sometimes’ uses the microwave when preparing breakfast. This is
quantified as 40% of the time, by examining sample occurrences of the ’prepare
breakfast’ situation in the data. Therefore, a belief of 0.4 is applied along the
edge or inference rule from the context value ‘microwave used‘ to the situation
of ‘prepare breakfast‘, with the remaining 0.6 assigned to uncertainty.

A summary situation is one that generalises two or more lower level situations.
For example, a ’leave house’ situation may be detected by either ’front door
used’ or ’all sensors quiet’. We denote this on the graph using the ’is a type of’
notation. If either lower level situation is detected as occurring, the summary
situation is also occurring. The set of situations that are being inferred by a
situation recognition process are shown as bolded on the situation DAG.

If the time duration of a situation is used as evidence, this is denoted on the
DAG in the situation node. The use of time durations as evidence is one of our
extensions to Dempster-Shafer theory and is described in detail in Chapter 4.

Looking at the left hand side of the DAG, we term the transfer of evidence from
sensors up to situations ’belief distribution’. Once belief has been distributed
to all nodes in the DAG, a decision step is required to determine which situa-
tions(s) are occurring.

3.3.2 Evidence decision network architecture

We separate the situation recognition process into two steps 1) belief distribu-
tion and 2) decision making.

Belief distribution: This step populates belief levels throughout the situation
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Figure 3.2: Evidence decision network architecture

DAG to all nodes. At regular time intervals, mass functions for all sensors
distribute mass to context values for a set of sensor readings. Evidence is fused
and propagated to higher levels on the DAG until every node on the DAG has
an assigned belief level. The architecture for the evidence decision network is
shown in figure 3.2.

Decision making: Once evidence has been propagated to all nodes in the DAG
in the belief distribution stage, a decision process is then required to select
the recognised situations based on the distributed belief. The first step is to
distribute any evidence on combined elements (i.e. to two or more situations),
so that all evidence is allocated to singleton elements or situations. This is
achieved using our variant of Smets decision rule as described in equation
3.12. Once all evidence has been distributed, the decision algorithm is driven
by the recognition requirements for the environment:

1. What situations are being recognised in the environment? The DAG de-
notes all situations, where only a subset may be used to drive applica-
tion behaviour. The set of situations that are being inferred are shown as
bolded on the situation DAG

2. Can situations co-occur or can only one situation occur at a time?

3. If situations can co-occur, what are the invalid situation occurrence com-
binations?

In an environment where a single situation only can be occurring, the situation
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with the highest belief is deemed to be occuring. If situations are allowed to
co-occur, a belief threshold level will be required as a cut-off. If any invalid
co-occurrences of situation exist (e.g. making breakfast and having a shower
at the same time), these will be incorporated into the threshold check. The
algorithms for decision making are described in detail in Chapter 6, section
6.1.

In the next section, we explain the detailed evidential operations required to
support belief distribution.

3.4 Evidence operations for belief distribution

and decision making

The evidential operations that will be required to infer situations in an environ-
ment can be determined from the Situation DAG established for that environ-
ment. The basic premise is that at regular intervals of time t, sensor readings
will be propagated from sensors up to situations, providing belief levels for
the possible situations. The situation(s) with the highest belief are believed to
be occurring. The detailed operations are as follows:

• Each node must be placed in a frame of discernment so that belief is as-
signed to it

• Mass functions interpret sensor readings and assign evidence across con-
text values for the sensor;

• Sensor evidence is discounted if sensor is unreliable

• The evidence for each context value needs to be transferred or propagated
towards the next level of the DAG.

• When nodes below each situation have been populated with evidence,
the evidence from each node must be fused using an appropriate fusion
rule, to determine belief in the situation. The fusions should cater for
’AND’, ’OR’ and ’is a type of’ fusion.

• Dempster-Shafer theory allows evidence to be assigned to groups of ele-
ments in the frame. Evidence may therefore be assigned to combinations
of situations. When deciding which situation is ’occurring’, we need to
allocate out this combined evidence to single situations.
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Evidence operation Description Source

Belief distribution
Mass functions Distribute sensor belief to

context values
basic Dempster-Shafer

theory
Sensor discounting Reduce sensor evidence by

discount factors
basic Dempster-Shafer

theory
Evidence

propagation
Move evidence from context
values up to higher levels in

the DAG

required

AND Merge evidence from two or
more sources

basic Dempster-Shafer
theory: Dempster’s rule

of combination
OR Combine evidence from two

or more source as ’OR’
required

is a type of Combine evidence for a
summary situation

required

Decision making
distribute combined
evidence to single

situations

Evidence that is shared
across multiple situations has

to be split into single situations
as part of decision making

required

Table 3.2: Evidential operations for belief distribution and decision making

Table 3.2 shows how each of these requirement is met:

Basic Dempster-Shafer theory provides some of the evidential processing
needed: mass fusions, discounting and basic evidence fusion. As shown in
the table, we also need additional evidential operations to complete the pro-
cess of situation recognition. We need to: (1) propagate evidence from sensors
up to higher levels in the situation DAG; (2) fuse evidence in OR combina-
tions (3) process ’is a type of ’ situation hierarchies and (4) distribute combined
evidence using some form of decision making operation. In the next subsec-
tions, we explain how each of these four requirements is met from existing
Dempster-Shafer theory and by our own defined evidential operations where
none exist to meet these requirements.

3.4.1 Evidence propagation across frames

We want to propagate belief of context values up to the remaining nodes in
the DAG. Lowrance et al. [71] described a set of evidence operations to al-
low mass from evidence sources to be propagated from one frame to another
frame. This matches our requirement to propagate evidence at context event
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level upwards to situations. We use Lowrance’s operations for evidence prop-
agation, as also used by Hong et al. [50] in their evidential model: compatibility
relations, compatibility mapping and translation. We also define an additional op-
eration to translate evidence between frames when the relationship between
elements is uncertain.

• Compatibility relations define which elements from two frames of discern-
ment can be true simultaneously. We use them to define the exact des-
tination in higher level frames of discernment to which belief from sen-
sors will be transferred. For example, a fridge sensor may have a frame
of context values: {fridgeUsed, fridgeNotUsed, J}. The use of the fridge is
indicative of the ’get drink’ situation, which has a part of a frame of dis-
cernment: {getDrink; notGetDrink, J}. ’FridgeUsed’ is compatible with ’get
drink’ (i.e. they are both true simultaneously) and so on for the remaining
elements in both frames. Defined formally by Lowrance et al. [71], the
compatibility relation between frames ΩA and ΩB is a subset of the cross
product of the two frames. A pair (ai, bj) is included if and only if they
can be true simultaneously. There is at least one pair (ai, bj) included for
each ai in ΩA :

ΩA,B ⊆ ΩA × ΩB (3.5)

• Compatibility Mapping: Using the compatibility relation ΩA,B, Lowrance
et al. [71] define a compatibility mapping CA→B for translating be-
lief expressed relative to ΩA to statements relative to ΩB. Belief for
a statement AK indicates belief for statement CA→B(AK). Continuing
with the ’fridgeUsed’ example, there is a compatibility mapping between
’fridgeUsed’ and ’get drink’.

• Translation: Lowrance then defines how to transfer mass between frames
for which compatibility mapping has been defined. We use transla-
tions along the inference paths defined by compatibility mapping, en-
abling the mass of compatible elements to be transferred; e.g., mass of
’fridgeUsed’ will be propagated to ’get drink’. To translate MA from frame
ΩA to frame ΩB via compatibility mapping CA→B, the mass translated is
defined formally by [71] as follows:

MB(Bj) =
∑

CA→B(Ai)=Bj

MA(Ai) (3.6)
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• Translating uncertain relationships: The operations of defining compatibil-
ity relations, mapping and translating evidence allows evidence to move
from one frame to another, but it assumes that there is a certain rela-
tionship in the compatibility relations (e.g. that ’fridgeUsed’ is always
indicative of ’get drink’). If uncertainty exists in the relationships, we
will need to refine equations 3.6 to process uncertainty. For example, if
’fridgeUsed’ is indicative of ’get drink’ 60% of the time that the fridge is
used, the relationship has a frequency or certainty of 0.6. Therefore 0.6 of
the ’fridgeUsed’ belief will transfer to ’get drink’. The remaining 0.4 of the
’fridgeUsed’ belief will be allocated to uncertainty in the ’get drink’ frame.
We represent this formally as follows: to translate MA from frame ΩA

to frame ΩB via compatibility mapping CA→B, where the compatibility
mapping CA→B has a certainty 0 ≤ ω ≤ 1,

MB(Bj) =
∑

CA→B(Ai)=Bj

MA(Ai).ωi (3.7)

The resultant uncertainty in frame ΘB as a result of translation is as follows:

MB(Θj) =
∑

CA→B(Ai)=Bj

(1− ωi) (3.8)

3.4.2 Combining evidence as ’OR’ and ’is a type of’

Evidence may need to be combined under ’OR’ conditions. For example, a user
may be assessed as ’in meeting’ if the user’s location is assessed as ’meeting
room 1’ OR ’meeting room 2’. On the DAG, this is denoted using a ’meeting
room’ node, with both meeting rooms notated as ’is a type of’ meeting room.
We process this “OR” scenario in two ways:

1. If the lower nodes (i.e. choices) are in the same frame of discernment,
the belief of the upper node is calculated as the sum of the two lower
nodes. This is because their belief is derived from the same evidence
sources because they are in the same frame. Therefore, their belief can be
combined as follows:

msum =
∑

mlower (3.9)

2. If the lower nodes are in different frames of discernment, we select
the belief of the highest node. The evidence operation used is the
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max operator. We select the maximum belief of the lower level nodes,
mlower1−−−mlowern , from which the summary node is comprised, in the
same way as done by Hong et al. [49]:

msum = max(mlower1 , ...,mlowern) (3.10)

3.4.3 Distribution combined evidence to single situations

Once all belief has been fused and propagated, we then need to assess the
beliefs against the choice of situations under assessment in the environment.
Intuitively, we will select the situation(s) with the maximum belief. If our goal
in the environment in question is to recognise single situations (e.g. eating,
showering) as opposed to combinations (eating or showering), then any be-
lief that is assigned to combinations of situations needs to be re-distributed to
individual situations in order to support the decision process.

Smets [98] defined a decision level for processing of evidence as part of his
Transferable Belief Model (TBM). The TBM is similar to Shafer’s evidence the-
ory but which allows for ’open world’ scenarios where hypotheses that are
not in a frame may be considered [100]. Smets defines a pignistic probability
as a probability that a rational person will assign to an option when required
to make a decision. He uses pignistic probabilities to distribute belief at the
decision level of a belief model [96]. To redistribute belief that is assigned to
multiple elements (i.e. combinations of situations), Smet distributes the belief
across each of the hypotheses based on the number of elements in the hypothe-
sis. He also redistributes belief assigned to uncertainty across the hypotheses.
Defined formally [98], the value of the pignistic probability for A, where A
may occur in one or more sets (hence sum operator) is calculated as:

Bet(A) =
∑
X⊆Ω

|A ∩X|
|X|

.
m(X)

1−m(Θ)
(3.11)

For our model, we will use uncertainty as part of our situation selection algo-
rithm as described in Section 6.1. Therefore, we do not wish to normalise out
uncertainty as done by Smets. We provide a modification to Smet’s pignistic
probabilities that does not re-distribute uncertainty. Our re-distribution of be-
lief to smaller hypotheses (A), based on A’s occurrence in one or more sets, X,
is calculated as:
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Mdecision(A) =
∑
X⊆Ω

|A ∩X| .m(X)

|X|
(3.12)

3.5 Evidence fusion issues

Dempster’s rule of combination, as described in equation 3.3, was the core
fusion mechanism provided as part of the original Dempster-Shafer theory.
This rule combines sources as an ’AND’ configuration. The rule has been en-
hanced or changed by researchers in order to cater for specific applications of
Dempster-Shafer theory because it is not suitable in all fusion scenarios. Gen-
erally, these modifications are motivated by two problems. The first problem
is how to treat conflict when sources disagree. Dempster’s rule can result in
unexpected results when fusing conflicting evidence. This problem, termed
Zadeh’s paradox [124] is described further in section 3.5.1. The second prob-
lem is how to cater for evidence sources of varying trust, so that the credibility
of sources is correctly reflected in the fusion result.

Various fusion rule modifications exist to cater for these problems. Yager’s
[117] modified Dempster rule provides an alternative to the treatment of con-
flicting evidence. Unlike Dempster’s rule, evidence in agreement is not nor-
malised by a conflict factor, and conflict is stored separately. This gives a more
transparent picture of conflict, so is useful in domains where conflict is critical,
such as medical diagnosis. Dubois and Prade [33] defined a disjunctive fusion
rule, where at least one source of information is telling the truth, but not all
sources are trustworthy. The weakness of this rule is that if belief from a single
source is 0, the fusion of all sources will be 0. This is not a credible outcome in
a pervasive environment if a sensor breaks down. Murphy’s combination rule
[76] eliminates the possibility of a single source dominating all other sources
and is described further in section 3.6.1. Smet’s transferable belief model as-
sumes that if sources conflict, such conflict can be assigned to other undefined
options outside the frame of discernment - i.e. an open world assumption
[99]. This is not suitable for pervasive systems if a closed situation group is
under detection. Other modifications of Dempster’s rule that cater for vary-
ing scenarios of conflict and trustworthiness of sources are Dubois and Prade’s
exclusive and mixed disjunctive rules [24] and Inagaki’s Unified combination
rule [92].

A final problem that existing modifications do not target is the issue of ev-
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idence spread over time. Dempster’s rule assumes that all evidence is co-
occurring. We wish to cater for evidence that may not be occurring at the
same time, as described further in Chapter 4.

In the next section, we explain three particular problems for situation recogni-
tion when we apply Dempster’s rule in our evidence decision network envi-
ronment: Zadeh’s paradox, single sensor dominance and evidence spread over
time. We then explain how we aim to address these in our evidence decision
network by selecting two alternative fusion rules Murphys and averaging.

3.5.1 Zadeh’s paradox

Zadeh’s paradox is a well-documented problem with Dempster’s rule of com-
bination [92]. Zadeh highlighted the fact that when sources in high conflict are
combined using Dempster-Shafer rule, the results can be completely counter
intuitive [124]. Using the example illustrated in figure 3.3, two location sensors
assign belief across a frame {room a, room b, room c}. The first sensor assigns a
belief of 0.99 that the correct location is {room a} and 0.01 belief to {room b}. The
second sensor disagrees, assigning most of its belief 0.99 to {room c} and 0.01
to option {room b}. The sensors are almost completely conflicting, with a small
degree of overlap. When the sensor masses are fused using Dempster rule of
combination in equation 3.3, room b obtains all belief, with zero belief assigned
to rooms a or c. This is because room b is the only option on which both sen-
sors overlap, and all disagreeing evidence is normalised out. One reason to
account for this is the possibility that both sensors are correct [42]. This possi-
bility will work for domains such as medical diagnosis where two diseases can
be detected together. But it does not work with context detection such as loca-
tion, where a person can only be in one place at one time. Another possibility
is that one source is not reliable [42, 99, 64], a possibility that we address by
enabling rich sensor quality knowledge to be included as described in Chapter
4. A final possibility [99, 64] is the open world assumption in that both sources
are wrong because choices outside the frame may exist. This is not a workable
explanation in a pervasive environment where a closed world of possible val-
ues (i.e. a known set of situations is being detected) is a reasonable assumption
- unlike the medical domain where diseases outside the suggested possibilities
may be possible. The most correct treatment in our opinion is to highlight an
even distribution of belief for both room a and room c, with a small degree of
belief for room b (and a large measure of conflict).

56



Room A Room CB

Sensor 1 belief:
Majority to Room A

Sensor 2 belief:
Majority to Room C

Room B = least belief but overlapping belief  = winner

Figure 3.3: Zadeh’s paradox: scenario of location sensors in conflict on room
location

3.5.2 Single sensor dominance

A second problem that has gained far less attention in the literature is the
potential dominance of a single sensor. Murphy [76] described how a single
disagreeing sensor can overrule multiple other agreeing sensors in the fusion
process. A categorical belief function is where all belief is assigned to one hy-
pothesis in a frame [67]. For example, if five sensors are used to determine
the location of a user in the house, a single categorical sensor that assigns all
of its belief to a contradictory option will negate the evidence from the other
four sensors. We suggest that this is particularly problematic for binary sen-
sors which are increasingly being used in Smart Home deployments. Binary
sensors have small frames of discernment, with just three states: {on, off , ig-
norance}. Unless discounted, they will categorically assign all of their belief to
the ’on’ or ’off’ states. A single malfunctioning binary sensor can in theory
therefore overrule evidence from other correct binary sensors during the fu-
sion process. A more intuitive result would be to allow the agreeing sensors to
’win’ but to represent the disagreeing sensors’ evidence as conflict.

3.5.3 Evidence spread over time

A third problem that we have observed occurs when sensor evidence of a
higher level state is spread over time. For example, the detection of a break-
fast activity by the triggering of a fridge sensor, then a kettle sensor, then the
toaster sensor and so forth. At any point in time, only one of the sensors may
be “on”, so fusion of all the sensor values at any point in time may result in
the ’on’ sensor evidence being lost. The fusion rule should capture that some
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evidence of the situation was observed even though it has been greatly contra-
dicted by sensors that are off. It should not be wiped out by the overruling of
the contradictory sensors, as will occur with Dempster’s rule of combination.

3.6 Alternative combination rules

In this section, we will describe two alternative combination rules to Demp-
ster’s rule of combination, that have appeared in the literature [76] that par-
tially address the problems highlighted.

3.6.1 Murphy’s combination rule

Murphy [76] proposed an alternative rule of combination that will eliminate
the dominance of a single sensor and allow contradictory evidence to be pre-
served to some degree. Evidence is averaged prior to combining it using
Dempster’s rule of combination. Formally, if there are n sources of evidence,
we use equation 3.3 to combine the weighted averages of the masses n-1 times.
Evidence for each hypothesis, h, from n sources is summed, and averaged
across all evidence sources. This eliminates the dominance of a single sensor
by reducing its contribution according to the number of sources. Use of Mur-
phy’s combination rule will also eliminate Zadeh’s paradox [124] because the
evidence is averaged prior to combination. In our work, we use Murphy’s rule
for fusion of evidence instead of Dempsters’s original rule of combination. We
compare the results from the use of both in the evaluation in Chapter 6.

3.6.2 Averaging Rule

In his original work [95], Shafer combined belief functions by averaging all the
evidence for each hypothesis (instead of the combination rule), as follows:

M(A) =
1

n
(M1(A) + .....+Mn(A)) (3.13)

Averaging can be used to eliminate the influence of any strongly conflicting
single belief [95] so would cater for both single sensor dominance and Zadeh’s
paradox. The use of averaging provides an accurate record of contributing be-
liefs because no belief is ’lost’, but it lacks convergence. Both Dempster’s and
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Murphy’s rule allows evidence from sources that are in agreement to reinforce
each other, and disagreeing evidence to be dropped. In contrast, averaging
does not increase the measure of belief in the dominant subset but provides a
less conclusive picture because conflict is not normalised out. However, it is
simpler to compute with less calculations. We anticipate that averaging will
be useful to counteract the expected problem of conflicting sensors in binary
sensors.

3.6.3 Summary of fusion issues

Of the two alternative rules (Murphy’s and Averaging) and Dempster’s origi-
nal rule, Murphy’s combination rule appears to have the benefits of consider-
ing all sensor evidence, allowing evidence convergence and presenting a fair
spread of the evidence. In our evaluation in Chapter 6, we will test Demp-
ster’s, Murphys and the Averaging rule in order to determine which results in
greatest situation recognition accuracy and why.

