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Evaluation of Implicit Numerical Methods for Building Energy 
Simulation 
 
 
M. E. Crowley, Department of Engineering Technology, Dublin Institute of Technology, 
Bolton Street, Dublin 1, Ireland 
 
and 
 
Prof. M. S. J. Hashmi, Head of School of Mechanical and Manufacturing Engineering, 
Dublin City University, Dublin 9, Ireland 
 
 
Abstract: The stability of numerical methods used for finite-difference thermal modelling of 
buildings is discussed. A known instability in a commonly used process is described and 
alternative numerical methods with suitable stability properties are identified. With a view to 
selecting the optimum numerical method, the building energy simulation problem is 
characterized mathematically and appropriate implicit solvers are compared on the basis of 
accuracy and computational effort using a building related test problem prepared for this 
purpose. A recently developed numerical method with the necessary strong stability is found 
to possess higher computational efficiency than methods frequently used in this application 
and it is recommended for inclusion in building energy simulation software. 
 
Keywords: dynamic thermal modelling, building energy simulation, numerical methods, 
finite-difference, stiff systems 
 
 

NOTATION 
 
A  Newton iteration matrix 
b  real constant (dimensionless) 
Bi  Biot number, h L kc s1 2  (dimensionless) 

Bifd  finite-difference form of the Biot number, h h kc s  (dimensionless) 
c  specific heat of material represented by a node (J /kg K) 
Clte local truncation error constant (dimensionless) 

 f  vector of derivative functions 

Fo Fourier number,  t L1 2
2  (dimensionless) 

Fofd  mesh ratio or finite-difference form of the Fourier number, k h2  
 (dimensionless) 
 g  temperature distribution function 

h  space increment (m) 
hc  convection coefficient (W /m2 K) 
i  space step level or node number 
I  identity matrix 
j  time step level 

J Jacobian matrix of  Tf ,t  

k  time increment (s) 
ks conductivity of slab (W /m K) 
L  slab thickness (m) 
L1 2  slab half-thickness (m) 
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m mass of material represented by a node (kg) 
MI  number of matrix inversions carried out during a test run 
n  total number of nodes 
 O  order of magnitude 

q  nodal heat gain (W) 

 r  rational function 

t  time (s) 
t   dimensionless time 
T  nodal temperature (K) 
Ta  air temperature (K) 
Tin  initial slab temperature (K) 

T  dimensionless temperature 
T  vector of dependent variables 
w complex number, k  
x  space co-ordinate (m) 
x  dimensionless space co-ordinate 
,,z z z  successive time derivatives of the variable z  
 
Greek symbols 
  thermal diffusivity (m2 /s) 
  weighting factor (dimensionless) 
  mean temperature difference between reference solution and test solution (K) 
  mean absolute temperature difference between reference solution and test 

 solution (K) 
  maximum absolute temperature difference between reference solution and test 

 solution (K) 
  round-off error in dependent variable 
  fraction of time step (dimensionless) 
  complex number 
 i  eigenvalues of J 
  characteristic time scale of a thermal disturbance (s) 
min  characteristic time scale of the most dynamic thermal disturbance (s) 
 
 

1  INTRODUCTION 
 
A dynamic thermal model of a building must include a means of modelling transient 
conduction in multi-layered building elements such as walls. The layers are most often treated 
as plane slabs of a homogeneous material and one dimensional heat flow is assumed. In this 
case the diffusion equation, 
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together with suitable initial and boundary conditions, models the heat conduction process 
well. The equation and its solution are greatly simplified when presented in non-dimensional 
form (1). This is done by arranging the relevant variables into suitable groups. 
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Equation (2) gives a dimensionless form of the dependent variable which must therefore lie in 
the range 0 1 T . A dimensionless spatial co-ordinate is defined by dividing x  by L1 2 , 

the half-thickness of the slab, and it satisfies   1 1x . A dimensionless time is defined by 
equation (4) and it is equivalent to the Fourier number. With these changes of variable 
equation (1) simplifies to 
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and the initial and boundary conditions become 
 

   10,  xT         (6) 

 

  














tTBi
x

T

x

T

xx

,1
11







     (7) 

 
if the slab temperature is Tin  initially and identical convective boundary conditions exist at 
x L  1 2  and x L 1 2 . It follows that the transient temperature distribution in the slab must 

be of the form 
 

  BitxgT ,,         (8) 

 
where Bi h L k c s1 2  is the Biot number. For a given geometry, then, transient conduction is 

characterized by the Fourier and Biot numbers. 
For most cases of interest the function g  in equation (8) cannot be found exactly and 

recourse must be made to approximate methods involving spatial, and possibly temporal, 
discretization. Fundamental studies using electrical analogies have been carried out with a 
view to optimizing the distribution of a given number of nodes within a wall or roof, and 
these are summarized in (2). A number of workers considered the application of step and 
sinusoidal thermal excitations to the surface of a solid building element and equivalent 
discretized or lumped networks. It was found that the most crucial parameter governing 
system response was the Fourier-like dimensionless ratio  L2 . In the case of a step change 
  was the time since the step was taken and for a sinusoidal excitation   was the inverse of 
its angular frequency. The smaller the value of this ratio the more difficult it was to achieve 
accurate modelling. 

