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Abstract

This research was conducted primarily to investigate a selection of known methods
for the identification of a mathematical model for processes with an inherent time
delay, and subsequently, use the parameters of the identified model to regulate the
processes via the PI/PID control strategy. The research examines the level of
difficulty in performing or sanctioning different system identification methods in

order to re-tune the controller.

The process model identification methods are carried out on both simulated and real
processes in the first part of the research. The selected parametric identification
methods are chosen because they encompass open- and closed-loop techniques, first-
order-plus-dead-time and second-order-plus-dead-time process models and both

frequency- and time-domain identification methods.

The second part of the research considers the PI/PID control strategy to regulate the
processes identified using the aforementioned process model identification methods.
The link between the identification and control sections in this thesis is the tuning
rule. Even though the PID control loop is the most common industrial controller, poor
tuning has contributed to the control loop not working as well as it should. The thesis
considers the level of expertise required and the complexity of implementing eleven

representative tuning rules using different PID controller structures.
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Chapter 1 : Introduction

1.1 Background of Research

Despite rapid evolution in control hardware over the past 50 years, the PID controller
remains the workhorse of process control. In process industries, more than 90% of the
control loops are of the PID type (Astrom and Hagglund (1995)). Sixty years after the
publication of the Ziegler-Nichols tuning rule (1942) and with numerous papers
published on the tuning methods since, one might think the use of PID controllers has
already met our expectations. Unfortunately, this is not the case. Surveys of
Bialkowski (1993), Ender (1993), McMillan (1994) and Hersh and Johnson (1997)

have revealed the following in a number of different industries:

Pulp and paper industry [over 2000 loops] (Bialkowski (1993))
e  Only 20% of loops worked well
e 30% gave poor performance due to poor controller tuning
e 30% gave poor performance due to control valve problems

* 20% gave poor performance due to process and/or control system design

problems

Process industries (Ender (1993))
* 30% of loops operated in manual mode
* 20% of controllers used factory tuning

* 30% gave poor performance due to sensor and control valve problems

Chemical process industry (McMillan (1994))
* Half of the control valves needed to be fixed

* Most poor tuning was due to control valve problems

14




Manufacturing and process industries (Hersh and Johnson (1997))

e Engineers and managers cited PID controller tuning as a difficult problem

Surveys indicate that the process control performance is, indeed, “not as good as you
think” (Ender (1993)). The reality leads us to reconsider the priorities in process
control research. First, an improved process and control configuration redesign (e.g.,
selection and pairing of input and output variables) can improve control performance.
Second, control valves contribute significantly to the poor control performance.
Third, and probably the easiest way to improve control performance, is to find
appropriate parameters for PID controllers (Yu, 1999). The procedure of finding the
controller parameters is called tuning. The control loop performs well if the PI/PID
controller parameters are chosen properly. It performs poorly otherwise, e.g., the
system may become unstable. PI/PID controller parameters may be chosen in two
different ways. One approach is to choose some controller parameters, to observe the
behaviour of the feedback system, and to modify the parameters until the desired
behaviour is obtained. A second approach is the approach explored in this thesis i.e.
firstly develop a mathematical model that describes the behaviour of the process. The
parameters of the controller are then determined using some method for control
design. The development of a mathematical model for a process is often the first step
undertaken in the design of a controller. System identification is the theory, art and
practise of building mathematical models of dynamical systems from observed input-
output data. Model Sets or Model Structures are families of models with adjustable
parameters. Parameter Estimation amounts to finding the “best” values of these
parameters. The system identification problem amounts to finding both a good model
structure and good numerical values of its parameters.

Parametric Identification Methods are techniques to estimate parameters in given
model structures. Basically these techniques involve finding (by numerical search)
those numerical values of the parameters that give the best agreement between the

output of the model (simulated or predicted) and the measured output.
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Non-Parametric Identification Methods are techniques to estimate model
behaviour without necessarily using a given parameterised model set. Typical non-
parametric methods include correlation analysis, which allows the estimation of an
impulse response of a system, and spectral analysis, which allows the estimation of a
frequency response of a system.

Identification methods may also be sorted into two further categories, open loop
methods and closed loop methods. An open loop system is a system that does not use
feedback. Thus the output has no effect on the signal entering the system. Figure (1.1)

is an example of an open loop system.

1.00
simout
E L DQ — 15232t | simou

Ri(s) = Input Process Process Cs)= Dutput
Transport Delay  Transfer Function

Figure (1-1) - Open Loop System

In a closed loop system, the value of the output is fed back to modify the input to the
system. Figure (1.2) is an example of a closed loop system. An advantage of the
closed loop system identification approach is that the identification test can be carried

out while the process is running and therefore the plant does not have to be taken out

of commission.
1
+_ p FID fw) | Output_Data
5287 ot
Riis) Gos) Gp(s) = Transfer Function Cis)
System Input Controller Systern Output
Transfer Funclion

Figure (1-2) - Closed Loop System

Experimental open loop tests have the advantage of simplicity. However. the
parameters identified may vary with process operating conditions and the step change
size and direction. In addition, the process must be sufficiently disturbed by the

change, to obtain reasonably accurate dynamic information. with the possibility that
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the process may be forced outside the region of linear behaviour. There is also
reluctance among plant management to permit such disturbances to be introduced for
parameter estimation purposes. The process time scale must also be known in

advance in order to determine when the transient response has been completed.

Some process control systems by-pass the process model identification stage. In this
method of control, a test is initiated to determine two (or three) pieces of information
about the process. The controller parameters are subsequently calculated directly
from this information. An example of this method is the relay auto-tuning method
discussed in Chapter 4. In this thesis, we are deliberately identifying a process model
initially. We therefore have valuable information regarding the process under test,
e.g. the ratio of time delay to time constant. Subsequently, it may be decided if PID
control is appropriate for the process under test. PID would not be appropriate if, for

example, the time-delay is much larger than the time constant.

It has been recognised that a first-order-plus-dead-time (FOPDT) or second-order-
plus-dead-time (SOPDT) parametric model may, in general, represent process

dynamics (Shaw, 1993). The FOPDT model structure is shown in equation (1.1).

—d.s
Gu(s)=2me " (1.1)

1+ TS
Ky is the model gain, 7, the model time constant and d,, the model time delay (or

A

dead time). The ratio 7 = , which has the property 0 < v < 1, is called the

dﬂ +Tw
“normalised dead time”. This quantity can be used to characterise the difficulty of
controlling a process.

The SOPDT model can have two structures, shown in equations (1 2) and (1.3).

Koe S
Gul(Ss)= 1.2
n(s) rfnsl+21m§m&'+1 ( )




K., and d,, are the model gain and time delay respectively, &, is the model damping
factor and 17, is the reciprocal of the under-damped natural frequency of the system.
The alternative SOPDT model structure is given by
Kne Gns
(75 + 1 z2s +1)

7; 15 the first time constant and 7 is the second time constant.

Gul$)= (1.3)

Though the majority of control loops are PI/PID, this does not mean that there aren’t
better ways to control industrial processes, particularly those containing pure or
dominant time delay. It is worth noting that predictive controllers are commonplace
in industry, in many cases controlling time-delayed processes. There are a number of
publications (and opinions), in the process control area, which would strongly advise
against using PID for time-delayed processes. This thesis considers time-delayed

processes where, in general, the dominant time constant is larger than the time delay.

In Chapters 2, 3 and 4 of this thesis, a process model is identified using time- and
frequency-domain, open- and closed-loop methods. In Chapter 5 of this thesis, the
parameters of the process model are used in the selection of the PI/PID controller
parameters by way of tuning rules described by O’Dwyer (2003). The model
identification techniques explored in this thesis are firstly explained and then carried
out in simulation and implemented on a real plant, the PT326 process trainer from
Feedback Instruments Limited. The equipment used to implement, for the remainder
of this thesis, both open loop and closed loop identification techniques on the process

trainer are as follows:

« PC

+ MATLAB software (Version 6.0 (R12))

e SIMULINK software (Version 4.0 (R12))

e HUMUSOFT Real-Time Library (Version 3.10)




e AD 512 Data Acquisition Card
* Process Trainer PT326

e 37-Pin D-type connector, 37-Pin cable and connector block.

This thesis focuses on simulated processes and a laboratory scale pilot plant. It does
not propose to address industrial systems. The simulation and laboratory study does
not deal with the following:

e The presence of added noise

* The presence of process non-linearities

e Possible bias on sensors

e Higher order process dynamics

Industrial systems are expected to contain all of the above terms.

Figures (1.3) and (1.4) demonstrate the connections between the components of the
system, for implementation of the identification techniques in open loop and closed
loop, respectively. Figure (1.5) is a picture of the PT326 process trainer.

Chapter 2 examines the open loop identification techniques. A simulation test is
carried out on all identification methods described. The simulated process is common

to all the open loop techniques and is shown in equation (1.4),

le™®
7 o(8)=—— 1.4
Gp(s) e (1.4)

Chapter 3 examines the closed loop time-domain identification techniques and
Chapter 4 discusses the closed loop relay based identification techniques. Each

chapter begins with an introduction sub-section and ends with a conclusions sub-
section.

The identification methods described are evaluated by comparing the model step
response to the process step response in either the time-domain or the frequency-
domain, Both the simulation and implementation environments are utilised in this

evaluation. A formal mathematical evaluation of the methods is not discussed.
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A number of quoted references in this section confirm that a considerable number of
PID loops have poor performance in which merely adequate control is achieved. This
is attributed to three reasons, (1) process and/or control system design problems, (2)
control valve problems, (3) poor controller tuning. Apart from the possibility that PID
IS inappropriate in some cases, the real reasons why loops are poorly tuned are that
the plant personnel don’t have the expertise and/or the methods for good tuning are
deemed to be too time-consuming. Its popularity is probably partly due to the fact
that it will control the process reasonably well in spite of the three identified

problems i.e. it has inherent robustness.

1.2 Thesis Contributions

In a report by Hersh and Johnson (1997) it is stated that engineers and managers cited
PID controller tuning as a difficult problem. This thesis has attempted to investigate
the particular problem of poor tuning by considering the level of expertise required
and the time needed to carry out initial tests to identify a process model and
subsequently, the complexity or otherwise of implementing tuning rules designed to

control time-delayed processes.

The thesis evaluates open- and closed-loop, time- and frequency-domain methods of
identifying a mathematical model for a time-delayed process. Both simulated
processes and a real process, the PT326 process trainer, are used in this evaluation.
The parameters of the process model are subsequently used to control the process

using tuning rules that minimise a performance index.

The findings of this study show that the initial model identification stage is complex
and time-consuming. One problem encountered is the lack of standardisation in the
identification techniques. For example, there isn’t a set of unified regulations
regarding step size, step polarity or range of frequencies when carrying out the
identification tests. This may be attributed to the fact that two processes are never
going to be identical to each other. After the process model is identified, the tuning

20




rules are easily implemented. The study found that the PI/PID controller tuning rules
were also lacking in standardisation. The author found it difficult to compare the
resulting closed loop performance as the parameters of the process model used in the
tuning rule are obtained using different identification tests. However, the book by
O’Dwyer (2003) has addressed this problem somewhat.

Minor corrections were made to (typing) errors in the contribution by Mamat and
Fleming (1995) and the SOPDT model based tuning rule by Huang et al. (1996).

The findings of this study have been reported in four conference papers (Kealy and
O’Dwyer, 2002a, 2002b, 2003a, 2003b).
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Figure (1-5) - PT326 Process Trainer
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Chapter 2 : Open Loop Identification of a

Process Model

2.1 Introduction: Outline of Identification Methods

Investigated

One of the first process model identification guidelines was developed by Ziegler and
Nichols (1942). In this method, the time constant, 7,, and the time delay, d,,, of a
first-order-plus-dead-time process model (equation (1.1)) are obtained by
constructing a tangent to the experimental open loop step response at its point of
inflection. The intersection of the tangent with the time axis provides an estimate of
the time delay. The time constant is estimated by calculating the intersection of the
tangent with the normalised value of the steady state output. The process model gain,
Ko, is calculated by dividing the change in steady state output by the change in steady
state input to the process. This method of calculating K, is common to all four
approaches investigated. See Figure (2.1) for demonstration of these methods.

An alternative process model identification technique is a “graphical” identification
method. The time delay and time constant of a FOPDT process model are estimated
from recording the time taken to reach different points on the response data. The time
delay is taken at the time when the output has first responded to a change in input.
The time constant is the time at which the output has reached 63% of the steady state
output, less the time delay.

Another alternative is the “two-point” method as described by Shaw (1993); in this
method, the time delay and time constant are calculated from the time taken to reach
28% and 63% of the final steady state output.

Nishikawa er al. (1984) describe a method of process parameter (including time
delay) estimation using the ‘characteristic areas’ (i.e. the area underneath the step
response output curve) of either the open loop or closed loop process step response.
Astrom and Hagglund (1995) apply a related method, which they call the Method of
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Moments, to estimate the parameters of a first-order-plus-dead-time process model.
The input applied to the system in this latter method is not a step input but a pulse
input.

In the frequency-domain, a FOPDT and a SOPDT process model is identified using
two algorithms described by O’Dwyer (2002). The algorithms employ a two-stage
approach. In the first stage, the parameters of the model are analytically determined.
The second stage then determines the best parameter estimates by using a gradient
algorithm to facilitate minimisation of an appropriate cost function.

This chapter firstly describes the time-domain modelling methods in detail, namely
the graphical method, the two-point method, the area method and the method of
moments. The methods are examined in simulation and implementation. Then the
two-stage frequency-domain method is examined, again in simulation and

implementation.

2.2 Time-domain modelling

The dynamics of a system can be determined from the response of the process to
pulses, steps, ramps or other deterministic signals. The dynamics of a linear system
are, in principle, uniquely given from such a transient response experiment, This
approach requires, however, that the system is at rest before the input is applied, and
that there are no measurement errors. In practice, however, it is difficult to ensure that
the system is at rest. There will also be measurement errors, so the transient response
method, in practice, is limited to the determination of simple models. Models
obtained from a transient experiment are, however, often sufficient for PID controller

tuning. The methods are also very simple to use (Astrom and Hagglund, 1995).

A static process model gives the steady state relationship between the input and the
output signal. A dynamic model should give the relationship between the input and
the output signal during transients. It is naturally much more difficult to capture
dynamic behaviour. This behaviour is, however, very significant when discussing

control problems. Fortunately, there is a restricted class of models that can often be
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used for linear, time-invariant systems. Such models can also be used to describe the
behaviour of control systems where there are small deviations from equilibrium. The
fact that a system is linear implies that the superposition principle holds. This means
that if the input u; gives the output y; and the input u; gives the output y; it then
follows that the input awu; + buz gives the output ay; + bya. A system is time-invariant
if it is stationary or its characteristics do not change with time. A very useful property
of linear time-invariant systems is that their response to an arbitrary input can be
completely described in terms of the response to a simple signal. Many different
signals can be used to describe a system. The time domain approaches investigated
generate responses from step- or pulse-tests. The characteristics of the process
responses are then used to back-calculate the parameters of an assumed process

model.

2.2.1 Graphical Approach

The parameters in the first-order-plus-dead-time model shown in equation (1.1) can
be determined graphically by examining the response of the system to a unit step test
as shown in figure (2.1). The static gain, K, is obtained from the final steady-state
level of the process output. Remember that the process output must be scaled with the
change in the control variable. The intercept of the tangent to the step response that
has the largest slope with the horizontal axis gives an estimate of d, (See figure
(2.1)). The time delay estimate, d,,, is not obtained in this manner in this thesis as the
tangent is difficult to obtain. The time delay 4, can also be obtained as the time
between the onset of the step and the time when the output, sf?), has reached a few
percent of its final value. The actual percentage value depends on the amount of noise
in the system. Typical values are between 0.5% and 2%. This is how the time delay is
obtained in our graphical method. There are a number of methods to determine 7,,
the process model time constant. The original Ziegler and Nichols (1942) method
determines 7, from the distance AC in figure (2.1), where the point C is the time
when the tangent intersects the line s(1) = K,,. A second method, the so-called
alternative tangent and point method, proposed by Murrill (1967), determines 7, from
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the distance AB in figure (2.1), where B is the time when the step response has
reached the value 0.63K,,. This latter approach is how the time constant is estimated
in our graphical method.

Emp - —— ———— o

063Kkml - ===

il B C
Figure (2.1) Graphical determination of three-parameter models for systems with a

monotone step response (Astrom and Hagglund, 1995)

2.2.1.1 Simulation:

A simulation result shows the implementation of the method when the time delay is
obtained as the time between the onset of the step and the time when the output s(t)
has reached 2% of its final value; the time constant is obtained from the time when
the step response has reached 63% of its final value, as described in section 2.2.1.

m—.% . L P simout
1

Step Transport Transter Fen To Workspace
=9 Delay=1

Figure (2.2) SIMULINK file with process parameters for graphical method
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Figure (2.3) Process open loop step response from file in figure (2.2)

The program entitled “OL_Graphical Sim 1" in Appendix 2 section 1, page A2,

gives the following results:

. Model gain, K,,, = 1.00
. Model time constant, 7,, = 1.00 seconds

. Model time delay, d..., = 1.05 seconds

The three first-order-plus-dead-time parameter values determined by this method are

now compared to the known parameter values and shown in figure (2.5).

1
|I_.. DRy = |—»f smou
£+1
Step =1 Transport Transfer Fen To Wokspace
Dalay = 1.05

Figure (2.4) Model parameters obtained using graphical method
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Figure (2.5) Comparison of process open loop step response and model open loop
step response using graphical method to obtain model

Validation: The plot in figure (2.5) show that the open loop step response of the
model obtained using the graphical method is an accurate representation of the open

loop step response of the simulated process.

2.2.1.2 Implementation:

Using the MATLAB, SIMULINK and HUMUSOFT software, a step is applied to
point (A) on the PT326 process trainer in figure (1.5) (point A also marked in figure
(1.3)). The process output data is collected from point (Y). The process is first
calibrated by sending a OV output signal to point (A) and adjusting the “Balance”
potentiometer for the input signal at point (Y) to read OV (see figure (1.5)). After the
calibration is complete, a step voltage of 2.5V is applied to the process and the
resulting data used to identify the parameters of the system. The “Measured Value”
indicator reads 27°C when the process output is OV and 38°C when the process
output is 2.5V. This range of values is within the linear range of the process. This is
known because of previous experiments carried out on the PT326 process trainer. The
file in figure (2.6) is used:
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—— simout —]
IO
PT326 Input Data (A) =

i >

RT Out Adapter

Step = 2.5V

FProcess Input

RT In simin

Process Dutput PT328 Output Data (¥)

Figure (2.6) SIMULINK/HUMUSOFT file for open loop step response

The simulation parameters step size and the real-time sample time are both set to 0.01

seconds. The reason for this is to allow sufficient data points to be collected to

accurately represent the process output. Note also that the step function in MATLAB

has a one second delay before the step is activated. The data is plotted and shown in

figure (2.7).