All of the three rules assume that evidence is co-occurring, so they do not in
their current form provide a solution to evidence that is spread over time. We
will address the issue of time-spread evidence in Chapter 4.

3.7 Evidence decision network - summary of op-

erations

All evidential operations to distribution belief and support decision making
are now defined. The operations are derived from original Dempster-Shafer
theory, modifications by other researchers, and our additions when no exist-
ing operation catered for our evidence processing requirements. The evidence
operations, their source and purpose are summarised in table 3.3.

3.7.1 Evidence example

The example situation in figure 3.4 illustrates how evidential operations are
applied. This is a simple situation of “get drink”, detected from two pieces
of evidence: ’fridge used’ and ’cup used’. Sensor mass functions translate
the sensor readings into belief across each sensor frame of discernment. The
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Table 3.3: Summary of evidential operations for the evidence decision network
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Mass Functions

Frames of 
Discernment

Compatibility Relations
Compatibility Mapping

Translation

Cup
Sensor

GetDrink

0.6

Discount
0.7

Cup 
Used

Fridge
Sensor

Fridge
Used

Evidence fusion

Translation of 
uncertain 
relationships

Figure 3.4: Evidence Example

frames of discernment for the fridge and cup sensors are {fridgeUsed, fridgeNo-
tUsed, uncertainty} and {cupUsed, cupNotUsed, uncertainty} respectively. The cup
sensor is known to be reliable 70% of the time, so 0.3 of its belief will be as-
signed to uncertainty. Once belief has been assigned to the sensor frames, this
belief is propagated up to the situation frame using compatibility relations,
compatibility mapping and translation. ’Fridge used’ is compatible with ’get
drink’ (and conversely ’fridge not used is compatible with ’not get drink’ al-
though for simplicity the negative scenarios are not shown). ’Cup used’ is
compatible with ’get drink’. The belief from the sensor frames is then trans-
lated along the mapping to the ’get drink’ situation, which has a frame of dis-
cernment {getDrink, notGetDrink, uncertainty}. The ’fridge used’ context value
has an uncertain relationship with the ’get drink’ frame, as it is used 60% of
the time. Therefore, the evidence will be translated using our modified transla-
tion for uncertain relationships in equations 3.7 and 3.8. Once the evidence has
been translated to the ’get drink’ frame, the belief from the two sources is fused
using Murphy’s combination rule. At this point, a decision process takes place
to determine compare belief of ’get drink’ with belief levels of other situations
in the environment.

61



3.8 Conclusion

In this chapter, we presented the evidential operations needed for the creation
of the evidence decision network. These operations are taken from the origi-
nal Dempster-Shafer theory of evidence, existing extensions to the theory, and
our three new operations (1) to translate uncertain belief from one frame to an-
other (2) to process summary or OR scenarios for nodes in the same frame of
discernment and (3) to distribute belief from combined elements to singleton
elements using a modified version of Smets rule. The complete set of opera-
tions as summarised in table 3.3 provides us with a toolkit of operations from
which we can construct an evidence decision network for an environment.

We described how we use situation DAGs to capture knowledge for an envi-
ronment. The DAG drives the structure of the evidence decision network -
enabling the identification of evidential operations to use for belief distribu-
tion and decision making for the environment in question. We see the DAG
as a critical output of the systems design process, used as a specification to
develop detailed evidence processing.

Three potential problems for the evidence-based approach have been pre-
emptively described - Zadeh’s paradox, single sensor dominance and time
distributed evidence. We described two alternative combinations from Shafer
and Murphy that will address both the Zadeh paradox and single sensor dom-
inance. In the next chapter, we explain two additional features that we will in-
corporate into Dempster-Shafer theory in order to widen the breadth of knowl-
edge that can be used to recognise situations: temporal knowledge (which will
cater for evidence spread over time) and sensor quality knowledge.
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CHAPTER

FOUR

Extending Dempster-Shafer theory
with temporal and quality

knowledge

In the previous chapter, we explained how Dempster-Shafer theory can be
applied to a network of sensors, context values and situations, described by
a situation DAG. We used basic concepts and variations of Dempster-Shafer
theory to develop a structure that allows the distribution and assessment of
evidence for situation recognition. In this chapter, we will explain two ex-
tensions to Dempster-Shafer theory that we have created in order to include
additional knowledge to reason with: temporal extensions and quality exten-
sions. Temporal extensions allow knowledge about situation time patterns to
be included in the evidence gathering process. Quality extensions enable sen-
sor performance and context uncertainty to be used to modify the strength of
evidence originating from a sensor.

Section 4.1 describes how temporal knowledge can be treated as evidence. The
nature of transitory evidence, and its relevance to higher level situations that
have a time duration is explained in section 4.2. As part of this, we define
the equations to extend sensor mass over a period of time, and how to fuse
extended mass using Dempster’s rule of combination. A worked example is
provided in Section 4.2.3. In Section 4.5, we address how to to include sensor
quality with evidential reasoning. We explain the nature of sensor and context
quality information in Section 4.5.1. We then explain how quality is applied
as part of the sensor mass function in Section 4.5.2. Notation of temporal and
quality knowledge on the situation DAG is explained in Section 4.7.
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4.1 Using temporal knowledge as evidence

Temporal knowledge is a natural human way to reason about current activi-
ties or situations. For example, when assessing the current activity of a per-
son in the home, the time of day may determine whether they are preparing
breakfast or dinner; the length of time they spent in the kitchen may help us
decide whether they were preparing a meal or just getting a drink, and so
on. Time durations of situations, sequential patterns in which situations occur
and discernible patterns over time are examples of temporal knowledge that
can improve our ability to recognise which situation(s) is occurring.

We hypothesise that using temporal features of situations in the evidence de-
cision network will improve the accuracy of their recognition.In Chapter 2, we
saw a variety of temporal information used in reasoning, including situation
duration, sequences of events/situations, intervals between situations, over-
laps, and relative times. In our work, we will aim to include situation duration
and the time of situation occurrence in our Dempster-Shafer approach. This is
not to say that the remaining temporal information will not be useful or possi-
ble to include at a future point in our approach - but they are outside the scope
of our work at this point. We explain our reasons and approach for catering
for situation duration and time of situation as follows:

(1) Transitory evidence: We use the term transitory evidence to refer to evidence
that only occurs for part of the time duration of a situation [75]. Looking at a
sample situation in figure 4.1, a ’preparing dinner’ situation may typically en-
dure for about 40 minutes, with indicative evidence from various sensors such
as ’grocery cupboard used’ and ’fridge used’. None of this evidence is neces-
sarily occurring at the same time. At present, existing evidential approaches
for activity recognition assume that evidence is co-occurring [50, 125]. In real-
ity, evidence may be spread out over time, co-occurring or not, in no particular
sequence and with no particular order expected. Events may co-occur and/or
occur separately, with gaps between events, such as the examples shown in
figure 4.1. The user opens the plate cupboard and fridge in the same sampling
period, then uses the pans cupboard and freezer, then retrieves groceries. Such
evidence for a higher level state that does not endure for the full time duration
of the state is transitory evidence. We describe a mechanism for extending the
lifetime of transitory evidence so that it lasts for the duration of the higher
level state. This provides a stronger basis for detecting the higher level state
than simply using individual sporadic ’events’ in isolation.
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Figure 4.1: Transitory evidence for dinner situation

(2) Absolute time is the time at which a situation occurs [120]. This can be an
exact timespan such as ’between 8:00 and 10:00” or a semantic description such
as “morning”.

In the next section, we explain how transitory evidence and absolute times are
included in an evidence decision network.

4.2 Transitory evidence and situation durations

During the inference process, when evidence for that situation is detected, the
duration for that situation is triggered to start. Looking at the situation of
’preparing dinner’ in figure 4.2, when any of the groceries cupboard, fridge,
freezer, pans cupboard or plates cupboard sensors are fired, the reasoning sys-
tem will ’start’ the dinner activity. The lifetime of the triggered sensor evidence
for that activity will be extended to last for the remaining duration stored for
that situation. As inference continues over time, the lifetime of any further
evidence for the situation will be extended for the duration that is left of the
situation (i.e. situation duration less elapsed time). Once the full duration of
the situation is reached, the evidence will expire. By extending the lifetime of
the evidence, at any point in time, the evidence sources can be fused as if they
are co-occurring.

Evidence of a situation may also be evidential of other situations. Sensors that
provide transitory evidence for more than one situation will trigger more than
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Figure 4.2: Time extension of evidence for ’preparing dinner’ situation

one situation to start. Continuing with the meal preparing scenario, two other
situations exist in this environment: ’preparing breakfast’ typically lasts for 15
minutes and ’getting a drink’ takes about 3 minutes. Both of these are also
inferred from the fridge sensor. If the fridge sensor fires and none of these
situations are in progress, the duration will kick off for ’preparing dinner’,
’preparing breakfast’ and ’getting a drink’. The ’fridge used’ context value
will have three separate lifetimes, one for each of the durations of the three
situations. That is, the ’fridge used’ context will expire after 3 minutes as evi-
dence of ’preparing drink’, after 15 minutes for ’preparing breakfast’ and after
40 minutes for ’preparing dinner’.

If multiple simultaneous sensor events happen at the same time, where the
events are evidential of different activities, the evidence is allocated to the rel-
evant activity as per the situation DAG. For example, if a toaster sensor acti-
vates in the kitchen in the same sampling period as a sensor in the bathroom,
evidence will be allocated to the ’preparing breakfast’ and ’showering’ activ-
ities respectively. The interpretation of these activities as co-occurring or not
will be environment specific. If, for example, there are multiple inhabitants of
the house, both ’breakfast’ and ’showering’ may be recognized as co-occurring
as it is possible that two activities can happen at the same time. In this case,
a belief threshold may be used to filter situations, with situations that have
belief levels exceeding the threshold as ’occurring’. In an environment where
activities can only occur one at a time, as in the case of the smart home dataset
used in our evaluation, the activity with the greatest evidence (highest belief)
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is deemed to be occurring.

4.2.1 Extending the lifetime of transitory evidence

To apply time extensions to transitory evidence, the mass function definition
and the fusion rule for combining mass require alteration. Formally, a frame
of discernment contains one or more hypotheses hn, each of time duration
tdur(hn). Belief for a hypothesis from transitory evidence sources is assigned a
time duration equal to the duration of the hypothesis. If the hypothesis has
already been detected by earlier evidence and is ’in progress’, the lifetime of
belief assigned after the hypothesis duration starts is the remainder of the du-
ration, trem(hn). The remainder is calculated as hypothesis time duration minus
the elapsed time for that hypothesis: tdur(hn) − telapsed(hn). Therefore, for mass
assigned to hypothesis, hn, of time duration,tdur(hn) at time t, the mass assigned
to hn at time t, will continue to exist for the remaining time of the hypothesis
duration, trem(hn). Time extended mass, for hypothesis hn,is represented as:

mt+trem(hn) = mt(hn) (4.1)

where

trem(hn) = tdur(hn) − telapsed(hn)

To fuse extended mass, we use the evidence combination rule 4.2. To fuse evi-
dence for two extended masses for enduring hypothesis hn, fuse the evidence
during the hypothesis occurrence at time t + trem(hn) using the extended mass
values at time t+trem(hn). We substitute the masses in Dempster’s combination
rule with the time extended masses. Therefore, Dempster’s combination rule
when used for for two transitory extended masses m1and m2 for a hypothesis
h, with duration tdur, at time t+ trem will become:

m12(t+trem)(h) =

∑
XaY=htdur

m1t+trem(X).m2t+trem(Y )

1−
∑

XaY=φm1t+trem(X).m2t+trem(Y )
(4.2)

where

trem = tdur − telapsed
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Timeslice Sensor events Preparing drink evidence

9:49 Fridge, cup Fridge, cup (0.8)
9:50 Fridge Fridge, cup (0.8)

Table 4.1: Sample timeslices for ’getting drink’ situation

4.2.2 Calculating situation durations

To use time-extended evidence, we need to determine how much time the ev-
idence should last for. Intuitively, the evidence should last until the situation
is finished, i.e. for the remaining duration of the situation. Situation may
last for a different time for each occurrence (such as the variation in the time
for ’preparing breakfast’ each day). Therefore, we want to capture the ’typ-
ical’ duration. Duration can be captured from user questions (how long do
you typically take to prepare breakfast?), user observation, or training data. If
training data is available, we calculate duration as the mean of the situation
durations, where duration = endtime − starttime of the annotated situation.
The smaller the standard deviation, the greater the consistency of the situation
durations over time. The extended lifetime of underlying evidence will then
more accurately reflect the real lifetime or duration of the situation.

4.2.3 Worked example of time extended evidence

A simple worked example is provided to illustrate time extended evidence.
For each situation, a frame of discernment {activity,¬activity,Θ}is defined.
Table 4.1 shows two timeslices from the dataset, during which the occupant
is preparing a drink. The fridge and cup sensors are used to detect the
’preparing drink’ situation. The fridge sensor has a frame of discernment
{fridgeUsed,¬fridgeUsed,Θ} and the cup sensor {cupUsed,¬cupUsed,Θ}.
The occupant always uses the fridge and ’usually’ uses a cup, with 80% fre-
quency of using the cup for a drink. Typical duration of the ’preparing drink’
situation is three minutes (obtained from user interviews, observation or train-
ing data), with both fridge and cup as transitory evidence sources. The infer-
ence steps for each timeslice are as follows:

At a time of 9:49, the fridge and cup sensors fire. Both of these events are
indicative of the ’preparing drink’ activity, which is not currently in progress.
The elapsed time of drink is set to 1 minute (length of timeslice).

Step 1: Use sensor mass functions to obtain context value beliefs. Both the fridge
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and cup sensors fired:

{fridgeUsed = 1, ¬fridgeUsed = 0, Θ = 0, }

{cupUsed = 1, ¬cupUsed = 0, Θ = 0}

Step 2: Transfer belief from context values to activities. The fridge and cup
sensor evidence is propagated to the ’preparing drink’ frame using compati-
bility relations and evidence propagation:

{fridgeUsed = 1, ¬fridgeUsed = 0, Θ = 0, } propagated to {prepDrink =

1,¬prepDrink = 0,Θ = 0, }

A cup is used with certainty of 0.8 when preparing a drink, with the remainder
classified as uncertainty.

{cupUsed = 1, ¬cupUsed = 0, Θ = 0} propagated to {prepDrink =

0.8, ¬prepDrink = 0, Θ = 0.2, }

Step 3: Combine evidence using Murphy’s combination rule to obtain belief
for the ’preparing drink’ frame. As Murphy’s version of the combination rule
is being used, the evidence is averaged prior to combining:

{prepDrink = 0.9, ¬prepDrink = 0, Θ = 0.1, }

The averaged evidence is then fused using Dempster’s rule of combination, to
obtain belief for the ’preparing drink’ frame of discernment at time 9:49 as:

{prepDrink = 0.99, ¬prepDrink = 0, Θ = 0.01, }

At the next timeslice 9:50, the fridge sensor fires again:

{fridgeUsed = 1, ¬fridgeUsed = 0, Θ = 0, } propagated to {prepDrink =

1, ¬prepDrink = 0, Θ = 0, }

The cup sensor does not fire, but the cup context values from the previous
timeslice are extended as they are within the 3 minute duration of the ’prepar-
ing drink’ activity. The lifetime, trem of the cup context values is calculated
as the ’preparing drink’ time duration (3 minutes) less the elapsed time of
’preparing drink’ (1 minute), as per equation 4.1:

{cupUsed = 1, ¬cupUsed = 0, Θ = 0} propagated to
{prepDrink = 0.8, ¬prepDrink = 0, Θ = 0.2, }
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Using the extended evidence of the cup and the fridge sensor, the evidence is
fused using the temporal version of Dempster’s combination rule in equation
4.2. Evidence is averaged prior to fusion as per Murphy’s variation on the
combination rule, resulting in belief at time 9:50 for ’preparing drink’ as:

{prepDrink = 0.99, ¬prepDrink = 0, Θ = 0.01, }

This evidence reasoning process is also conducted for all other nodes in the
smart space. At time t, the situation with the highest belief is selected (assum-
ing that only one situation can be happening at one time). If more than one
situation can be occurring at the same time, a belief threshold approach can be
used to establish which situations are occurring.

4.3 Absolute time

Absolute time is used when a situation occurs at a predictable time. As ex-
plained for Situation DAGs, it can be an actual time or time range or a seman-
tic description of the time. Evidential reasoning can easily incorporate domain
knowledge, so is suited to the inclusion of absolute time as part of the infer-
ence process. This can be done by treating ’time’ as a virtual evidence source
with its own mass function. A virtual time sensor will be included on the
situation DAG and inference rules used to connect the time context values to
situations. This will be useful if there is some uncertainty involved such as
’breakfast usually takes place in the morning’. If no uncertainty is included,
absolute time can be used directly in the decision algorithm to filter the set of
possible situations that can be occurring. For example, if ’preparing breakfast’
always takes place in the morning, the activity will only be considered as pos-
sible to occur outside of the times defined as within ’morning’. The range of
times defined as morning is obtained from the domain knowledge of the user,
or from examining training data.

4.4 Summary of temporal extensions

We explain how to include two sources of temporal knowledge into the ev-
idence decision network: transitory evidence and absolute time. Some situ-
ations are detected from evidence that does not last for the duration of the
situation. This transitory evidence cannot be fused with other transitory evi-
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dence for the situation unless they co-occur. To enable the fusion of transitory
evidence, we apply a lifetime to transitory evidence so that it lasts for the du-
ration of the situations it is indicative of. We provide equations to explain how
evidence lifetime is extended and fused with other evidence. Absolute time
can be incorporated as a sensor, if uncertainty exists, or as part of the deci-
sion algorithm. We hypothesise that the use of these two types of temporal
knowledge will improve the situation recognition results from the evidence
decision network. Next, we examine how sensor quality knowledge can be
incorporated into the evidence decision network.

4.5 Using quality to weight evidence

Information from sensors is imperfect, as explained in Chapter 2. The strength
of evidence from a sensor will intuitively depend on how ’trustworthy’ a sen-
sor is - i.e. on its quality. In simple terms, if a sensor cannot be fully trusted,
we need to inform the evidence decision network to what extent the sensor
is not trustworthy so that evidence from the sensor can be modified. Our
hypothesis is that by quantifying sensor imperfection and using it to weight
sensor evidence in the evidence decision network, we will improve our ability
to recognise situations.

Shafer’s original Dempster-Shafer publication included a sensor discount fac-
tor as described in section 3.2.3. This allows evidence from a sensor to be
weighted or discounted. But it is a static discount only; the same discount ap-
plies to all evidence/ sensor readings. We note that sensor quality can result
in dynamic quality discounts that differ across sensor readings. In our work,
we hypothesise that the use of quality parameters in the evidence decision
network will improve situation recognition. We define what types of quality
issues can be accommodated by Shafer’s static sensor discount factor. We also
expand on sensor discounting by defining how dynamic quality measures can
be included.

An extensive body of work in the context-aware systems field has been pub-
lished on describing sensor and abstracted context quality in various ways.
We will briefly look at these in Section 4.5.1, to explain the nature of quality in-
formation available for different types of sensors. We will then explain how to
apply sensor quality parameters into the evidence processing, supplying the
equations needed to process quality to an abstracted context level.
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4.5.1 Sensor and Context Quality

Various researchers in the field have described context quality. They use a
variety of quality parameters to describe the type of issues that can arise in
context information. Most of the research differentiates between descriptions
of quality for sensors, versus quality issues for higher level abstracted context.