The quantity L2   is a characteristic time for conduction of heat through the thickness of 
the slab and the results above can be understood in the following way. When a thermal 
disturbance with a characteristic time scale,  , is applied to the surface of a slab with a much 
larger conduction time scale its effects are, in the short term at least, confined to a small 
region near the surface. In the model, on the other hand, the disturbance is applied 
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simultaneously to all parts of a high capacity lump and so its short term effects are diluted and 
unrealistic. 

Waters and Wright (2) examined a family of finite-difference schemes 
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which are used in many building thermal models to approximate equation (1). Setting the 
dimensionless parameter   0, 1 2 and 1 gives the explicit, the Crank–Nicolson and the 

implicit schemes respectively. The mesh ratio, Fo k hfd  
2 , is a finite-difference form of 

the Fourier number. It was concluded that, for a given number of nodes, truncation error is 
minimized if nodes are distributed in a multi-layer wall in such a way that 
 
(a) a node appears on each internal boundary between materials and 
(b) the mesh ratio is everywhere the same. 
 
Since the time step, k , is usually the same throughout, this amounts to selecting the nodal 
separation, h , within each layer so that the conduction time scale, h2  , is the same for every 
layer. 

In the light of the above, the following strategy for the distribution of nodes in a multi-
layer wall or roof would seem logical: 
 
1. Select k  to satisfy the relation 
 
 k b min        (10) 
 

where min  is the characteristic time scale of the most dynamic thermal excitation of 
interest. A small value is chosen for the constant, b , when it is required to follow the 
system response in detail. 

 
2. Place a node on each internal boundary as depicted in (2), and additional nodes within the 

layers so that the characteristic conduction time of the slice associated with each node is, 
as nearly as possible, the same. This time constant should be a small fraction of min  for 
accuracy. The nodal separation or slice thickness, h , should therefore satisfy 
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or 

 

  kh          (12) 

 
Use of the same constant, b , leads to a corresponding subdivision of space and time. This 
condition can be written more simply as 

 
 Fofd  1        (13) 
 

This strategy merely distributes error evenly over the whole construction. To control the 
magnitude of the error and to avoid prolonged simulation runs, it is required to change h and k 
dynamically as the simulation proceeds. Changing the former essentially involves changing 
the number of equations in the model and is not ordinarily done. An algorithm for changing k  
is used in the assessment below. 
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2  STABILITY OF NUMERICAL METHODS 
 
Much of the earlier work, then, was concerned with local truncation error which results from 
replacing derivatives by finite-difference approximations. Another error type, round-off error, 
is inevitably introduced in computer calculations because numerical values are processed 
using a fixed number of significant digits. Rounding errors can normally be controlled by 
selective use of double-precision arithmetic unless the numerical method being used is 
unstable, in which case the error grows exponentially. 
 
2.1  Commonly used methods 
Crandall (3) has examined the stability and truncation error of the family of schemes 
represented by equation (9). This work shows that large Fofd  values lead to instability or 

oscillatory solutions unless   1 2. The temporal truncation error, which is  2kO  for 

  1 2, degrades to  kO  for any other value of  . The spatial truncation error is  2hO  for 

all  . Hensen and Nakhi (4) have applied these results with a view to improving conduction 
modelling within building energy simulation packages, many of which use the Crank–
Nicolson scheme  21  for accuracy. Its performance under various circumstances is 

demonstrated in (4) using a test example for which an exact solution is known (5). 
Homogeneous slabs with thermophysical properties and dimensions as shown in the first three 
rows of Table 1 are each represented by three nodes. One node is located centrally and 
represents half of the slab's thermal capacitance. Two surface nodes represent a quarter of the 
thermal capacitance each. The slab is initially at a temperature of 0C, as are its surroundings. 
Ambient air temperature is suddenly raised to 20C on both sides. There is no radiant heat 
exchange, and the convective heat transfer coefficient is assumed to be 3 W /m2 K. 
 
[TABLE 1 HERE] 
 
[FIGURE 1 HERE] 
 
[FIGURE 2 HERE] 
 
The Crank–Nicolson predictions (4) for aluminium in Figure 1 show large temperature 
oscillations because of the magnitude of Fofd . Similar unrealistic temperature behaviour is 
predicted by the Crank–Nicolson scheme, in Figure 2, for a slab of insulation. In this instance 
a large value for Bi h h kfd c s , the finite-difference form of the Biot number, was mainly 
responsible for the instability (6). The predictions for concrete (Fofd  0 35. , Bi fd  0 16. ) 
were quite stable with a one hour time step. Equation (9) with a higher degree of implicitness, 
up to   1, is proposed (4) for use with these problematic, but commonly occurring, layers of 
material. The temporal accuracy of the method is, however, just first-order when   1 2. 
One of the principal objectives of the present work is to identify numerical methods which are 
at least as accurate as the Crank–Nicolson scheme, and are stable and free of persistent 
oscillations in all circumstances. 

So far the discussion has centred on partial differential equations (PDE) and the accuracy 
and stability of finite-difference approximations to them. A PDE such as equation (1) can be 
decomposed into a set of ordinary differential equations (ODE) by the method of lines (7), in 
which space is discretized but not time. Equivalently, an ODE can be derived for each 
capacitive lump or slice using the heat balance method. A typical equation would be  
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      (14) 

 
A building thermal model must also include ODEs representing other nodes such as room air 
masses and plant components. Each of these would have the form 
 

  T,tq
dt

dT
mc i         (15) 

 
where the right hand side represents the sum of the thermal driving forces acting on that node. 
The q are in general non-linear functions of T . A complete building energy model can, 
therefore, be represented by the vector equation 
 

  TfT ,t         (16) 

 
If t  is included among the dependent variables equation (16) can be written even more 
succinctly as 
 

  TfT          (17) 

 
a first-order, autonomous system of non-linear ODEs of dimension n 1 representing n  
nodes  ni ,,2,1   and time  0i . 