Opan Loop Slep Resporae

0.8

osE —

D4F

03

D2t

Blua Line = step inpul 1o PT326.
Siep = 0.5 cormasponds 1o 2.5V

Figure (2.7) PT326 process

o= —_—

. VLT I,

25V

Red— Line is response dala from PT328

Seconds

trainer open loop step response data in red

The algorithm entitled “OL_Graphical Imp 17 in Appendix 2 section 1, page A2, is

used on the process data to determine graphically the process model gain, time delay
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and time constant. The presence of noise on the process data in figure (2.7) must be
allowed for when the time delay is being calculated. The time delay is obtained from
the data in figure (2.7) as the time between the onset of the step and the time when
the output has reached 0.87% of its final value. A noise level of less than 0.87%

therefore cannot affect the time delay estimation. The results are as follows:

. Model gain, K,,, = 1.15
. Model time constant, 7,. = 0.6 seconds

. Model time delay, d,, = 0.26 seconds

The FOPDT model parameter values are inserted into a SIMULINK file and the open
loop step response of the process is compared with the open loop step response of the
model shown in figure (2.8).

i Open Loop Sleap R esporos
ﬁwﬂ R m
o5t 25v

o4t

R i s response data from ITI26 process tsiner
03}

Black hine is moded open loop aop response usimg
[ eraphical nasthod o idennfy maodel

02

o Bl luse o stop imput w0 PTI26 process trasner

Step = 0.8 cormesponds ko 2 5V

L1} 5 10 15
Seconds

Figure (2.8) Validation of graphical method model with process open loop step

response
Validation: The process and model open loop step response comparison in figure

(2.8) show that the graphical method works very well in identifying a FOPDT model
for the PT326 process trainer.
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2.2.2 Two-point Algorithm

In the two-point algorithm approach, the steady state gain is determined as in the
graphical method. The times taken for the process output to reach 28% and 63% of
the final steady state output (7>s and T3, respectively), are used to determine the time
constant and the dead time based on solving the following simultaneous equations
(Shaw, 1993):

T1ﬁ3=dm+rm {2.1}
Tor
Ta=dn +? (2.2)
Therefore,
2
Tao— Tz: - El"n (2‘3)
3 .
Ta= E(T‘" —T') (2.4)
Also,
Tu=d. (Ja=Tn (2.5)
2
du = Tn_%‘i+?—;?' (2.6)
3 Ta
e ey e —— 7
d [2 i 11:] > (2.7)
1
= 5{3 Tu—Ta) (2.8)

The two-point algorithm and the graphical approach identification methods are based
on evaluation of the step response at two points only. Such methods are quite

sensitive to measurement noise.
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2.2.2.1 Simulation:
A simulation result shows the implementation of the method. A step is applied to the

simulated process in figure (2.9) and the response data used to determine the FOPDT
parameters by the two-point algorithm method.

m_'{w — L | simout
=1

Step Transport TranstarFon To Waorkspace
=9 Delay=1

Figure (2.9) SIMULINK file with process parameters

Time 28% E Time 63%

: H
(1 fc | T .. ........................................................... -
%
1 [ P pofdences i ........ T e e BT it t
e BT L (O R DN SN T s |
; i 1 1 L I 1
o
] 1 i
195 206 Seconds

Figure (2.10) Simulated process in figure (2.9) open loop step response for two-point
algorithm model identification method

The MATLAB commands in Appendix 2 section 1, page A2, entitled “OL TP 1”

determine the three first-order-plus-dead-time model parameters:
e  Model gain, K,,, = 1.00

s Model time constant, 7, = 1.05 seconds

. Model time delay, d,,, = 1.00 seconds
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These three first-order-plus-dead-time parameter values determined by the two-point
method are now compared to the known parameter values and shown in figure (2.11).

Seconds

Figure (2.11) Two-point model output comparison with process output

Validation: The plot in figure (2.11) shows that the open loop step response of the
model obtained using the two-point algorithm compares favourably with the open

loop step response of the simulated process.

2.2.2.2 Implementation:

The two-point algorithm is applied to the step response in figure (2.7). The algorithm
is entitled “OL_TP_2" in Appendix 2 section 1, page A2, and the results of the three
parameters for the FOPDT model are subsequently shown.

. Model gain, K, = 1.15
- Model time constant, 7,,, = 0.53 seconds

. Model time delay, d,, = 0.36 seconds
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The three FOPDT process model parameters are inserted into a SIMULINK file and
the model open loop step response is compared with the process trainer open loop
step response (figure (2.12)).
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P b Tl s
os Rnd—- Line 1x veaposnie datn Foom PT126 proces trumes

Blue lane m siep it o FTI26, step = 0.5, corrmponsds 1o 1 5V
D&

03}
02F 1
Purple bz v open loop step respamss of model swinyg 1wo-pomt agoiihm

i

_u-F i i
D 5 10 15
Sevinds

Figure (2.12) Open loop step responses of PT326 and FOPDT model using two-point

algorithm identification technique

Validation: The result shown in figure (2.12) demonstrates that the open loop step
response of the estimated FOPDT process model compares favourably with the open
loop step response of the process. Good modelling of the process is confirmed in the
“Comparison_FD” report in Appendix 2 section 3, page A63. Figure (TR Id 6)
shows the details.

2.2.3 Area Method

The third open loop time-domain method considered is the “area method” and is
based on integrals of the step response (Astrom and Hagglund, 1995). The algorithm
determines areas from the open loop step response data and from the resulting values,
the time constant and the dead time of a FOPDT model are calculated. Figure (2.13)
previews some details of the area method algorithm applied to the PT326 process
trainer,
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ot} *>T= [Alrange]"2. 71828
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Seconds

Figure (2.13) Plot of process open loop step response and area method algorithm

The commands in figure (2.13) are created using the MATLAB software with T =
time constant (7,) and L = time delay (d,).

The area methods are based on the calculation of areas associated with the step
response. Figure (2.14) is a simulated system to demonstrate the method and figure
(2.15) gives the system open loop step response with the area 40 marked. There is a 1

second delay before the unit step input is applied to the process.

3 =
Em "R o

Unit 1 second Prostss Dutput
Step Transport
Delay

Figure (2.14) Simulated process under test for area method algorithm
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Figure (2.15) Open loop step response identifying area 4,

If the input is a unit step, and the model to be estimated is of the first-order-plus-
dead-time form shown in equation (1.1), then

Cox = Km

e(t) = Kn(1 — ™) 1(t)

Ap may easily be measured.

The “average residence time”, 7, is defined as AyK,,. A, is determined as follows
(Astrom and Hagglund (1995)):

Theoretically, 4o = [[c.. —c(t)
0
e o= [[Ku—Kuli—e ==
o
Ao = K’mTE_{!_hjxmdr
o

T]'I'Bl'ﬁfﬂl'ﬂ, iy Kmenh.'m‘l'e.umdr
]

ie. do= K.,.e“"'““-e"”""-f—rm)f
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iedy=—Kurae™™[0-1]
ey = Katas

S0, T = Ao =™

: dn 1 dlw
T may be approximated as 7, 1+_+E =i

Tm Tm

e r,,,[H-‘f-"r‘-] if 92 i small

T Tm

Therefore 7., = rn+dn

Astrom and Hagglund (1995) use the latter approximation for 7.

Figure (2.16) shows how area 4, is determined (Astrom and Hagglund (1995)).

1 efinf )
Black sold kne is process oulput
0B
cit)
06}
0af
02
ﬂ i
o 1 B 4 B g

Figure (2.16) Open loop step response showing area 4,

If the area A, under the step response up to time 7, is then determined,
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Tar
A= Ic{’ :U.f
]
Tar
Therefore 4, = j KM(] = g"{"""’]“"‘*}:ﬂ
1]

din idrm4-rmi
e = (K- =+ [k, (-
¥ din

This expression is an approximation for 4;, as 7, = d,, + 7.

Therefore,

A= [kl ™dy,n=1-d,
1]

LeAd = K.[n t+Ime '-’“l'i'

e = K.,[r,,. +rme ' = rm]: SHT8

Now, knowing K,,, and measuring 4,, allows us to determine 7,

e 4
Tm="__

Kn
Then 4, = P Ta

Therefore 4, = Ao 4

Kﬂ Km

Some points about the area method algorithm

*  The method is less sensitive to high frequency disturbances than methods
where the model is determined from only a few values of the step response.

. However, the full step response needs to be stored (to calculate 4,), and the
method (as described by Astrom and Hagglund (1995)) relies on d,,/7,, being

small, so that the approximation for 7, is valid.
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2.2.3.1 Simulation:

m—’w e L P simout
=1

Step Transport Trarstar Fon To Wokspace
=1 Dalay=1

Figure (2.17) SIMULINK file with process parameters for area method algorithm

The file in figure (2.17) has a d},/ 7, ratio of 1. It is worth noting that this may not be
the best simulation to use to demonstrate the area method algorithm because of the
approximations assumed earlier. The approximations were made on the assumption
that the d,/ 7, ratio is small, which is not the case here. However, for consistency, the

simulated process used is the same throughout section 2.2.

.........................

....................................................

1 || T ; E
..:-
i

i : H 1
H : i : H
: 1 1 1 il Il

Tar Seconds

Figure (2.18) Process open loop step response for area method algorithm

The MATLAB commands in the “OL_Area_1” file in Appendix 2 section 1, page
A2, determines the model parameters as follows:
e  Model gain, K,,, = 1.00

. Model time constant, 7,,, = 0.99 seconds
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e  Approx_Time Delay, dyn, = 1.01 seconds (using Astrom and Hagglund’s
approximation that d,, = 1, - 7,)

. Time_Delay, d,,, = 0.70 seconds. (using a better approximation for the time
delay as revealed in the development ie. 7, = 7,e™™. Note: This is a
better approximation for the time delay, in general; an approximate formula
is still used for the time constant).

1
. @ > B simout
0.88s+1
Stap = 1 Transport Transfer Fen To Wodspace
Delay= 1.01

Figure (2.19) Area method process model with time delay approximation (Astrom
and Hagglund (1995))
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Figure (2.20) Comparison of process open loop step response with model open loop
step response using area method and approximation for dead time (Astrom and
Hagglund (1995))
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Figure (2.21) Area method process model with second time delay approximation
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Figure (2.22) Comparison of process and model open loop step response using area

method algorithm and second time delay approximation

Validation: The simulated process model gain estimate, K,,, and the simulated
process model time constant estimate, 7., are both accurate estimations as shown in
figures (2.20) and (2.22). The second time delay approximation for the process model
is not as accurate as the first time delay approximation. This is not the expected

result.

2.2.3.2 Implementation:

As a consequence of the results obtained in simulation, it was decided to consider the
case in implementation, where the average residence time is approximately the sum
of the dead time and the time constant, ie 7,=d, + 7, The SIMULINK file in
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figure (2.6) is again used, but now the step time is set to zero, i.e. no delay on the step
input. The simulation is run and the response data is used by the area method
algorithm. This algorithm calculates various areas from the data (figures (2.23) and
(2.24)). The algorithm is shown in the file entitled “OL_Area 2” in Appendix 2
section 1, page A3.

Fed Line s response data

Biua Lina is step input to process |r

Figure (2.23) Area method showing normd,

Area method  [mommad |
a7 —— t v T *

Red Line iz response data

Biue Line is step input 1o rocess

1.5 2 25 3 as 4 4.5 5

Figure (2.24) Area method showing 4,




The algorithm, of course, implements the less accurate approximation for the time
delay (in general); the following results are obtained:

. Model gain, K,,, = 1.13

. Model time constant, 7, = 0.36 seconds

. Model time delay, d,,, = 0.40 seconds
These three FOPDT process model parameter values are inserted into a SIMULINK
file and the open loop step response compared with the process open loop step

response; the result is shown in figure (2.25).
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Figure (2.25) Comparison of PT326 and FOPDT model open loop step response

using area method identification technique

Validation: The plot in figure (2.25) shows that, despite the approximation of the
time delay detailed, the model open loop step response is a good representation of the
process open loop step response. It is worth noting that all the validation comments
are based on visual inspection of the process and model step responses. The accuracy
of the model step responses could be more objectively evaluated by obtaining the
sum of the squares of the errors between the process and model step responses, for

instance.
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2.2.4 Method of Moments

A drawback with the area method is that it requires storage of the step response. Area
A; cannot be computed until area A, is determined. In addition, there are some
process control systems where the dynamics contain integration or very long time
constants. Such systems will not reach a steady state under open loop conditions.
They are sometimes called systems without self-regulation. For a process with an
integrator, a steady state will not be achieved when the input signal is a step, since the
output will asymptotically change at a constant rate. There will be, however, a steady
state output when the input is an impulse. To determine the dynamics we can,
therefore, apply a short pulse to the process. This method is known as the “Method of
Moments™ (Astrom and Hagglund (1995)); the development outlined below is taken
from their work.

Let A() be an impulse response and G(s) the corresponding transfer function. The
functions are related through

u-.l

G(s) = Ie (1)t (2.9)

LY
The impulse response is positive for systems with monotone step responses. It can be
interpreted as the density function of a probability distribution if it is normalised as

follows:

S =~ a0 (2.10)

[ Ayt

The quantity f{7)df can then be interpreted as the probability that an impulse entering

the system at time O will leave at time 1. The average residence time is then

= T:h{r}dr
Tor = [t (t)lt = % @11
y Jfl(f}dt

We are considering the first order plus delay time model so using analytical methods,

an expression for 7, the time constant, and d,, the dead time, can be deduced by
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assuming the average residence time, 75 = dy + 7n as discussed in section 2.2.3.

Then. from Astrom and Hagglund (1995),

j' A h(dt
T:u =2 B Tir

Th{r )t

The time delay d,, can then be computed approximately, as follows:

dm ST Tn
The gain K,, is given by the following equation:

Kn=G(0)= [ h(t)di

2.2.4.1 Simulation:

(2.12)

(2.13)

(2.14)

A FOPDT process is now simulated in figure (2.26) and the response data analysed to

determine a process model using the “Method of Moments™ algorithm,

1
ann —»{ORy e
1
Pulse Transport Transter Fon To Wodspacs
Generator Delay=1
——pp{ Fulse
FPulse Wolspace

Figure (2.26) SIMULINK file with process for Method of Moments algorithm

As before, it is expected that a better simulation result would be achieved for a

smaller d,/7, ratio. However, for consistency with previous results, the simulated

process in figure (2.26) is used. Also note that a further approximation is introduced

by the use of a pulse input rather than an impulse input.
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Figure (2.27) Pulse response of process

The file “OL_MoM _1” in Appendix 2 section 1, page A3, gives the MATLAB
commands to obtain the following model parameters:

. Model gain, K, = 0.97
. Model time constant, 7, = 1.03 seconds
. Model time delay, d,,, = 1.46 seconds

These three first-order-plus-dead-time parameter values determined by the Method of
Moments identification techniques are now compared to the known parameter values,
through the open loop step responses shown in figure (2.29),

oe7
E iﬂw - | simout
1.03s+1

Step =1 Transport Transter Fen To Wodspace
Delay = 1.98

Figure (2.28) SIMULINK file with model parameters using Method of Moments
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Figure (2.29) Comparison of process and model open loop step response

Validation: Figure (2.29) shows that the FOPDT model open loop step response is
not close to the process open loop step response. One reason for this is the fact that
the d,/7, ratio is large and the approximations mentioned previously are less valid.
Another problem is the difficulty in applying an impulse signal to the process in
SIMULINK. Figure (2.29) demonstrates the large inaccuracy of the simulated process

model time delay estimate, d,.

2.24.2 Implementation:
A pulse is applied to the process trainer, PT326, using the SIMULINK file in figure

(2.30) and algorithms based on equations (2.11), (2.12), (2.13) and (2.14) determine
the three model parameters, process model gain, time constant and dead time. The
area under the pulse signal is equal to 1, therefore the settings are as follows:

Period = 50 seconds, Duty cycle = 4%, Amplitude = 0.5, Start time = 0.
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Figure (2.30) SIMULINK file used for Method of Moments
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Figure (2.31) Method of Moments response data from PT326

The first order plus dead time model parameters are now determined from the
algorithm entitled “OL_MoM 2" in Appendix 2 section 1, page A3, as follows:

0 Model gain, K, = 1.15

. Model time constant, 7, = 0.69 seconds

. Model time delay, d,, = 1.07 seconds
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The FOPDT model parameters are inserted into a SIMULINK file and the open loop
step response compared with the PT326 open loop step response in figure (2.32).
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Figure (2.32) Comparison of PT326 and FOPDT model open loop step responses
using the Method of Moments algorithm

Validation: Similar results to those obtained in simulation (figure (2.29)) are
observed. The time delay estimation of the model, &, is inaccurate as can be seen

from the plot in figure (2.32). The gain estimate, K., is quite accurate.

The area of the pulse input is equal to 1, i.e. amplitude of 0.5, for a period of 2
seconds. As a comparison, the pulse input will now be set to an amplitude of 1, for a
period of 1 second and the results recorded as before. This pulse input is closer to an
impulse function so better results are expected. The same SIMULINK file shown in
figure (2.30) is used. The resulting plot is shown in figure (2.33).
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Figure (2.33) Pulse response of PT326

Using the resulting data, the “OL_Mom 3" algorithm in Appendix 2 section 1, page
A3, is used to identify the three first order plus dead time model parameters of the

process.

. Model gain, K,,, = 1.31
L Model time constant, 7,,, = 0.94 seconds

. Model time delay, d,, = 0.56 seconds

When the results are compared to those obtained when the wider pulse input is used,
it is seen that the parameter values differ depending on the pulse size and pulse time
duration. For validation purposes, the three parameters are inserted into a SIMULINK
file and the open loop step response of the process is compared with the model open
loop step response (figure (2.34)).
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Figure (2.34) PT326 open loop step response and model open loop step response
using the Method of Moments algorithm

Validation: The plot in figure (2.34) shows that the process model is inaccurate. The
time delay estimation, d,,, is too large and the process model gain estimate, K., is also
too high. When comparing the results of this test with the results from the wider pulse
test, it can be seen that the time delay estimate is better using the narrower pulse
settings. However, the gain estimate, in particular, is less accurate using the narrower
pulse settings.
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2.3 Frequency-Domain Modelling — Analytical and
Gradient Approach

Identification in the frequency domain involves the estimation of the process
frequency response over an appropriate frequency range, followed by the estimation
of the model parameters. The process frequency response may be measured in open
loop by recording the output of the process as a sine wave input varies in frequency
and then determining the magnitude and phase from the input-output data at each
frequency. The model parameters are estimated by a two-stage approach, combining
an analytical approach and a gradient approach, as detailed by O’Dwyer (2002). The
three parameters of the FOPDT model, equation (1.1), are analytically calculated as

follows:
[(.- (Jw)lG, Um:]lv'm; @, 2.15)
J{(.rpl:jmt)| @3 — l(:,-{_;m;}rmu
o | (2.16)
6, )
-2 [-4,00) -t @) (2.17)
@, and and |GPU&.|2}I are the magnitudes of

the frequency response at @; and @; respectively; ¢, is the phase of the frequency

response at test frequency w.