Sensor Quality: Sensors are heterogeneous, so it is challenging to provide a
set of quality parameters that applies across all sensors [74]. However, the
parameters commonly used to capture sensor quality are: precision [30, 10],
accuracy [39, 30, 57, 41], resolution [39, 52], range [52, 32], and timestamp [39].
Precision indicates the range within which the sensor is correct. i.e. the smallest
level of detail it can resolve [32]; A GPS system can have a precision of 1 metre,
whereas a GSM triangulation system may be precise to only 50 metres [32].
The impact of precision depends on the context values generated. To detect
the location of a user on a street, the GSM may not be precise enough, but
it will be sufficient to determine what area of a city the user is in. Accuracy
indicates the error rate or frequency of correctness of the sensor, for a given
precision; Frequency or time stamp of sensor readings can be used to support
the calculation of a time decay measure of abstracted context.

Context quality: The quality of higher level context information is typically
described using a general confidence measure [65, 34, 30, 85, 57, 41], and a
timestamp or freshness measure [65, 34, 57, 41]. This work on defining qual-
ity parameters provides useful semantics for exploring the nature of context
quality issues.

The quality of higher level context is dependant on the underlying sensor qual-
ity. Lower quality sensor data results in less confidence in derived context. It
is this process of using sensor quality to determine higher level context belief that
we want to incorporate into our evidential reasoning process. By including sensor
quality in the evidence decision network, we will be providing more knowl-
edge to the reasoning process: informing the reasoning process where evi-
dence sources suffer from quality issues and adjusting belief levels to reflect
this.

4.5.2 Using sensor quality

To incorporate quality into our evidence decision network, we firstly differen-
tiate between two types of sensor quality measures: static and dynamic quality.
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We define static quality for a sensor as quality that is constant for all sensor
readings. The static quality equates to Shafer’s discount factor from section
3.2.3. For example, a manufacturer’s accuracy of 95% for a temperature sen-
sor will result in all belief assignments reduced by 95% of their original value
(with the remaining 0.05 assigned to uncertainty).

Unlike static quality parameters, dynamic quality parameters will have a vari-
able impact on the belief generated from the sensor. The impact will vary de-
pending upon the abstracted value of the sensor reading(s) and the time of the
sensor reading(s). For example, an activity sensor that monitors the keyboard
and mouse activity of a PC can have a quality parameter that defines a time
decay period of 4 minutes. i.e. after 4 minutes of inactivity, the belief in the
’active’ state will have reduced to 0. During the four minute period, belief will
reduce from 1 to 0 (with values driven by the time decay function used). So,
the impact of the time decay quality parameter varies over time.

4.5.3 Identifying Static and Dynamic quality

To identify whether a sensor has any quality (static or dynamic) issues, the
relationship between sensors and the phenomena that they are measuring in
the system need to be well understood. At any point in time, we need to de-
termine how closely the sensor outputs reflect the actual state of what is being
measured. To what extend does it differ? Why does it differ? Over time, how
frequently does it differ? What measure(s) can be used to describe the dif-
ference(s)? We will illustrate how static and dynamic quality parameters are
identified using two sensor examples:

Location sensor: An office based location system detects the room location of
a user in a building, based on tracking the location tag worn by the user. The
sensor system generates timestamped coordinate readings as the user moves
throughout the building. The coordinate readings are abstracted to room level.
The sensor system readings are not correct all of the time. They suffer from
several problems: 1) Precision: the coordinate readings do not pinpoint the
exact coordinate location of the user, but are within some range of the user; 2)
Accuracy: the readings only fall within a particular precision for a proportion
of the time; 3) Reliability: A third potential problem is that users sometimes
forget to wear their tags so there is a reliability issue for the readings. Taking
each of these parameters in turn:
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• Precision - The effect of precision on belief from the sensor differs across
sensor readings, depending on where in a room the user is located to. As
shown in figure 4.3, the effect of precision is to define an area around the
actual tag’s coordinate reading. The real tag reading may be located any-
where within the precision area, as shown in the left hand diagram. If the
precision area is totally encompassed into an area, as shown in the cen-
tre diagram, then all belief from the sensor goes to that area. However,
if the sensor reading is abstracted closer to an area boundary as shown
in the right hand diagram, the belief will be distributed across all the
intersecting rooms, with beliefs proportional to the size of the intersec-
tion. Therefore, precision is a dynamic quality parameter, with a variable
impact on belief distribution. The belief distribution will depend on the
sensor reading values and its relationship to the size of the areas to which
they are mapped.

• Accuracy- For the particular precision, the location system is accurate
x% of the time, where x is linked with a particular precision value. This
accuracy applies equally to all sensor readings so it is a static quality
parameter.

• Reliability of tag wearing - this captures the proportion of time a user
wears their tag. For example, 20% of the time a user forgets to wear their
tag, so reliability is 80%. This is a static quality attribute which would
apply as a discount equally to all sensor readings. If we were to identify
that the user typically forgets to wear their tag first thing in the morning,
this could be treated as a dynamic quality attribute with a time function.

Calendar sensor: A calendar sensor monitors a user’s electronic calendar. It is
used to indicate whether the user is scheduled to be in a meeting or not. The
sensor is ’usually’ correct in determining whether the user is in a meeting or
not. But it is sometimes wrong. There are two reasons for errors: (1) the user
does not always attend meetings that are scheduled in their diary so there
is an overall ’inaccuracy’ of the calendar sensor (2) The user is often late for
meetings so at any point in time at the beginning of a meeting, the user may
not be there yet. Taking each of these problems in turn:

Accuracy: The user sometimes misses meetings in their diary. If there is no
particular time pattern associated with this, the problem can be captured as
a static frequency. For example, if the user adheres to 60% of the meetings
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Figure 4.3: Impact of precision on a location sensor: (1) precision area (2) en-
closed precision area (3) precision area crossing multiple areas

in their diary, this will be applied as a static quality parameter to all calendar
sensor readings.

Fuzzy start and end times: For the meetings that the user does attend, the user is
often late by about ten minutes and the meeting usually overruns by about ten
minutes. At the scheduled meeting start time, the calendar sensor detects that
the user is scheduled to be at a meeting, but can discount its belief that the user
is already at the meeting. Ten minutes into the scheduled meeting, the sensor’s
belief that the user is at the meeting has risen. At the scheduled end of the
meeting, the belief that the user is present starts to decrease, reducing to zero
ten minutes after the meeting end. Therefore, a dynamic quality parameter
(e.g. meeting start and end delay) can be identified that discounts heavily
at the beginning and end of a meeting, but discount reduces over time. This
parameter is effectively a fuzzy membership function. It will have a shape (e.g.
linear) and a calculated membership value between 0 and 1 (dynamic quality
value) to describe the discount at any point in time.

4.5.3.1 Quantifying Static and Dynamic quality

The nature and examples of static and dynamic quality parameters for sensors
were described in the previous section. To obtain actual values for the parame-
ters, knowledge must be obtained about how the sensors perform and are used
in the target environment. i.e. how often does the sensor break down? What
proportion of readings are correct to a particular precison? How often does
the user forget to wear their location tags. How good is the user at adhering to
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the schedule in their calendar?

For each sensor, we require knowledge about how the sensor is used and how
well it performs. Sources of this knowledge are training/observing of sen-
sor readings; using expert knowledge such as manufacturer specifications for
noise or sensor drift; and user knowledge about their own behaviour. For
example, the precision and accuracy of the location system can be calculated
via training from a set of controlled location readings, where the annotated
readings are obtained in the target environment. Based on knowing the ac-
tual (annotated) location and the reported location from the location system,
the precision can be determined and the rate of correctness (accuracy) for that
precision can be captured. We performed this exercise for our in-house loca-
tion system [123], observing that for 70% of readings, the reported readings
fell within 3.33m/ 2.2m (x /y-axes) of the actual tag location. Therefore, the
accuracy is 0.7, for precisions of 3.33/2.2m. To quantify the reliability of a user
wearing their tag, the user can be asked to record this in a formal exercise over
a period of time, or it can simply be derived from the user’s own knowledge.

In Chapter 5, we use a data set where the sensors are characterised by the
quality issues described in Section 4.5.2. We explain how we obtain values for
the quality parameters for each sensor through training, observation and user
knowledge.

4.6 Using quality parameters with evidential rea-

soning

To combine quality with evidential reasoning, we need to incorporate the qual-
ity values into the mass functions for each sensor so that they modify belief in
an appropriate way.

4.6.1 Static quality parameters as evidence

Static quality impacts all sensor readings equally so can be applied in a similar
manner to the discount factor defined by Shafer. Static quality parameters
are expressed as a value, Qs between 0 and 1. Belief is reduced by the static
quality value, Qs, with the remaining belief assigned to uncertainty. The mass
assigned to a hypothesis, A when modified by static quality parameter Qs,
where (0 ≤ Qs ≤ 1), and Θ represents uncertainty, m is a mass function, is
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calculated as:

ms(A) =

Qs.m(A), A 6= Θ

m(Θ) + (1−Qs).m(Θ), A = Θ
(4.3)

4.6.2 Dynamic quality parameters as evidence

The impact of dynamic quality parameters depends upon the nature of the
quality issue. The effect of the dynamic quality parameters is to redistribute
belief after the original mass function has finished its distribution. The total
mass of the mass function must sum to 1 and no mass can be distributed to the
null set (as per standard Dempster-Shafer mass function). i.e. for a mass func-
tion m, a dynamic quality function Qd redistributes belief of the mass function
m, within the following constraints

Qd(mφ) = 0 (4.4)

and

∑
A⊆Θ

Qd(m(A)) = 1 (4.5)

Sometimes, a sensor will have both static and dynamic quality parameters. In
this case, the dynamic quality function is applied first, and each belief is then
multiplied by the static quality parameter(s). For a mass functionmwith static
quality parameter Qsand dynamic quality function Qd, the modified mass of
hypothesis A, mQ(A) after applying quality to the original mass m(A) is calcu-
lated as :

mQ(A) =

Qss.Qd(m(A)), A 6= Θ

Qd(m(Θ)) + (1−Qs).m(Θ), A = Θ
(4.6)

4.7 Time and quality notations on the situation

DAG

Temporal knowledge and quality are annotated in the Situation DAG if they
are relevant to the environment.
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• On the situation DAG, we annotate situations that are inferred from tran-
sitory evidence using the ’<>’ identifier under the situation name. This
indicates that the situation has an identifiable duration over time, and is
detected from transitory evidence.

• On the situation DAG, the absolute time at which a situation occurs, is
documented above the activity title between the ’: :’ symbols.

• The existence of quality parameters is denoted beside the sensor node.
Static quality Qs is included with its actual value. Dynamic quality for a
sensor, if used, is shown with its relevant parameter, such asQd:precision or
Qd:timedecay. The exact working of the dynamic function is sensor specific
and is not stored on the situation DAG.

4.8 Conclusion

In this chapter we created two extensions for Dempster-Shafer theory to en-
able additional knowledge to be used in the evidence decision network: (1)
temporal and (2) quality extensions. The temporal extension will allow tran-
sitory evidence to be used as evidence. Time extension of transitory evidence
extends evidence lifetime to last for the duration of situations. This allows evi-
dence to co-occur instead of occurring sparsely or sporadically throughout the
duration of the situation. This will address the simplifying assumption of ex-
isting approaches that all evidence is co-occurring. Absolute times of situation
occurrence can also be used to boost recognition. The use of sensor quality as
evidence is explained. Static quality is a uniform degradation of sensor output.
Dynamic quality parameters have a variable impact on sensor output, such as
precision for a location system, or fuzzy time decay functions. For each sen-
sor, systems developers will determine whether static or dynamic (or none)
parameters are relevant for each sensor.

At this point, we have established the theory of our evidence-based approach,
supplemented with temporal and quality knowledge. Many separate pieces of
knowledge can be incorporated in reasoning : inference rule certainties, abso-
lute times, transitory evidence, rich sensor quality measures, situation hierar-
chies. It is worth emphasising that only knowledge relevant to an environment
will be included. It is not required to use all types of knowledge in the evidence
approach - system designers can select those relevant in the environment of an
application.
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In the next chapter, we determine the evidence decision networks for two data
sets - a home and office based data set. To do this, we establish the situation
DAG for each data set.
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CHAPTER

FIVE

Using evidence decision networks
for real environments

Chapters 3 and 4 presented the theoretical foundations for our Dempster-
Shafer based reasoning approach. In this chapter, we demonstrate the feasi-
bility of using evidence decision networks using two data sets from two dif-
ferent environments: a smart home data set from the intelligent autonomous
systems in University of Amsterdam [109] and an in-house office data set from
the CASL research lab in University College Dublin [74]. The chapter explains
a key step in setting up an evidence decision network: the creation of the situ-
ation DAG to support belief distribution and decision steps. In Section 5.1, we
explain how knowledge for the evidence decision network is obtained. This is
followed in Section 5.2 by a detailed walkthrough of the steps required to set
up the situation DAG. In Section 5.3, we explain our requirements for the data
sets. Sections 5.4 and 5.5 describe how the situation DAGs are established for
each of the two data sets. A discussion and summary are provided in Section
5.5.

5.1 Using evidence decision networks for perva-

sive environments

To use the Dempster-Shafer reasoning in a particular pervasive environment,
systems designers must establish the structure of the evidence decision net-
work: sensor mass functions, context values, inference rules, rule certainty,
situation hierarchy, temporal and sensor quality knowledge. This knowledge
is captured in the situation DAG.In Chapters 3 and 4, we explained the theory
of how evidence is applied in the evidence decision network. In this chapter,

80



we explain how to use the evidence decision networks in two smart environ-
ments. This consists of the following

• For each of the two environments under detection, we determine the
structure and content of the situation DAG. The DAG notates what situ-
ations are being recognised, what sensors are in the environment, the in-
ference paths from sensors to context values to situations, and additional
information about sensor quality and temporal information, if relevant.
We will create situation DAGs for two environments, described by two
publicly available annotated data sets.

• Once the DAG is established for an environment, the structure of the
evidence decision network is known. That is, the process of propagating
sensor evidence is defined because the evidential operations can be read
from the DAG, as explained in Chapter 3.

• An automated process is then required to implement the evidence prop-
agation and conduct situation recognition. This process reads in time
sliced sensor readings as input, and produces situation recognition be-
liefs as output, as explained in the evidence decision network architec-
ture in Figure 3.2. For our work, we developed our own software to
process evidence. This is described further in Section 6.2.4.

To support these steps, we must gather knowledge in order to create situation
DAGs. Firstly, we describe how this knowledge can be discovered to support
the set up of the evidence decision network. We then describe each of the steps
for setting up the situation DAG.

5.1.1 Generating knowledge

Knowledge will be discovered from a number of sources:

(1) System developers may provide expert knowledge about the structure of
the DAG. In particular, as shown in figure 5.1 they will have knowledge about
the lower levels of the DAGs: the available sensors, the ranges of values of the
sensor and sensor performance. This knowledge would be used to establish
the sensor mass functions, context values and quality parameters.

(2) Applications designers and application users will determine the highest
level of the DAG - the situations that will be monitored. This layer drives
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Figure 5.1: Knowledge contributions for the situation DAG

the behaviour of the application and is a fundamental part of the application
requirements definition.

(3) User interviews and user observation can be used for environments where
people are central to the situations being tracked, such as interviewing users
about their steps in activities in a smart home. This will help to discover which
objects and locations are associated with which situations. Their knowledge, if
used, will be important to discover the middle layers of the DAG, where indi-
vidual tasks or steps contribute to situations. User knowledge is also a useful
source of temporal knowledge, defining when they typical undertake activi-
ties and for how long. In user interviews, frequencies for inference rules can
be captured semantically such as ’sometimes’, ’usually’, ’always’, and trans-
lated to numeric frequencies between 0 and 1. An advantage of using user
knowledge is that the user will form an accurate conceptual knowledge of the
environment, thus enabling them to use the system more easily [86].

It is essential for humans to form an accurate conceptual model of the environ-
ment so that they can interact with the environment easily.

(4) Training data for subsets of the environment can be used to help discover
inference rules, to quantify frequencies for rules and to discover temporal
knowledge. The use of training data can be localised for portions of the sit-
uation DAG where other knowledge is not available or where pockets of train-
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ing data are reasonable to capture. For example, in a monitored smart home,
kitchen activities could be tracked using a local camera. More sensitive situ-
ations, such as bathroom activities, could then be specified without capturing
training data.

(5) More recently, the use of unsupervised data mining techniques has been
employed by Palmes et al. [81] to capture general activity (situation) defini-
tions. For human activity recognition, they obtain ’activity models’ by mining
activity definitions from a variety of publicly available web definitions. The
activity models define which objects are used in an activity, with weights at-
tached to the importance of each object as an indicator of the activity. This
approach is very similar in concept to our use of inference rule frequency as
an indicator of how often the rule applies. This approach is complementary
to our evidential approach because it provides domain knowledge that might
not be available from other sources.

In summary, availability of user knowledge, system designer knowledge, lo-
calised training data, user privacy issues and cost of data capture will deter-
mine which techniques will be used to establish the situation DAG. An envi-
ronment does not need to be limited to a single approach of knowledge dis-
covery. In practice, a hybrid of approaches can be employed.

5.2 Establishing the situation DAG

The set-up of the situation DAG is a critical step in using our Dempster-Shafer
based reasoning approach. We used the generated knowledge to map evidence
paths from sensors to situations, as per the sample DAG explained in figure
3.1. The steps involved in defining the information for the DAG are as follows:

Step

1 Identify target situations

2 Identify context values, mass functions and sensor frames

3 Establish inference paths and frequencies

4 Identify absolute times

5 Identify situations durations and transitory evidence

6 Define sensor quality parameters

7 Identify frames of discernment

Identify target situations: The situations requiring recognition are the trig-
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ger points for application behaviour. Application designers and application
owners will identify the requirements for this top layer of the DAG. As part of
listing the situations and understanding what they mean, the co-occurrence of
the situations should be identified i.e. which situations can/cannot co-occur.
This will feed into the decision algorithm in the evidence decision network.

Identify context values, mass functions and sensor frames: Each sensor in
the system generates readings that describe the state of something of interest
in the environment, such as whether a door is open or closed, or the physical
location of a location tag. To process sensor evidence, these readings are trans-
lated into more human understandable context values using the knowledge
of system developers. The set of context values for each sensor depends on
the reading granularity available from the sensor and the inference requirements
of the situations. For example, our second data set uses a tag-based location
system called Ubisense [19] to track user locations in an office building. For
the Ubisense sensor system, the possible context values are determined by the
level of granularity of the system and by the areas in the office that are used
to deduce higher level situation. Ubisense generates 3-D coordinate readings
for a tag. The areas of interest in the building are ’user’s desk’, ’cafe’, ’meet-
ing room’ and ’all other areas (as a group)’, because situations happen in these
places. Ubisense’s coordinate readings are sufficiently granular to abstract to
these areas, so the context values are: user’s desk, meeting room, cafe or other.
Taking an example from our first data-set which is based in a smart-home, a
simple binary door sensor on the bedroom door can output readings of 0 (door
not used) or 1 (door used). The context values for the sensor are simply ’door
used’ or ’door not used’.