Numerical methods for ODEs exist which correspond to the finite difference methods 
previously applied to equation (1). For instance, the Theta method applied to equation (17) 
gives the difference equation 
 

       jjjj k TfTfTT    111     (18) 

 
which is equivalent to equation (9). Setting   0, 1 2 and 1 as before gives Euler's Rule 
(ER), the Trapezoidal Rule (TR) and the Backward Euler method (BEM) respectively; the 
ODE equivalents of the explicit, the Crank–Nicolson and the implicit schemes. Table 2 lists 
these and other abbreviations used for numerical methods. 
 
[TABLE 2 HERE] 
 

To examine the stability of a rational numerical method for ODEs, the method is applied to 
the scalar test equation 
 
 T T          (19) 
 
to get 
 

   jj TwrT 1         (20) 

 
where r  is a rational function of w k  . If an error,  j , exists at the j th  time level it will be 
processed through equation (20) to give 
 

    jjjj TwrT    11       (21) 

 
Subtracting equation (20) from equation (21) gives the error propagation equation 
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   jj wr  1         (22) 

 
in which  wr  is described as the amplification factor. Clearly the condition for error 

reduction, and therefore stability, is 
 

   1wr         (23) 

 
If a rational numerical method is stable when applied to equation (19), it is usually (7) stable 
also for the general non-linear differential system represented by equation (17). 

When the Theta method is used to solve the test equation, T T  , it gives 
 

 
  jj T
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Figures 3 and 4 show the amplification factors for the three special cases when   0, 1 2 and 
1. ER is stable in the limited interval (-2, 0). TR and BEM are stable for all (negative) values 
of  wRe  and, as such, are described as A-stable methods. Equation (17), when representing 

a building energy model , is a stiff system. Quoting from (8), ‘The problems called stiff are 
diverse and it is rather cumbersome to give a mathematically rigorous definition of stiffness.’ 
‘The essence of stiffness is that the solution to be computed is slowly varying but that 
perturbations exist which are rapidly damped.’ The extent of stiffness is given by: 
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 ii

ii

Min
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Re
ratio stiffness       (25) 

 
where  i    ni ,,2,1   are the eigenvalues of J, the Jacobian matrix of  Tf ,t . A-stable 

methods are considered appropriate for stiff systems because large negative values of  Re , 

implied by the definition of stiffness, require small time steps, k, if ER and other methods 
with restricted stability intervals are to attenuate rather than magnify introduced errors. When 

 wRe  is large, in a negative sense, the amplification factor for TR approaches minus one and 

slowly damped oscillations result. These are apparent in Figures 1 and 2. A stronger stability 
property, namely L-stability, will preclude these long-lived oscillations. A numerical method 
is L-stable if it is A-stable and, in addition,  wr  approaches zero as  wRe  approaches 

minus infinity. The first-order BEM alone, of all those emerging from the Theta method, 
possesses L-stability. All other methods put forward here are both second-order accurate and 
L-stable. 
 
[FIGURE 3 HERE] 
 
[FIGURE 4 HERE] 
 

It is worth noting that the stiffness ratio of a system of equations, such as equation (14), 
representing a plane slab increases as the number of nodes is increased. As a consequence 
attempts to reduce spatial truncation error by reducing h  can result in undesirable oscillations 
unless the numerical method being used is L-stable. 
 
2.2  More stable alternative methods 



8 

The Backward Differentiation Formulae (BDF) are among the most widely used numerical 
methods for stiff systems; one of the best known codes being due to Gear (9). The second-
order BDF (BDF2) applied to equation (17), the general non-linear system, gives 
 

  111 243   jjjj k TfTTT      (26) 

 
and its amplification factors can be shown to be 
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The larger of these is plotted in Figures 3 and 4. The BDF are not A-stable above second-
order. The first-order BDF is just BEM. 

A second-order linearly implicit method due to Scraton (SM) (10) is given by 
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It is reported (10) to compare favourably with Gear's method when only moderate accuracy is 
required. Its amplification factor is given (11) as 
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Bank et al. (12) developed a composite method, TR-BDF2, for the simulation of circuits 

and semiconductor devices which is based on TR and BDF2. It inherits the strong stability of 
BDF2 without the disadvantage of being multi-step. Each step of length k  consists of a 
fractional step of length  k  using TR 
 

         jjrj k TfTfTT
2

1
     (30) 

 
followed by a step of length k  using the known values of T  at time levels j  and j   in 
BDF2 
 

        121 112   jjjj k TfTTT      (31) 

 
The amplification factor for TR-BDF2 is 
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Choosing   2 2  reduces the Newton iteration matrices for TR and BDF2 to the same 
form, thereby decreasing the effort required to solve the non-linear difference equations 
presented at each step. This value of   also minimizes the local truncation error and is the one 
exclusively used below. The success of TR-BDF2 in device simulation has led to further 
development of the method with a view to including it in general-purpose codes (13). 