The gradient approach is subsequently employed to determine the most accurate
model parameters. The gradient method examines the cost function, ./, to determine
the best model estimate. The cost function, ./, is the mean sum of the squares of the
error between the process and the model outputs. An important requirement is that .J
must be unimodal i.e. ./ must have no local minima. The algorithm determines the
partial derivative of the cost function, with respect to the three FOPDT parameters
K, tn and d,, at the initial estimate and subsequent estimates. The final and most

54




accurate estimated value, in a least squares sense, is in the trough of the cost function

curve. Full details are available in the paper by O’'Dwyer (2002).

The analytical and gradient approach is now examined in simulation and
implementation. The simulated process is the same as the process used for the time-

domain modelling and the PT326 process trainer is used for the implementation tests.

2.3.1 Simulation:

To determine the parameters of the FOPDT and SOPDT models using the frequency-
domain methods, ten frequency domain experiments are carried out and the results
recorded as shown in Table (2.1). The SIMULINK file in figure (2.35) is used to
input sine-waves of varying frequencies to the simulated process and the resulting

plot in figure (2.36) is an example of the data obtained from one such test:

1
Fn'. - B@ o -_— P simout
\Vi 1
Sina Wave Transpart Trarater Fon To Wokspace
1 radfsec Dalay=1
| SineWave
To Workspace

Figure (2.35) SIMULINK file to determine frequency response

Ly L s
0

Figure (2.36) Input and output signals to process
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From the data shown in figure (2.36), Magnitude = %,Phase = —2% 2n radians.

Simulation step size = 0.05. This allows 20 samples to be recorded every second for

the workspace data array. This is sufficient to plot the data accurately.

Frequency | Magnitude | Phase
Rads/sec Radians
0.1 0.99 -0.20
0.2 0.98 -0.40
0.4 0.93 0.77
0.5 0.90 -0.97
0.6 0.87 -1.14
0.8 0.81 -1.48
1 0.76 -1.86
2 0.45 -3.20
4 0.27 -5.40
5 0.20 -6.45

Table (2.1) Summary of results

2.3.1.1 FOPDT Model

The frequency, magnitude and phase values shown in Table (2.1) are next entered
into the gradient method MATLAB program entitled “FreqGradFOPDT Sim 17 in
Appendix 2 section 1, pages A4 — A10. This program is the work of Dr. A. O’Dwyer
(2002). For example, the first frequency value is entered as follows:

(o)) wl=0.1;

The corresponding magnitude value is then entered:

G1=0.99;

The corresponding phase value is entered:

phil =-0.20;
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The remaining nine values are subsequently entered in the appropriate spaces. It is
found that equations (2.15), (2.16) and (2.17) work reasonably well if (O'Dwyer,
2002):
1. K, is determined from magnitude data recorded at least a decade apart in
frequency.
2. 1y is determined when the magnitude of the process, [Gp(im}l , is in a range
of 0.25 to 0.75 times the gain, K,,, calculated.
3. dy is determined when the magnitude of the process is less than 0.5 times the
gain, K., calculated.

Results:

. (Model gain, K;;) Kpavg = 0.999

. (Model time constant, 7,) Tcpavg =095

e  (Model time delay, d,,) Tdpavg = 1.03
The first-order-plus-dead-time model parameters are now used to generate a nyquist
plot for comparison with the simulated process; this plot is shown in figure (2.37).
The MATLAB code to generate figure (2.37) is shown in Appendix 2 section 1, page
Al0, and is entitled “FD 1A".

Dashed line s Process *
05 | Solid ine is Model & ;

04}
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Rl Ay

Figure (2.37) Nyquist plot of simulated process and FOPDT model
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Validation: The nyquist plot of the process and the FOPDT model in figure (2.37)
indicate that the modelling method works well. The low frequency simulated process

gain estimate, K, is very accurate.

2.3.1.2 SOPDT Model

The values from Table (2.1) are entered, in the same way as for the FOPDT model,
into the gradient method MATLAB program entitled “FreqGradSOPDT _Sim_1” in
Appendix 2 section 1, pages A1l — A22, to obtain the second-order-plus-dead-time

model parameters.

Results:
. (Model gain, K,;) ans = 1.01
- (ttms) ans = .98
o (am) ans = 3.28e-004

- (Model time delay, d,) ans=1.03

The second-order-plus-dead-time model structure is shown in equation (2.18).

— s
Kne"
]‘l‘ﬂ’m-’f"'ﬂ'wl&‘!

Gu(s)= (2.18)

The SOPDT model is therefore

1.01g7"%"
140985+ 0.0003285°

Gu(s) =

The second-order-plus-dead-time model parameters are now used to generate a
nyquist plot for comparison with the parameters of the process and shown in figure
(2.38). The MATLAB code is shown in “FD_2A” in Appendix 2 section 1, page A22.
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Figure (2.38) Nyquist plot of simulated process and SOPDT model

Validation: As with the FOPDT model, the plot in figure (2.38) validates the
modelling technique. The “fit” between process and SOPDT model is very close. The
SOPDT model program takes a longer time to execute than the FOPDT model
program. The initial values of the estimated parameters are determined by averaging
the values found in a purely analytical approach. The final and best model parameter

estimates are then calculated using the gradient approach.

2.3.2 Implementation:

The frequency response of the Process Trainer is obtained by transmitting sine waves
of constant magnitude and varying frequency to the input of the process, and plotting
the output from the process. The SIMULINK file to achieve this is shown in figure
(2.39).
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|%IEIJ simout
Signal PT326 Input Data (&)
Generator
RT Out
Process Input
Step

RTIn  }—— | simin

Process Cutput PT326 Output Data (Y)

Figure (2.39) SIMULINK file used to help to obtain the frequency response of PT326

The step size in figure (2.39) is set to 0.3. This corresponds to a voltage of 1.5 Volts.
This is the offset to the process that ensures that no clipping of the signal takes place.
The signal generator output is set to a sine wave of amplitude 0.25 with the
frequency, in radians/second, varying between 0 radians/second to 20 radians/second.
Figure (2.40) shows the input and output data recorded, as an example, when the
input frequency is set to 4 radians/second.

Fregquency = 4 radhs‘second
oz

i m'-umru-'w--m'ﬁpm

os}
os}
O
03p
02F

01t

Figure (2.40) Sine wave response of PT326 when input signal is 4 radians/second
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Thirty-five different frequencies are examined between 0 and 20 radians/second.

Table (2.2) shows the results of these experiments.

Frequency | Freq. | 1/Freq. |Magnitude|Magnitude |Phase| Phase | Point
(Rads/Sec) | (Hertz) | (Time,sec.)| (Opflp) (dB) (Deg.) [ (Rads.)|(On plot)
0 0 1.17 1.39 0 0.00 1
0.1 0.02 62.89 1.14 1.13 -2.3 | -0.04 2
0.2 0.03 31.44 113 1.04 -46 | -0.08 3
0.3 0.05 20.96 1.11 0.88 -b -0.10 4
0.4 0.06 16.72 1.10 0.83 -18 | 0.3 5
0.5 0.08 12.57 1.12 0.96 -23 | -0.40 3
0.6 0.10 10.47 1.09 0.71 -30 | -0.52 7
07 0.1 8.97 1.05 0.46 -31 | -0.54 8
0.8 0.13 7.85 1.08 0.70 -33 | -0.57 9
0.9 0.14 6.98 1.05 0.39 -37 | 0.64 10
1 0.16 6.28 1.07 0.55 -45 | -0.78 11
1.3 0.20 5.02 1.00 0.01 57 | -0.99 12
15 0.24 4.19 1.00 0.03 61 | -1.06 13
2 0.32 3.14 0.84 -1.52 -83 | -1.44 14
25 0.40 251 0.72 -2.89 -100 | -1.74 15
3 0.48 209 0.67 -3.50 -117 | -2.04 16
35 0.56 1.79 0.57 -4.94 -136 | -2.37 17
4 0.64 157 0.50 -6.05 -142 | -2.48 18
45 072 1.39 0.40 -7 .91 -171 | -2.98 19
5 0.80 1.25 0.37 8.73 -177 | -3.08 20
5.3 0.84 1.19 0.39 -8.14 -180 | -3.14 21
55 0.68 1.14 0.34 -9.42 -189 | -3.29 22
5 0.96 1.04 0.32 -1232 | -199 | -3.47 23
6.5 1.04 0.96 0.28 -1096 | -202 | -3.53 24
7 1.11 0.89 0.24 -1232 | -216 | -3.77 25
75 1.19 0.83 0.22 -1297 | -223 | -3.89 26
8 1.37 072 0.21 -1363 | -229 | -3.99 27
8.5 1.35 0.74 0.19 -1432 | -233 | -4.06 28
9 1.43 0.69 0.17 -15.15 | -258 | -4.51 29
95 1.51 0.66 0.15 -16.57 | -261 | -4.55 30
10 1.59 0.62 0.14 -17.22 | -286 | -4.99 31
125 1.99 0.51 0.08 21561 | -300 | -5.24 32
15 239 0.42 0.06 -2479 | -320 | -5.58 33
17.5 2.79 0.36 0.05 -2657 | -360 | -6.28 34
20 3.18 0.31 0.04 2772 | -412 | -7.19 35

Table (2.2) Experimental data results for frequency response of PT326
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The results in table (2.2) enable the Process Trainer nyquist and bode plots to be
drawn (See figures (2.41) and (2.42)). The MATLAB commands to draw the nyquist
and bode plots from experimental data are in Appendix 2 section 1, page A22,
entitled “PT326_Ny 17 and “PT326_Bode 1" respectively.

Myquist Diagram for Process Trainer, PTA26 (Serial No. 326-9-18)
Fres L1

Iramg,
Axim o |

Real Axis

Figure (2.41) Nyquist plot for PT326 Process Trainer using data in Table (2.2)

Bode Diagrams for Process Tralner, PT326 (Serial Mo, 326-5-15)

Phase (deg) Magnituds (d8)

Frequency (radsec)

Figure (2.42) Bode plot for PT326 Process Trainer using data in Table (2.2)




2.3.2.1 FOPDT Model

The program by O’Dwyer (2002) to identify a FOPDT process mode! requires ten
values of frequencies and the corresponding magnitude and phase data to be entered
at the start of the program. Therefore, ten appropriate values from Table (2.2) are
chosen for this identification procedure. The ten frequency values chosen are as
follows:

®; = 0.4 rads/sec. ;= 0.6 rads/sec. @3 = 0.9 rads/sec. ©4= 125 rads/sec.

ms = 2.5 rads/sec. ms=4rads/sec. ©7=>5rads/sec. @y = 6 rads/sec.

Mg = 9 rads/sec. D= 12.5 rads/sec.

The corresponding magnitude and phase data is then taken from Table (2.2) and the

program is then executed.

Results:
>> FreqGradFOPDT Sim_|
. (Model gain, K,,) Kpavg = 1.13
s (Model time constant, 7,,) Tcpavg = 0.61 sec.

. (Model time delay, d,) Tdpavg = 0.34 sec.

These three FOPDT process model parameters are now put in transfer function form,
equation (1.1), to generate a model nyquist plot to compare the trajectory with the
process nyquist plot; the results are shown in figure (2.43). The MATLAB commands
to draw a nyquist or bode plot from frequency response data is shown in a file entitled
“PT326 Nyquist Bode Plot” in Appendix 2 section 1, page A22.
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Figure (2.43) Nyquist plot of process (dashed line) and process model (solid line)

Validation: The plot in figure (2.43) indicates that the FOPDT model is a good

model of the PT326 process trainer. The low frequency gain is particularly accurate.

2.3.2.2 SOPDT Model
The SOPDT model structure is shown in equation (2.18).

Kae™

14+ gmS+ams (2.18)

Gu(s) =

The two-stage approach, combining an analytical and gradient method, is also used to
obtain the parameters of a SOPDT model. The ten frequency values that were entered
for the FOPDT model program from Table (2.2) are now entered into the SOPDT
program  written by O’Dwyer (2002). The program is entitled
“FreqGradSOPDT_Sim_1"" in Appendix 2 section 1, pages A1l — A22.

Results:

>> FreqGradSOPDT Sim 1
. ans=1.13 (Ka)
> ans = 0.5704 (@m1)
. ans = 0.0775 (Amz)
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. ans = 0.23 ()
The process SOPDT model transfer function now becomes:

Gals)= UL 2 (2.19)
" 0.07755% +0.57045 +1 '
A different SOPDT model structure is shown in equation (1.3),
. s Kﬂe.m
(Im{x}_
{ft.'i‘-l- lxh.i"i* I) {]_3}

As an extra piece of information, the two time constants in equation (1.3), 7; and 1,
can be deduced from equation (2.19) using MATLAB. See the program
“SOPDT _Roots” in Appendix 2 section 1, page A23. This program gives the
following results:

7; = 0.22 seconds

72 = 0.35 seconds
The SOPDT model transfer function in equation (2.19) is used to plot the nyquist and
bode plots of the model on the same plots as the nyquist and bode plot of the PT326
process trainer, to validate the model. The resulting plots are shown in figure (2.44)
and figure (2.45). The MATLAB commands to draw the bode plot in figure (2.45) are
in “SOPDT_FD_Bode” in Appendix 2 section 1, page A23.

o8k Process is dashed line
Madel is salid line

A 05 o 05 1

Figure (2.44) Nyquist plot of PT326 (dashed line) with SOPDT model (solid line)
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Figure (2.45) Bode plot of PT326 process trainer (Black dashed line) and SOPDT

process model (Blue solid line)

Validation: The plots in figures (2.44) and (2.45) show that the SOPDT process
model provides very good fitting of the PT326 process trainer. This is true even at
high frequencies. The model gain estimate is the same as the process gain. The result
proves that the method works very well in identifying a SOPDT model for a process
with a time delay. This result is confirmed in a conference paper by Kealy and
O’Dwyer (2003b) that compares model identification techniques on a real process.
This paper can be viewed in Appendix 2 section 6.4, page A195.

2.4 Case Study — Feedback Procon pH Rig

The pH measurement variable is expressly designed to report the activity of hydrogen
ions in an aqueous solution. The true concentration of the hydrogen ions may differ
from its measured activity at pH levels below 2, where ion mobility may be impeded.
Most pH loops have control points in the pH 2 — 12 range, however, where activity
and concentration are essentially identical. Consequently, the pH measurement will
be used herein as an indication of the concentration of hydrogen ions [H '] in solution.

The pH loop has been generally regarded as the most difficult single loop in process
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control, for many reasons. First, the response of pH to reagent addition tends to be
non-linear. Second, the sensitivity of pH to reagent addition in the vicinity of the set-
point tends to be extreme, in that a change of one pH unit can result from a fraction of
a percent change in reagent addition. Thirdly, the two relationships above are often
subject to change, especially when treating wastewater. And finally, reagent flow
requirements may vary over a range of 1000:1 or more, especially when treating

wastewater (Shinskey, 1988).

The pH rig used in the experiments is the Procon pH Process Control Trainer, 38
Series, from Feedback Instruments Limited shown in figure (2,46). The effluent to be
treated is stored in the effluent holding tank and fed to a circulating pump. The liquid
passes through a manual flow control valve and variable flow-meter before entering
the reaction vessel via an inlet. After being mixed with reagent, the liquid exits
through an overflow to a treated fluid tank. The pH of the liquid in the process vessel
is monitored using the pH probe. The reagent is stored in the reagent holding tank and
fed via an inlet to the circulating pump. The liquid passes through a manual flow
control valve, variable area flow-meter, solenoid valve and servo valve before

entering the reaction vessel.

What is recognised as the non-linearity in pH control loops is the process titration
curve, the relationship between measured pH and the amount of acid or base reagent
added to a solution. The reagents in the experiments are acids or bases of known
concentration, pH4 and pH10, added to the solution in the reaction vessel (see figure
(2.46)). The pH measuring electrode and associated instrumentation is calibrated to
give an output of 4mA when immersed into a pH4 (acid) solution and 20mA when

immersed into a pH10 (base) solution.
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BFcedback pH Process Rig 38718

Figure (2.46) pH Process Rig

The ftitrations are conducted batch-wise by adding reagent incrementally to a
measured volume of process solution in the reaction vessel. The first titration curve is
generated by depositing 40ml of pHIO solution and zero pH4 solution into the
reaction vessel. Increments of pH4 solution are subsequently added and the pH value
recorded when the pH value settles down. The result of this experiment is shown in
figure (2.47). The data for generating “Titration Curve 1” is shown in Appendix 2
section 2, page A25, in Table (TC 1).
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Figure (2.47) Titration Curve 1

The second titration curve is generated by depositing 40ml of pH4 solution and zero
pH10 solution in the reaction vessel. Increments of pH10 are then subsequently added
and the pH recorded. The result of this experiment is shown in figure (2.48). The data
for generating “Titration Curve 2” is shown in Appendix 2 section 2, page A26, in
Table (TC_2). Both titration curves are plotted on the same plot and shown in figure
(A2.1) on page A27 in Appendix 2.
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Titration Curve
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Figure (2.48) Titration Curve 2

The titration curves convert the acid/base ratio on the input to the mA output in a
non-linear fashion. The titration curves are used in the calculation of the process
model gain parameter, K,,, in the identification stage. When the reagent to be added to
the solution has a lower pH than the one measured in the vessel, Titration Curve 1 is
used, otherwise, Titration Curve 2 is used. Because of the non-linear characteristics
of the pH process, the process model identification stage takes on a different path
than the ones previously described in sections 2.2 and 2.3. It is decided that the pH
process is “piece-wise” linear. This means that the process is linear within small
ranges in its overall operating range. Eight experiments are carried out, encompassing
different pH starting values of the solution, different volumes of reagent added to the
solution and higher/lower pH values of reagent added to the solution, to obtain the

dynamic model parameters of the process under eight different operating regimes.
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The experiments are carried out by (1) measuring the pH of the solution in the
reaction vessel (2) adding a known quantity and value of pH buffer to the solution (3)
recording the pH output of the solution versus time, as the buffer is added in a batch
manner. The recorded data output is then used to obtain FOPDT models of the
process. The models are determined using three of the open loop identification
techniques discussed previously, namely

e  Two-point algorithm

e  Graphical method

. Area method
An equaliser (characteriser), which uses the inverse of the titration curve, has not

been used in this case to linearise the titration curve.

The gain of the process, at each of the eight operating conditions, is calculated as
follows, using the second entry in Tables (2.3), (2.4) and (2.5) as an example. A
SIMULINK block diagram of the overall system is shown in figure (2.49).

 There is 850ml of pH7 solution to start with in the tank. At a pH of 7, the acid/base
ratio is 1. From titration curve 1 in figure (2.47), when the acid/base ratio is 1, the
current output is 14mA.

e Next, 850ml of pH4 solution is added. The acid/base ratio is now (2/1) = 2. This is
based on the assumption that we start one volume of pH4 solution and one volume of
pH10 solution, giving one volume of pH7 solution. Next, one volume of pH4 solution
is added, hence the 2:1 ratio.