The context values for a sensor form the basis for the frames of discernment
for each sensor. In the case of the binary door sensor, the frame of discernment
for the sensor for this door object are {doorUsed, doorNotUsed,Θ}. In the case
of the location sensor, the singleton elements (plus uncertainty) in the frame
are {userDesk,meetingRoom, cafe, other,Θ}.

Establish inference paths and frequencies: Once the context values are de-
fined, the inference rules and their associated frequencies from context values
to situations are defined. The knowledge of inference rules and frequencies
can be captured in a variety of ways, as explained in Section 5.1.1: using de-
veloper knowledge, user knowledge, localised training data and web mining
techniques.
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Identify absolute times: If situations have an identifiable occurrence time, the
absolute time will be noted either as a time range, or a semantic description,
such as ’morning’. Absolute times can be identified through participant inter-
views, participant observation (such as a user annotating their own activities
times over a period of time) or high level training data, where the time of an-
notated situations is captured. Absolute time can be treated as a sensor with a
mass function, or it can be encoded into the decision level algorithm.

Identify situation durations and transitory evidence: Systems developers de-
termine whether evidence of a situation is transitory or continuous, as this re-
quires an understanding of the sensor operations. Where transitory evidence
occurs and the situations have a typical duration, a representative duration is
identified. To identify durations, user interviews (’how long do you typically
take to prepare breakfast?’), user observation or localised training data can be
used.

Define sensor quality parameters: For each sensor that is deemed to have
quality issues, static and/or dynamic quality parameters are identified. Qual-
ity issues can be technical or user driven. Knowledge of systems developers is
required to identify quality parameters associated with a sensor’s technical is-
sues, such as the precision of a location system. The values of such parameters
are supplied by the sensor manufacturer or measured through localised train-
ing. For any sensor that is worn or operated by a user, user behaviour may
result in quality issues, such as the failure of users to wear a locator tag, or
the lack of adherence to their calendar for a user’s calendar sensor. The value
of user controlled parameters are identified directly by the user or through
observation.

Identify frames of discernment: Every node in the situation DAG needs to be
placed in a frame of discernment, so that belief can be assigned to the node as
appropriate. The number of frames and their elements can be done in differ-
ent ways, depending on the spread of sensor evidence across situations. We
describe two configurations for frames within the DAG:

1. Each situation can be allocated its own frame consisting of
{situation, notSituation,Θ}. This is particularly suitable if sensors
are evidential of single situations, with no obvious grouping of sensors
and situations. This is the case with our first data set where 14 sensors
are used to detect 7 situations, but different sensors detect different
situations. We place each situation into its own frame.
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2. Alternatively, if a group of situations share a common set of sensors,
these situations can be grouped into a frame. This is the case in our sec-
ond data set, where the situations to be detected are all determined from
the same three sensors. In this case, the frame of discernment will contain
the individual situations {situation1, situation2, ...situationn} and their
combinations:{situation1 ∧ situation2, ...,Θ}.

5.2.1 Summary

In summary, the situation DAG uses one or more sources of knowledge from
system developers, expert knowledge, user knowledge, user observations, lo-
calised training data or data mining techniques. Each layer of the DAG for the
environment is then established as a set of steps, from sensor mass functions
up to situation frames of discernment.

In the next section we establish the situation DAGs for two experimental data
sets.

5.3 Experimental data sets

To evaluate our evidence decision network, we need to use data sets that cap-
ture annotated situations and sensor readings for some type of environment
occupied by people. Our preference is for data sets collected in a real-life en-
vironment, so as to avoid problems of simulated environments [68]. We need
experimental data to include both temporal characteristics and sensor quality
issues, so that we can evaluate our extensions to Dempster-Shafer theory.

Temporal characteristics tend to be available in smart home data sets because
situations (or activities) of occupants in a home tend to have a pattern across
a day. Increasingly, simple sensors are being used in smart environment de-
ployments, such as simple binary sensors that can be installed quickly and
remain largely invisible to the user (as opposed to user tags, audio or cam-
era systems). Such binary sensors offer transitory, event-style evidence when
objects to which they are attached as used in situations. In order to evaluate
our temporal extensions, we required a smart home dataset that contains sit-
uations with discernible time durations over a time period. Our requirement
was to use a real-life smart home dataset rather than one captured in a labora-
tory environment. Availability of published smart home datasets is still a chal-
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lenge in the pervasive computing field, particularly where published results
are desirable, using repeatable methodologies [122]. We use van Kastersen’s
smart home data set which is collected in a real-life home. It contains temporal
patterns of situation occurrence. Also, there are published situation inference
results available for the data set [119, 109], produced using well documented
repeatable methodologies that we can compare against.

Finding a data set with known quality parameters is more difficult. Data sets
do not typically come with sensor performance characteristics included. Also,
domain knowledge of the data set required to understand quality resides with
the creators of the data set. To use a data set with quality issues and to illustrate
the use of domain knowledge in establishing situation DAGs, we collected our
own annotated office-based training data at our research laboratory. As part
of this, we identified and quantified quality parameters for each of our sensors
using a combination of training exercises and domain knowledge. The data
sets and the creation of their situation DAGs are described next.

5.4 Van Kastersen’s Data set

This data set originates from the intelligent autonomous systems group in Uni-
versity of Amsterdam [109]. The data is recorded in the apartment of a 26-year
old man over a 28 day period. 14 digital sensors were installed in the house
and left unattended for the duration of the data collection. Figure 5.2 shows a
layout of the house. The sensor locations are marked with red ’X’ symbols.

5.4.1 Sensor Description

Each sensor is attached to a wireless sensor network node. Each node sends
a sensor event when the state of the digital input changes. The sensors
are installed on the hall-toilet door, hall-bathroom door, hall-bedroom door,
front door, microwave, fridge, freezer, washing machine and each of the
cups/plates/pans cupboards. When a sensor is fired, it outputs a value 1 as
its reading in the sensor output file. A snapshot of the content in the sensor
output file is shown in Appendix, Section 3. In total, the data set results in
1,319 sensor events.
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Figure 5.2: Layout of sensors in van Kasteren house floor plan [109]

5.4.2 Situations in van Kasteren’s Data Set

Seven situations (termed ’activities’) are annotated by the occupant of the
house:1) leave house 2) use toilet 3) take shower 4) go to bed 5) prepare break-
fast 6) prepare dinner 7) get drink. These situations were chosen based on the
Katz ADL index, a commonly used tool in healthcare to assess cognitive and
physical capabilities of an elderly person [109]. All the activities are annotated
by the occupant of the house using a Bluetooth headset that was combined
with speech recognition software. When a button on the headset is pressed by
the subject, then the speech recognition engine is triggered to start listening for
commands it can recognise. When the command was recognised, a new anno-
tation entry would be added. This annotation method yielded close to perfect
recognition results [109] due to its efficiency and accuracy of annotating on
the spot. The annotation contains 245 separate activity instances, a sample of
which are shown in the appendix.
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Figure 5.3: van Kastersen DAG for ’get drink’, ’prepare breakfast’, ’prepare
dinner’ situations

5.4.3 Van Kastersen Data preparation

To use the data set for testing situation recognition accuracy, we need to times-
lice the data. All sensor readings for all sensors are timesliced into regular time
intervals, and annotated with the occurring situation for that timeslice. We
match all sensor instances against the times for which annotated situations are
provided. The data is timesliced into timeslices of one minute, which is long
enough to be discriminative and short enough to provide high accuracy label-
ing results [109]. This is the same time slice length used by other researchers
who have used the data set, Ye [119] and van Kastersen [109], so paves the
way for results comparison. For every minute at which a situation annotated
is available, the sensor values are annotated. After time slicing the data, there
are 25,680 annotated sensor instances. This is the format of the data that we
use for building the situation DAG and for testing the accuracy of situation
recognition.

5.4.4 Preparing the Situation DAG

A situation DAG is required to cover all situations and sensors in the data set.
We executed our situation DAG set-up steps as follows:
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Step 1: Identify target situations: There are seven target situations to be recog-
nised as listed in Section 5.4.2. They cannot co-occur, with only one situation
happening at a time.

Step 2: Identify sensor mass functions, context values and sensor frames:
From the documentation supplied with the data set, we can deduce the
mass functions, context values and frames. The sensors are all simple bi-
nary sensors. Each sensor therefore has two elements, plus uncertainty:
{sensorUsed, sensorNotUsed,Θ}. The grocery cupboard door sensor, for ex-
ample, has a frame {groceryUsed, groceryNotUsed,Θ}. A sensor value of ’0’
maps to sensorNotUsed. A sensor value of ’1’ maps to sensorUsed. Since sensor
quality is not an issue, the sensors will never assign any belief to uncertainty,
but it has been included in the frame for completeness.

Step 3: Establish inference path and frequencies from context values to situ-
ations: As discussed in Section 5.1.1., domain knowledge is required to estab-
lish the situation DAG. In a real-life environment, the inference paths between
sensors and activities can involve user interviews. Questions such as ’what
do you do when preparing breakfast?’ will establish which sensors are being
triggered for each activity. As we are using a third party data set, we do not
have easy access to the user to glean domain knowledge, so we need to estab-
lish knowledge about the environment without relying on user-specific knowl-
edge. To achieve this, we use a limited amount of training data, combined with
domain knowledge to establish our situation DAG. A common practice in ma-
chine learning is to use two thirds for training with a third for testing [113].
We reverse these proportions to illustrate the scenario of limited training data
(one third only) relative to test data [75]. Using a third of the data set, the sen-
sors that are triggered for each activity are identified. We repeat this process
for each of the data thirds (folds) in a cross validation exercise. In addition,
common sense domain knowledge of home activities enables the following
assumptions:

• Activities in the kitchen (breakfast, dinner, drink) only involve sensors
that are located in the kitchen;

• No sensors will be firing when ’leave home’ and ’sleeping’ are happening
because the occupant is not active;

• Door sensors are of interest when their state is changing, but a door left
open (with an ongoing value of ’1’) is not useful for inference.
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Context Value Inference Rule frequency

Microwave Used 0.1
Cup Used 0.1

Fridge Used 1
Plates Used 1

Pans 0.3
Freezer 0.4

Groceries 0.6

Table 5.1: Sample inference rule frequencies for ’prepare breakfast’

Activity Absolute Time
Prepare breakfast Morning

Prepare dinner Evening
Showering Morning

Leave home Daytime
Sleeping Nighttime

Table 5.2: Absolute Times for situations in van Kasteren’s data set

Looking at an activity example, table 5.1 shows the inference rule uncertainties
generated for the ’preparing breakfast’ activity for one of the thirds of the data
set. The pan cupboard sensor triggering is 0.3, indicating that for occurrences
of ’preparing breakfast’, the pan cupboard is used for 30% of these occurrences.
The remaining 0.7 is allocated to uncertainty.

Step 4: Identify absolute times for situations with identifiable occurrence
times: The starting assumption based on domain knowledge are that break-
fast is taken in the morning, and dinner in the evening. Training data sam-
ples confirm the actual times denoted by the semantic labels of ’morning’ and
’evening’. The data also shows that showers are taken in the morning. ’Prepar-
ing drink’ occurs at various times during the day and night so no particular
time pattern is evident. The absolute times are shown in table 5.2

Step 5: Identify situation durations for situations with transitory evidence:
Of the seven situations, five are detected by sensor events that may not co-
occur i.e. transitory evidence: ’take shower’, ’use toilet’, ’prepare breakfast’,
’prepare dinner’ and ’prepare drink’. ’Leave home’ and ’Go to bed’ are iden-
tified by lack of sensor activation. In the absence of user knowledge, we es-
tablish an average duration using the folds of data in our cross validation ap-
proach.

Step 6: Identify and quantify static and dynamic quality parameters: the
sensors have no documented or apparent quality issues, as confirmed by us
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with the publisher of the data set. Therefore, sensor quality is not incorporated
into the situation DAG.

Step 7: Frames of Discernment: Each sensor is evidential of just
one of two situations so we use a separate frame for each situation:
{situation, notSituation,Θ}, as described in Section 5.2.

The portion of the situation DAG for the kitchen based situations is shown in
figure 5.3. Sensors are shown at the bottom of the diagram, context values are
the upper nodes for each sensor, and each context value maps to one or more
situations. Inference rule uncertainty is annotated on the DAG, but actual val-
ues will depend upon which portion of the data set is used for training so will
be assigned during experiment runs, as described in our evaluation method-
ology in Chapter 6.

5.5 CASL Data set

Our second data set, termed the ’CASL’ data set was generated in the Complex
and Adaptive Systems research laboratory of University College Dublin. As
this is our own data set1, collected by the author, we have a deep understand-
ing of the sensors and situation involved, so we can employ domain knowlege
to establish the situation DAG. The purpose of this data is to support the evalu-
ation of using sensor quality with the evidence decision network. To examine
sensor quality, we needed to use sensors that display a variety of static and
dynamic quality issues, such as inaccuracy, time decay and imprecision.

5.5.1 Sensor Description

We built our own infrastructure to capture the following data about a person
in our research lab environment: their computer activity, their calendar entries,
and their physical location in the building. Describing each sensor in turn:

• The computer activity sensor runs on the participant’s desktop PC and
monitors the rate of key presses and mouse clicks, along with the length
of time since the last activity. The data from this sensor is used to indicate
whether the user is ’active’ or ’inactive’ at their desktop.

1This data set is described and used in [74]. It is available to download at
www.comp.dit.ie/smckeever/research
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• The calendar sensor collects information about the user’s scheduled
Google calendar events, including meeting schedule state, start time and
end time. The data from this sensor indicates whether the user has a
meeting or not for the current time.

• For Location sensing, we have a Ubisense system deployment on the
third and fourth floor of our research lab. Ubisense is a tag-based 3-D
location tracking system. It provides an X, Y and Z coordinate, based on
the number of metres from an origin point – in our case the bottom corner
of the third floor in CASL. Ubisense covers areas on the third and fourth
floors in the CASL building, using 30 wall mounted sensors. Ubisense
tracks a location tag belonging to the user, providing co-ordinate read-
ings for the location tag when the tag is moved.

The participant gathered a data set over a 5-day period. We used a period
of 5 days as this is a sufficient amount of time to capture a person’s regu-
lar working-day routine (i.e., some instances of them going for lunch, having
meetings, working at their desk, etc.). The participant turned the sensors on at
the beginning of the work day and off at the end. The participant annotated the
situations that she encountered throughout her days using an electronic diary.
She logged her activities in the spreadsheet for each day, noting the start and
end times of different situations, and a description of the situation. A sample
of the diary is shown in figure 5.4.

5.5.2 Situations in CASL data set

Six situations were annotated: (1) busy at computer, (2) busy reading at desk,
(3) coffee break (4) lunch break, (5) informal break and (6) at meeting. Each
of these is detectable from the combination of the three sensor systems in our
infrastructure. At any point in time, the participant can only be engaged in
one of these situations, but is always engaged in one of the situations.

5.5.3 CASL Data preparation

Similar to van Kastersen’s data set preparation, we process the data into times-
liced annotated sensor instances. For each sensor, we time slice the readings
into timeslices of one minute. We process the translation of sensor readings
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Tuesday May 13th

Time Activity description Situation

11.19 At desk Busy at desk

11:20 Walk to print  Informal Break

11.21 Walk back to desk Busy at desk

11.22 Left desk to go to coffee upstairs Coffee Break

11.31 Busy at desk (after coffee) (but meeting scheduled) Busy at desk

11.52 Leave desk to nearby Desk (same desk area) - informal meeting Informal Break

11.53 Back to desk busy Busy at desk

f

Figure 5.4: Sample of diary annotations CASL data set

into context events in the same step. Ubisense may have several readings oc-
curring in a single minute, in which case we take the last reading that occurred
before the end of the time slice. After time slicing the data, there are 1,453
annotated sensor instances, each instance containing the time, the abstracted
values for the three sensors and the occurring situation.

5.5.4 Preparing the Situation DAG

As owners of this data set, we can use domain knowledge to establish the
majority of the inference knowledge for the situation DAG, and supplement it
with observation and localised training exercises where domain knowledge is
not available. Using each of the steps to establish the DAG:

Step 1: Identify target situations:

There are six situations to be detected as listed in Section 5.5.2. They cannot
co-occur, with only one situation happening at a time. The user is always in
one of the situations.

Step 2: Identify sensor mass functions, context values and sensor frames:

For the three sensors in the system:

(1) The activity sensor on the user’s desktop captures whether the user is active
or not. The context values used are ’active’ and ’inactive’. If a key/mouse
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usage occurs during the timeslice, the sensor mass function assigns its belief
to the ’active’ state. If no usage occurs, the belief is assigned to ’inactive’. The
frame for the sensor mass function is {active, inactive,Θ}.

(2) The calendar sensor indicates whether the user is scheduled to be in a meet-
ing or not. The context values used are ’meeting’ and ’no meeting’. The sensor
mass function assigns its belief to ’meeting’ if there is a meeting scheduled in
the diary for the time in question, and assigns belief to ’no meeting’ if the diary
is empty. Quality issues are explained in Step 6.

(3) The ubisense sensor indicates what location the user is in. The sensor
is capable of detecting the user’s tag, with a point coordinate reading, on
the third or fourth floor. For situation detection, as previously stated, we
are interested in four particular locations: desk, cafe, meeting room and ’all
other locations’. Therefore, the context values are ’user desk’, ’cafe,’ ’meeting
room’, ’other’. The frame for the sensor mass functions contains the single-
ton elements:{desk, cafe,meetingRoom, other} and all possible combinations
of the singletons:{desk ∧ cafe, desk ∧ cafe ∧meeting, ....,Θ}. In practice, most
of the combination elements are never used.

Step 3: Establish inference path and certainties from context values to situa-
tions. As owners of the data set, we have expert knowledge about the inference
rules linking context values with higher levels states. These are shown in the
situation DAG in figure 5.5. Each rule is certain, with no frequency attached.

Step 4: Identify absolute times for situations with identifiable occurrence
times: In this data set, the only absolute time we can discern is for the ’lunch’
situation, which takes place each day between 12:00 and 2:00. We treat this as
a certain time (i.e. lunch always takes place at this time) so we apply it in the
decision algorithm, rather than as a virtual sensor, as discussed in Section 4.3.

Step 5: Identify situation durations for situations with transitory evidence:
The sensors do not transmit transitory, event-style evidence. They provide
continuous values about the calendar, activity and location states of the user
so evidence can be fused from all three sensors at each point in time.

Step 6: Identify and quantify static and dynamic quality parameters for sen-
sors: Unlike the simple binary sensors in van Kastersen’s data set, the sensors
in this data set do not detect their higher level state in an immediate, reliable
manner all of the time. In order to factor in sensor performance into the ev-
idence reasoning, we need to identify the types of quality problems (quality
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parameters) and then quantify each type of problem (values for quality pa-
rameters). This means examining why sensor readings are not correct (if ever),
and to what extent they are not correct, as previously described in Section 4.5.3
for the CASL data set sensors. This can be done in two ways (1) using domain
knowledge (2) capturing training data. Domain knowledge is useful for iden-
tifying the type of quality problem. Training data is more useful for applying
numbers to the quality parameters, although in the absence of training data,
domain knowledge can be used. A summary of the quality parameters for the
CASL data set is shown in table 5.3.

Calendar sensor: In advance of the data collection exercise, we monitored the
attendance rate of the participant. Of 36 meetings in the diary of a month’s
period, 22 (60%) were attended i.e. an accuracy of 0.6. This is an indication of
the overall accuracy of the calendar as an indicator of actual meeting activity.
In addition, during attended meetings, the attendance time did not exactly
match the scheduled time. The participant tended to arrive late meetings and
the meetings tended to run over. i.e. a time delay appears around the start
and end time. We estimated this imprecision around the start and end time
of meetings to be 10 minutes, based on the participants input. Based on this,
we applied a fuzzy membership function spread over ten minutes. i.e. at 5
minutes past start time, the meeting membership is 0.5, increasing to 1 by 10
minutes after start time, and vica versa at meeting end times.