Figures 1 and 2 show the performance of these methods when applied to demanding test 

examples in which Fofd  or Bifd , or more generally  wRe , is large. Rapid attenuation of 

rounding error is evident for all three methods because, as is clear from Figures 3 and 4, 

 wr  is small even when  wRe  is large. A simple smoothing step (7) can be added to TR 

and its effect is seen in Figures 1 and 2. It consists of replacing T j  by   42 11   jjj TTT  

at the end of each TR step. The device removes slowly damped error but at the cost of some 
accuracy. 
 
 

3  CHARACTERIZATION OF PROBLEM 
 
The building energy problem is now characterized mathematically so that suitable implicit 
solvers can be selected for comparison. 
 
3.1  Required accuracy 
A relative error between 10 1  and 10 6  is frequently requested when testing numerical 
methods that include automatic interval adjustment (10). A tolerance of 0.1 K, or 10 3  relative 
to a typical range of solution values of 100 K, may be considered adequate for most building 
energy simulation work. Hence this is a low to intermediate accuracy problem and the 
solution is most economically obtained using low to intermediate order numerical methods 
(9). 
 
3.2  Spectrum 
The set of eigenvalues  i    ni ,,2,1   is called the spectrum of J  and it has a large 

bearing on the character of the problem. The building energy problem is generally over-
damped implying negative real eigenvalues. Complex eigenvalues, when they occur, can 
usually be traced to the plant control system and manifest themselves as oscillating 
temperatures or energy flows. A larger class of less stable numerical methods, namely 
A0 -stable methods, offer an unrestricted stability interval if none of the eigenvalues are 
complex. These methods are not examined here, however, because oscillating solutions, 
though usually undesirable, can occur in building energy simulation, for instance, when 
modelling a radiant slab system. 

The spectrum for the building ODE system contains a great range of values resulting from 
the application of the method of lines to plane slabs such as walls, and the widely varying heat 
capacities of the different component parts of the building. Systems may be considered 

marginally stiff if the stiffness ratio is  10O , while ratios of up to  610O  are not 

uncommon. A building thermal model is moderately stiff. Sample rooms examined in 

connection with this work have ratios of  210O  for a lightweight room and  310O  for a 

heavyweight room. It is clear from Section 2.1 that implicit methods with strong stability 
properties are more efficient for highly-stiff problems or where long time steps are required. 
However, explicit methods, used with small time increments, may be competitive when low 
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accuracy is adequate and the stiffness ratio is not too large. Only implicit methods have been 
examined here. 
 
3.3  Non-linearity 
A set of differential equations used elsewhere to test ODE solvers includes terms up to the 
twelfth power in the dependent variable. The building energy model may, therefore, be 
described as moderately non-linear due to the presence of long-wave radiation terms 
containing the fourth power of temperature. Other mildly non-linear terms appear due to 
convection and infiltration. Also, the thermal conductivity of some insulating materials has 
been shown to be marginally dependent on temperature. The problem is often linearized in 
order to simplify it. Here, the original form of the problem was retained and the search for 
efficiencies was considered more appropriate to the linear algebra stage of the solution which 
is discussed next. 
 
3.4  Dimension 
A single zone requires 50–250 nodes to represent it and a building may contain hundreds of 
zones. The dimension of this problem is obviously large though not as large as that 
encountered in the solution of partial differential equations, for example in the field of 
computational fluid dynamics. In the case of implicit methods, large dimension leads to an 
equally large set of non-linear difference equations which, with the exception of SM, require 
iterative solution at each time step. Simple fixed-point iteration, if applied to this set, will fail 
to converge unless the time increment is restricted to values comparable with explicit 
methods. The Newton–Raphson method, or some variant of it, is almost always used. The 
most computationally expensive steps in the process are the evaluation of J  and the solution 
of linear systems involving A , the Newton iteration matrix. Direct linear solvers allow saved 
triangular (LU) factors of A  to be reused within the iteration loop and often for a number 
consecutive of time steps. When factorizing A , advantage is taken of sparsity or any regular 
structure that might exist. For very large linear systems, iterative linear solvers may be an 
attractive choice, and often the only feasible choice if the LU data is too large to store. 
Sometimes the whole problem can be partitioned into stiff and non-stiff parts which are then 
processed at different rates. 

Dimension obviously affects the amount of computation required but not the choice of 
ODE solver because each of the numerical methods examined presents just one matrix for 
processing at each step. SM uses a direct solution method. The same modified Newton–
Raphson process was used with each of the other methods. 
 
 

4  EVALUATION OF NUMERICAL METHODS 
 
The three methods outlined in Section 2.2 are appropriate for a problem of this nature in that 
they are L-stable, of low order and capable of being applied directly to a non-linear system of 
any dimension. For comparison, TR and BEM are also included in the assessment. A number 
of other methods were considered and ruled out at an early stage. 
 