¢ The current output is then determined as 10.6mA from figure (2.47). The current
output difference is (14 — 10.6)mA = 3.4mA. The non-linear gain is therefore (3.4/2)
= 1.7 (figure (2.49)).

e The change in pH due to the addition of 850ml of pH4 solution is 1.11, as measured
by the pH sensor. The pH rig gain is (pH_Change/Acid:Base Ratio) = (1.11/2) = 0.56
(figure (2.49)).

» The process gain is then determined as (0.56/1.7) = 0.33.
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Figure (2.49) Block Diagram for Calculating Process Model Gain

The process model time delay and time constant estimated values are calculated in
the ways previously described in sections 2.2.1, 2.2.2 and 2.23. These experiments
are carried out using the “Graphical”, “Two-Point Algorithm” and “Area” methods of

process model identification.

The results of these twenty-four experiments are plotted in Appendix 2, section 2,
Technical Report pH Rig, on pages A24 — A51. The results are summarized in Tables
(2.3), (2.4) and (2.5). The experiments were performed using MATLAB/SIMULINK
and HUMUSOFT data acquisition software together with the required hardware
described in chapter 1. The sampling time was 0.05 seconds. In Tables (2.3), (2.4)
and (2.5), Km = K, process model gain estimate; dm = d,,, process model time delay,

and tm = 7, process model time constant. The ratio of time delay to time constant,

dyl T, 18 also given in the last column.

2-Pt Algo.|2-Pt Algo. | 2-Pt Algo. |dm/tm

Starting Adding Km dm tm Ratio
850ml pH7 |850ml pH10| 1.50 1.88 1.13 1.67
850ml pH7 | 850ml pH4 | 0.33 6.40 1.50 4.27
1670ml pH7 |850ml pH10| 0.46 2.30 210 1.10
1670ml pHT | 850ml pH4 | 0.16 1.28 0.68 1.89
850ml pH8.3|850mi pH10| 0.35 2.85 1.20 2.38
850ml pHS5.6| 850ml pH4 | 0.33 3.68 1.88 1.96
850ml pH5.5/850ml pH10| 0.30 1.93 0.83 233
850ml pH8.1| 850mI pH4 0.25 1.73 0.53 3.29

Table (2.3) Two-point algorithm models
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Table (2.5) Area method models

Graphical | Graphical | Graphical | dm/tm
Starting Adding Km dm tm Ratio
850ml pH7 |850ml pH10 1.50 2.10 1.55 1.35
850ml pH7 | 850mI pH4 0.33 7.40 1.80 4.1
1670ml pH7 |850ml pH10 0.46 3.60 1.80 2.00
1670ml pH7 | 850mi pH4 0.16 2.30 0.65 3.54
850ml pHB8.3/850ml pH10| 0.35 3.50 1.55 2.26
850ml pH5.6| 850ml pH4 0.33 4.75 1.80 2.64
850ml pH5.5(850mI pH10| 0.30 2.90 0.85 N
850ml pH8.1| 850ml pH4 | 0.25 2.70 0.55 4.91

Table (2.4) Graphical method models

Area dm/tm

Starting Adding | Km | dm | tm | Ratio

850ml pH7 |850ml pH10| 1.50 |1.61|5.42| 0.30

850ml pH7 | B50m| pH4 | 0.33 |5.27|6.66| 0.79

1670ml pH7 (850ml pH10| 0.46 |2.71|3.55| 0.76

1670ml pH7 | 850ml pH4 | 0.16 [2.97|3.98| 0.75

850ml pH8.3|850ml pH10| 0.35 |1.84|2.40| 0.77

850ml pH5.6| 850ml pH4 | 0.33 |2.80(3.92| 0.71

850ml pH5.5/850ml pH10| 0.30 [1.53|2.91| 0.53

850ml pH8.1| 850ml pH4 | 0.25 |1.93|2.20| 0.88

The results shown in Tables (2.3), (2.4) and (2.5) indicate that there are different
model gains, model time delays and model time constants for different operating
conditions on the pH rig. Therefore, it would not be realistic to identify just one
model for this process. A representative example of the results obtained is
demonstrated in figure (2.50) showing that the identification algorithms worked
reasonably well.
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Figure (2.50) Open loop step response of process and FOPDT process model using
the Graphical identification method

Figure (2.50) shows the accurate fitting of the process, under the conditions described
in figure (2.50), and the FOPDT process model open loop step response. In general,
the Graphical and Two-Point identification methods obtained satisfactory process
models. The Area method of process model identification was less satisfactory. This
is consistent with previous results. All the process and model open loop step

responses are demonstrated in Appendix 2 section 2, pages A28 — AS1.

2.5 Conclusions

Identification of a process model in open loop is a relatively straightforward exercise.
In general, simple FOPDT process models are obtained using these techniques
(SOPDT process models are also possible as described in the frequency-domain
method). Care must be taken with the input signal to ensure that the output is
operating in the linear region. Therefore, size of input signal and polarity of input
signal are issues that need to be considered. A difficulty with open loop identification
on a real process is that the process generally has to be taken out of commission for

the experiments to take place.
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Of the methods described in Chapter 2, the graphical and two-point methods in the
time-domain, and the analytical and gradient approach in the frequency-domain were
satisfactory in identifying accurate process models both in simulation and
implementation. The area method was less satisfactory in identifying accurate process
models and the method of moments was the least satisfactory of the open loop
methods. A problem with the method of moments approach is the necessity of

applying a pulse input to the system in the MATLAB/SIMULINK environment.
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Chapter 3 : Closed Loop Time-domain

Identification of a Process Model

3.1 Introduction

In 1982, Yuwana and Seborg (1982) proposed a simple on-line algorithm that used
the closed-loop servo step response and the Pade approximation of the dead-time
element to evaluate the parameters of a first-order-plus-dead-time process model.
Yuwana and Seborg (1982) estimated the process model parameters from the under-
damped process output obtained under proportional control. Bogere and Ozgen
(1989) extended the Yuwana and Seborg method to estimate a second order plus dead
time (SOPDT) process model as many processes are better represented by the
SOPDT approximation. The test is also carried out in closed loop under proportional
control. The identification method can be readily applied regardless of whether the
response obtained during closed loop identification is under-damped or over-damped.
Lee (1989) modified the identification algorithms by matching the dominant poles of
the closed-loop model to the poles of the observed process response. This
modification enables the method to be used for processes with large dead times.
Mamat and Fleming (1995) proposed a method to identify a first-order-plus-dead-
time process model in closed loop under PI control. The controller parameters are
chosen so that the response is under-damped. Suganda er al (1998) described a
method for establishing second order plus dead time process model parameters under
closed loop PI control. It can be readily applied regardless of whether the response
obtained during closed loop identification is under-damped or over-damped.

This chapter investigates the closed loop identification methods of Bogere and Ozgen
(1989), Mamat and Fleming (1995) and Suganda er al. (1998) in turn. These three
methods are chosen because the popular FOPDT and SOPDT process models are
identified using the Proportional (P) and Proportional/Integral (PI) control algorithms.
The methods are firstly explained and then the identification techniques are carried

out on a simulated process and a real process.
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3.2 Process Under Proportional Control

The first closed loop identification technique investigated is based on a paper by
Bogere and Ozgen (1989). The method identifies a SOPDT model shown in equation
(1.3), introduced in Chapter 1. The test is carried out in closed-loop under

proportional control, as shown in figure (3.1).

Kune e
5+ l}{fz.s'+ l)

Gu(5)= (i_ (1.3)

K. is the process model gain, d,, is the process model time delay and the two time
constants are denoted by 7; and 7. The proportional gain is set so that the process
output has an oscillatory response as shown in figure (3.2). The method is based on a
method originally proposed by Yuwana and Seborg (1982). Consider a conventional
feedback control loop. The process transfer function, G,(s), and the unmeasurable
disturbances on the output, d(s), are not precisely known (See figure (3.1)).

L[] ?
Disturbance, di=)
\ .D L 3 iw B . s simout

0.005240 Ss+ 1
Process Transer Y= om
Function

Rig) = UP Preportional Procass
Gain, Ko Transpert Delay

Figure (3.1) Conventional Feedback Control Loop

7




yt),

- |ime

I
I
|
|
dm
Figure (3.2) Underdamped transient response, for a step input

In the identification stage, the controller is switched to proportional control mode,
such that controller C(s) = K.. The closed loop transfer function, for set point
changes, afier substituting equation (1.3) for the process model transfer function,
becomes

Y(s) e

R(s) (is+ras+1)+Ke ™™

(3.1)

where K = K,,K.. The process model parameters for equation (1.3), K, 7; and 7, can
be analytically determined from the closed loop response data, if an approximation
for the time delay in the denominator of equation (3.1) is made. The time delay term
approximation used is a three-term modified Taylor approximation. This

approximation is

e ™ =1+ad s+bd:s® (3.2)

where @ = -0.8647 and b = 0.226 are the optimal values that effectively lump the
higher order terms. The modified Taylor approximation is more accurate than the
original three-term Taylor series approximation and the first order Pade

approximation (Bogere and Ozgen, 1989). Substituting the modified-Taylor
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approximation for the time delay into the denominator of equation (3.1), and

rearranging the denominator results in

Y(s) K'e

- (3.3)
R(ﬁ'] ';'2 3;1 + ZgTS +1
where
K

Ke= 3.4
K+1 )

2T T_t""Kbdi
e e e 3.5
(1+K) &)

2J0+ K+ Kb 2)

For a step input of magnitude A, such that R(s) = A/s, and a suitable K. setting, an
oscillatory response is obtained as shown in figure (3.2). The measurable quantities
At and Yy Yy Yz Yo and Y. on the response curve are used to determine the four
SOPDT process model parameters. The process model gain, K,,, is obtained using
equation (3.7).

VoY
K A4-|r.-7i)

Kw=
(3.7)

The time delay, d., is taken directly as the time interval between the time when the
set-point input is made to the process and the time when the output from the process
begins to respond to the input. The damping coefficient, ¢, in equation (3.3) is the
average value of ¢;, equation (3.8) and &, equation (3.9):

¢ = o) §
(++ (ox.(«)) )

—log, (ﬂz}

§3= N2
(4 T +(]ug,(m)) )

(3.8)

(3.9)
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where

&0 Yo—Fm
44 e

Yp!_Ym
and

:YPI'-YI-II
Y}?I_Y\D

2

(3.10)

(3.11)

The two time constants, 7; and 7 in the SOPDT process model, shown in equation

(1.3), are determined using equations (3.12) and (3.13) respectively.

n=a-+ )B

n=a-p
where

= [E]@h—gi(nx)—n.sﬂxdm
g
and
p=(B+p.+5,)

with

B, =(%)‘(1 -+ k) +K)-1)
8, =(-‘:‘ri];ﬂ(1 +K)-a)K d,

B, =K d:(0.25K & +b)

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Note that in equations (3.14), (3.16), (3.17) and (3.18), K = K,,K.. It is also worth

noting that the method works on an approximation of the delay term in equation (3.1)

so therefore this approximation is a possible source of errors.
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3.2.1 Simulation:

As a test of the accuracy of the method, a step input is applied to the simulated
process shown in figure (3.3). The gain setting of 2 ensures an underdamped response
as shown in figure (3.2). The second order process has a process gain equal to | and a

time delay equal to 1 second.

1
E > ﬂy > »| simout
5242 Sg+ 1
Step Transport To Wodkspace
=025 Delay = 1 Transfer Fen

Figure (3.3) Simulated process to test the Bogere and Ozgen (1989) method

The MATLAB commands for the Bogere and Ozgen method are included in
Appendix 2 section 3, page AS3, entitled “CL_BandO 17; the following SOPDT

parameter values are deduced:

. Model gain, K,,, = 1.00
. Model time delay, d,,, = 1.20 seconds
. First time constant, 7;, = 2.53 seconds

s Second time constant, 7>, = 0.58 seconds

These four parameter values for the second-order-plus-dead-time process model in
equation (1.3) are inserted into SIMULINK files and the model responses compared
to the process responses. The model parameters for the closed loop test are shown in
figure (3.4):
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Figure (3.4) SIMULINK file with model parameters using Bogere and Ozgen method
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Figure (3.5) Closed loop step response comparison of process and model

Next, an open loop step test is carried out on the process and the model for further
validation of the method. The SIMULINK files in figure (3.6) and (3.7) are used for

this purpose. The resulting plot is shown in figure (3.8).

>Ry : » P
rocess
5242 g+ 1
Step Transport To Wadspace
-0.25 Delay= 1 Transter Fen

Figure (3.6) Open loop step test on SOPDT process
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Figure (3.7) Open loop step test on SOPDT model of process in figure (3.6)

s o T B o s L e
i i | SRR i nmaiaas ‘. ....... emiaa i :--.E_-_ ...... .. ...... ..... -

] . ______ }_______§l_;lll_d_l_|[i3_i_q _p_r_q:asq uptn Inql step rda-pm

Seconds

Figure (3.8) Open loop step response of process and model

The frequency-domain is now used as a further alternative validation of the model.
Figure (3.9) shows the comparison of the nyquist plot for the process with the nyquist
plot of the SOPDT process model. Figure (3.10) shows the bode plot of process and
model. The MATLAB program to draw the nyquist and bode plots shown in figures
(3.9) and (3.10) is given in Appendix 2 section 3, page A53, entitled “CL_BandOQ 2”.
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imaginary A3

Figure (3.9) Nyquist plot of SOPDT process and model using Bogere and Ozgen
(1989) identification method

Magriuds (15)

RE T E TR

Phisa (deg)

Figure (3.10) Bode plot of SOPDT process and model using Bogere and Ozgen
(1989) identification method

The solid line is the bode plot of the model. The dashed line is the bode plot of the

process.
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Validation: The results of the plots in figures (3.5), (3.8), (3.9) and (3.10) show that
the identified model is a reasonable replica of the SOPDT process. The simulated
process model gain estimate, K., is the same as the process gain, K,,. This is very
desirable. The time delay estimate of the simulated process model, d,,, is slightly

longer than the simulated process time delay, d,.

3.2.2 Implementation

The Real-Time Toolbox and Data Acquisition equipment are used as in previous
experiments to identify a second order plus dead time model of the PT326 process
trainer (Serial number 326-9-19). The SIMULINK file in Figure (3.11) is used. The
command signal of 0.25 corresponds to a voltage step of 1.25 Volts and a temperature
change from 25°C to 33°C. This size of step input ensures that the process trainer is
operating in the linear range. This is desirable as the models identified are linear
models. The response data is analysed to identify a SOPDT process model. The
response data is shown in figure (3.12).

ng ] PT326_Prop_Ctrl
Adapter
J RT Out
Set-point = 0.25 Gain Real Time Out
Channel 1
RT In | simin simout
Real Time In Process Data To PT326
Channel 1 From PT326

Figure (3.11) Proportional only controller for process identification
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a15¢
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008}

Figure (3.12) Plot of response data from PT326 Process Trainer to step input

Despite the fact that Figure (3.12) shows a non-linear response i.e. the decay ratio is

non-uniform from peaks 1-2 and 2-3, it was decided to use the method to attempt to
identify a SOPDT process model. From the data in Figure (3.12), the following

results are obtained.

¥py, output value at first peak = 0.3960
¥pz, output value at second peak = 0.2681
Fpqr, output value at first valley = 0.103
Y., output value at infinity = 0.2

At =0.72 seconds

A=025

K =0.86
K=2.58

dy = 0.25 seconds
a; = 0.4949
az;=0.4393
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[Figure (3.12)]
[Figure (3.12)]
[Figure (3.12)]
[Figure (3.12)]
[Figure (3.12)]
[Figure (3.11)]
[Equation (3.7)]
[K = K.K.]
[Figure (3.12)]
[Equation (3.10)]
[Equation (3.11)]



£ =0.2185 [Equation (3.8)]

£>=10.1298 [Equation (3.9)]
¢=0.1742 [(& + &2)/2]
a = 04625 [Equation (3.14)]
P:=0.1369 [Equation (3.18)]
> = 0.0944 [Equation (3.17)]
B =-0.1740 [Equation (3.16)]
f=0.2393 [Equation (3.15)]
7; = 0.70 seconds [Equation (3.12)]
7; = 0.22 seconds [Equation (3.13)]

The model parameters are inserted into a SIMULINK file as shown in figure (3.13).

One (closed loop) validation result is shown to demonstrate the applicability of the
method.

) b f@ > s »  simout
(10,70 s+ 10.22)
Ris) Gain Delay c(®
Step =025 0.25 Sec Zer-Pole

Figure (3.13) SIMULINK file with second order plus dead time model parameters

The program is run for 10 seconds and the results plotted and compared with the data

from the real process shown in figure (3.11). The resulting plot is shown in figure
(3.14).
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Figure (3.14) Comparison of closed loop step response of SOPDT model with closed

loop step response of PT326 process trainer

Note the presence of the steady state error inherent in proportional controllers. The
plot in figure (3.14) shows that the model captures some of the dynamics of the
process though somewhat inaccurately. The process model gain estimate, K,,, is not
large enough. However, Bogere and Ozgen’s method is easily implemented. It is
important to generate a well-defined underdamped closed loop step response to
obtain the relevant points on the data.

3.3 Process Under Proportional Plus Integral Control
3.3.1 FOPDT Model

In earlier years, the first-order-plus-dead-time (FOPDT) process model is estimated
from the process reaction curve obtained from an open loop step response of the
process, with the risk of process runaway. Some of these open loop techniques have
been explored in Chapter 2. As has been discussed, Yuwana and Seborg (1982)
developed a method to approximate a process by a FOPDT model from the under-
damped closed-loop step response data, the closed loop system was under
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proportional control. The practical advantages of the Yuwana and Seborg (1982)
method, and subsequent variations of the method, are that they require only a single
closed-loop test and the algorithms are simple. The main disadvantage is that the test
is performed under proportional control, which introduces steady-state offset during
testing. A method described by Mamat and Fleming (1995) is used to identify a first-
order- plus-dead-time model in closed-loop under Pl control. Consequently, steady-
state offset is eliminated. Since most of the controllers in industry are inherently PI
controllers, previous knowledge of the operation of the controllers on the plant can be
useful when selecting the test P1 parameters, K. and 7. The model structure is shown
in equation (1.1). The PI controller transfer function is shown in equation (3.19).