Activity sensor: This sensor is used to detect whether the participant is using
the PC or not. The readings are abstracted to values of ’active’ or ’inactive’.
’Inactive’ indicates that the user has not recently used their keyboard or mouse.
The performance of the activity sensor itself is not prone to error. i.e. the sensor
always captures activity on the keyboard or mouse. However, error creeps in
when the sensor is abstracted to active or inactive. If no fuzziness is applied,
the user moves instantaneously from active to inactive after whatever time
period is chosen (e.g. 1 minute). In reality, transition from active to inactive
may be a more gradual process, with the extent of inactivity increasing the
longer the time since they used their computer. We apply a fuzzy time decay
function to capture this gradual slide into inactivity rather than a step change.
The selection of the time period (4 minutes) is subjective: it seems a reasonable
time to assume inactivity. However, from our DAG, we can see that other
states that rely on “inactive” (coffee break, informal break, meeting, reading,
meeting) will take longer to recognise if the system takes longer to become
inactive.
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Sensor Static Quality Dynamic Quality

Ubisense Accuracy (0.7) Precision (3.33m x-axis, 2.2m y-axis)
Calendar Accuracy (0.6) Fuzziness at meeting start/end (10 minutes)
Activity None Time decay (4 minutes)

Table 5.3: Quality parameters and values for CASL data set

Ubisense sensor: The Ubisense location system has the most severe quality is-
sues, with large discrepancies between exact location and coordinate readings
from the system. Although the Ubisense manufacturer supplied precision fig-
ures at installation time, issues of user orientation, metal reflection in the room,
walls and so forth all contribute to degradation in performance in our office
environment, as discussed in [19]. We conducted our own training exercise,
as described in [123] whereby we captured sample readings and used them to
measure the precision and accuracy of the system. Based on this, we calcu-
lated that 70% of readings fall within 3.33m along the x-axis and 2.2m along
the y-axis respectively2. These are much worse than the manufacturer’s qual-
ity measures (precision of 15cm). Based on this, it is possible that the wrong
room will be detected as the location even if a reading falls within the preci-
sion distance, as discussed in Section 4.5.3. For each reading that we use, we
abstract the coordinate reading to the relevant context value location (desk,
cafe, meeting room, other) using the floor maps for the building. All belief is
assigned to the abstracted location. Using quality parameters, we then modify
the original belief distribution using the dynamic precision and static accu-
racy (0.7) quality parameters. We apply the precision-x and precision-y values
as the dynamic quality parameters. As described in Section 4.5.3, we use the
precisions to define a precision area around the coordinate reading. The ex-
tent of overlap of the precision area with context value locations determines
the belief allocation that the tag is in that room. If the precision area spreads
outside the building, the proportion of the area located outside is reallocated
to the overlapping areas that fall inside the building. The application of the
dynamic precision quality re-distributes the belief from the original location
across the overlapping locations. The static quality parameters (accuracy) are
then applied to further modify the mass function based on quality.

Step 7: Identify the Frames of Discernment: All six situations are detected
from the same sensors, as shown on the situation DAG. Therefore, they will be
placed in the same frame of discernment, as explained in section 5.2 .

2No error was assessed along the z-axis because the system always detected the floor level
correctly
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Figure 5.5: Situation DAG for CASL showing sensor, context values and situa-
tions

5.5.5 Situation DAG for CASL data set

The situation DAG, established using the seven steps described, is show in
figure 5.5. The situations are derived from the various abstracted contexts of
the sensors. There is a particular reliance on the location of the user, as user
location is richly informative of their situation, telling us if the user is in the
cafe, or at their desk and so on. Both coffee and lunch breaks take place in
the cafe. The only detectable difference between coffee and lunch breaks is
the time of day that lunch break takes place between 12:00 and 14:00. So we
will rely on absolute time of day to differentiate them. In this data set, there is
no inference rule frequency used, as each rule is categorical. For example, the
user is “always” at their desk when in the situation ’busy at desk’.

5.6 Conclusion

In this chapter, we demonstrated how situation DAGs are established for two
real world datasets. This is a critical step in applying the extended Dempster-
Shafer reasoning approach because the DAG contains the structure and knowl-
edge needed for the evidence decision network. i.e. to process the belief distri-
bution and decision stages for an envrionment. We noted that knowledge for
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the DAG may come from a variety of sources: system developer knowledge,
user interviews, user observation, application stakeholders, localised training
data and data mining knowledge. In practice, we anticipate that a hybrid ap-
proach will be used, with knowledge from different sources populating differ-
ent parts of the situation DAG.

The situation DAGs for our two data sets establish the evidence processing
needed for the evaluation in Chapter 6. The smart home data set contains the
temporal patterns needed to evaluate our extensions for transitory evidence.
As this is a third party data set, we used a portion (one third) for training data
in order to establish the DAG in the absence of detailed domain knowledge
for the smart home environment and user. The in-house office data set has
sensor quality parameters that we can use to evaluate our quality extensions.
We have expert domain knowledge about workings and performance of the
sensors, and their roles in tracking situations. We established the situation
DAGs for both data sets.

In the next chapter, we will use our data sets and situation DAGs for evaluating
our evidence decision network.
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CHAPTER

SIX

Evaluation

In the previous chapter, we demonstrated the use of our approach by estab-
lishing the situation DAGs for two separate data sets. In this chapter, we will
use the situation DAGs as input to the evidence decision network for each of
the two data sets. We will assess the accuracy of situation recognition in order
to evaluate the evidence decision network approach to situation recognition.
In Chapter 1, we hypothesised that

(1) the use of temporal knowledge in evidence will improve recognition accuracy (over
using evidence only);

(2) the use of sensor quality in evidence will improve recognition accuracy (over using
evidence only).

Temporal extensions to evidential theory are evaluated using van Kastersen’s
data set. Quality extensions are examined using the CASL data set. The exper-
iments conducted test the precision and recall of using evidential reasoning for
situation recognition, both with and without our time and quality extensions.

In Section 6.1, we explain the belief distribution and decision algorithms used
for situation recognition in the evidence decision network. The evaluation
methodology is described in Section 6.2. The results of temporal extensions
using van Kasteren’s data set are described in Section 6.3. Section 6.4 describes
the quality extensions evaluation using the CASL data set. Section 6.5 exam-
ined how alternate fusion rules impact situation recognition results for the two
data sets. A summary and discussion is provided in Section 6.6.
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6.1 Situation recognition using the evidence de-

cision network

Situation recognition using the evidence decision network is split into two
parts, as explained in Chapter 3: belief distribution and decision level. In chapters
3 and 4, we explained the evidential operations that support the distribution
of belief and decision stages. In this section, we explain the algorithms that we
have created to process belief distribution and decision stages.These are re-
quired to support the implementation of evidence processing in the evidence
decision architecture as shown in figure 3.2.

Belief distribution algorithm: The algorithm for belief distribution is shown
in figure 6.1. Belief from sensors is distributed at regular time intervals. Each
mass function is executed, populating belief levels for all context values in
the DAG. The belief from each context event is then propagated to compatible
upper nodes for each context event. Once belief for all context events has been
propagated upwards, belief for each upper node is fused and then propagated
to the next upper node(s). The propagation and fusion process continues until
all nodes in the DAG have been processed.

Time extension of evidence algorithm: If frames exist that are deduced from
transitory evidence, the life time of the evidence will be extended to tie in
with the duration of the frame. For the duration of the frame, all occurring
and extended evidence is considered. The algorithm for extending evidence
lifetime assigns the duration or remainder of the duration for the situation to
the occurring evidence, as shown in figure 6.2.

Decision algorithm: Once all belief has been processed, the decision algo-
rithm is applied. The first step is to distribute belief where belief is assigned
to combinations of situations, as explained in Section 3.4.3. The distribution
is achieved using Smets modified decision rule in equation 3.12. If only one
situation is allowed to occur in the environment at any point in time, the algo-
rithm for single situation occurrence is executed, as shown in figure 6.3. This
algorithm selects the situation with the highest belief. If two or more situa-
tions have the same maximum belief, the algorithm will check which situation
exhibits greater certainty.

For environments where more than one situation can occur at the same time,
a threshold belief can be used to filter situations, as described by Loke [69]
and Clear [16]. In these environments, the decision algorithm for situation co-
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input: Sensor readings R from sensors S at time t, situation DAG, frames of 

discernment F, valid situation combinations S

output: occurring Situation(s)

foreach sensor S do

execute mass function 

if quality used

modify belief distribution

end

end

foreach context event

foreach upper node 

if upper node has duration

execute time extension for context event

end

if inference rule uncertain

execute propagate uncertain belief to compatible node

else

propagate certain belief to compatible node

end

end

foreach upper node

process OR (using Max)

fuse AND  // including time extended belief

end

Execute decision algorithm

Return occurring situation(s)

Figure 6.1: Belief distribution algorithm

// for a situation S that is part of a frame with duration d, with context event 

evidential of S:

if situation S not in progress 

// duration d = remaining duration

context event lifetime = d;

remaining duration = d;

else

if situation S in progress

if context event has belief > 0

context event lifetime = remaining duration;

end

end

end

remaining duration: = remaining duration – timegap;

// timegap = time between timeslices

Figure 6.2: Algorithm for extending transitory evidence lifetime
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input: situations S to be detected

output: occurring situation, O.

// distribute combined belief

foreach combined belief allocation

apply modified Smets rule;

end

// apply any absolute times used for situations

foreach situation

if absolute time of situation not= current time

exclude situation from candidate list

end

// determine which situation(s) occurring by 

finding max belief of remaining situations //

if number of situations with max belief = 1

O = max situation

else

if number of situations with max belief > 1 // tie

find minimum uncertainty of these situations

if number of situation with minimum uncertainty >1

return default of no decision

else

O = minimum uncertainty situation

end

else

// there was no max, belief is zero

return default or no decision

end

end

Figure 6.3: Decision Algorithm for single situation occurrence
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input: situations S to be detected, invalid situation combinations, belief 

threshold b.

output: occurring situations, O 

// distribute combined belief

foreach combined belief allocation

apply modified Smets rule;

end

// apply any absolute times used for situations

foreach situation

if absolute time of situation not= current time

exclude situation from candidate list

end

// apply a belief threshold and remove invalid co-occurrences

select situations with belief > t

if invalid situation combination exist in selected situations:

sort selected situations from lowest to highest belief

while (more situations or invalid combinations complete)

if situation is part of occurring invalidation combination

remove situation from selection

check if invalid combinations complete

end

end

end

return situations in selection

Figure 6.4: Decision algorithm for situation co-occurrence

occurrence is executed, as shown in figure 6.4. This algorithm must consider
the invalid combinations of situations so that only situations that can occur to-
gether are returned. This is done by dropping situations with the lowest belief,
if they are part of an invalid combination, where all the situations in the combi-
nation have exceeded the threshold. Invalid combinations can be hand crafted,
or can be detected using an automated process, based on Ye’s approach [119].
This work defines conflicting context values, which cannot co-occur, such as
’having a shower’ in the bathroom location cannot happen at the same time as
’eating dinner’ in the kitchen location. By checking which context values con-
flict, situations that are impossible to occur together can be determined. The
setting of the threshold will be environment specific. If applications execute
high risk behaviour, the threshold should be set to prevent situations with in-
sufficient belief levels [69]. Also, the quality of the sensors and the certainty
of the inference rules will determine the level of belief that is possible for sit-
uations to be achieved in the first place. Highly uncertain environments will
need to set lower thresholds in order to detect situations.
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6.1.1 Worked examples using evidence decision network

In order to explain the use of the evidence decision network, we describe two
examples of how the network is used: (1) from the van Kasteren data set and
(2) from the CASL data set.

Van Kasteren worked example

In the van Kasteren data set, the data has been time sliced into time stamped
sensor readings for each of the 14 sensors. Taking an example from the times-
liced data, at a particular time 27/02/2008 19:03:00, the freezer sensor is set to
1, all other sensors are set to 0. This means that the only sensor that triggered
during that timeslice was the freezer door sensor. This timeslice of sensor read-
ings is processed through the two stages of the EDN (1) belief distribution and
(2) decision stages as follows:

(1) Belief Distribution stage

The belief distribution algorithm described in Figure 6.1 is applied to the set of
sensor readings for the timeslice. First, the mass functions for each sensor are
executed:

• The freezer sensor is set to ’1’ so its mass functions assigns evidence as
mass 1,0,0 to its frame hypotheses (freezerUsed, freezerNotUsed, J).

• The mass functions for the remaining 13 sensors assign their belief to
their context values as (0,1,0) to the relevant sensor context values with
frame hypotheses: (sensorUsed, sensorNotUsed, J).

Propagate evidence for each context event, each of which has frame of hy-
potheses (sensorUsed, sensorNotUsed, J):

1. The situation DAG for van Kasteren as shown in figure 5.3 shows that
the freezer used is indicative of the ’prepare dinner’ situation, with a cer-
tainty of 0.n,where n is a uncertainty weighting between 0 and 1. There-
fore, evidence can be transferred from the freezer context value frame of
discernment to the ’prepare dinner’ frame using compatibility relations
from equations 3.5 and 3.6 to define the mapping.

2. Situation duration is used to extend transitory evidence lifetime in the
van Kasteren data set. As per the belief distribution for time extended
evidence algorithm in Figure 6.2, the ’prepare dinner’ situation has a du-
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ration, so the lifetime of the context event evidence 1,0,0 for hypotheses
freezerUsed, freezerNotUsed, J is set to the ’prepare dinner’ duration.

3. The propagation of uncertain evidence between the frames is carried out
using equations 3.7 and 3.8. As a result, the belief assignments to the
’prepare dinner’ frame of discernment (prepareDinner, notPrepareDin-
ner, J) is (0.n, 0, 1-n) respectively from the freezer context value. The
other context values that are indicative of the ’prepare dinner’ situation
(cup, fridge, plate, groceries cupboard, pans cupboard) all have their be-
lief assigned to uncertainty as a result of the sensors not triggering.

4. The evidence captured for the remaining 13 context values are propa-
gated via compatibility mapping and evidence propagation to the vari-
ous situations on the DAG using the inference paths.

5. For each situation, the evidence is fused. The ’prepare dinner’ has 6 con-
text values each assigning all their belief to uncertainty, and the freezer
context values assigning its belief as (0.n, 0, 1-n) to the frame. These seven
evidence sources are fused using Murphy’s time extended evidence fu-
sion rule in equation 4.2.

6. The remaining duration of the ’prepare dinner’ situation is decremented
by 1 minute.

7. All situations now have a belief level: The ’prepare dinner’ situation is
the only situation with belief assigned, with 0 for all the remaining situ-
ations.

(2) Decision stage

1. The decision algorithm for single situation occurrence as described in
Figure 6.3 is used as only one situation can be occurring in this environ-
ment at any point in time.

2. As per the decision algorithm, the absolute time of situations is applied.
The timeslice occurs in the evening (19:03) and the ’prepare dinner’ situ-
ation has an absolute time set to evening, so it remains in the candidate
list.

3. The situation with the max belief is ’prepare dinner’ so it is deemed to be
occurring.
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CASL Worked Example

The second worked example is from the CASL data set. In this data set, there
are three sensors: the Ubisense location sensor, the desktop activity sensor and
the calendar sensor. The data is timesliced into one minute intervals.

Taking a time slice at 10.06 on Friday from the CASL data set, the ubisense
sensor co-ordinate reading of (8.24 13.78 2.21 ) maps to the informal meeting
room. The activity sensor does not trigger, and has not triggered for the previ-
ous three timeslices. The calendar sensor indicates that a meeting is scheduled
at that time.

(1) Belief distribution Stage

1. The mass function for each of the sensors distributes their belief using
the belief distribution algorithm in figure 6.1.

2. Quality parameters are used as defined for the CASL data set in Table
5.3, so are used to modify belief as follows:

(a) The ubisense sensor maps to the ’informal meeting’ room so assigns
belief to the ’meeting room’ hypothesis. The dynamic quality pa-
rameter that defines a precision area around the coordinate point
reading is then applied, and this precision area stretches to include
some of the hallway (0.17). Belief is thus reassigned with 0.83 to
the meeting room and 0.17 to the hallway using the dynamic qual-
ity equations 4.4 and 4.5. The static quality parameter of 0.7 is then
applied to represent the inaccuracy of ubisense using equation 4.3,
further re-assigning belief as meeting room 0.58, hallway 0.12, and
uncertainty of 0.3. The sequence of applying dynamic first, and then
static quality is dictated by equation 4.6.

(b) The activity sensor follows the dynamic quality time decay func-
tion indicated in Table 5.3 so assigns belief as 0.25 active, and 0.75
inactive. There is no static quality issue with the activity sensor.

(c) The calendar sensor is set to meeting, so assigns its belief as 1 to
’meeting scheduled’. The dynamic quality parameter indicates a
fuzzy function that indicates the user is usually up to 10 minutes
late. The time of 10:06 is 6 minutes into the scheduled meeting time,
so after applying the dynamic quality function, the mass of belief to
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indicate a meeting has degraded to 0.7, with 0.3 that a meeting is not
occurring. A static quality parameter of 0.6 applied which readjusts
these belief levels, as per equation 4.3. The reassigned beliefs are
meeting 0.42, no meeting 0.13 , and uncertainty of 0.45.

3. The belief values are then mapped to the situations using the inference
paths indicated in the CASL situation DAG in Figure 5.5.

4. Evidence is not time extended in the CASL data set so the time extension
algorithm is not needed.

5. Evidence for each situation is fused using Dempster Shafer’s rule of com-
bination in 3.3

Decision Stage

1. The decision algorithm for single situation occurrence as described in
Figure 6.3 is used as only one situation can be occurring in this environ-
ment at any point in time.

2. Smet’s rule is applicable to the CASL data set because evidence is as-
signed to the combinations of situations. The calendar sensor has propa-
gated evidence of 0.13 to ’not meeting’ which is a combination of all sit-
uations apart from meeting i.e. busy at desk, busy reading, coffee break,
informal break, lunch. Our modified Smet’s rule in equation 3.12 is used
to distribute belief to the six individual situations.

3. After distributing the combined belief, the ’meeting’ situation has the
highest belief, so is deemed to be occurring.

6.2 Evaluation methodology for situation recog-

nition

We will use our two data sets to infer situations using our evidence decision
network. Our aim is to test the following hypotheses:

1. Temporal extensions to Dempster-Shafer theory will improve situation
recognition accuracy, where temporal features exist in the environment
situations;
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2. Quality extensions to Dempster-Shafer theory will improve situation
recognition accuracy, where sensor quality is an issue in the environ-
ment.

To test these hypotheses, our evaluation will answer the following questions.

Question Data set

1 How accurate is the evidence decision network
for situation recognition?

Both

2 Do temporal extensions to the evidence
decision network improve situation
recognition?

van Kasteren

3 Do the quality extensions to the evidence
decision network improve situation situation
recognition?

CASL

In addition, we wish to compare our approach with other situation recogni-
tion techniques used in the field, in order to check that our approach can pro-
duce viable results. The purpose of the comparison is not to say whether our
approach is quantitatively better or worse than other techniques. We have
already explored the differences in functionality between our approach and
other techniques (both specification and learning) in Chapter 2. We are simply
testing whether our approach is producing results that can compare reason-
ably well in terms of other commonly used techniques. For this reason, we
choose two classic machine learning techniques (Naïve Bayes and J48 decision
tree) that have been used by other researchers for comparison with their own
recognition techniques, both learning [68, 119] and specification techniques
[125] . We do this comparison using both the van Kasteren and CASL data
sets.