4.1  Test problem 
Analytical tests such as the three-node slab example described in (4) and above are decisive 
but very limited in scope. Empirical validation using measured data from a real structure, a 
necessary and appropriate application of the scientific method to whole model validation, is 
unsuitable here because it is difficult to separate the error due to the numerical method, which 
is sought, from errors in other parts of the model and in the input data. A mathematical test 
was used in which the methods were applied to an equation set with the characteristics of the 
building energy problem. The test equations were generated by considering the heat flows at a 
cubic space enclosed by five identical plane slabs and one vertical glass sheet. Each three 
metre square slab was represented by three nodes and exchanged heat by convection with the 
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enclosed air mass, as did the glass sheet which was represented by one node. Internal long-
wave radiation was exchanged between opposite faces only. External surfaces were exposed 
to a sinusoidally varying air temperature with a period of 24 hours, and no other thermal 
influence. Short-wave radiation, entering through the glass, acted on just one internal surface. 
This solar term was represented by the positive part of a sinusoid with a 15% ripple 
superimposed. A casual heat gain to the internal air mass was switched on in the morning and 
off again in the afternoon. A proportionally controlled convective air-conditioning terminal 
unit could be activated for the whole of the simulated period. 

This test example is small enough to compute quickly and yet detailed enough to capture 
the essential features of the application. It is a demanding problem which includes step 
changes and discontinuous derivatives in the thermal driving terms. It consists of 17 
differential equations which are, in general, non-linear, and stiffness ratios ranging from 

 10O  to  410O  were generated during the testing process. 

 
4.2  Computational procedures 
In order to solve stiff differential equations efficiently , some form of interval adjustment 
must be used. This entails varying the time increment until local truncation error (LTE) is 
within a specified tolerance which was set to 0.1 K per step for this work. A strategy given in 
(11) was used to decide when to change step length. An estimate of the LTE for a proposed 
time step, h j , is given by 
 

   jj Th 2

2

1
         (33) 

 
for BEM, and by 
 

   jj ThC 3

lte         (34) 

 
for the four second-order methods being assessed. The four error constants  lteC  are given in 

Table 3. It should be noted that the error estimate given in (10) was used here with SM. An 
LTE of the form (34) was inferred from it so that the error constants could be compared. All 
of the foregoing pertains to local temporal truncation error. Local spatial truncation error is 
not controlled here because the space increment is constant throughout each simulation run. 
However, all methods are affected equally. 
 
[TABLE 3 HERE] 
 

Adaptive step size versions of the five numerical methods were programmed, each 
including a routine to force a small time increment at step changes in the casual load. The 
Newton iteration matrix, A , was updated and inverted at least once every ten time steps, but 
not at all within the iteration loop. It was found that just one iteration per time step was 
generally adequate for the test problem, provided the initial approximation was generated 
using Newton's divided difference interpolation formula. Though interval adjustment is 
necessary, results are often presented at fixed intervals. In this work it was necessary to 
compare a number of test solutions with accurate solutions at identical fixed intervals. 
Consequently three feasible means of producing approximate solution values at regular 
intervals were utilized and compared. They were linear interpolation (LI), cubic spline 
interpolation (CSI) and computation of intermediate values (CIV) using the numerical method 
under test. 

The work was carried out on a personal computer using a general purpose mathematical 
software package (14). During a typical test run two independent solutions were generated 
using built-in differential equation solvers and a reference solution was formed by averaging 
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them. Both of these methods, the method of Rosenbrock and the fourth order Runge–Kutta 
method (14), (15), include adaptive step-size control and the tolerance variable was set to 
10 6  in each case. The agreement between these two solutions was excellent (Table 4). The 
reference solution was subtracted from each of the test solutions in turn at every node and 
every hour (on the hour) over a four day period following the pre-conditioning period. The 
statistics presented in Table 4 were extracted from the set of differences for one test run. The 
cross-correlation coefficient gives a measure of the phase relationship between the reference 
solution and each of the other solutions. 
 
[TABLE 4 HERE] 
 
[TABLE 5 HERE] 
 

Each of the five programs was equipped to produce a machine-independent estimate of 
computational effort by keeping a tally of the most expensive steps in the solution process. 
These, together with an order of magnitude estimate of the cost in each case, are matrix 

 DA or  inversion {  3nO  operations}, matrix by vector multiplication {  2nO  

operations}, matrix evaluation {  2nO  operations} and derivative function evaluation {  nO  

operations}. Table 5 lists these measures of computational effort for a single test run. LU 

factorization {  33nO  operations} is more efficient than matrix inversion but the latter was 

more convenient in the chosen environment. The conclusions are unaffected by this 
substitution. All of the above estimates would reduce to the first power in n  if A  was sparse. 
LI and CSI each require  nO  operations per test run and were not included in the cost 

estimate. 
Test runs were carried out using slabs of the first four materials listed in Table 1, which 

between them virtually span the range of thermal diffusivities encountered in building 
materials. A variety of slab thicknesses was used leading to characteristic conduction times 
ranging from one second to 26 days and correspondingly large ranges in mesh ratio and 
stiffness ratio. Discontinuities in the heat gains were expected to lead to the greatest thermal 
disturbance so tests were carried out with both the step changes and the discontinuous 
derivatives occurring a fixed amount of time before the assessment points. Time delays (prior 
to assessment) of between two and eight minutes were used, the shortest time constant for 
0.1 m concrete construction being five minutes in the absence of the terminal unit and less 
than one minute with the unit active. The casual heat gain period was also moved back and 
then forward by one hour so as to substantially change its time of application relative to other 
loads. These changes in timing were examined lest fixed relative times favour some numerical 
methods. In all cases tests were done with the free running cell, and then repeated with the 
terminal unit active and sized for 120% of the peak thermal load. A 2 K proportional band 
was used. 
 