G.(s)= "'*“*;r-_]s} (3.19)

If the PI controller parameters K. and 7| are chosen such that the closed-loop response
is under-damped, as shown in figure (3.15), then by using a 1™ order Pade
approximation for the dead-time term, ¢ @+’ in the denominator of the closed loop

transfer function, the closed-loop response can be approximated by a second order
plus dead-time transfer function (Mamat and Fleming (1995)):

C(s) Ke®
G (5) = = 3.20

15

=1}
Elack nold e 4 process »epul

=T
Tl

a

o pl 152 120

Tima, |

Figure (3.15) Typical under-damped closed-loop servo step response under PI control
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From the closed loop step response data, five characteristic points, Cp;, Cpz, Cys. Iy
and f,,, are used to determine the second order plus dead-time approximation,
equation (3.20), and subsequently, the frequency response of the closed-loop system.
Knowing the dynamics of the closed-loop system and the dynamics of the controller,
the open-loop dynamics of the process can be determined by separating the dynamics
of the controller from the closed-loop dynamics. The equations to determine the
closed loop SOPDT approximation parameters in equation (3.20), K, 4, rand ¢ are as
follows, where 4 is the magnitude of the set-point change as in section 3.2 (Mamat
and Fleming (1995)):

1 t = Cat ?
KaSm e gulnsbal i | 0
A % | €i—Ca 1+ p°

fr' =5 2 (3.21)

e %S, = j-[f?;,—ﬂ'{f)}ff

with Cs, Cpz, Cpy, 1 and £, illustrated in figure (3.15), The frequency-domain is now
used to determine critical points of the system. The phase crossover frequency, .,
and the magnitude at the phase crossover frequency, M, are the two pieces of
information extracted from the frequency response data to use in subsequent
calculations. It can be shown (Mamat and Fleming (1995)), that at the phase

crossover frequency @

)| = —— 3.22
@) 1 +Ga(j w.) 2
LG fw) =0 (3.23)

Z£GGp(jo.) is the phase angle of the loop transfer function at a, . Substituting
Equations (3.19) and (1.1) into Equations (3.22) and (3.23), and solving for d, and 7,
the parameters of the FOPDT model, K., 7, and d,,, are given by equations (3.24),
(3.25) and (3.26).

Ke=—tc. (3.24)




J (14+M) (KK n) O+ TP 0d)-MT0?
T =

3.25
MWE Ti { )

d..=L[tan"'(mrTi+tan"'( ] ]'] (3.26)
e T

The equation for determining 7, is a corrected version of the equation given by
Mamat and Fleming (1995), as described originally by Kealy and O’Dwyer (2002a).
The step-by-step procedure for developing equations (3.24) to (3.26) is now
demonstrated:

G.(5)=K.(+—)
Iis (3.19)

Gpfs) is modelled by G, (s):
Kn g" d'.!l'

GP(S)EGE{S}z ]+'r-.|..f (ll]

Ge(s) = K{l + LJ _K:(i5+1)

75

5

fG-:G,.(jwc] = %

IGﬁUmc =M

__KrK-ﬂl ﬁm:+l_ M

GPG. | cA =
| Ve lol+me: 1+M

Cross Multiply: K.K .77 +1(1+M)= Tiw 1+ 2 oM

2 2
Divide both sides by ZioM: 17 72g? = MK eKuVT i +1

MT;&I;
4
1+M) KK 02 +1
Square both sides: l+r,‘_mf=( ) Kzi (zqm )
M Tiw.
2
1+M IR TR a4
Take 1 from both sides: rf,.guﬁ:( ) KiK (T - )—l
M’ T} !
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Equivalent to: 75’ = (HM) KiKn (Tawﬁl) M T ot
Tl M fim:_ M ?2 E

(+M) KK 0 +1)-M T o
M’T o

Equivalent to: 75 @’ =

Divide both sides by @.”, i.e. multiply by //a.”:

1 [ +M) KA 02 +1)-M T
e mi M Tfmi

(1+M) K2 KT 0k +1)- M T
M*T} w:

Equivalent to: ¢, =

(+M) KKl +1)- M
M'T} o}

Square root of both sides: ¢, = ‘j

J+M) AT 0t +1)- M T2 o
MmﬁT:

J(l +M)2(K¢K,.)l(1 + ?’fmi)-Mszmﬁ

M@iT,

Equivalent to; ¢, =

Equivalent to: ¢, =

The (1 + M)* term was missing from equation (14) in the Mamat and Fleming (1995)
paper, page 1298. Also, 7, in equation (3.26) was written as 7, in this paper.

In summary, the equations to determine the model parameters are:

Ti
Kn=—Cau 3.24
K.S. (3.29)
2
\’(1+M) (KJ{,.)Z(H Itwd)—M'T} o
"= (3.25)
MalT,
1 -1 o -1 1
dm:_ tan {m:l‘ll)+ta-ﬂ ( } {326}
(i Tme




3.3.1.1 Simulation

To test the validity of the proposed method, a “known™ process, shown in equation
(3.27), is simulated using the MATLAB/SIMULINK software and the identification
parameter results compared with the “correct” values. This is the same process as

shown in equation (1.4).

Gp(s) = ]e_;; (3.27)

This process is in closed-loop with a PI controller (see figure (3.16)) where the

proportional gain is set to 1 and the integral time is set to 1 second.

E % » FiD > ﬁ%{ L i | Output_Data

Riz) Geg) Process Process =)

Systam Input Controller Transport Delay  Transter Funclisn System Clutput
Transfer Function

Figure (3.16) Block diagram of standard feedback control system

A step input, R(s) = 1, is applied to this system and the resulting output data is used
to determine the parameters of a second order plus dead-time approximation of the
closed-loop system in the time domain. The parameters of this approximation are
calculated using the characteristic points C, Cpz, Cu, #,; and f,2 as shown in figure

(3.15) and equation (3.21). The plot of the output response is shown in figure (3.17).

Figure (3.17) Closed loop step response of process in equation (3.27)
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The values are determined as follows:
Cps = 1.5008, Cpz = 1.1122, Cys = 1, #5; = 3 seconds, £,>=7.71 seconds.

Then, from equation (3.21), the following parameters are calculated:
K=1, p=02381, £{=0.2316, 7= 0.7292, Sc = 1.0001 and d = 0.6623 seconds.

The K, £ 7 and d values are inserted into equation (3.20) to give the closed-loop
second order approximation of the overall system. The frequency domain is now used
to determine critical points of the system. The frequency response of the second order
approximation is obtained using the bode command in MATLAB. The MATLAB

commands to draw the plot are shown in figure (3.18).

>=num = [1];den = [0.532 0.338 1];

»>8ys = ti{num,den, td',0.6623) Bode Diagrams
>>bode(sys) From LK1
R e 0dB
i M is the magnitude at the phase
= crossover frequency
%
E -180
g - Blue Line is requency response of

second order approximation

" Red-- Lina is al phase crossower frequancy
Magnitude is measured at this frequency

Phase crossover frequency is 1.5705 radians/second
Frequency (mad'sec)

Figure (3.18) Frequency response plot of second order approximation
From figure (3.18), the phase crossover frequency and the magnitude at the phase

crossover frequency are obtained using the following MATLAB commands:
>>|mag,phase,w| = bode(sys,w);
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>>[gm,pm,wcp,wecg] = margin(mag,phase,w)

gm=0.62: pm=-31.14: wep=157: wcg=183.
From the bode plot in figure (3.18), the magnitude of the gain, M, at the phase
crossover frequency, @. = 1.57 rads/sec., is equal to 1/g, = 1/0.62 = 1.62. The
FOPDT model parameters estimated (by applying equations (3.24) to (3.26), with the
FOPDT model parameters estimated using Mamat and Fleming’s equations in

brackets for comparison) are as follows:

e Model gain, K,, = 1.00 (0.99).
* Model time delay, d,,, = 1.10 (0.99).
e Model time constant, 7,,= 1.04 (1.04).

The “correct” value for each of these parameters is 1. The three estimated parameter
values of the FOPDT model are inserted into a MATLAB/SIMULINK file and the
model open-loop step response compared with the simulated process open-loop step
response. A Nyquist plot of the FOPDT model and process is also drawn for
validation of the proposed method.

Tiemne-dotrasin comparison of somdsted procew sd FOMIT model of simulsed procens.

noak
DBE
air Ried line is open loop siep response of FOPDT modd of smwdaied
proces, Km = 100, dm = 110, tm = 104
06-
05F
0A4r Bilue line e open loop op respomss of the simslsied proces., s fing
onder proces with a one second tme delay
0af
02
[IRES
u i A i i A i i A
0 1 2 3 4 5 B 7 8 g 10

Figure (3.19) Step response of process in equation (3.27) and FOPDT model
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Imaginary Axis
|
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Figure (3.20) Nyquist plot of process in equation (3.27) and FOPDT model

Validation: From the time- and frequency-domain comparisons in figures (3.19) and
(3.20), it can be seen that the quality of the “fit” between the process in equation
(3.27) and the first order plus dead-time model of the process is reasonable. The
modelling method gives a better process model gain estimate, K, than the Mamat
and Fleming (1995) method. Mamat and Fleming (1995) give a better process model
time delay estimate, d,. The process model time constant estimate. 7, is the same in
both cases. The results also show that the dynamics of the model replicate the
dynamics of the process quite accurately. This is to be expected, however, as the

process and the model are both of the first-order-plus-dead-time type.
A second simulated process (also considered by Mamat and Fleming (1995)) is then

considered using the same methods and the results compared as before. This is a third

order plus delay process, the transfer function of which is shown in equation (3.28).
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A= 3.28
Grls) (s +1)7(1+25) @28)

The PI controller values, K. = 0.6 and K;= 0.2 (K, = K./T}), ensures an under-damped
closed-loop step response. The parameter values determined for the second order
approximation (Equation (3.20)) are K = 1, { = 0.2636, 7= 3.1642 and d = 3.3292,
From a bode plot, the phase crossover frequency, @. = 0.3529 rads./sec. and
magnitude, M = 1.53, are determined. Using equations (3.24), (3.25) and (3.26), the
following first order plus dead-time model parameter values are obtained, with the

results from Mamat and Fleming’s equations in brackets for comparison:

e Model gain, K,,,= 1.00 (1.00)
e Model time delay, d,,,= 4.38 (4.69)
e Model time constant, 7,,=2.58 (2.59)

Time-domamn companson of smulated proceis md FOPDT model of process
1 . - — o

oot
oat
i
0B}
os} Rede line is open loop step response of FOPDT model of
uimmulsted proceia. Km = 1,00, taum = 158 and dm = 4,18
D4t
o3t Blue line is open loop step response of simulsted proces, o thind
arder process with o three second time delmy
02f
DAt
n i i i L i
o 5 10 15 20 25 30

Seconds

Figure (3.21) Open loop step response of process in equation (3.28) and FOPDT
model
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Validation: The time-domain open loop step response of the third-order-plus-dead-
time process in equation (3.28) is shown in blue in figure (3.21). The first-order-plus-
dead-time model of the process is shown by the red--line in figure (3.21). It can be

seen that the model and process step response are close, so the model is valid.

Froqueency-tomain comparson af simulsted process and FOPDT model

. : - —

Imaginary Axis

Real Axls

Figure (3.22) Nyquist plot of process in equation (3.28) and FOPDT model

Validation: The comparison of the nyquist plot of the third-order-plus-dead-time
process in equation (3.28) with the nyquist plot of the first-order-plus-dead-time
process model shows that the model is accurate, especially at low frequencies. The

process model gain estimate, K,,, is very accurate.

3.3.1.2 Implementation

The method described in this section is now implemented on a real process (PT326
process trainer). Compared with the open-loop system identification methods, closed-
loop identification methods are often more desirable in industrial applications
because they cause less disruption to the operation of the system. The SIMULINK

file in figure (3.23) is used in the closed loop identification process.
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HE] 2 I PT326_1d_Ctr

Adaptar
J -+ P Pl AT Cut
Set-point Pl Controller Real Time Out
Channal 1
AT In 1 simin smout
Real Time In Procass Data To PT326
Channel 1 From PT326

Figure (3.23) Closed loop system using real-time toolbox

The next task is to enter the proportional gain and integral gain controller parameters,

using tuning rules, so that the system has an under-damped closed loop step response.

The tuning rules require the model parameters be known in advance. For this reason,

a representative result from the results of the experiments carried out in open loop is

taken, yielding the following model parameter values and transfer function:

. Model gain, K, = 1.1,
. Model time constant, 7, = 0.6 seconds,
. Model dead time, d,,, = 0.26 seconds.

l_le-ﬂ.lﬁa
14+ 0.65

Gm(8) =

(3.29)

These are considered as “starting values” of the process model parameters. The first

tuning rule to be used is taken from page 16 of the “Handbook of PI and PID
controller tuning rules”, by O'Dwyer (2003). The process model is a FOPDT model

shown in equation (1.1). The controller is the ideal PI controller and has the following

transfer function;
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1
7 8)=K.| 1+— 3.19
G(5) K[ i ] (3.19)

i §

PI Tuning Rule 1: The tuning rule is the process reaction curve method of Ziegler
and Nichols (1942).

0.9x Tm

Ke= (3.30
Kmxdm )
a 09x06
“ 1.1x0.26
_ 054
© 0286
K.=1889
and
T,=3334d,
7,=333x026 (3.31)
7, = 0.866
To convert integral time, 7}, to integral gain, K, the following formula is used:
k=X
T
1.889
0.866 ( )
K,=2182
These settings give a quarter decay ratio as long as the following criteria is met:
dn oy (3.33)

Tm

The parameters for proportional gain and integral gain are now entered into the
SIMULINK file in figure (3.23) and the closed loop step response data is used to
determine the “updated” FOPDT model parameters using the closed loop
identification method. The step size is set to 0.2, which corresponds to a voltage
reference of 1V. There is no clipping of the output signal at this value. The plot of the
output response data is shown in figure (3.24).
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Ziegler and Nichols process reaction rule with K = | 889 and Ki = 2 152
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Figure (3.24) Closed loop step response — PT326

The algorithm proposed is now run to determine the “updated” parameters of the
FOPDT process model. The program used to do this is entitled “CL_MandF 1" and
is in Appendix 2 section 3, page A53, with the following second order approximation
parameters:

e K=100

o d-=0495

o t=023

o (-0.084
These parameters are obtained by applying equations (3.21) using the data in figure
(3.24). The second order approximation of the system is then

C(s) _ 1.00°0%
R(s) 0.05365*+0.039s +1

Galsy= (3.34)

From the values of X, d, {'and 7, the frequency response of the closed loop system,
Gei(jw), is now determined using the MATLAB command bode, as shown in figure
(3.25).
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Bode Diagrams lor second order approximation of PT328

Phase (deg); Magnitude (dB)

>>{mag phase.w| = bode(sys.w),
S5 s x[gm pm wep.weg] = marginimag, phaso,w)
.. gm =0.1814, pm = -158.4, wep = 4.1355, weg = 6.07

Frequency (fadsec)

Figure (3.25) Bode plot of second order approximation of PT326

From the bode plot, the phase crossover frequency, we, is found to be 4.1355
radians/second. The magnitude at this frequency, M, is (1/0.1814) = 55. The
parameters of the “updated” FOPDT model are determined from equations (3.24),
(3.25) and (3.26). The MATLAB commands are in Appendix 2 section 3, page A54,
under the title “CL._MandF 2”. This algorithm gives the following results:

* Model gain, K, = 0.86:

s Model time constant, 7,, = 0.42 seconds:

e Model time delay, d,,, =0.51 seconds.

In order to validate the model in the closed loop time-domain, a SIMULINK file is
run, figure (3.26), using the above parameters and the result plotted in figure (3.27).

7 » FiD » % [l T8 > simout
0.42¢+1
R(s)=10.2 Pl Controller Delay Gm(s) Ci=
Kp= 112880 0.51 sec.
Ki=2 182
Kd=0

Figure (3.26) SIMULINK file with FOPDT parameters used to validate model
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" lach vohd e s clowed loop sep respeane of el previows
035t SIMULINK file with Km = (186, taum = 0,42 and dm = 0.5}

03
035t
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D16¢

o1}
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Figure (3.27) Closed loop step response of PT326, FOPDT model of PT326 in figure
(3.26), and model with “starting values”

Validation: From the result in figure (3.27), it is clear that although the closed loop
model fitting (Black solid line) is not perfect, it can be argued that it captures the
dynamics of the process better than the fitting obtained in closed loop with the open
loop model (Green -- line). This is to be expected as the validation test in figure
(3.27) is a closed loop test.

PI Tuning Rule 2: To check the effect on the identification algorithm of using
different PI controller test parameters, the “servo tuning” rules of the “Handbook of
PI and PID controller tuning rules” by O'Dwyer (2003), page 29 are used. These

rules are designed for minimum [AE by Rovira ef al. (1969). The process model is

i L l_le—ﬂ.i‘,ﬁ:
Ga() = 1+0.65
The formula for the tuning rule is
0861
0.7 T
K.= -5 [ (3.35)
Kn dﬂ
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Tm

I= (3.36)
1.020-03239"

Comment: 0.1< dn <1.0

T

The PI controller parameters are calculated to be K. = 1.416 and T, = 0.68 using
equations (3.35) and (3.36). Therefore K; = 2.08. These values are inserted into the
real-time SIMULINK file in figure (3.23) and a step input of 0.25 is applied to the
system. The response data is plotted in figure (3.28).

Rewvire, Musnill and Smuih servo tunang nae for mumimunm LTAE
03 T T T T T T

03

Siep Q25 |---odofeefooemdogloraatamangss
=0 :
B NGE L e g B

02 : e

015 b= _i..“‘,;...g'.j...i...;.-
Bilue lng m closed loop o b et ol 025 D
i . wath K= | 416 and Ki = 208 :
B B S e R
111 -] T o .i ........ %. ....... ! ..... .IE ....... i. “““““ :.' ...... .i .......
o i I i i I i ]
(1] i 2 3 L - ] T A
Seconds

Figure (3.28) Closed loop step response — PT326

The algorithm proposed in Appendix 2 section 3, page A54, entitled “CL_MandF 3"
is now run to determine the parameters of the SOPDT closed loop approximation
shown in equation (3.20) with the following results:

e K=100
o d=029
e 7=0.26
o (=023
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Thus,

8] ~{.20x
_C(s)_ 1.00e s
R(s) 00695 +0.11925 +1

Ui.'f

From the values of K, &, v and ¢ the frequency response of the closed loop system,
Gu(jo), is now determined using the MATLAB command bede, as shown in figure
(3.29).

Boda Diagrams for second onder approxdimation of PT326 process

€ | .num-{0.9967):0en=(0.089.0.112 1]
- ==ays=tinum,den, 1d',0.2807)
E ==bode(sys)
g -
i
" »=[mag,phase,w]=boda{sys,w); 2

ooy ==[gm,pm,wep, weg]=margin(mag, phase, w)

Frequency (rad/sec)

Figure (3.29) Bode plot of second order approximation of PT326

From the bode plot in figure (3.29), the phase crossover frequency, @, is found to be
4.1543 radians/second. The magnitude at this frequency, M, is (1/0.5317) = 1.88. The
parameters of the “updated” FOPDT model are determined from equations (3.24),
(3.25) and (3.26). The algorithm to do this is entitled “CL_MandF 4” in Appendix 2
section 3, page A54. The first order plus dead time process model parameters are thus

given as shown:

e Model gain, K, = 1.18:
¢ Model time constant, 7, = 0.61 seconds:

* Model time delay, d,,, = 0.48 seconds.
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In order to validate the model, a SIMULINK file is run, figure (3.30), using the above

parameters and the result plotted in figure (3.31).