6.2.1 Evaluation parameters

We employ three widely used statistical classification parameters to assess ac-
curacy of situation recognition. (1) Precision is the ratio of the times that a sit-
uation is correctly inferred (NinfCorr) to the times that it is inferred (Ninf ), i.e. it
is a measurement of exactness of situation recognition. (2) Recall is the ratio of
the times that a situation is correctly inferred to the times that it actually occurs
in the data set (Nact). It is a measure of how completely the situation has been
recognised throughout its occurrences. (3) F-measure is the weighted mean of
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n00= the number of examples
misclassified by both

recognition techniques

n01= the number of examples
misclassified by technique A

but classified correctly by
technique B

n10= the number of examples
classified correctly by

technique A but misclassified
by technique B

n11= the number of examples
classified correctly by both

techniques

Table 6.1: McNemar’s Results table

precision and recall and is used to summarize inference accuracy. It is a useful
way to balance precision and recall because improvements in precision may be
at the expense of recall and vica versa. The equations for these three standard
measures are:

Precision = NinfCorr/Ninf (6.1)

Recall = NinfCorr/Nact (6.2)

F =
2× precison× recall
precision+ recall

(6.3)

For van Kasteren’s data set, we generate results for multiple folds of data
during cross validation. We use averages for precision, recall and f-measure.
These averages are calculated as the sum of the relevant measure for each fold,
divided by the number of folds.

6.2.2 Statistical Significance

We hypothesise that (1) the use of temporal knowledge in evidence will im-
prove recognition accuracy over using evidence only and that (2) the use of
quality in evidence will improve recognition accuracy over evidence only. To
validate our results, we need to test whether significant differences exist us-
ing evidence only, versus using quality and time. McNemar’s test is used to
calculate confidence levels when comparing the performance of two systems
[29, 88]. Given two systems A and B, for each example x which is an element
of T, where T is the set of test queries, a contingency table is constructed as
follows, using the definitions in table 6.1:
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The total number of timeslices to be tested is n = n00 + n01 + n10 + n11. If there
is no performance difference between the two recognition techniques (null hy-
pothesis), then n10 = n01. McNemar’s test is based on a χ2 (chi squared) test
for goodness of fit which compares the distribution of counts expected under
the null hypothesis to the observed counts. χ2 is calculated as per equation 6.4
from [29]:

(|n01 − n10| − 1)2

n01 + n10

(6.4)

This statistic is distributed (approximately) as χ2 with one degree of freedom.
McNemar’s test has a lower probability of incorrectly detecting a difference
when no difference exists but it also possesses good discriminative power (the
ability to detect a difference where one does exist) [29].

We will populate McNemar contingency tables when assessing whether tem-
poral and quality extensions to the evidence decision network are statistically
significant.

6.2.3 Cross validation

For van Kasteren, as a third party data set, we must generate knowledge by
holding back some data for training. Cross validation is the process whereby
the data is partitioned into n folds, with each of the n folds used for testing,
while the remainder is used for training. The process is repeated n times [113].
As described in Chapter 5, we split the data set into thirds and use one third
for training with the remainder for testing, cross validated. Existing published
results from Ye [119] and van Kasteren [109] use the ’leave one day out’ tech-
nique, whereby each day of the 28 day data set is in turn used for testing,
with the remainder 27 days used for training. In order to compare the evi-
dence decision network with these results, we also apply the ’leave one day
out’ technique so that the same methodology is used to produce results for
comparison.

In the CASL data set, we have domain knowledge about the inference rules
and sensor mass functions for the environment. Therefore, the full data set
can be used as a test set for testing situation recognition accuracy using the
evidence decision network. To compare with other techniques, we use 10-fold
cross validation for the comparison learning techniques. This is a standard
technique for measuring the error rate of a learning technique [113]. The data
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is divided into 10 folds, and the process repeated 10 times.

6.2.4 Experimental set-up

To test our evidence based approach to situation recognition, we needed to de-
velop our own software as no tools exist to meet our requirements for process-
ing and propagating evidence. We developed our own software for evidence
decision network processing using java JDK 1.6. The choice of software was
based on its support for OO development techniques. This software executes
the belief distribution and decision steps of the evidence decision network.
That is, the software reads in time sliced sensor readings, executes the mass
functions for all sensor reading values in the timeslice, propagates evidence,
distributes belief and executes the decision stage. To test learning techniques
on our two data sets, we used the Waikato Environment for Knowledge Anal-
ysis (WEKA) workbench, which is a standard tool amongst the machine learn-
ing community.

6.3 Situation Recognition on van Kasteren’s Data

set

Our experiments using van Kasteren’s data set are based around the three
questions:

• Experiment 1: How accurate is the evidence decision network for situa-
tion recognition? This tests situation recognition without using absolute
time or transitory evidence in order to establish a baseline;

• Experiment 2: Do temporal extensions to the evidence decision network
improve situation recognition? Our temporal extensions cater for abso-
lute time and situations with transitory evidence. We test each of these
separately so that their impact can be assessed.

• Experiment 3: How well does the evidence decision network perform
when compared to other recognition techniques? We compare against
Naïve Bayes and J48 Decision Tree classifiers.
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precision recall f-measure

leave house 0.78 1 0.87
use toilet 0.64 0.42 0.50

take shower 0.35 0.26 0.29
go to bed 0 0 0

prepare breakfast 0.40 0.27 0.30
prepare dinner 0.80 0.20 0.31

get drink 0.36 0.75 0.45

Table 6.2: Precision, recall and f-measure of situation recognition on van
Kastersen’s data set (for evidence without time included)

Situations leave
house

use
toilet

take
shower

go to
bed

prep.
break’t

prep
dinner

get
drink

leave house 0.998 0.001 0.001 0.0 0.0 0.0 0.0
use toilet 0.358 0.419 0.223 0.0 0.0 0.0 0.0

take shower 0.723 0.021 0.256 0.0 0.0 0.0 0.0
go to bed 0.982 0.009 0.008 0.0 0.0 0.0 0.0

prep break’t 0.365 0.028 0.030 0.0 0.274 0.116 0.187
prep dinner 0.589 0.013 0.004 0.0 0.127 0.198 0.069

get drink 0.162 0.023 0.046 0.0 0.012 0.011 0.746

Table 6.3: Confusion matrix of inference on van Kasteren’s data set

6.3.1 Experiment 1: Situation recognition accuracy without
temporal knowledge

In the first experiment, we examine the situation recognition results on van
Kastersen’s data set using the evidence decision network. We use limited (one
third) training data, with cross validation. Temporal knowledge (absolute time
and transitory evidence) are not included. Table 6.2 shows the average preci-
sion, recall and f-measure. The confusion matrix in table 6.3 shows a break-
down of situation recognition errors in more detail. In this matrix, the oc-
curring situations are shown in the left most columns. Each row provides a
detailed breakdown of how each situation was recognised correctly, or incor-
rectly as another situation. The correct inferences are shown in bold along the
diagonal. For example, the first row on “leave house” can be read as: 0.998% of
the occurring ’leave house’ timeslices were correctly inferred. 0.001% of them
were classified incorrectly as ’use toilet’ and 0.001% as ’take shower’.

Looking at table 6.2, the ’go to bed’ situation is not recognised at all. Looking
at the confusion matrix, it is classified almost entirely as ’leave house’ . This
is because these two situations use the same sensors and context values as ev-
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idence, so they cannot be distinguished. Absolute time (day or night) is the
only distinguishing evidence but is excluded from this experiment. Its value
in distinguishing these two situations will be shown in experiment 2. Recog-
nition accuracy of the other five situations ranges from 0.29 for ’take shower’
to 0.5 for ’use toilet’. Looking at the confusion matrix, each of these five sit-
uations are incorrectly inferred as ’leave house’ to some degree. The lower
accuracy situations of ’take shower’ and ’prepare dinner’ have a longer dura-
tion than other situations such as ’get drink’ and ’use toilet’. Lack of sensor
activity is indicative of the ’leave home’ situation. This affects the longer dura-
tion situations such as ’prepare dinner’ (59%) and ’take shower’ (72%) which
have longer gaps in their evidence than the short situations of ’get drink’ and
’use toilet’. In these situations, the sensor events happen over shorter periods
of time, with less gaps in the evidence. This suggests that extending evidence
should boost longer duration situations such as ’take shower’ and ’prepare
dinner’ than shorter duration situations such as ’get drink’. This will be exam-
ined in the next experiment.

6.3.2 Experiment 2: Situation recognition accuracy with
absolute time and time extended evidence

We then included temporal knowledge into the inference process. This was
done in two steps so that we could examine the contribution of both type of
temporal knowledge 1) inclusion of absolute time and 2) inclusion of both ab-
solute time and time extended evidence. Absolute time was incorporated into
the inference process using the time patterns listed in table 5.2. Looking at this
table, all situations except for ’use toilet’ and ’get drink’ are associated with
an absolute time.Figures 6.5 (precision), 6.6 (recall) and 6.7 (f-measure) show
the situation recognition results using the evidence decision network with and
without absolute time on van Kastersen’s data set.

Precision improves for all but two of the situations, ’toileting’ and ’get drink’.
Neither of these situations have an identifying time of occurrence so do not
benefit from the inclusion of absolute time. For recall, all situations improve
with the exception of ’leave home’. Without the use of absolute time, all sce-
narios with no sensor activity were classified as ’leave home’. But with the
inclusion of absolute time, ’sleeping’ can now be identified separately from
’leave home’, with a resultant small erosion of ’leave home’ recall. Looking at
f-measure, the use of absolute time improves the inference accuracy for the five
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Figure 6.5: Precision for evidence decision network with 1) no time and 2)
absolute time using van Kasteren’s data set

Situations leave
house

use
toilet

take
shower

go to
bed

prep
break’t

prep
dinner

get
drink

leave house 0.832 0.002 0.00 0.165 0.0 0.001 0.0
use toilet 0.185 0.587 0.061 0.168 0.0 0.0 0.0

take shower 0.629 0.076 0.201 0.094 0.0 0.0 0.0
go to bed 0.041 0.017 0.001 0.941 0.0 0.0 0.0

prep
breakf’t

0.363 0.039 0.018 0.035 0.324 0.0 0.221

prep dinner 0.589 0.018 0.0 0.0 0.0 0.314 0.079
get drink 0.077 0.059 0.0 0.023 0.0 0.048 0.794

Table 6.4: Confusion Matrix on van Kasteren’s data set using absolute time

situations that have an absolute time. ’Leave home’ and ’go to bed’ can now
be distinguished because of their time pattern of day and night time occur-
rence, respectively. Therefore, the f-measure for ’go to bed’ has jumped from
0 to 0.73. ’Prepare dinner’ and ’prepare breakfast’ are detected from similar
sensor events. Both improve when absolute time is used because they occur at
mutually exclusive times of the day. Looking at the confusion matrix in table
6.4, these two situations are no longer confused with each other, as was hap-
pening when absolute time was not used. All situations continue to have a
high proportion of their occurrences confused with the ’leave home’ situation,
with some confusion now occurring with the ’go to bed’ situation now that it
is recognised as occurring at nighttime.
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Figure 6.6: Recall for evidence decision network with 1) no time and 2) abso-
lute time using van Kasteren’s data set
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Figure 6.7: F-measure for evidence decision network with 1) no time and 2)
absolute time using van Kasteren’s data set
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Figure 6.8: Precision for 1) no time, 2) absolute time and 3) absolute time and
time extended evidence using van Kasteren’s data set

For the second part of the experiment, we then added time extension of evi-
dence into the evidence decision network. Five of the situations are derived
from transitory evidence: Durations are applicable for ’prepare breakfast’,
’prepare dinner’, ’get drink’, ’use shower’ and ’use toilet’ as each of their con-
text events can be spread over time. No sensor is usually fired during ’leave
home’ and ’go to bed’ situations so no time extension of evidence is used for
these situations. Durations are calculated as the average of the situation dura-
tion from the training data folds, as explained in section

4.2.2. Figures 6.8 (precision), 6.9 (recall) and 6.10 (f-measure) compare the in-
ference results of using no time, absolute time and absolute time plus extended
evidence. Looking at precision, three situations improve, two remain the same,
and ’toileting’ situation precision is reduced. Extended time evidence has lim-
ited improvement for the ’toileting’ activity because it has the same sensor ac-
tivations as ’showering’ situation but does not benefit from an absolute time.
Recall for all situation occurrences that use transitory evidence improves be-
cause gaps between evidence have been removed. Therefore, annotated times-
lices with no sensors triggering can be correctly recognised. Using f-measure,
when time extension of transitory evidence is also used, recognition accuracy
improves for four out of the five enduring situations. Time extension is not
used for ’leave house’ and ’go to bed’ situations, and as expected their infer-
ence accuracy is almost identical. For the remaining five time-extended situ-
ations, the biggest improvements is shown in ’take shower’, ’prepare break-
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Figure 6.9: Recall for 1) no time, 2) absolute time and 3) absolute time and time
extended evidence using van Kasteren’s data set
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Figure 6.10: F-measure for 1) no time, 2) absolute time and 3) absolute time
and time extended evidence using van Kasteren’s data set
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Situations leave
house

use
toilet

take
shower

go to
bed

prep
break’t

prep
dinner

get
drink

leave house 0.829 0.003 0.001 0.165 0.0 0.001 0.001
use toilet 0.137 0.673 0.077 0.108 0.0 0.003 0.0

take shower 0.094 0.123 0.701 0.082 0.0 0.0 0.0
go to bed 0.037 0.025 0.002 0.936 0.0 0.0 0.0

prep break’t 0.172 0.091 0.035 0.0 0.557 0.024 0.121
prep dinner 0.245 0.038 0.0 0.0 0.0 0.624 0.093

get drink 0.034 0.069 0.0 0.023 0.0 0.103 0.771

Table 6.5: Confusion matrix on van Kastersen’s data set including absolute time and
time extended evidence

No Time Absolute time Time extended and absolute

F-measure 0.40 0.55 0.68

Table 6.6: Comparison of average f-measure for evidence decision network
with no time, absolute time and time extended

fast’ and ’prepare dinner’. These activities are longer in duration than the ’get
drink’ and ’use toilet’ situations, so their evidence is sparser throughout the
duration with longer gaps where nothing happens. Therefore, they benefit
more from the extension of their transitory evidence. The ’use toilet’ situa-
tion recognition actually decreases very slightly with the use of time-extended
evidence. This is because the sensors used in ’use toilet’ overlap with those
for ’take shower’ and the two situations were often performed sequentially.
Looking at the confusion matrix in Table 6.5, the extent to which the enduring
situations are confused with ’leave house’ and ’go to bed’ has reduced. i.e. the
static periods where nothing happens is reduced.

The impact of the evidence decision network with temporal extensions is sum-
marized in table 6.6. This shows average F-measure for all situations when no
time is used in reasoning, when absolute time is used, and when both time ex-
tension and absolute time are used. F-measure improves by 70% with the use
of both time reasoning techniques. The data set has strong time patterns so we
expected the inclusion of this temporal knowledge to improve our results.

Our hypothesis is that the evidence decision network with temporal exten-
sions improves inference results over the evidence decision network only. To
check whether the difference in our results is significant, we construct Mc-
Nemar’s contingency table as described in Section 6.2.2. The table, shown in
Appendix A, Section 1, contains the classification result totals for the evidence
decision network only versus the evidence decision network using absolute
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time and time extended time. Using McNemar’s equation 6.4, we find that
the difference between the evidence only and temporal evidence classification
approaches were statistically significant to the 99.99% level.

6.3.3 Experiment 3: Comparison with learning techniques

In this experiment, we compare our evidence decision network results with
two class machine learning techniques, Naïve Bayes Classifier and J48 De-
cision Tree. The purpose of this comparison is to examine whether we can
get comparable results using the evidence decision network to learning tech-
niques, as a ’sense check’ that our evidence theory-based approach can per-
form reasonably in comparison to other recognition approaches. The experi-
ments were run in two cross validation modes (1) using limited training data
(one third, cross validated) and (2) using a ’leave one day out’ cross validation
approach. When limited training data was used, the evidence decision net-
work with temporal extensions clearly out performed both Naïve Bayes and
J48 as shown in figure 6.12. Both evidence decision network approaches in-
corporate domain knowledge so their performance on limited training data is
not significantly improved on the ’leave one day out’ technique. The learning
techniques, on the other hand, rely totally on training data for their results,
performing much better on the ’leave one day out’ approach than on limited
training data, as shown in figure 6.12.

It is interesting to compare the evidence decision network results of limited
training data (with greater reliance on domain knowledge) with the learning
results from the more comprehensive leave-one-day-out training technique, as
per the bolded figures in table 6.7. An evidence based approach will typically
be used when training data is limited or not available, so the results from lim-
ited training data are encouraging - the technique with temporal knowledge
exceeds the learning techniques, and without temporal knowledge still per-
forms well compared to learning techniques. Since evidence theory is suited to
the incorporation of domain knowledge, this result is encouraging. In particu-
lar, temporal knowledge of absolute times and transitory evidence for endur-
ing situations can be incorporated and used to improve recognition accuracy.
Evidence theory will be useful when training data is not easily available and
where domain knowledge can be gleaned from expert knowledge and user
knowledge. These sources can be used to obtain inference knowledge in a
piecemeal approach, with users providing information on absolute times, sit-
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Figure 6.11: Comparison of F-measure between Time extended Evidence,
Naïve Bayes and J48 Decision Tree with one third training training data
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Figure 6.12: Comparison of F-measure of time extended evidence, Naïve Bayes
and J48 using Leave One Day Out cross validation.
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EDN without
time

EDN with
temporal

Naïve Bayes J48 Decision
Tree

One Third Training 0.40 0.68 0.49 0.34
Leave One Day Out 0.45 0.70 0.58 0.51

Table 6.7: F-measure comparison of Time extended evidence, Naïve Bayes and
J48 for one third and Leave One Day Out cross validation

uation descriptions and durations, and experts providing knowledge of sensor
mass functions and sensor quality.

6.3.4 Experiment 4: Comparison with published results

Van Kasteren [109] and Ye [119] have both published inference results based on
using a ’leave one day out’ cross validation technique. Van Kasteren evaluated
Hidden Markov Models (HMM) and Conditional Random Field (CRF) recog-
nition techniques on the data set. Each technique was tested in three sensor
representations:

• raw sensor representation which returns a 1 when a sensor fires;

• change point sensor representation which returns a 1 when a sensor read-
ing is changed;

• last observation sensor representation which returns a 1 if a sensor con-
tinually fires, and gives a 0 when a different sensor fires.

Van Kasteren et al. only published the raw sensor representations in which
all the sensor values are only 1, so we compare with raw sensor representation
results only. To measure accuracy, they use a class accuracy measure calculated
as average percentage of correctly recognized timeslices per situation:

class =
1

C
.