4.3  Comparison of methods 
The performance of a numerical method should be judged not just by the accuracy achieved 
but also by the computational effort expended because one can usually be traded for the other. 
The measure of computational efficiency (CE) used here was 
 

 CE =
100
 MI

        (35) 

 

where   is the maximum absolute temperature difference between the reference solution and 

the test solution (Table 4) and MI  is the number of matrix inversions for the run (Table 5). 
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The results obtained for the test runs outlined in Section 4.2 are given in Table 6. CE is not a 
smooth function but the large number of runs undertaken should allow comparison of the 
performances of the numerical methods. To this end the CE for the most efficient method, 
TR-BDF2 + CIV, was divided by the CEs of each of the other methods in turn. The geometric 
mean values of these ratios, calculated for the full set of test runs in each case, are presented 
in Table 7. 
 
[TABLE 6 HERE] 
 
[TABLE 7 HERE] 
 

The performance of SM was disappointing considering its very small truncation error 
constant (Table 3). It was found that the method mistimed the introduction and removal of the 
casual heat gain. Restarting the integration at these points in time would be expected to 
remedy the difficulty. This facility was not included here. 

TR produced oscillations in air temperature, particularly at discontinuities in the casual 
heat gain. The eigenvalues of J  were real and negative for the whole of the test period. 
Consequently, oscillations originating in the control system were not expected. The amplitude 
of the oscillations was limited by the error control routine. They continued for about ten 
minutes after step changes in the load. Very low amplitude oscillations persisted for many 
hours in other regions of the solution. 

BDF2 is a multi-step method and, as a result, the adaptive step size program for it is 
complex. TR is nominally single-step but it requires two earlier solution vectors to compute a 
good initial approximation for the next Newton iteration and also to form an error estimate 
efficiently. BEM can be applied as a one-step method but it benefits if earlier solution values 
are extrapolated to provide an initial approximation for the Newton–Raphson process. TR-
BDF2 and SM are strictly single-step methods and so do not require the use of another 
method to initiate integration. 

It was observed that the CE was generally not improved by using more than one Newton 
iteration per time step, provided a low cost divided difference initial estimate of the next 
solution vector was used. This single iteration approach has also been advocated in (16) for 
use with BDF. The methods were thus compared as direct rather than iterative methods. 
Iteration can be included without difficulty if it is found necessary. 

Use of CSI sometimes resulted in unrealistic air temperature spikes at step changes in the 

casual load, leading to large values for  . CSI, therefore, cannot be considered a suitable 

interpolation method for this application. Few spikes were generated during the runs with TR 
+ CSI; less than were encountered with TR-BDF2 + CSI. The geometric mean improvement 
in CE (Table 7) for the former suffered less degradation, therefore, resulting in an excellent 
mean ratio because CSI generally interpolates accurately and it does not incur the additional 
cost of computing intermediate values. 

TR-BDF2 proved the most effective numerical method for the chosen test example. It 
offered an improvement of 29% over TR and was 76% more efficient than BEM. 
 
 

5  CONCLUSIONS 
 
It has been stated in (2) and elsewhere that finite-difference schemes such as the Theta 
method are used in many building thermal models because they are relatively simple and no 
single scheme is known to be superior to all others. In this work a number of implicit 
numerical methods that are appropriate to the character of the building energy problem have 
been identified and their efficiencies in this application quantified. The numerical method 
being promoted, TR-BDF2, offers superior stability and second-order accuracy with a small 
truncation error constant. Its computational efficiency was found to be greater than that of 
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commonly used methods for a representative test problem. It is a single-step method and 
therefore relatively uncomplicated to program. It is recommended for inclusion in new and 
existing building energy simulation software. 

A test problem with the characteristics of the building energy problem has been 
constructed and it is intended to use it to assess the suitability of further groups of numerical 
methods for modelling energy flows in buildings. 
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Table 1   Material properties 
 Thickness

m
 

Conductivity

W / m K
 Density

kg / m3
 

Specific heat

J / kg K
 

Thermal

diffusivity

m s2 /
 

Aluminium 0.002 200 2800 880 81 17 10 6.    
Insulation 0.10 0.045 50 840 1 07 10 6.    
Concrete 0.20 1.9 2300 840 0 98 10 6.    
Wood 0.10 0.14 500 2500 0 11 10 6.    
Glass 0.005 1.05† 2500 750 0 56 10 6.    
† not utilized 
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Table 2   Abbreviations for numerical methods 
BDF Backward Differentiation Formulae  
BDF2 Second-order Backward Differentiation Formula 
BEM Backward Euler method  
ER Euler's Rule  
SM Scraton's method 
TR Trapezoidal Rule  
TR-BDF2 Trapezoidal Rule /Backward Differentiation Formula composite method 
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Table 3   Local truncation error constants 
Numerical method TR BDF2 SM TRBDF2 
 1

12
 

2

9
 

1

24
 3 2 4

6


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Table 4   Accuracy statistics for test run number one 
Numerical method Temperature difference between reference solution 

and other solutions 
 

Cross-
correlation at 
zero time delay 
(air point node 
only) 

 Mean 

difference  

K

 

Mean absolute 

difference  

K

 

Maximum 
absolute 

difference  



K
 

 