E = i 'Dﬂ 0:111:-1 o

Rizi= 025 Pl Controller Dalay Gm(s) C(s)
Kp=1418 0.498 sec,
Ki=2.08
Kd=0

Figure (3.30) SIMULINK file with FOPDT parameters used to validate model

0.45 T - -
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! SIMULINK file; Km = .18, tman = 0.61 and dm = 0,48
i
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u A e i i i I i i A
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Secomls
Figure (3.31) Closed loop step response of SIMULINK model of PT326, PT326

process trainer and model with “starting values”

Validation: Figure (3.31) indicates that the closed loop step response of the process
model identified using the closed loop data and the identification method (Black solid
line) can be argued to be a better representation of the closed loop step response of
the process than the closed loop step response of the process model identified in open
loop (Green -- line). It is interesting to note that, in both sets of results, the damping

factor of the closed loop response of the system, whose process is identified using the
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closed loop identification method, is less than that of the closed loop response of the
process trainer (as shown in figures (3.27) and (3.31)). Similarly, the damping factor
of the closed loop response of the system, whose process is identified using an open
loop identification method, is greater than that of the closed loop response of the

process trainer, for both sets of results.
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Sensitivity Analysis - 1

From the results obtained from the aforementioned experiments, the process model
gain, K, and the process model time constant, 7., estimates are quite close to the
values obtained from the application of the open loop time-domain identification
methods. However, the dead time, d,,, estimated by the closed loop identification
technique differs considerably from that obtained from the average of the open loop
techniques. It was considered possible that since all of the experiments are based on
the calculation of five points on the step response of the closed loop process reaction
curve (Cis, Cpi, Cpz, fpr and £z, as shown in figure (3.15)), the parameters identified
may be sensitive to errors in the recording of this data. Each of these values are now
changed by £10% from the values obtained from figure (3.28), and the change in d,
with respect to the parameter is evaluated. As each one of the points is changed, the
other four points are kept constant. In the first instance, C,; is changed by +7% as a
change of +10% gives complex values for p (in equation (3.21)). Cp> is changed by —

7% for similar reasons.

Ces ﬂhﬂﬂgﬁd b}" +T7%
Adw =031 __ 4 (3.38)
AC. 007

(s, changed by —10%

A —;
dm = ,ﬂ =33 (3.39)
AC, -0.1
Cpr + 10%
Ad, =0.
e =09857 . 0us (3.40)
AC 0.1
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Cpr — 10%
Ad, 0.0602356

=-0.6023
AC, -0.1
f:p; + 10%
Adn _ 0.094987 — 0.9498
.ﬁ(’pz 0.1
Cp;r— 7%
Ad., 5 —-0.371525 ~53
AC 2 -0.07
"‘Pf + 10%
Ad.,. _ 0.29339 ~ 29339
At 0.1
Ihi — 10%
Ad.. 2, 0.025 025
Aty —01
Ipz + 10%
A
d. iy 0.0674 ~0.674
Aty 0.1
Ipz — 10%%
Ad. _ —-0.0788 0,788
At -0.1

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

These results indicate that the estimation of the time delay parameter, d,,, in the

FOPDT process model, does depend on the accuracy at which relevant data points are
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measured. The ten programs to determine the above parameters are located in
Appendix 2 section 3, pages A54 — A58, under the titles “PD_1" to “PD_10".

Sensitivity Analysis — 2

Because the results of the implementation tests have not been as accurate as was
hoped, two more implementation tests are carried out on the PT326 Process Trainer,
with PI controller values obtained from a variety of tuning rules, and the results
evaluated. The SIMULINK file in figure (3.32) is used in these experiments.

1—0
= PT326_Id_Ctrl
Adapter
J P+ p| Pl - RT Out
Set-point=0.25 P| Controller Real Time Out
Channel 1
simout
To PT326
RT In +———P| simin
Real Time In Process Data
Channel 1 From PT326

Figure (3.32) Real time data acquisition for Process Trainer, PT326

Two more tuning rules are used from the “Handbook of PI and PID controller tuning

rules™ by O"Dwyer (2003) to determine the controller parameters.

Pl Tuning Rule 3: Page 31: Minimum ISE — Zhuang and Atherton (1993). K. =
1.88, ;= 0.96. The tuning rule is shown in equations (3.48) and (3.49)
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B9
K.= *:"93”[.&) (3.48)

Ko N
= L (3.49)
0.690 - 0.1559"
Tm
Comment: 0.1< ﬁ =1.0
Tm

K“E d.: I 1.. I g-.ﬂ.lﬁ:

The FOPDT process model is (G, () = =
l+7.s 14065

Implernentation using Zhuang and Atherton, Kc = 1.8784, Ki= 1.85

0 - =
" i\ >>Cs51 = meanisimin{1400:2000)) = 0.2514
i »>>Ces2 = mean(simin{ 1600:2000)) = 0.2504
o3k || - »>>(353 = mean{simin(1800:2000)) = 0.2522 |
A »>Cssd = mean(simin{1800:2000)) = 0.2535
\ .*’\" P 3
= i A b J 1 b e i
ﬂ_ﬁ uﬁ, I '.. .I' \I _,-" '\“.h‘,.-'" L"““’ IL""._,'.r" b |
A VI LA W
02 v
|\ 55K =0ss20.25=1.0016
0.15 >>Cp1 = max(simin) = 0.3481
| >>0p2 = max{simin{400:600)) = 0.3008
>>p = 0.1055
ot | >>76la = 0,1049 1
{ >>ip1 = 0.905 seconds
[ >=ip2 = 2.41 seconds
0.05F | »>»t=0.2382
L/ »»8c2 =0.1137
>>d = 0.4039
o = . —k

1] 1 2 3 4 5 3 T ] : 10
Seconds

Figure (3.33) Closed loop step response of PT326

Using the values in figure (3.33) and the corresponding bode plot, the phase
crossover frequency is found to be 4.15 radians/second and the magnitude, M, at this
frequency equals 4.8. Using equations (3.24), (3.25) and (3.26), the three parameters
for the FOPDT model are determined to be:

. Model gain, K, = 1.13

. Model time constant, 7., = 0.59 seconds

. Model time delay, d,,, = 0.51 seconds
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These three FOPDT process model parameters are now inserted into a SIMULINK
file and the closed loop step response compared to the closed loop process step

response, for validation of the model. The resulting plot is shown in figure (3.34).

D45t
nar
03t
oag
05|
02t
o5t
LR

Figure (3.34) Closed loop step response: FOPDT process model (Purple) and process
(Blue)

Validation: The result of plotting the process and model closed loop step response on
the same plot in figure (3.34) shows that there is a large difference between the

responses.

PI Tuning Rule 4: The next tuning rule used is on page 29 of the “Handbook of PI
and PID controller tuning rules” by O’Dwyer (2003). The servo tuning rule is
designed for minimum IAE by Smith and Corripio (1997). The tuning rule is shown
in equations (3.50) and (3.51).

0.6z,

K: = —_— (35{})
Kundn

TJ' = rm {3.5’])
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Comment: 0.1< dn <15

Tm

Kne e’ _1.1¢%
I+ 7,8 1+0.65

The FOPDT process model is (7,,(5) =

Direct synthesis - Minimum LAE - servo - Smith and Comiplo, Ke = 1.258, Ki = 2.097

0.35— - o —_— -
- >>Css1 = mean(simin{1000:2000)) =
[ >>(552 = mean(simin(1250:2000)) =
ot || >>Cs83 = mean(simin{1500:2000)) =
| | | o >>Css4 = mean(simin(1750:2000)) =
{ I I
E::f-'ﬁuzﬁ 3 I I :I' \'-,..-"'--"-"A" wf.-.r-"“ W w"\v./’ﬂ-_.ﬂ.m
i
02 \
+ >»K = Cs51/0.25 = 1.0011
[ =>Cpl =0.3354
015} >>Cp@ = 02773
»»p = 01824
| »»7eta = 01794
ol | >>1p1 = 0.97 seconds
| =>1p2 = 2.68 seconds
! =l = 02677
aosl | >»8c1 = trapz{lout,(Gss1 - simin)) = 0.1130 |
s = 03554
n I s sl s i i i i e — |
o 1 2 3 4 5 B 7 8 9 10
Seconds

Figure (3.35) Closed loop step response of PT326

Using the values in figure (3.35) and the corresponding bode plot, the phase
crossover frequency is found to be 3.87 radians/second and the magnitude, M, at this
frequency equals 2.64. Using equations (3.24), (3.25) and (3.26), the three parameters
for the FOPDT model are determined to be:

" Model gain, K,,, = 1.06
. Model time constant, 7, = 0.45 seconds

*  Model time delay, dl,, = 0.50 seconds
These three FOPDT process model parameter values are inserted into a SIMULINK

file and the model closed loop step response compared to the process closed loop step
response. The resulting plot is shown in figure (3.36).
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Figure (3.36) Closed loop step response: FOPDT process model (Purple) and process

(Blue)

Validation: The result of plotting the process and FOPDT process model closed loop
step response on the same plot in figure (3.36) shows that the model captures the
dynamics of the process somewhat better than that shown in figure (3.34). Overall, it
is clear from figures (3.27), (3.31), (3.34) and (3.36) that the choice of PI values has
an impact of the goodness of fit of the closed loop model step response to the closed

loop process step response.

The experiments in this section highlights a problem encountered when applying
closed-loop identification techniques using tuning rules to determine controller
parameters from process model parameters. The problem is as follows: What initial
process model parameters are used to apply the tuning rules? The tuning rules require

process model parameters to be known in advance, which is not always the case.
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3.3.2 SOPDT Model

Some of the results obtained in section 3.3.1, when a FOPDT process model is
identified, were not as satisfactory as expected. Therefore it is decided to investigate
the identification of a SOPDT process model, with the aim of determining improved
results. The closed loop identification method investigated is that proposed by
Suganda er al (1998) to identify a second-order-plus-dead-time process model
(equation (1.2), introduced in chapter 1):

Kme 9=
Tf,"1'1+2rm£:m.'r'+] {]_2)

Guls)=

In equation (1.2), K, is the process model gain, d, is the model time delay, 7, is the
model time parameter and &, is the model damping coefficient. The PI controller is

the ideal controller and has the following transfer function:

G.(5)= K{HTL) (3.19)

5

The system is in closed-loop under PI control, see figure (3.37).

-
T=r AN g B o "'DQ{’,M.W1 - e
Riz) Ges) Gol Cis)

Figure (3.37) Block diagram of standard feedback control system

The identification method can be readily applied regardless of whether the response
obtained during closed-loop identification is under-damped or over-damped. The
drawbacks of the other methods investigated, i.e. a poorer model fit due to first order
plus dead time process model assumed and/or the need for a step test under
proportional control, are overcome. In this method, the same five characteristic
points, as shown in figure (3.15), that are used in the method of Mamat & Fleming
(1995), are also taken to determine the second-order-plus-dead-time model of the
overall closed loop system.
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Figure (3.15) Typical under-damped closed-loop servo step response under PI control

The phase crossover frequency and the magnitude at this frequency are then
determined (as done in the method of Mamat and Fleming (1995)); the four
parameters for the second-order-plus-dead-time process model are subsequently
calculated.

The closed loop transfer function for the system in figure (3.37) is then given by
(Suganda er al. (1998)):

Cls) _ K Kne (1,5 +1)
R(s) T,s(rf,.sl+2;r,,§m.r+]}+ K.Kae “"*’(;f;sH)

(3.52)

By using the Pade approximation for the time delay term, ¢ 9»*, in the denominator
of equation (3.52), the expression becomes a higher order transfer function with time
delay, which can be approximated by a second-order-plus-dead-time model as shown
in equation (3.20).

Note: The authors, Suganda ef al. (1998) were asked if the Pade approximation for

the time delay term, ¢ 9=°, in the denominator of equation (3.52) was a first-order or
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second-order Pade approximation. Dr. G.P. Rangaiah (e-mail: chegpr@nus.edu sg )
explained the following:

“Sentences below equation (3.52) [in their paper], including Pade approximation,
provide qualitative reasoning for approximating equation (3.52) by a SOPDT model
shown in equation (3.20). However, a specific (first or second order) Pade
approximation was not used to derive equation (3.20), partly since some other
approximation may also be required to obtain the SOPDT model in equation (3.20).”
C(s) _ Ke™
R(s) ’s+2w+1
If the closed loop step response is underdamped as shown in figure (3.15), the

Gals) = (3.20)

parameters for the SOPDT closed loop approximation in equation (3.20), K, r, {and
d can be calculated using equations (3.21) (defined by Mamat and Fleming (1995)).
Once the closed loop parameters, K, 7, ¢ and &, are estimated for equation (3.20), the
magnitude and phase angle of the closed loop transfer function, G.(s), can be
computed at any frequency, @ (Suganda e al. (1998)):

K

M =|G4(jo) = ——=s (3.53)
\l'(l -rzmz)‘ +(24w)
and
a=2G,(jo)=tan" 2% | o (3.54)
-’
At the closed loop cross-over frequency, @., equation (3.54) reduces to
-2
Ty i (3.55)
1-1"w.

Thus, @, can be obtained from equation (3.55) and the corresponding M from
equation (3.53). From figure (3.37), the relationship between the open- and closed-
loop transfer functions, Gu(jw) and G.(jew) respectively, can be seen as

GalJjo)

Gali®) = G.(J0)G.(jo) = GG

(3.56)

from which it is evident that
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Also,

£GUw)GulJw)=-7 (3.58)
From equations (3.57) and (3.58), the dynamic parameters d,,, 7 and &, of the open
loop model in equation (1.2) need to be determined. The static gain of the model, K,
can be calculated using the final value of the controller output, Uf=g), where both C;,

and {/{=o) are in the form of deviation variables.
Cs

e 3.59

Kn=7; «) (3.59)

To obtain the time delay, 4, the phase angle information is employed as follows. The
open-loop phase angle, ¢, is related to the closed-loop magnitude and phase data as
3 sina
= ———e 3.60
¢ = tan an-M] (3.60)

In equation (3.60), & is the phase angle of the closed loop transfer function and M is

the magnitude of the closed loop transfer function at this frequency (Suganda er al.
(1998)).

Since & and M are known for any given @, equation (3.60) allows the corresponding
¢, the open loop phase angle, to be computed. As @ increases, the angle contribution
in ¢ due to Gc (PI controller) and the denominator dynamics of Gy, tend to zero and -nt
respectively. Under this condition

p=2G.(J0)G.(j®)=-wd,-7 (3.61)
from which the only unknown, d,,, can be estimated assuming a sufficiently large ®.
To determine the remaining two model parameters (7, and &), the amplitude ratio
and phase angle of the model, equation (1.2), and the PI controller transfer function,
equation (3.19), may be evaluated at @, to yield (Suganda et al. (1998)):

” (KcKm)z(aJET.z-i- lxM + 1)3 M T?

Aliol-2+4¢%) o

(3.62)
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and

27 @ ¢ T
tan '{mr?';]""tan"’[' Lot [RPRS. (3.63)
I=thoe =

These two equations can be solved for the two unknowns, 7, and &, sequentially

(Suganda et a/. (1998)). Equation (3.62), upon rearranging, gives

(e 2!“ X J(KCK.)Z(QE f;:ﬁfﬁ;lr M .17 rme:+ 275 (3.64)
which, when substituted in equation (3.63) yields a non-linear equation for 7,. which
may be solved. A comparison of equation (3.20), the closed loop second order
approximation, and the closed loop transfer function before using the Pade
approximation for the dead time term, ¢ @=" in the denominator indicate that 7,
should be less than z, and so bounds for z,, are 0 and 1. The solution of the non-linear
equation for z,, obtained by combining equations (3.63) and (3.64), can easily be
implemented on a spreadsheet, using a reasonable initial estimate for 7, such as /2.

After finding 7, ¢, can be calculated from equation (3.64).

3.3.2.1 Simulation

To test the validity of the proposed method, a “known” process is simulated using the
MATLAB/SIMULINK software and identification parameter results compared with
the “correct” values. The process is the second order process with a time delay of
0.28 seconds, shown in figure (3.38). The PI controller parameters are also shown in
figure (3.38). Note that K, = K./T,. These values give the desired under-damped
closed loop system output.
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Ki= 2007

Figure (3.38) SIMULINK file for Suganda ef al. (1998) method
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Figure (3.39) Closed loop step response

Using the response data from figure (3.39), and equation (3.21), in the algorithm
entitled “Suganda_1” in Appendix 2 section 3, page A58, the following data is
deduced:

e K=

. =021
. =028
. d=0.9]
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These values are inserted into equation (3.20). The closed loop frequency response
plot is subsequently drawn (figure (3.40)). This allows the two pieces of critical
information to be deduced, namely @, and M. The MATLAB commands to determine
the phase crossover frequency, @, and the magnitude at the crossover frequency, M,
are in Appendix 2 section 3, page A58, entitled “Suganda_2".

Figure (3.40) Closed loop frequency response (second order approximation of closed
loop system)

The phase crossover frequency in radians/second, @, is measured at the point where
the system frequency response intersects with the —180° point in figure (3.40). The
magnitude of the system response, M, is then measured at this frequency. The phase
crossover frequency, @, is found to be 2.73 radians/second. The magnitude of the

response at this crossover frequency, M, is found to be 5.51 dBs. This is equivalent to
a gain of 1.89.

A point is taken on the closed loop frequency response plot shown in figure (3.41) to
determine the dead time of the process model, d,. Note that d,, is best estimated
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assuming a sufficiently large @ This point, indicated by the Mathl symbol =, is
identified using the MATLAB software as shown.

Closed loop frequency’ response plot

35 i i i L L arl
- i5 1 0% ] os 1 'S5
Real Az

Figure (3.41) Closed loop frequency response plot of second order approximation

In figure (3.41) at the point indicated by the = symbol, M, the magnitude of the closed
loop transfer function is calculated as 0.25. The phase angle of the closed loop
transfer function, a, is calculated as —223.18° or —3.895 radians at this point. These
two values are inserted into equation (3.60) to determine ¢, the open loop phase
angle. This results in ¢ being equal to —-394.77° or —-6.89 radians (allowing —271
radians for the correct quadrant). Equation (3.61) is now implemented to determine
d,, the model dead time estimate. The frequency of the response at the selected point
in figure (3.41) is 8 radians/second (Note that phase angles must be converted to
radians from degrees for consistency):

~698=—(8)d,~3.14159 = 4, =047sec.

The process model gain, K., is obtained using equation (3.59) as follows:

025

=—=2=
025
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To determine the remaining two model parameters (7, and &,), equations (3.63) and
(3.64) are utilized as described previously. In the solution of these equations, the
following values, as determined in the procedure to this point, apply:

. K. = 126

. 1, = 0.60
L Kn=1

° dy = 0.47
. @, =273
e M=189
" =028

The bounds for 7, are 0 to ri.e. are 0 to 0.28 seconds. A number of values between
these two extreme values are then inserted into equation (3.63) and the value of rthat
most closely solves the equation is determined. This work is implemented using the

Mathematica software (Wolfram, 1996), sample commands are given below.