C∑
c=1

{∑N
n=1(inferredc(n) = truec(n)

Nc

}
(6.5)

N is the total number of time slices, C is the number of classes and Nc is the
total number of time slices for class c. We calculated van Kasteren et al.’s class
accuracy measure calculation for our time-extended evidence using the same
’leave one day out’ cross validation approach as Van Kasteren. A summary of
the comparative results is shown in table 6.8.
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Ye Lattices evidence
decision network

with temporal

van Kasteren
HMM

van Kasteren CRF

88.3% 69% 49.2% 44.6%

Table 6.8: Comparison of class accuracy of temporal EDN with published re-
sults from Ye [119] and van Kasteren [109]

Ye’s situation lattices approach yields a class accuracy of 88.3% using raw sen-
sor representations and the ’leave one day out’ cross validation technique. This
is higher than the results from the temporal evidence framework (69%) and
van Kasteren et al.’s HMM results (49.2%). Ye’s lattice method includes ab-
solute time in the inference method, and combines both training and domain
knowledge. However, timeslices in which no sensor changes take place are ex-
cluded in Ye’s results, but are included in the evidence decision network and
in van Kastersen’s work. These ’inactive’ timeslices are hard to infer because
of the lack of sensor information so the data set is likely to yield improved
results to some degree.

HMMs consider the sequence in which situations occur. They do not consider
absolute times (unless explicitly captured in the training data) or durations of
situations. The relative performance of HMMs and CRFs for the van Kasteren
data set are explored further in [109]. Van Kastersen achieves an accuracy
of 79.4% using a richer sensor representation, ’changepoint plus last sensor’
representation as described in [109].

6.3.5 Discussion of temporal evidence decision network
results

The evidence decision network enhanced with temporal knowledge signifi-
cantly improves situation recognition accuracy, over the basic evidence de-
cision network on van Kasteren’s data set. Absolute times are most useful
where it is the only discriminating factor between two or more situations, as
was the case with the ’leave house’ and ’go to bed’ situations. It is also useful
where situations have some sensor overlap and have different absolute times,
as with ’prepare breakfast’ and ’prepare dinner’. Time extension of transitory
evidence proved useful for situations with gaps between evidence. The longer
the gaps (such as ’prepare dinner’), the greater the impact time extended evi-
dence can provide.
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The comparison with published results is interesting. Van Kasteren’s results
using HMMs are worse - so perhaps the situation duration is more important
as an identifying factor in recognising situations in this data set than the se-
quence of situations as used by HMMs. Also, the evidence decision network
approach benefits from the incorporation of domain knowledge.

For the comparison with classic machine learning techniques, the purpose is
to sense check our evidence decision network results. Clearly, if training data
is available, a pure learning technique will, in theory, be preferable. But if
training data is not available or just limited ’pockets’ of localised training data
is available, then the evidence decision network approach is a theoretically
sound alternative. This is indicated in our comparison of f-measures in table
6.7.

Further discussion of the overall evidence decision network approach is pro-
vided in Section 6.6.

6.4 Situation recognition on CASL data set

For the CASL data set, we used domain knowledge to establish the situation
DAG, where the situation DAG is illustrated in Section 5.4.4.1, figure 5.5. Be-
cause of the availability of domain knowledge, we can use the full data set
for testing as no data is needed for training. Our hypothesis is that the use of
quality parameters for imperfect sensors will improve the situation recogni-
tion accuracy using the evidence decision network (over not including quality
parameters). We test this hypothesis as follows:

• Experiment 1: How accurate is the evidence decision network for situa-
tion recognition? This tests situation recognition without quality in order
to establish a baseline;

• Experiment 2: Does situation recognition accuracy significantly improve
when quality parameters are used?

The remaining experiments give greater insight into the use of the quality pa-
rameters, as follows:

• Experiment 3: How do the quality attributes for individual sensors con-
tribute to the situation accuracy results?
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precision recall f-measure

busy at desk 0.96 0.61 0.75
busy reading 0.42 0.47 0.44

informal break 0.59 0.68 0.63
coffee break 0.44 0.54 0.48
lunch break 0.53 0.68 0.60
at meeting 0.76 0.64 0.69

Table 6.9: Precision, recall and f-measure of situation recognition on CASL data
set

• Experiment 4: How sensitive are the recognition results to changes in the
sensor quality parameter values?

• Experiment 5: How well does the evidence decision network with qual-
ity perform when compared to other recognition techniques? We com-
pare against Naïve Bayes and J48 Decision Tree classifiers.

As described in Chapter 5, we merge and time slice the data from our three
sensors so that the data is represented as annotated timesliced sensor read-
ings. Within each time slice, quality values are provided for each sensor. The
evidence decision network process uses these values when testing situation
recognition with quality, and ignores them when excluding quality.

6.4.1 Experiment 1: Situation recognition accuracy without
quality parameters

First, we examine situation recognition accuracy when quality parameters are
not used in the evidence decision network. i.e. all sensors are equally trusted,
with a static quality of ’1’ and no dynamic quality applied. The precision, re-
call and f-measures by situation are shown in table 6.9. The confusion matrix
is in table 6.10. The ’undetermined’ column consists of timeslices where situa-
tions were tied on maximum belief in the decision algorithm. Various default
options can be applied in this case. For example, if the tying situations can be
summarised - such as ’busy at desk’ and ’busy reading’ can be summarised by
’busy’, then the summary situation can be applied.
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Situations busy at
desk

busy
read-

ing

informal
break

coffee
break

lunch
break

at
meet-

ing

undeter’d

busy at desk 0.61 0.0 0.04 0.01 0.03 0.01 0.29
busy reading 0.29 0.47 0.24 0.0 0.0 0.0 0.0

informal
break

0.07 0.13 0.68 0.03 0.02 0.0 0.07

coffee break 0.07 0.07 0.21 0.54 0.0 0.0 0.11
lunch break 0.04 0.03 0.12 0.0 0.68 0.0 0.13
at meeting 0.0 0.0 0.26 0.0 0.0 0.64 0.10

Table 6.10: Confusion matrix for CASL data set when quality not used
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Figure 6.13: Comparison of average precision, recall and f-measure for the
evidence decision network with and without quality for the CASL data set

6.4.2 Experiment 2: Situation recognition accuracy with
quality parameters

In this experiment, we applied quality parameters to each of three sensors,
using the quality parameter values listed in 5.3. Figure 6.13 shows the aver-
age precision and recall for the evidence decision network with and without
quality.

Both precision and recall improve when quality values are used to modify the
strength of the sensors’ evidence, with an overall improvement of 24% in f-
measure. Drilling down to the situation level, figures 6.14 (precision), 6.15
(recall) and 6.16 (f-measure) compare situation recognition with and without
quality. Looking firstly at precision, rates improve for all situations except the
’busy at desk’ situation’. This is because the user is sometimes reading at their

126



Situations busy at
desk

busy
read-

ing

informal
break

coffee
break

lunch
break

meeting undeter’d

busy at desk 0.98 0.0 0.01 0.0 0.0 0.0 0.0
busy reading 0.49 0.33 0.18 0.0 0.0 0.0 0.0

informal
break

0.25 0.07 0.67 0.0 0.01 0.0 0.01

coffee break 0.18 0.04 0.18 0.54 0.0 0.04 0.04
lunch break 0.19 0.0 0.10 0.0 0.70 0.0 0.01

meeting 0.05 0.0 0.03 0.0 0.0 0.92 0.0

Table 6.11: Confusion matrix for CASL data set when quality parameters used
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Figure 6.14: Comparison of precision by situation: with and without quality
for the CASL data set

desk, but briefly uses the desk top, triggering the activity sensor. These times-
lices are then classified as ’busy at desk’ because of the higher ’quality’ of the
activity sensor. Recall improves for all situations, with the exception of the
’busy reading’ situation. Again, because the user sometimes uses their desk-
top, some of the ’busy reading’ situations are not retrieved, classified as busy
at desk. Looking at f-measure,recognition accuracy improves for all situations
when using quality, except for the ’busy at desk’ situation which slightly dis-
improves. Again, this is because the ’busy reading’ sitaution is sometimes in-
terrupted by brief uses of the desktop. Because the activity monitor is ’trusted’
more than ubisense, these are classified as the ’busy at desk’ situations.

’Busy at desk’ recognition accuracy improves substantially because Ubisense
readings that occur ’near’ to the desk area, but which are not actually in the
desk area are recognised by the imprecise Ubisense mass function when qual-
ity is used. In addition, gaps in computer use which are annotated as ’busy at
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Figure 6.15: Comparison of recall by situation: with and without quality for
the CASL data set
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Figure 6.16: Comparison of f-measure by situation: with and without quality
for the CASL data set
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desk’ are still recognised by the system as ’busy at desk’ because of the gradual
decay of the activity sensor.

To test statistical significance of using quality, we construct McNemar’s con-
tingency table for the two recognition modes (1) evidence decision network
without quality (2) evidence decision network with quality parameters. Mc-
Nemar’s table is shown in Appendix A, Section 2. Using equation 6.4, the
improvement in situation recognition accuracy using quality versus no qual-
ity parameters with this data set is statistically significant to the 99.99% level.

6.4.3 Experiment 3: Impact on situation recognition accu-
racy of individual sensor quality

Next, we wanted to see the impact of the quality parameters for each sensor
individually. When quality is used, average f-measure increases from 0.6 to
0.74 by including quality, as shown in figure 6.13, so this analysis will indicate
how this improvement is facilitated by each sensor. We used quality for one
sensor at a time (with no quality parameters used for the remaining two). We
also used excluded quality for one sensor at a time. The average f-measure for
these analyses are shown in figure 6.17. Looking from the left hand side of the
chart, the worst results are for “no quality” used. When quality is used for each
sensor individually, the results improve. The calendar sensor shows the small-
est improvement in overall situation recognition accuracy. This is because its
contribution is to improve the detection of the ’at meeting’ situation but with
limited impact on the remaining five situations. Likewise, the calendar sensor
is the least damaging to the overal result when it is excluded, as shown under
’activity and ubisense’. When quality is used with two sensors at a time, the
results improve. The best result is when quality is used for all three sensors as
shown on the right hand side, achieving an average f-measure of 0.74.

6.4.4 Experiment 4: Sensitivity analysis of quality parame-
ters

In this experiment, we analyse how situation recognition accuracies vary as the
sensor quality parameter values change. We do a separate analysis for static
and dynamic quality parameters.

Static parameter sensitivity analysis: For each sensor in turn, we varied the
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Figure 6.17: Comparison of f-measure for various sensor quality permutations.

Static quality: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ubisense 0.45 0.64 0.64 0.74 0.74 0.74 0.75 0.75 0.71 0.70
Calendar 0.70 0.73 0.73 0.73 0.73 0.75 0.74 0.74 0.74 0.73
Activity 0.56 0.58 0.65 0.66 0.66 0.68 0.70 0.75 0.75 0.75

Table 6.12: Average f-measure against variable static quality parameter val-
ues for each sensor. Actual static quality values from the DAG are bolded
(Ubisense 0.7, Calendar 0.6, Activity 1)

static quality parameter value from 0.1 to 1 (full trusted) at intervals of 0.1,
whilst keeping the remaining two sensors at their assigned quality values. The
average f-measure mapped against the variable static quality for each of the
sensors is shown in table 6.12. Both the Ubisense and activity sensors have a
clear impact on f-measure, with both achieving their maximum f-measure to
coincide with the assigned values (of 0.7 and 1 respectively). For both sensors,
accuracy is not sensitive at nearby values. The activity sensor reaches its max-
imum at 0.8, but then dips from 0.7 downwards. At 0.7, the activity sensor is
considered equally trustworthy as Ubisense, and from there downwards, less
trustworthy - indicating that the relative quality value of the sensors may be
important. Ubisense degrades the average f-measure when its static quality
value dips below 0.4 and above 0.8. The calendar sensor does not impact av-
erage f-measure as much as the other two sensors, tying in with the calendar
sensor’s relatively low impact shown in figure 6.17
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Dynamic parameter sensitivity analysis: Next, we examined how recognition
accuracy sensitivity to dynamic parameter value changes. Table 6.13 shows
how the dynamic values impact on average f-measure. Each of the three dy-
namic parameters (activity sensor time decay, calendar start/end time delays,
ubisense precision) are varied as shown in the tables, and the impact on recog-
nition accuracy noted. The activity sensor achieves the best result at four
minutes time decay, as used in our analysis. Ubisense trained precision at
3.33m/2.2m is just below the value obtained at using 3m/3m for x and y axes,
with a difference of 0.003 in average f-measure. The calendar sensor achieves
the best f-measure at 5 minutes (as opposed to 10 minutes set up for the situ-
ation DAG) indicating that our estimate of meeting start and end times of 10
minutes delay is not adhered to strictly by the user.

Static quality parameters apply to every timeslice in the data set. Dynamic
time-based quality parameters, as used for the calendar and activity sensors,
apply only to specific pockets of the data when a situation transitions to an-
other situation. For example, the activity sensor tails off to inactivity using a
dynamic time decay, so only timeslices affected by the time function when the
activity sensor goes from active to inactive are affected. The nature of the time
decay will depend on how quickly the sensed phenomenon is to be ignored,
and thus how gradually (or not) situations using that sensor should transition
to and from other situations. Figure 6.18 shown a sample situation transitions
from ’busy at desk’ to a ’coffee break’, for differing values of activity sensor
time decay. In the case of the activity sensor, four minutes was used as a rea-
sonable estimate of how long non-use of the computer takes to reach ’inactive’
status. If the time decay is shortened, the ’busy at desk’ situation belief will
decrease more quickly and thus the situation will more rapidly transition to
the next situation (informal break). Longer time decays will lengthen the sit-
uation transition. The annotations by the user are captured as a step change,
from ’busy at desk’ to ’busy reading’ in a single moment, with no concept of
partially in one situation and partially in another.

The selection of the time decay value, the nature (linear versus trapezoidal)
and whether to use such a value will ultimately be driven by the requirements
of the application that is relying on situation recognition.
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Figure 6.18: Situation transitions for two situations against variable activity
time decay of 0,2,4,6,8 minutes for 10 timeslices from time 11:20 to 11:29. Belief
level taper more gradually for longer time decays.

Activity sensor
Time decay (minutes)

0 2 4 6 8 10

Average f-measure 0.654 0.731 0.744 0.740 0.732 0.724

Ubisense sensor
precision x/y (m)

0 1/1 2/2 3.33/2.2 3/3 4/4 5/5

Average f-measure 0.717 0.725 0.743 0.744 0.747 0.659 0.732

Calendar sensor time delay
at start/end of meetings (mins)

0 5 10 15 20

Average f-measure 0.740 0.751 0.744 0.735 0.732

Table 6.13: Average f-measure against variable dynamic quality parmeters val-
ues for activity, ubisense and calendar sensor. Actual quality parameters used
are highlighted in bold.
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Figure 6.19: Comparison of f-measure of evidence decision network with and
without quality against NBayes and J48 classifiers on the CASL data set

6.4.5 Experiment 4: Comparison with other inference tech-
niques

We used both Naïve Bayes and J48 Decision Tree learning techniques on the
data set in order to sense check the classification results of our evidence theory
results. Naïve Bayes and J48 were applied using 10 fold cross validation. The
results, comparing average precision, recall and f-measure for the evidence
decision network with quality, Naïve Bayes and J48 are shown in figure 6.19.
Average f-measure accuracy of situation recognition using the evidence deci-
sion network with quality is below but close to Naïve Bayes (4%) and J48 (2%).
This is intuitively correct. When using quality, the extent of uncertainty in the
system is being explicitly quantified. When using learning techniques, proba-
bilistic distributions of the crisp values are doing the same thing, but with the
benefit of actual values in the test set. Our quality parameters are obtained
from a different exercise from the test data, so their ’success’ is the extent to
which they match the actual behaviour of sensors within the test data.

6.4.6 Discussion of quality results

The results when using quality with the evidence decision network were bet-
ter than when quality was excluded, significant to the 99.99% level. The im-
provement in situation recognition accuracy is expected because the quality
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parameters inform the system to what extent the sources can be believed. In
this data set, we know through observation and training that the sensors are
not fully trustworthy. In effect, we have applied a weighting scheme on the
sensors and propagated this up to situation belief levels. The benefit of the
approach is that known quality issues can be encoded into the system. The
disadvantage is that if the quality parameters are “wrong” (i.e. they do not re-
flect real quality performance), then this will impact the inference results. This
is reflected in the sensitivity analysis where situation accuracy starts to decline
as the sensor quality values move further away from their assigned values.

The ’correctness’ of quality parameters is an issue where sensors are prone
to drift or degradation of quality over time, in an unpredictable or unknown
way. This issue is akin to temporal information drift (such as human behaviour
patterns changing) and both are part of the wider problem of environmental
changes. i.e. how can knowledge in a specification or, indeed, a learning model
be changed as the environment changes? Clearly, some type of feedback loop
is required, where updates to knowledge in the model can be provided. This
is discussed further in section 6.6.

The time-based quality parameters for the calendar and activity sensors im-
pact at situation transition time, because they change the nature of the belief
assignment at the beginning (calendar) and end (calendar and activity) of con-
text values from these sensors. Since this controls the speed of situation tran-
sition switchover as shown in figure 6.18, it will be of interest to applications
when the speed of changes in situations are important, such as critical health
state monitoring, as discussed by Haghighi et al. [21].

6.5 Situation Recognition using alternate fusion

rules

In Chapter 3, we discussed the theoretical benefits of using Murphy’s alter-
native fusion rule over the standard Dempster’s rule of combination. In this
section, we will examine the impact on situation recognition accuracy of us-
ing four different fusion rules. In addition to Murphy’s combination rule, we
will use the standard Dempster rule of combination and the averaging rule
described in Chapter 3. To recap, Dempster’s rule allows single disagreeing
sensors to overrule a majority if it disagrees. Therefore, for situations with ev-
idence spread over time, fusion will be distorted if a single sensor is ’off’ for
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Fusion Rule: OR Averaging Dempster Murphy’s

evidence decision network
without temporal

0.57 0.54 0.48 0.55

evidence decision network
with temporal

0.66 0.65 0.60 0.68

Table 6.14: Comparison of recognition accuracies (f-measure) for four fusion
rules on van Kastersen’s data set. Best results are highlighted in red.

Averaging Dempster’s Murphy’s

evidence decision network without quality 0.5 0.62 0.60
evidence decision network with quality 0.65 0.75 0.74

Table 6.15: Comparison of recognition accuracies for three fusion rules on the
CASL data set. Best results are highlighted in red.

that timeslice. We will also compare a fourth fusion approach, using an ’OR’
combination rule. This may be useful for task-driven situations where the ev-
idence is spread over time because in theory, only a single piece of evidence
needs to be triggered in order to detect the situation. In the ’OR’ fusion sce-
nario, at each timeslice, the situation belief will be calculated as the maximum
or summed belief of the context events associated with the situation, based on
our ’OR’ fusion equations 3.9 and 3.10.