Rosenbrock   3 33 10 8.  5 46 10 7.   1 63 10 5.   1.0000 
Runge-Kutta 3 33 10 8.    5 46 10 7.   1 63 10 5.   1.0000 
TR + CIV 9 00 10 4.    3 44 10 3.   6 05 10 2.   1.0000 
TR + LI 6 18 10 3.    9 90 10 3.   8 74 10 2.   1.0000 
TR + CSI 4 33 10 3.    5 79 10 3.   5 44 10 2.   1.0000 
BEM + CIV 9 67 10 3.    4 47 10 2.   2 08 10 1.   0.9996 
BEM + LI 1 23 10 2.    4 88 10 2.   2 42 10 1.   0.9996 
BEM + CSI 1 17 10 2.    4 72 10 2.   2 31 10 1.   0.9996 
BDF2 + CIV 5 74 10 3.    8 36 10 3.   6 84 10 2.   1.0000 
BDF2 + LI 1 30 10 2.    1 78 10 2.   2 15 10 1.   0.9998 
BDF2 + CSI 1 01 10 2.    1 29 10 2.   1 61 10 1.   0.9999 
SM + CIV 3 57 10 5.    2 27 10 3.   7 35 10 2.   1.0000 
SM + LI 6 06 10 4.    1 15 10 2.   3 95 10 1.   0.9994 
SM + CSI   1 62 10 3.  1 08 10 2.   4 99 10 1.   0.9996 
TR-BDF2 + CIV 1 86 10 4.    1 61 10 3.   2 25 10 2.   1.0000 
TR-BDF2 + LI 5 15 10 3.    1 48 10 2.   1 70 10 1.   0.9998 
TR-BDF2 + CSI 2 18 10 3.    5 39 10 3.   7 90 10 2.   1.0000 
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Table 5   Measures of computational effort for test run number one 
Numerical method Matrix 

inversions 
Matrix by 
vector 
multiplication
s 

Matrix 
evaluations 

Derivative 
function 
evaluations 

TR + CIV 263 351 136 791 
TR + (LI or CSI) 206 350 118 846 
BEM + CIV 216 383 119 637 
BEM + (LI or CSI) 165 330 105 565 
BDF2 + CIV 277 402 131 862 
BDF2 + (LI or CSI) 189 331 110 759 
SM + CIV 651 1673 326 682 
SM + (LI or CSI) 342 1069 180 478 
TR-BDF2 + CIV 271 700 144 1313 
TR-BDF2 + (LI or CSI) 136 414 87 858 
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Table 6   Computational efficiency for the test problem  
Tes
t 
run 
ref. 

Test space 
construction 

Slab 
thickness 
L

m
 

Characteristi
c 
conduction 

time  
L2 

s
 

Averag
e 
stiffness 
ratio 

Terminal 
unit 
status 

Time delay

prior to

assessment

s
 

Displacement

of casual heat

gain

s
 

 
 