1 \/urqum*xtuﬁx'.rf+1mn+1:=-m-gxrf S :
¥ - Tl + 2K Ty

2% Ty MR o, T2

LHS = ArcTan[ (w. =xTyi)] +mn[l 25Tyl ]]

1-7.%xa,?

With the model dead time, d.,, estimated, the right hand side of equation (3.63) is —
0.29. When the 7,, model parameter is estimated as 0.26, the ¢, model parameter in
equation (3.64) is 1.37. Subsequently, the left hand side of equation (3.63) is —0.29,
This calculation validates the estimated model transfer function as follows:

~0.dTx

g le
Gn()= 0,068 +0.71s+1

(3.65)

The process model transfer function shown in equation (3.65) is now compared with
the process transfer function shown in the SIMULINK file in figure (3.38), in an open
loop frequency-domain validation test (figure (3.42)).
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Figure (3.42) Nyquist plot of process and SOPDT model of process

The nyquist plot in figure (3.42) shows that the model structure and model parameters
are valid for the simulated process under test. An open loop step test is now
performed on the results as an alternative validation of the process model; the result is

shown in figure (3.43).

0%
02 "(
f‘
015+ Process open loop step response is dashed ling 4
o1 b Model open loop step response is salid line
oosr
[
/
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i} 0.5 1 15 2 25 3 35 4

Seconds

Figure (3.43) Comparison of SOPDT process and SOPDT process model open loop
step response
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The plot in figure (3.43) indicates a difference in the open loop step response of the
process and model. The time delay estimation, d,, seems to be the major source of
error. The process model gain estimate, Ky, 1s a very good estimate of the process
gain, K. In a final validation test, the closed loop step response of the process and the

model are compared.

e B e e = i e e

""“Mddei cloged loog| siep response is sl ine | 1 |
Précess closed ldop stegresponse is dished libe :

0.4 ---fAi-

IJE.-.. affen

Seconds

Figure (3.44) Closed loop step response of process and model

Validation: The plot in figure (3.44) shows some differences between the closed
loop step response of the model and the closed loop step response of the process. The
time-domain comparisons in figures (3.43) and (3.44) highlighted this more than the
frequency-domain comparison in figure (3.42), showing the usefulness of different
validation tests.

3.3.2.2 Implementation

The identification techniques proposed by Suganda ef al (1998) are now
implemented on the PT326 process trainer. The SIMULINK file used to determine
the gain parameter of the second-order-plus-dead-time process model is shown in

figure (3.45); the closed loop step response of the system is shown in figure (3.47).
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Sel-point=025 Pl Controller Real Time Out
Delay=2 sec, Ke=1.258, Ki=2.097 Channel 1
RT In w | simin simout
Real Time In Process Data To PT326
Channel 1 From PT326

Figure (3.45) SIMULINK file used to output data to PT326 process trainer

The output from the controller after the step is applied is shown in figure (3.46).

Suganda ¢t al SOPDT approximation of PT326 under P1 comrol

0B : : ; ; ;
Vo e R Apia s ot
; ¢ >plotftout simout)  ; :
04 .
03
Step
=024
02
01 a . a
Step inputthas 3 2 secénd delsy :
o ,.*-_.b-n...-.—-{..,-"..""5.“.........E............E....“‘____.i__.,.,__,,..
ai i i i i i
] 2 4 B ;] 10 12
Seconds

Figure (3.46) Controller output from SIMULINK file shown in figure (3 45)

>>U(e0) = mean(simout(1600:2400)) Uf) =025
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Figure (3.47) Closed loop step response of PT326 under PI control
>>(ss = mean(simin(1700:2400)) Css=0.25

The static gain of the model, K,, can be calculated using the final value of the
controller output, U(zc) (Suganda et al. (1998))

U 0325
SLC N L 3.66
L Ulx) 025 3:00)

The second-order-plus-dead-time approximation model of the closed loop system,
equation (3.20), using the Mamat and Fleming (1995) technique (equation (3.21)), is
now determined. The parameters determined are K = 1.00, d = 0.36, =027 and £ =
0.18. The phase crossover frequency, @., and the magnitude at the phase crossover
frequency, M, are subsequently calculated as follows: @. = 3.87 radians/second. M =
2.64. Details are provided in Appendix 2 section 3, page A58, entitled “Suganda 2”.
A closed loop frequency response plot is drawn to determine the open loop phase
angle.
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Figure (3.48) Closed loop frequency plot of second order approximation of closed

loop system

The arrow in figure (3 .48) shows the point chosen to ensure that a sufficiently large @
is used to determine the time delay, d,, of the model. At this point, Imaginary =
0.269, Real = 0.224 and Frequency = 7 radians/second. For equation (3.60), a, the
phase angle of the closed loop transfer function is —309.78° or —5.4067 radians at a
frequency of 7 radians/second. The magnitude at this frequency is 0.35. Putting these
values into equation (3.60), it can be determined that ¢, the open loop phase angle = -
290.7° or —5.073 radians at a frequency of 7 radians/second. Equation (3.61) is now

implemented to determine the dead time of the second-order-plus-dead-time model,
O

¢=-wd,—7

~5073=-Td.,~n

-5073+3.14159=-74,,

—-1931449=-T4

~ —1.931449
T

d. = 0.28sec
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In the estimation of the remaining two model parameters, 7, and £, equations (3.63)
and (3.64) are used. The following values, as determined in the procedure to this
point, apply in the solution of these equations:

K.=1.26; K,,= 100, T= 0.6 seconds; @w.= 3.87 radians/second; d,, = 0.28seconds; M
=2.64; =027,

As t = 027, the bounds for 7, are 0 and 0.27. Seven different values for 7, were
estimated between its bounds and the corresponding &, calculated. This value is then
inserted into equation (3.63) to check if the estimate is correct. The step responses of
the models determined at these seven sets of parameters are illustrated in figure
(3.49),

Suganda'Krishnaswamy/Rangaiah SOPDT Process Idenlification

0as, — ~— p———— — e —— e —
A
03f | 1
Ir ':"'-"\
Step 0.25 y "‘-.__._._,,.*"_"""---.---— —e —
=025 / u
0.2 "\:. 3
0.15;
Blue =1
Red=2
0AF Green =3
Black = 4
l Yeollow = 5
0.05| Cyan=86
‘ | Magenta = 7
n - B R U S
[1] 1 2 3 ) 5 ] T 8 L] 10
Seconds

Figure (3.49) Step response of models determined at seven sets of (. 7,) parameters
Data for figure (3.49) are as follows:

Blue (1), o= 023, {m=1.19433.
Red (2), Tm=0.25, Lm=1.10348.
Green (3), m=0.253, £,=1.09068.
Black (4), = 0258, (£,=1.0697.
Yellow (5), 1,=0.26, &w=1.0615.
Cyan (6), = 02627, {»=1.0505.
Magenta (7), 1,=0.27, m=1.0212,
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The most accurate the solution of equation (3.63) is 7, = 0.258, with a corresponding
Lm value = 1.0697.

The four estimated model parameters are thus:

. Model gain, K, = 1.00
. Model time delay, d,, = 0.28 seconds
. Model time parameter, 7,,, = 0.26 seconds
. Model damping coefficient, &,, = 1.07
The four estimated process model parameters are now inserted into a SIMULINK

file, shown in figure (3.50), and the result plotted to validate the model in a closed

loop time-domain validation test.

1
+ 1 PID = . simout
E iw 0.067852+0 55845+ »
R(z)=026 Pl Controller Delay S =)
Kp= 1258 0.28 sec.
Ki= 2087
Kd=0

Figure (3.50) SIMULINK file used to validate model
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Suganda/Krishnaswamy/Rangaiah SOPDT model approx. of PT326 under Pl contral.
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Figure (3.51) Comparison of PT326 closed loop step response and SOPDT model

closed loop step response

The plot in figure (3.51) shows that the dynamics of the model, using the closed loop
step response, captures the dynamics of the process very accurately. In a conference
paper by Kealy and O"Dwyer (2002b) it is seen that the Suganda er al. (1998) method
of identifying a model for a real process is one of the best methods of all those
investigated. The paper by Kealy and O’ Dwyer (2002b) can be viewed in Appendix 2
section 6.2, page A179.

In an alternative validation test, the open loop frequency response of the process and

model are compared (figure (3.52)).
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Figure (3.52) Open loop frequency plot comparison of SOPDT process and SOPDT

process model

The plot in figure (3.52) show that the model matches the process at higher
frequencies, indicating the estimate of the delay d,,, in particular, is accurate; this is
confirmed by examining figure (3.51). There is a small error in the process model

gain estimate, K,,, as the estimated value should be higher than that calculated.

The model obtained from the Suganda ef al. (1998) identification technique is now
compared with the model obtained from the Mamat and Fleming (1995) identification
technique, in a validation test, by plotting the closed loop step response of the two

models on the same plot as the closed loop step response of the process, demonstrated
in figure (3.53)
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Figure (3.53) Comparison of SOPDT and FOPDT models

For each of the methods shown in figure (3.53), the process is in closed loop under PI
control. Proportional gain, K., is set to 1.26 and the Integral time, 7}, is set to 0.6
seconds. The results demonstrate that the second-order-plus-dead-time model, as
proposed by Suganda ef al. (1998) is a better fit, in this example, to the actual process
than the first-order-plus-dead-time model proposed by Mamat and Fleming (1995).
This is confirmed in Appendix 2 section 3 where the PT326 process trainer and time-
domain models step and frequency responses are compared. The reports are entitled
“Comparisons_TD"” and “Comparisons_FD”. “Comparisons TD” can be viewed in
Appendix 2 section 3, pages A58 — A60, and “Comparisons FD” on pages A61 —
A69. The FOPDT model is shown in figure (TR _Id 17) on page A68, and the
SOPDT model is shown in figure (TR_Id_19) on page A69.

3.4 Conclusions

In industrial applications, closed loop identification methods to determine a process

model are often more desirable than open loop identification methods, as the process
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can generally be left in production while the tests are being carried out. However,
care must be taken to ensure there is minimal disturbance in the controlled variable
while also ensuring that the process is sufficiently disturbed to obtain the required
data. The algorithms to determine the closed loop models are quite complicated to
implement. The three closed loop identification methods described worked
reasonably well, both in simulation and implementation. The controller parameters
influenced the accuracy of the models identified. The Suganda ef al. (1998) method
identified a reasonably accurate model for a simulated process but a very accurate

model for the PT326 process trainer.

As stated at the end of section 3.3.1.2, a problem may arise because the tuning rules
require the model parameters to be known in advance. As the accuracy of the initial
values of the process model may be questionable, an iterative parameter estimation
step may need to be implemented. This step should (1) start off with an initial model,
(2) apply the tuning rules based on the initial model, (3) carry out closed-loop
identification test using the controller parameters obtained by applying the tuning
rules based on the initial model. The results of the updated model parameters in (3)
are subsequently used to tune the controller to carry out a further identification test to
determine a more accurate process model. This activity is repeated until the model is

deemed to be an accurate representation of the process.
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Chapter 4 : Closed Loop Relay Based

Identification of a Process Model

4.1 Introduction

An important technique of identifying a model for a process is based on an “ultimate
cycle” type of experimental design. Probably the most successful part of this
approach, introduced by Ziegler and Nichols (1943), is not the PI or PID tuning rule.
Rather, it is the identification procedure: a way to find important process information,
the ultimate gain (K,) and ultimate frequency (w,). This is often done by trial-and-
error (Seborg ef al., 1989; Luyben and Luyben, 1997). A typical approach can be
summarised as follows (Seborg ef al., 1989):
1. Set the controller gain (K.) at a low value, perhaps 0.2.
2. Put the controller in automatic mode.
3. Make a small change in the setpoint or load variable and observe the
response. If the gain is low the response will be sluggish.
4. Increase the gain by a factor of two and make another setpoint or load
change.
5. Repeat step 4 until the loop becomes oscillatory and continuous cycling is
observed. The gain at which this occurs is the ultimate gain (K,) and the

period of oscillation is the ultimate period (P, = 27w'w,).

This 1s a simple and reliable approach to obtain K, and @,. The disadvantages are also
obvious: it is time consuming, the process is driven unstable and there are no
limitations on the amplitude of the “limit cycle’. An alternative is the relay feedback
test proposed by Astrom and Hagglund (1984). This test may be used to find one or
more points on the frequency response of a process. The method involves the
introduction of a relay element in parallel with the controller. The relay is switched in
when process parameter estimation or controller tuning is required. A continuous

cycling of the controlled variable is generated from the relay feedback experiment
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A A

and the approximations for K, and @, labelled g, and ,, . can be extracted directly

from the experiment. The information obtained from the relay feedback experiment is
exactly the same as that from the continuous cycling method. However, an important
difference is that the sustained oscillation is generated in a confrolled manner (i.e.,
the magnitude of oscillation can be controlled) in a relay feedback test. Moreover, in
virtually all cases, this is a very efficient method, i.e. a one-shot solution, to generate
a sustained oscillation. Applications of Astrom-Hagglund autotuners are found
throughout process industries using single station controllers or a distributed control
system. Table (4.1) shows the trend a decade ago where major vendors provide
autotuners in their products (Hang ef al., 1993). Process model identification methods
for these products include those based on open or closed loop step tests (step),
responses based on a ramp input (ramp), relay feedback autotuners (relay) and

responses based on a pseudo-random binary signal (PRBS) input (Yu, 1999).

Manufacturer Identification method
Bailey Controls Step
Control Techniques Ramp
Fisher Controls Relay
Foxboro Step
Fuji Step
Hartmann & Braun Step
Honeywell Step
Satt Control Relay
Siemens Step
Toshiba PRBS
Turnbull Control Systems Step
Yokogawa Step

Table (4.1) Autotuners from different vendors (Yu, 1999)

The success of the relay feedback autotuner is due to the fact that the identification

and tuning mechanism is so simple that operators understand how it works.
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Moreover, it also works well with slow and highly non-linear processes (Luyben,
1987). Over the past decade, extensive research has been carried out on relay
feedback autotuners. Refinements on the accuracy of results and improvements on the
experimental design have been made. Discussions about potential problems,
extensions to multivariable systems and incorporation of gain scheduling were also
reported. It is a widely held view that the relay feedback based autotuners now can
provide the necessary tools to improve control performance in a reliable way (Yu,
1999).

This chapter discusses process model identification methods using an ideal relay, a

relay with bias and a relay with hysteresis, in turn, in a relay autotuner.

4.2 Ideal Relay Feedback Identification Method

As mentioned, Astrom and Hagglund (1984) suggested the relay feedback test to
generate sustained oscillation as an alternative to the conventional continuous cycling
technique. It is very effective in approximately determining the ultimate gain and
ultimate frequency. The distinct advantages of the relay feedback test are (Yu, 1999):

1. It identifies process information around the important frequency, the ultimate
frequency (the frequency where the phase angle is -x).

2. Tt is a closed loop test;, therefore the process will not drift away from the
nominal operating point.

3. For processes with a long time constant, it is a more time-efficient method
than conventional step or pulse testing. The experimental time roughly equals

2 ~ 4 times the ultimate period.

Experimental Design: Consider a relay feedback system where G(s) is the process
transfer function, y is the controlled output, y" is the setpoint, e is the error and u is

the manipulated input [figure (4.1)]:
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Figure (4.1) (A) Block diagram for a relay feedback system and (B) Relay feedback

test for a process with positive steady state gain (Yu, 1999)

A relay of magnitude / is inserted in the feedback loop. Initially, the input u is
increased by A. As the output y starts to increase (after a time delay d,,), the relay

switches to the opposite position, # = -h. Since the phase lag is -x, a limit cycle with a

period .p.-." results (figure (4.1)). The period of the limit cycle is approximately the

ultimate period. Therefore, the approximate ultimate frequency from this relay
feedback experiment is:

g 2
Oy = A (4.1)

P
From the Fourier series expansion, the amplitude a can be considered to be the result
of the primary harmonic of the relay output. Therefore, the ultimate gain can be

approximated as (Ogata, 1970, Astrom and Hagglund, 1984):
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A 4h
—— (4.2)

s

K, and ,, can be used directly to find controller settings.

The relay feedback test can be carried out manually (without any auto-tuner). The
procedure requires the following steps:

1. Bring the system to steady state.

2. Make a small increase in the manipulated input. The magnitude of change
depends on the process sensitivities and allowable deviations in the controlled
output. Typical increases in manipulated input values are between 3 ~ 10%.

3. As soon as the output crosses the set point, the manipulated input is switched
to the opposite direction (e.g. -5% change from the original value).

4. Repeat step 2 until sustained oscillation is observed (figure (4.1)).

A

5. Read off ultimate period p.u from the limit cycle and compute g from

equation (4.2),

This procedure is relatively simple and efficient. Physically, it implies you move the
manipulated input against the process (Yu, 1999),

4.3 Approximate Process Transfer Function Determination

A

After the relay feedback experiment, the estimated ultimate gain ( g, ), and estimated

N
ultimate frequency (, ) can be used directly to calculate controller parameters.

Alternatively, it is possible to back-calculate the approximated process transfer
functions. The other data useful in finding the transfer function are the time delay
(dix) and/or the steady-state gain (Ki,). The time delay d,, can be easily determined
from the initial part of the relay feedback test as shown in figure (4.1).
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4.3.1 FOPDT Model; Simulation; “Simple” Approach:
As an indicator of the accuracy of this method, a relay-based test is carried out using
the MATLAB/SIMULINK software and the results compared with the “known”

parameters.

The SIMULINK file in figure (4.2) is used for this part of the experiment.

LU

& —— u FOLPDrelay
manipulated input

1.14
:q] g a@ g simout
E 08541

yiset) Relay 0286 sec. Transter Fon ¥ = controlled
=05 output

Figure (4.2) SIMULINK file used in relay based experiment

The Relay settings in figure (4.2) are shown in figure (4.3).

(e k Paramel ers: lH‘I:Iy‘

~ Relay
m#-wﬂd'ﬂiwwmumhmhh

speciied thrashoids. The on/olf state of the & not affected
between the upper and lower mits. e i

[ ok ] camce | Wb | oo |

Figure (4.3) Ideal Relay parameter settings
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The SIMULINK file shown in figure (4.2) is run for six seconds and the results are
plotted and shown in figure (4.4). The switch on and switch off points are the same,
i.e. at the zero line. This means that the relay is the ideal relay, no hysterisis. The
relay output when “On” is 0.575 and the output when “Off” is 0.425. This gives the

small change in manipulated input required to obtain the relevant information.

Felay based identfication

(g | Relay when ON set 1o 0.5 +15% = 0.575
- = = -

Relay when OFF sef to 0.5 - 15% = 0425

04
>>plotfloul simout, b)) hold on

o3l >>plotflout u, k- hold on
>>{val tptind] = max{simout(1:30)) val = 0 5540 tplind = 30
=>p1 = toulllplind) 1p1 = 29

02 >>{val tpZind] = max{simout(80:50]) val = 0.5542 tpZind = 6
»>1p2 = lout(tpZind + 39)) 1p2 = 4.4

»Pyusp2-tpl =15

o1h »3|val tpdind] = minfsimout[30:50}) val = (L4964 tplind = 12 |
»»a = {5547 - 0 4964)72 a =0 (X8

»>h = {575 - 04252 h= 0075

0 i 2 3 i 5 &
Seconds

Figure (4.4) Plot of controlled O/P (Blue solid line) and manipulated I/P (Black --)

From the plot in figure (4.4), the ultimate period estimate, Pu , 18 1.5 seconds. The

y

ultimate frequency estimate, , , from equation (4.1) = (2n)/p, = 4.189

radians/second.