Table 6.14 shows a comparison of each of the four rules for van Kasteren’s data
set. Murphy’s combination achieves the best results for both basic evidence
decision network without time extension and with time extended evidence.
We anticipated this because Dempster’s rule will allow a single sensor to over-
rule other sensors. Therefore, unless all sensors are fired at the same time in
a time slice, the evidence from any firing sensors will be lost. The averaging
rule produces results that are almost as good as Murphy’s rule. The averag-
ing rule uses less computation but it does not provide any measure of conflict.
At present, we do not use the conflict metric in our inference process so av-
eraging may provide a faster alternative to evidence fusion. Interestingly, the
’OR’ fusion rule performs best when used without time extension of evidence.
Only the ’OR’ rule disregards co-occurrence of evidence, because it only relies
on single pieces of evidence. The ’OR’ approach also has issues distinguish-
ing situations if they share sensors. For example, if a cup is used, and this
is equally evidential of breakfast and drink (with no absolute time to distin-
guish), the system cannot distinguish which situation is occurring. When ev-
idence is time-extended, all approaches, including the ’OR’ fusion approach,
benefit from longer durations of evidence.
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We ran a similar analysis for the CASL data set, contrasting results for fu-
sion using averaging, Dempster’s rule and Murphy’s rule. We excluded the
’OR’ combination rule because all evidence is co-occurring in the CASL situ-
ations so there is no theoretical benefit in using ’OR’ fusion. Situation recog-
nition was conducted both with and without quality on the sensors in case
this affected the results in some way. Looking at table 6.15, in the CASL data
set, Demptser’s rule of combination performs slightly better than Murphy’s
rule, in both without quality (3%) and with quality (1%) modes. Unlike van
Kastersen’s data set, all evidence is continuous so the problem of single sensors
being ’off’ and overruling other firing sensors is not an issue. The averaging
rule performs relatively poorly. In the CASL data set, evidence is frequently
applied to combinations of situations (as opposed to the van Kasteren data
set where evidence was applied to single situations). For example, if the com-
puter activity sensor is ’inactive’, this is indicative of any of the situations ’busy
at desk’, ’coffee break’, ’lunch break’, ’informal break’ or ’at meeting’. When
averaging is used, the evidence is simply divided up amongst the elements
prior to averaging. In Dempster’s rule and Murphy’s rule, agreeing evidence
is merged so combined evidence converges more distinctly towards situations
that have further evidence. As a result, the averaging rule results are more
successful in van Kastersen’s data set than in the CASL data set.

6.6 Discussion

We evaluated situation recognition accuracy using two data sets. We tested our
two hypotheses: (1) that the use of temporal knowledge in the evidence deci-
sion network improves recognition accuracy over its non-use in the evidence
decision network (using van Kasteren data set) and (2) that the integration of
sensor quality with the evidence decision network improves recognition ac-
curacy where sensor quality is an issue (using the CASL data set). Our results
were significant indicating that both temporal and quality enhancements to the
evidence decision network increased recognition accuracy. We also compared
the evidence decision network approaches with two classic machine learn-
ing techniques, Naïve Bayes and J48 decision tree to check that their relative
performance - with the extended evidence decision network closely matching
(quality) or exceeding (temporal) the learning techniques accuracies. For the
van Kasteren data set, we compared with existing published results, noting
that the evidence decision network out performed the HMM approach of van
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Kasteren but did not perform as well as Ye’s situation lattice approach. Based
on our evaluation and experience of applying the evidence decision network,
we discuss the benefits and limitations of our approach for situation recogni-
tion.

6.6.1 Benefits of the evidence decision network approach

The evidence decision network approach enables the encoding of temporal
knowledge, quality knowledge and situation hierarchy knowledge into the
inference process, as demonstrated using the van Kasteren and CASL data
sets. The most obvious benefit of the evidence decision network approach is
that it is not reliant on training data for the environment, but still can yield
good situation recognition results. The extended evidence decision network
performed well in comparison to the two machine learning techniques. We do
not claim that the evidence decision network approach is better than learning
techniques when training data is available - the learning technique were not
pruned or optimised in any way. However, our results show that our evidence-
based approach can produce good results for scenarios where training data is
difficult or costly to obtain.

In the evidence decision network approach, the knowledge used to recognise
situations is traceable and visible. For example, sensor quality parameters, in-
ference rules and situation durations are known and captured in the situation
DAG. Therefore, any change in the environment, such as a new situation or re-
moval of a sensor can be applied in a controlled, deliberate way because there
is a transparent model of the environment.

Related to the previous point, intelligibility of system decisions in context-
aware systems is important [8, 66, 31]. Lack of system intelligibility
can lead to loss of user trust, satisfaction and acceptance of these sys-
tems [54]. One mechanism to alleviate lack of intelligibility in intel-
ligent context-aware systems is through automatically generated expla-
nations that are human understandable versions of the reasoning pro-
cess [66]. An example of an explanation, as tested on users in Lim’s
work [66], is “Activity predicted as not exercising because

body temperature ≤ 5 and pace ≤ 3.0. We suggest that the evi-
dence decision network approach will support intelligibility by enabling the
creation of explanations for application users. In the evidence decision net-
work approach, situation recognition is transparent because the treatment of
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knowledge is decided in advance and captured in the situation DAG. At any
point in time, situation beliefs can be traced back to the context values that
were used to determine them. Therefore, a system using evidence decision
networks should be able to provide an explanation of its decision process. In
learning processes, the decision process is less transparent, more akin to ’black
box’ reasoning so the system’s decision process is hidden from the user. This
point on explanations is discussed further under future work in Chapter 7.

The evidence decision network approach supports situation hierarchies and
situation combinations, because the hierarchy of situations is known in the sit-
uation DAG and directly used in the evidence decision network. Thus our
approach supports hand crafting solutions to invalid or uncertain scenarios,
safeguarding against system instability. For example, where certain combi-
nations of situations “cannot” occur together (such as ’running’ and ’asleep’),
these can be encoded as invalid combinations into the decision algorithm - as
described in section 6.1 - and thus prevented from being returned together by
the recognition process. This will help to prevent unstable scenarios occurring
at the application level. Similarly, situation recognition is not limited to ’single
layer’ recognition of situations as is typically the case with learning techniques.
For example, in the case of the CASL dataset, the system may determine that
the user is at their desk, but it cannot discern whether they are reading or using
their desktop. A summary situation can be specified of ’at desk’, and the belief
of the lower level situations assigned to this. The evidence approach supports
the detection of summary situations, thus allowing richer interpretations of
the environment’s situations.

A final benefit of the evidence-based approach is the range of knowledge that
can be used to enhance recognition accuracy. We have described two partic-
ular extensions for temporal and quality knowledge to add to the available
’tools’ of the systems developers. Only knowledge relevant to the environ-
ment will be used in the evidence decision network. For example, if absolute
times and/or transitory evidence is relevant in the environment, these should
be included. If not available, they should be ignored. In future work we ex-
pect to incorporate new types of knowledge which will widen the choice for
systems developers to enhance the situation recognition approach with new
’clues’.
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6.6.2 Limitations

Whilst the evidence decision network is a good approach for exploiting do-
main knowledge, this knowledge must be available. In environments where
the relationship between sensors and situations is detectable and known in
advance and training data availability is a problem, an evidence decision net-
work approach is a potential scheme. However, if there is a complex relation-
ship from sensors to situations that is only discernible via training data, the
evidence decision network is not suitable. It is worth emphasising, however,
the difference between localised training and universal training data for the
environment. It may be possible to obtain localised training data to establish
the relationship between sensor and situations, even if universal training data
for the environment is not available. For example, a complex situation can
be acted out, and sensor activations observed, without requiring full training
data capture.

The evidence decision network approach assumes human crafting of knowl-
edge for the situation DAG. For environments with hundreds of sensors and
situations, this task becomes more difficult. It is not easy to quantify the limit
on when manual inspection becomes impractical - perhaps it is the limit at
which a user can expect transparency of system reasoning - but it is a defi-
nite consideration when selecting whether to use specification versus learning
approaches.

Another possible limitation is the computational complexity of the fusion rules.
For both Murphy’s and Dempster Rule of Combination, evidence can be ap-
plied for any combination of hypotheses in a frame, so the number of permu-
tations for n hypotheses in a frame can be as high as the power set, 2n. But in
reality, all combinations of hypotheses may never be used and there is no need
to always build all the possible values of belief. There are many cases where
the knowledge is very simple and where there are very few non-null masses
- making the belief function computation lighter than its competitors [97]. In
addition, we noted that the simple averaging rule achieved comparable re-
sults with Murphy’s decision rule on van Kastersen’s data set. The averaging
rule works well if applied to evidence that support single hypotheses only in
a frame. Another way to reduce computational effort is to limit calculations to
active parts of the environment. For example, using an example from Hong et
al.’s [50] smart home work, a motion sensor may detect motion in the kitchen.
At that point in time, situation beliefs will only be calculated for kitchen-based
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situations. Zhang et al. [125] provide another solution for computational com-
plexity by excluding low contribution beliefs from the evidential process in
order to reduce computational load.

A final limitation that we see with the evidence decision network approach is
the expert knowledge about evidence theory required by system designers to spec-
ify evidential operations. This expert knowledge may be difficult to acquire or
share in a system design environment. One solution is to package the evidence
decision network so that the designer/developer is shielded from the intrica-
cies of selecting evidential operations. The situation DAG could be defined (in
a software tool) for a specific environment, and the recommended evidential
operations for the evidence decision network automatically gleaned from the
DAG. For example, if the DAG contains a situation with a duration (indicating
transitory evidence) and the underlying frames indicate binary sensors, then
Murphys fusion rule is automatically selected. This is largely a software engi-
neering challenge but is an important consideration for the practical usage of
an evidence decision network in real world systems.

6.6.3 Summary

To summarise, if universal training data for an environment is not available,
our evidence-based approach offers a good domain knowledge alternative to
the traditional machine learning techniques. It caters for sensor and rule un-
certainty, enables the encoding of temporal and quality knowledge, and pro-
vides a transparent method for reasoning about situations. Machine learning
techniques, on the other hand, learn from training data with less flexibility for
tweaking with additional knowledge about the environment such as sensor
quality and temporal knowledge.
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CHAPTER

SEVEN

Conclusions and Future Work

7.1 Conclusion

In this thesis, we have motivated the need for a reasoning technique that can
reason with uncertainty, but that allows the inclusion of domain knowledge
as a way of reducing reliance on training data. We applied Dempster-Shafer
theory to develop an evidence decision network approach that captures and
processes knowledge as evidence in order to recognise situations.

Chapter 2 analysed the key features of situations, and the key learning and
specification-based techniques applied to situation recognition. We noted that
no single reasoning technique is suitable in all environments, with considera-
tions such as availability of training data, requirement for transparency of de-
cision making and level of uncertainty of sensor and environments to be con-
sidered in the selection of a technique. We identified the need for an approach
that caters for the inference uncertainty in the reasoning process, but which is
not reliant on training data to establish a learning model. Dempster-Shafer the-
ory addresses both of these issue. Existing approaches using Dempster-Shafer
have not provided an end to end solution for situation recognition, and do not
cater for temporal and quality knowledge.

Chapter 3 presented the theoretical foundation for our Dempster-Shafer based
approach. We researched the appropriate evidential operations from basic
Dempster-Shafer theory and extensions to the theory by other practicioners.
We also defined the additional evidence operations for processing evidence
where no operations existed in the literature. Situation DAGs, our diagram-
ming technique, are explained - they are used to capture knowledge that drives
the structure of the evidence decision network for an environment.

Chapter 4 described extensions to the evidence decision network approach
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to cater for two specific types of knowledge: temporal knowlege (of absolute
times and transitory evidence) and sensor quality knowledge. We developed
mathematical formalisms to integrate this knowledge as evidence. The resul-
tant evidential decision network supports the recognition of situations using
variable quality sensor data, uncertain inference rules and evidence with iden-
tifiable time patterns.

The feasibility of the evidence decision network approach was demonstrated
in Chapter 5 by applying it to two real-world datsets. The situation DAGs
were defined for each of the data sets, and used as key inputs for the evalu-
ation of our approach in Chapter 6. Using the smart home data set from van
Kasteren, we discovered that the inclusion of temporal knowledge in the evi-
dence decision network significantly improves situation recognition accuracy.
When comparing the evidential decision network to two well-known classi-
fiers, Naïve Bayes and J48 decision tree, we revealed that temporal knowledge
boosted the evidential decision network above the two classifiers. The network
has limited benefit from increased training data, in contrast to the two learning
classifiers. With the office-based CASL data set, situation recognition accuracy
signficantly improved with the incorporation of sensor quality. Dynamic qual-
ity parameters associated with time decay impact at situation transitions, with
a need for system developers to consider the requirements of the responding
application when using such parameters. When used against learning clas-
sifiers, the evidence network with quality produced situation recognition ac-
curies just below the classifiers. Sensor quality parameters attempt to mimic
the impact of sensor noise, so their performance against learning techniques
relies on the accuracy of the quality parameters.

The key benefit of the evidence decision network approach is its ability to in-
corporate domain knowledge, thus reducing or eliminating the requirement
for training data. However, the converse of this benefit is that domain knowl-
edge is required. Richer knowledge about the environment (such as tempo-
ral, quality and situation hierarchicies) will boost the evidence decision net-
work’s ability to decipher the correct situation(s). Less knowledge provides
a weaker basis for recognition. Learning techniques are suited where train-
ing data is available. Unlike the evidence decision network, systems devel-
opers and users are shielded from the complexities of sensor/situations rela-
tionships: but this leads to a lack of scrutability. With the evidence approach,
decisions are transparent: with full decision making paths shown on the situ-
ation DAG.
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7.1.1 Contributions

We summarise the contributions of this thesis as follows:

1. We have presented and evaluated a situation recognition approach based
on Dempster-Shafer theory. This approach enables situation recognition
using sensor data in uncertain environments based on domain knowl-
edge.

2. We have selected a set of evidence operations to enable the Dempster-
Shafer approach to be applied in various environments via an evidence
decision network. This involved the selection of existing evidence opera-
tions from the literature and the creation of new evidential operations that
propagate and process sensor evidence. The new operations support be-
lief distribution and decision making in the network and are summarised
in table 3.3. We also define algorithms to process the belief distribution,
time extensions and decision steps, as described in Section 6.1.

3. We have created two extensions to Dempster-Shafer theory to support
the incorporation of two types of environmental knowledge: (1) tempo-
ral knowledge of transitory evidence and absolute times (2) sensor qual-
ity knowledge, with both static and dynamic quality parameters. The ex-
tensions include the development of mathematical formalisms required
to apply temporal and quality knowledge into evidence processing.

4. We have developed a diagramming technique which we term situation
Directed Acyclic Graphs to capture knowledge. This is a key element for
creating an evidence decision network approach because the evidence
operations are determined from the knowledge denoted in the situation
DAG.

5. We use two real-world sensor data sets to test the feasibility of our ap-
proach. We create a situation DAG for each of the data sets using a pre-
defined set of steps.

6. We evaluate the situation recognition accuracy of the evidence decision
networks for the two data sets. We discovered a significant improvement
when temporal and quality knowledge was applied. We compare the
evidence approach to two learning classifiers.

7. We evaluate the advantages of a choice of fusion rules: Murphys’, Demp-
ster’s rule of combination, averaging rule and ’OR’ rule. We identify the
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scenarios in which each should be used, using accuracy results from the
two data sets.

7.1.2 Limitations of our work

As discussed in Section 6.6.2, there are a number of limitations with our ap-
proach in the thesis. Domain knowledge is required in order to establish the
structure of the evidence decision network, and the temporal/quality param-
eters to be used. This becomes more complex as the number of situations and
sensors increases. We do not propose an empirical limit - perhaps it is the
limit at which a user can expect to understand the reasoning process when
presented with the set of situations and sensors in the system - but this is a
consideration when using our approach.

Computational complexity is a factor in evidence processing due to the po-
tentially large number of hypotheses in each frame. However, as explained in
6.6.2, various approaches to reduce computational load can be taken includ-
ing the exclusion of small belief contribution, processing of evidence only in
the part of the environment where activity is detected, the use of the aver-
aging rule if appropriate, and the occurrence of null masses for many of the
hypotheses at any point in time.

In our evaluation, we applied our Dempster-Shafer approach to two smart
environment data sets - the van Kasteren smart home data set, and our own
in-house CASL data set. Both of these data sets are single occupancy, relatively
small (28 and 5 days duration respectively) with limited numbers of sensors.
Whilst the situation recognition results using our approach are promising, we
suggest that further application of our approach to larger data sets will be
needed to confirm the robustness and generalisability of our approach.

7.2 Future work

One of the challenges in pervasive computing is the requirement to re-create
a model of each new environment in which an application will reside. An ac-
tivity monitoring application may need to cater for different sensors, different
user behaviours and so forth when applied across different homes. With ma-
chine learning approaches, training data must be collected for any change in
environment. With the evidence approach, the transparency of knowledge in
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the DAG suggests that it may be possible to transfer knowledge from one en-
vironment to another. Adjustments to the situation DAGs for known changes
in sensors, or activity definitions can be applied and the knowledge re-used.
Van Kasteren et al. [108, 104] are currently looking at this problem of ’trans-
fer learning’ to examine how to use annotated training data to label training
data from another similar environment. They use two smart home data sets
to demonstrate mapping techniques for transfer learning. They plan to release
their data sets, which we may use to determine how transfer learning may be
applied in our evidence decision network approach.

As described in Chapter 6, the transparency of knowledge in the evidence ap-
proach should in theory support the use of explanations in reasoning. Re-
searchers such as Lim et al. [66] are actively testing the usefulness of explana-
tions on applications users. We need to examine how and what to generate for
explanations using our evidence approach.

One of the difficulties in the pervasive domain is the lack of real-world pub-
lished data sets, a fact that we have recently raised in our research [122]. When
real world environments are used, complexities appear, such as task interrup-
tion, multi-tasking, multiple users, unexpected user behaviour, as described
by Logan et al. [68] where they look at activity monitoring in a smart home.
As part of this problem, we will need to examine whether new measures for
evaluating reasoning techniques should be used. At present, the research com-
munity focusses on classification accuracies using traditional machine learning
measures - i.e. obtaining the ’right’ answer for as many instances (timeslices),
akin to classifying static knowledge such as documents. But in pervasive envi-
ronments, situations are dynamic, of varied duration, sequential, interleaved;
and application behaviours and transitions need to be smooth and controlled.
For example, rather than checking the proportion of a situation correctly recog-
nised, it may be more useful to check whether an activity was detected at all
over a period of time (e.g in a monitored smart home, did the user prepare
breakfast today at all?). Boundaries between situations may be important for
health applications [102], such as whether a person’s heart rate has moved
from normal to high within a certain period of time. For our next phase of
research, we will examine what real-world complexities we can address with
our evidence approach, and what new measures we should consider for eval-
uations in the future.

In Chapter 6, we described how our evidence approach could be packaged to
shield systems developers from the complexities of selecting individual fusion

145



rules, frames of discernment and other evidential operations. Whilst this is a
software engineering challenge rather than a research challenge, we would see
it as an important part of enabling the evidence decision network approach to
be used in the future in real world systems development.
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APPENDIX

A

Appendix

Section 1 McNemar’s table for temporal knowledge test using van Kasteren
data set

The classifications are based on using one third training, two thirds testing
with cross validation. Each time slice is used for training once, but is tested
twice. The total entries in McNemar’s table is the total number of tested
timeslices. McNemar’s contingency table for Dempster-Shafer Inference vs
Dempster-Shafer Inference plus temporal is:

42509 183

489 4177

Using McNemar’s equation 6.4, χ2 is calculated as 138.43
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Section 2 McNemar’s table for quality test on the CASL data set

To test statistical significance of using quality, we construct McNemar’s con-
tingency table for the two recognition modes (1) Dempster-Shafer inference
without quality (2) Dempster-Shafer inference with quality, as shown in table
X. Using equation X, we calculate that difference in results using no quality
versus with quality and Dempster-Shafer inference with this data set is statis-
tically significant to the 99.99% level. McNemar’s contingency table for evi-
dence decision network with and without quality is:

666 129

8 649

Using McNemar’s equation 6.4, χ2 is calculated as 623.44
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Section 3 Sample data from the van Kasteren data set

The following is sample activities instances from the van Kasteren dataset.

The following is sample sensor instances from the van Kasteren dataset.
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