Numerical method 

         TR    BEM    BDF
2 

   SM   TR-BDF2 

        CIV LI CSI  CIV LI CSI  CIV LI CSI  CIV LI CSI  CIV LI CSI 
1 Concrete 0.100 1 02 104.  309 On 180 0 6.29 5.56 8.93  2.22 2.50 2.62  5.28 2.47 3.29  2.09 0.74 0.59  16.40 4.33 9.31 
2 Concrete 0.100 1 02 104.  49 Off 180 0 2.29 5.68 9.12  1.58 1.96 1.96  0.71 0.96 0.97  0.81 0.56 0.97  0.98 6.67 1.02 
3 Insulation 0.100 9 35 103.  57 On 180 0 4.44 2.34 3.41  2.61 6.00 7.89  2.73 2.57 0.76  1.98 2.03 1.03  7.10 3.22 0.86 
4 Insulation 0.100 9 35 103.  49 Off 180 0 1.42 0.68 0.88  1.64 1.33 1.32  1.02 1.96 2.46  1.55 1.58 1.55  3.01 2.39 0.55 
5 Wood 0.100 9 09 104.  700 On 180 0 4.16 1.55 2.25  2.01 2.92 2.96  2.28 3.38 4.60  1.34 1.23 0.64  7.20 0.92 1.75 
6 Wood 0.100 9 09 104.  122 Off 180 0 0.72 3.24 4.82  1.84 2.46 2.50  0.68 0.73 0.73  1.05 0.56 1.01  1.47 2.48 5.47 
7 Aluminium 0.100 1 23 102.  1769 On 180 0 9.50 5.96 10.02  2.44 3.08 3.23  6.03 4.31 2.94  6.55 1.68 0.54  13.16 3.64 4.84 
8 Aluminium 0.100 1 23 102.  1881 Off 180 0 2.20 4.32 1.44  1.54 1.67 1.64  0.54 1.23 0.39  0.75 0.34 0.80  0.89 2.71 0.98 
9 Concrete 0.050 2 55 103.  146 On 180 0 7.54 3.43 0.56  2.69 3.87 4.07  4.95 3.96 5.39  2.64 1.23 0.52  11.84 4.67 2.44 
10 Concrete 0.050 2 55 103.  43 Off 180 0 0.87 2.69 3.30  1.83 2.13 2.13  5.31 1.01 1.01  0.73 0.37 0.15  0.99 2.47 0.81 
11 Concrete 0.200 4 08 104.  690 On 180 0 6.97 3.31 3.32  2.13 3.02 3.17  3.83 5.09 5.32  4.38 2.67 0.51  9.35 4.29 9.28 
12 Concrete 0.200 4 08 104.  120 Off 180 0 2.43 3.74 4.04  1.76 2.36 2.30  1.28 0.94 0.94  0.74 0.44 1.00  1.45 7.71 2.09 
13 Concrete 0.100 1 02 104.  309 On 180 -3600 8.52 5.96 11.20  2.36 1.89 2.04  4.88 3.42 5.97  2.08 0.99 0.51  7.98 2.90 8.83 
14 Concrete 0.100 1 02 104.  49 Off 180 -3600 0.62 7.72 8.28  1.34 1.00 0.99  0.65 2.73 2.20  0.68 0.60 1.15  3.47 3.20 0.90 
15 Concrete 0.100 1 02 104.  310 On 180 +3600 7.72 6.31 8.52  2.22 2.98 3.02  6.29 2.50 3.37  2.48 0.95 0.66  11.93 4.89 2.00 
16 Concrete 0.100 1 02 104.  49 Off 180 +3600 2.56 1.49 2.11  1.89 1.80 1.76  1.43 0.93 0.94  0.74 0.56 1.15  1.02 8.90 7.62 
17 Concrete 0.100 1 02 104.  309 On 120 0 1.82 2.85 2.85  2.25 2.60 2.43  2.10 2.53 3.38  2.11 0.73 1.11  3.70 4.27 9.17 
18 Concrete 0.100 1 02 104.  49 Off 120 0 0.50 5.79 9.10  1.75 2.86 2.95  0.56 0.91 0.91  0.48 0.77 1.04  1.96 6.81 1.18 
19 Concrete 0.100 1 02 104.  309 On 240 0 4.62 1.87 3.63  2.18 2.66 2.79  4.31 2.49 3.38  2.08 0.75 0.40  13.68 4.37 9.39 
20 Concrete 0.100 1 02 104.  49 Off 240 0 0.77 4.20 9.50  1.42 1.05 1.05  0.55 1.12 1.15  0.76 0.25 0.73  1.34 6.50 0.89 
21 Concrete 0.100 1 02 104.  309 On 300 0 2.71 1.85 3.59  2.13 2.50 2.62  6.67 2.49 3.31  2.14 0.76 0.31  10.83 4.25 9.15 
22 Concrete 0.100 1 02 104.  49 Off 300 0 2.63 3.58 9.58  0.97 2.78 2.87  2.23 1.26 1.38  1.17 0.20 0.56  1.45 6.46 0.80 
23 Concrete 0.100 1 02 104.  309 On 360 0 5.10 1.89 3.58  2.12 2.61 2.34  4.71 2.09 3.15  2.14 0.72 0.26  17.98 4.18 9.00 
24 Concrete 0.100 1 02 104.  49 Off 360 0 1.19 4.79 9.63  1.85 2.61 2.69  1.52 1.54 1.72  1.19 0.17 0.41  2.28 6.37 0.72 
25 Concrete 0.100 1 02 104.  309 On 420 0 9.72 1.84 3.58  2.30 2.57 2.22  4.85 2.06 3.04  2.14 0.49 0.12  17.39 4.41 9.44 
26 Concrete 0.100 1 02 104.  49 Off 420 0 1.92 5.41 9.68  1.65 2.55 2.64  4.13 2.02 2.23  1.57 0.15 0.34  2.41 6.30 0.65 
27 Concrete 0.100 1 02 104.  309 On 480 0 10.32 1.82 3.52  2.16 2.59 2.70  5.54 2.11 3.05  2.15 1.94 0.08  13.89 4.40 9.43 
28 Concrete 0.100 1 02 104.  49 Off 480 0 1.79 5.47 9.93  1.71 2.87 2.99  1.82 2.85 2.93  1.44 0.15 0.28  3.31 6.23 0.59 
29 Wood 0.500 2 27 106.  9311 On 180 0 5.89 1.95 0.25  1.56 1.91 1.91  3.49 3.92 5.03  5.23 0.74 0.46  14.50 3.12 8.05 
30 Wood 0.500 2 27 106.  1745 Off 180 0 2.53 2.66 4.23  0.63 1.56 1.56  1.41 1.08 1.09  0.73 0.48 1.10  1.03 2.70 0.23 
31 Aluminium 0.010 1 23. 17530 On 180 0 3.93 3.75 6.04  2.67 5.14 6.85  4.92 2.10 2.86  2.51 2.06 0.89  11.74 3.53 0.82 
32 Aluminium 0.010 1 23. 19580 Off 180 0 1.07 4.97 5.43  1.35 1.96 1.96  0.51 2.05 1.36  1.12 0.82 1.39  1.36 5.80 0.96 
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Table 7   Geometric mean improvement in computational 
    efficiency provided by TR-BDF2 + CIV over 
    other numerical methods for the test problem 
 Numerical method 
Method of 
interpolation 

TR BEM BDF2 SM TR-BDF2 

CIV 1.50 2.30 1.88 2.76 1.00 
LI 1.29 1.76 2.16 6.31 1.01 
CSI 1.01 1.72 2.05 7.36 1.86 
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Figure 1   Surface temperature predictions for 2 mm aluminium using a one hour time step 
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Figure 2   Surface temperature predictions for 100 mm insulation using a one hour time step  
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Figure 3   Amplification factors,  wr , over a small range of (real) values for w 
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Figure 4   Amplification factors,  wr , over a large range of (real) values for w 
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