The ultimate gain estimate g from equation (4.2) = (4h)/(na) =3 .3.

The time delay, d,, read off from figure (4.4) is 0.29 seconds. Using the “simple”
approach, the parameter values for the FOPDT model shown in equation (1.1) are
determined as follows. The time constant, 7., is found using equation (4.3). (Note the
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A

large values obtained if d,, x ,, is close to 7/2). In equation (4.3), d,, must be known

a priori (Yu, 1999).

i M (4.3)

thy

Inserting the values, 7, is found to be —0.642 seconds. Clearly, the simple approach
does not allow the estimation of appropriate FOPDT model parameters in this case. A
variation of this method, which also fails to give adequate model parameters, is
inserted into Appendix 2 section 4, page A7I, entitled “FOPDT_SA 17

4.3.2 FOPDT Model; Implementation; “Simple” Approach:

The file in figure (4.5) is used in implementing the relay-based techniques on the
PT326 process trainer. The “Manual Switch™ is in the position shown. The “Step-
size” is set to 0.05 seconds in the Simulation/Parameters settings. This gives a
sampling rate of 20 samples/second that allows the signal to be reconstructed
accurately. The set-point is set to 0.25. This ensures that the process variable stays
within the linear range of the system. The initial tests are carried out using an ideal
On-OfT relay i.e. no hysteresis, no bias. The relay output when on is set to 0.5 and
when off is set to —0.5. These values ensure that the process variable cycles

continuously as shown in figure (4.7).
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||:I = [] To PTaz6
Adapter Fh"'
_Llll L—’—\_
Relay AT Out
J ; —>-°
= Manual Switch Real Time Out
Sat-point = 0.25 PID Channel 1
Pl Controller
Kp = 1,258
Ki = 2,087
RT In p| simin
Real Tima In Procass Data
Channel 1 From PT326

Figure (4.5) MATLAB/SIMULINK/HUMUSOFT file used for Relay-Based
Identification
The “Relay™ characteristics are set as 0.5 when “ON” and —0.5 when “OFF” with no
hysteresis, i.e. both switch-on and switch-off points are at zero (eps), see figure (4.6).

Block Parameters: Relay

[ ok | cocd | Heo | oo |

Figure (4.6) Relay settings

The program is run for 10 seconds and the resulting data is shown in figure (4.7).
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0.2
0.3f
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Seconds

Figure (4.7) Process output (Blue) and Relay output (Red--)

The MATLAB commands used to generate the plot in figure (4.7) and determine the
approximate ultimate frequency, ultimate gain and the parameters of the FOPDT
model for this data, using the “simple™ approach is shown in the program entitled
“Relay 17 in Appendix 2 section 4, page A73. This results in the parameter estimates
of the FOPDT model using the ideal On/Off relay method (simple approach) as
follows:

e Model gain, K, = 0.78

e Model time constant, 7, = 0.72 seconds

e Model time delay, d,, = 0.40 seconds

The actual process parameters, as shown in figure (4.2), are:
e Process gain, K, = 1.14
e Process time constant, 7,, = 0.6 seconds

e Process time delay, d,, = 0.26 seconds
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Validation: As a test of the accuracy of the estimated parameters, an open loop step
test and a frequency response plot is carried out on the real process and the FOPDT

model of the process.

Figure (4.8) Open loop step response of PT326 (Blue) and FOPDT model of PT326
(Green) using the ideal On/Off relay identification technique (simple approach)

J - simout
Step=025 | PT326 Input Dala (A) RTin 3| simin Iﬁg
Process Oulpul  PT326 Output Data (Y) —
AT Out e
Procass Input

Figure (4.9) MATLAB/SIMULINK/HUMUSOFT file used to generate PT326
process trainer step response in figure (4.8)
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] % B b p{ simout
0.725%1

yisaf)=0.25 Delay Gmis) Open Loop
0.40 sec. output

Figure (4.10) MATLAB/SIMULINK model of PT326 used to generate model open
loop step response in figure (4.8)

02| System PTIN
-! Foal 0306

mag 0106
§ 1 Frog tradkecy 441
8

Figure (4.11) Nyquist plot of Process Trainer PT326 (Black line) and model of PT326
(Red-- line) using ideal On/Off relay identification (simple approach)

The labels on the plot in figure (4.11) have no significance except to highlight the two
different systems.
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o Chsgram

Figure (4.12) Bode plot of Process Trainer PT326 (Black) and FOPDT model of
PT326 (Red--) using ideal On/OfY system identification technique (simple approach)

The plots in figures (4.8), (4.11) and (4.12) show that the process model gain
estimate, K., is not an accurate estimation of the process gain, K,. The model time

delay estimate, d,, is a reasonably accurate estimate of the process time delay.

4.3.3 SOPDT Model; Simulation; “Simple” Approach:
It was decided to attempt to determine the parameters of the second order plus dead
time model (equation (1.3)) using the “simple method”. It is hoped that this model
would give more accurate results than the FOPDT model experiments. The process
whose parameters are being estimated is:

e Process gain, K, = 1.14

* Process time constant, 7,, = 0.6 seconds

* Process time delay, d,, = 0.26 seconds
Equations (4.4) and (4.5) are used for this purpose (Yu, 1999). The values of X, and

d,, must be known in advance.

- = —m.d.,—tan"{m.ﬂ)—tan"(m. 72) (4.4)
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A I (4.5)

!E. v+ (. TI)I}“ - 7 (wurz)z}

Previously determined values for d,, and K, are used in order to solve for the two
time constants 7; and 2 (d = 0.29 seconds, K, = 0.87). The value of K,, = 0.87 is
based on the assumption of using the absolute value of 7, in the estimation of a
FOPDT process model (discussed in Appendix 2 section 4, page A7l, in file
“FOPDT_SA _17). There may, of course, be a problem with this assumption.
Alternatively, the model gain, K, could be obtained using an open- or closed-loop
test and this value used in the subsequent calculations. Yu (1999) suggest that if K, is
not available (or inaccurate), we can perform a second relay feedback test (Li ef al,,
1991) or use a biased relay to find additional information. However, the method is
explained using the value of K, = 0.87.

Firstly, equation (4.5) is manipulated so that 7; can be written in terms of 7.
Secondly, this solution of 7; is inserted into equation (4.4) so that the only unknown
in equation (4.4) is 7. Thirdly, a solution to equation (4.4) is then determined for 7.
The same steps are carried out with 7; as the dependent variable and the results
recorded. The software package Mathematica by Stephen Wolfram (1996) is used to

find solutions and manipulate the equations. The result of these manipulations are:

( 8.24

Ne7ss
n= 1755 (4.6)

and

824
{l_ = il
_ 1417557 i
v 17.55 ke

The Mathematica files entitled “t1_Result” and “t2 Result” in Appendix 2 section 4,

page A73, determine the values as follows:

. 7y = -0.64 seconds

s 72 = -0.64 seconds
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The negative values of the time constants obtained show the difficulty in applying the
method. One problem appears to be that the time constant values are sensitive to the
process model gain estimate, K. As a demonstration of this, different values for the
process model gain, K, are inserted into the Mathematica (Wolfram, 1996) file and
the solutions recorded. The other calculated values are kept constant, i.e. d, = 0.29,

K. =33 and 5 = 4189 A representative Mathematica command used is as
follows:

Solve|Tan[-1.926782634] == Tan|- [ArcTan](4.189) «
17347721

M
Tor samry® | Y
J'—I’IK I]I - (RreTan[(4.189) x (2:)1)], =]

Table (4.2) demonstrates the results.

Km | Solution 1 | Solution 2 | Solution 3
0.90 -0.67 0.33-0.075i | 0.33+0.075i
1.00 0.75 0.25 0.49
1.05 -0.79 0.23 0.54
1.10 -0.83 0.22 0.60
1.15 -0.87 0.21 0.64
1.20 -0.91 0.20 0.69
1.25 -0.95 0.19 0.73
1.40 -1.07 0.17 0.86

Table (4.2) Solutions for 7; and 7 using different values for process model gain, K,

From the results in Table (4.2), the two relevant solutions for r; and 7 are the two

positive solutions, Solution 2 and Solution 3.

The simple method for approximating parameters of the transfer function, as shown

previously, has inaccuracies. The “improved™ algorithm is now investigated.
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4.3.4 FOPDT Model; Simulation; “Improved” Algorithm:
Equation (4.8) is proposed by Yu (1999) to determine the time constant, 7,, for the
FOPDT system shown in equation (1.1).
The process whose parameters are being estimated, shown in figure (4.2), is:
e Process gain, K, = 1.14
e Process time constant, 7, = 0.6 seconds

e Process time delay, d,, = 0.26 seconds

A

Note that for these calculations, d,, = 0.29 seconds and ,, = 4.189 radians/second as

determined earlier for the simulated process shown in figure (4.2).

T = z (48)

ouog2e9{ %)

By cross-multiplying in equation (4.8), equation (4.9) is generated and plotted using

Mathematica. The Mathematica commands are in Appendix 2 section 4, page A73,

r= (rmlm,{lﬂg{ZExp[%] S ID (4.9)

entitled “Relay 2"

L] LB ] 1 b | ]

Figure (4.13) Plot of right-hand-side of equation (4.9)
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No solution was found for 7, so further investigation is needed. In another test, the
ultimate frequency is changed to 5.25 radians/seconds and d,, the time delay term is
changed to 0.26 seconds. The Mathematica file entitled “Relay 3" in Appendix 2
section 4, page A74, attempts to solve the equation. However, the “FindRoot 1" file
in Appendix 2 section 4, page A74, failed to converge and so a solution was not
realised with the new parameter values, either.

In another test to find the solution to equation (4.8), the values d,, = 0.4 seconds and

i
. — 4.6542 radians/second are inserted into a Mathematica file named “Relay_4”

(in Appendix 2 section 4, page A74) and the results are recorded. Equation (4.8) is
now solved to yield 7, = 0.89 seconds. Clearly, the improved algorithm does not

work satisfactorily.

Note: It is noted by Yu (1999) that the “Improved Algorithm” Ultimate
Gain/Ultimate Period identification method works well for first order plus dead time
systems with a long time constant, i.e., small d,/7, value, less than approximately
0.28. In the case of the model parameter values used in this experiment, the ratio is
approximately 0.26/0.6 = 0.43. This is a possible source of error with the parameter

calculations.

4.3.5 SOPDT Model; Simulation; “Improved” Algorithm:
To determine the two unequal time constants for the second order system plus dead

time process model shown in equation (1.3), equation (4.10) is used (Yu, 1999):

Zexp[— -H?EJ Zex;{— s J
'I-r'l. t".'h = 1"'3 mu

T1 Bl 5 e 5 | —Fa (4- ”}}
1""37‘P(— ad ] l+exp(— i J
Tty T280y
where
dn* @
m=1=-4m" @
- (4.11)
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The process whose parameters are being estimated is the process in figure (4.2) as

114705

. The values for equation (4.11) are known for this case,
0.6s5+1

shown: GG,(s)=

A

therefore m = 0.61 (d, = 0.29 seconds and ,, = 4.189 radians/second for the

simulated process in figure (4.2)). Equation (4.10) is a non-linear equation. By using
Mathematica, each side of the equation can be plotted using values of 7, (and )
between 0 and 1.2 seconds. From the result shown in figure (4.14), it is seen that
there are many solutions to equation (4.10).

The Mathematica commands for plotting the lefi-hand-side of equation (4.10) is
entitled “Relay 57 and is in Appendix 2 section 4, page A75.

R RS -

Lefi-hand
side of

-2l b

cquaiion
4. 10}

0.1

“8.18 b

RTE S .

0177 kime
-8, 14 b E

i
] LM | I (N ] L8 L] L e

07 048 Seconds

Figure (4.14) Mathematica plot of left-hand-side of equation (4.10)

As a check on the plot in figure (4.14), a line is drawn where the left-hand side of
equation (4.10) equals ~0.177 and the points where the line intersects the graph are
the two time constants. The reason for this is explored below. These intersections
correspond to 7; = 0.45 seconds and 7> = 0.27 seconds. The values are inserted into

equation (4.10) and the results recorded as follows:
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9
2 x f‘.:rp[— : 83)

LHS (equation(4.10)) = (0.45)x P (0.45)=-0.178 (4.12)
2x Is:cp[— :?3
RHS(equation(4.10)) = (0.27) x - - (0,2?} =-0.178 (4.13)

Equations (4.12) and (4.13) indicates that the values of 1; and 7; determined are the
correct values. Examining equation (4.5) (repeated below),
1 K.

- : ,
A J{l +[mun] )i +[m,,n] )

M )
the values 7; = 0.45, 7> = 0.27, ,, = 4.189 rads/sec and g, = 3.3 are inserted into

L] 4]

equation (4.5) (g, and ,, are determined in section 4.3.1). This gives a value for K,
= 0.98. The four parameters of the SOPDT model in equation (1.3) are then as
follows:

- Model gain, K, = 0,98

. Model time constant 1, 7;, = 0.45 seconds

e  Model time constant 2, 7, = 0.27 seconds

. Model time delay, d,,, = 0.29 seconds

Validation: The model is now validated by comparing the process open loop step
response with the model open loop step response, shown in figure (4.15).
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Opeen loop step response of process

Open loop step response of SOPDT model

S e Vit S it

Figure (4.15) Open loop step response of process and SOPDT model of process using
the Improved Algorithm relay based method

Figure (4.15) shows that the improved algorithm relay based method of system
identification gives a reasonable estimate of the delay, in particular. The process
model gain estimate, K, is not accurate; this reinforces the argument for estimating

the gain in a second test e.g. an open loop step test.

4.4 Improved Relay Feedback

Luyben (1987) pioneered the use of relay feedback tests for system identification.
The ultimate gain and ultimate frequency estimates from the relay feedback tests are
used to fit a typical transfer function (e.g., first-, second- or third order plus time
delay process model). However, as shown in the earlier part of this chapter, this can
lead to significant errors in the process model parameter estimates for typical transfer
functions in a control system, arising from the approximations of the ultimate gain
and ultimate frequency determined. The error comes from the linear approximation
(describing function analysis) to a non-linear element. The square wave output from
the relay is approximated with the principle harmonic from the Fourier Transform

(Atherton, 1982; Chang ef al., 1992) and the ultimate gain estimate is computed

154




accordingly. Several attempts have been made to overcome the inaccuracy. Li ef al.

(1991) use two relay tests to improve the estimation of g and , . Chang ef al.

A

(1992) employ a discrete time approach to give a better estimation of ,, . In these

suggestions, an ideal relay is employed in the experiments and modifications are
made afferwards. Since the source of the errors comes from a sine-wave
approximation of a square-wave oscillation, a straightforward approach to overcome
the inaccuracy is to re-design the experiment (instead of taking remedial action
afterward) i.e. to produce a more sinewave like controlled signal using a different

type of relay (Yu, 1999).

4.4.1 Relay With Bias

If an unbiased relay autotuner is used, then the resulting process input and output
signals have zero DC components and the process gain estimation is thus difficult. To
overcome this problem, the biased relay as shown in figure (4.16) is introduced. The
resulting oscillation waveforms of the process output are shown in figure (4.17); DC
components have been created in the waveforms (Wang e/ al., 1999). For a relay with

bias (and no hysteresis), the parameter € in figure (4.16) is set to zero.

Au

ML

Het,

Figure (4.16) Biased Relay (Wang et al., 1999)
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Figure (4.17) Oscillatory Waveforms under a Biased Relay Feedback (Wang ef al.,
1999)

3

The steady state gain of the first-order plus dead-time process model (K, in equation
(1.1)) can be computed (Ramirez, 1985) via the following formula:

ru'l'?'u:
70 ey
[Tt
With K, known, the normalised dead time of the process, &= d,,/ 1., is obtained from
equation (4.15) or equation (4.16) (Wang ef al. (1999)):
g=In (}Jﬂ+#)xm_b‘

Ku=G,(0)= (4.14)

4.15
(4o + 1)K w— A, )
or
P ) Sl (4.16)
(ﬂg—ﬂ)ﬂ'ﬁ*r’ly
It then follows that (Wang er al. (1999))
1
i
Tw = a1 Inz'uK"'e tH K- Kt E (4.17)
#Kn+pnxm_£
or
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=]

2 o - - +&

| [ P L o (4.18)
#Kn_#oxm_"g

The dead time is thus
dm =T 0 (4 19]

4.4.1.1 FOPDT Model Identification; Implementation:
The biased relay experiment is implemented on the PT326 process trainer. The
process input u(?) and output y(7) are recorded, and the periods and the amplitudes of
the oscillations are measured. The following step-by-step procedure is then followed:
1. Compute K, from equation (4.14),
2, Compute # from equation (4.15) or equation (4.16).
3. Compute 7, from equation (4.17) or equation (4.18).
4. Compute d,, from equation (4.19).

The file in figure (4.5) is again used for identification i.e. the parameters of the PT326
process trainer are identified but now the relay characteristics are as shown in figure
(4.18). The output when “ON" is set to 0.3 and the output when “OFF” is set to 0.2 to

ensure that the relay is biased. The parameter ¢ is set to zero (eps), i.e. no hysteresis.

Block Parameters: Helay X
- Py ————— =

Mhuﬂd'ﬁﬂ‘fﬂ.ﬂﬂpﬁuhmﬂhh
The on/olf state of the telay it not affected by input
bmhmrdhmm

Figure (4.18) Biased Relay Settings
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The resulting relay output and closed loop system output are shown in figure (4.19).

nas[ —

a3

025 [ i1 ¥ R f | L : 1 .-!: 1

02 J 2

015

o1

Slep Size = 0.056 seconds
0.05
ol
005 . i L . i L "
4] 1 2 3 4 -] L] T a g 10

Figure (4.19) Relay based experiment using biased relay: outputs

The MATLAB commands to determine K, A, and A, (See figure (4.17)) are shown
in the program “Relay 6” in Appendix 2 section 4, page A75, with the following
results:
e K,=068
o A,=0032
o As=0.035
To determine p and pg in figure (4.16) using the biased relay settings in figure (4.18),
the following simultaneous equations, (4.20) and (4.21), are solved.
B+ =03 (4.20)
= Ho=0.2 (4.21)
Therefore, p = 0.25 and p, = 0.05. From figure (4.19), the value of 7}, in figure
(4.17) is 0.8. The normalised dead time of the process, d,/1,, is computed from
equation (4.15) or (4.16) as 0.17. The time constant, 7z, is found by using equation
(4.17) or (4.18) as 2.97 seconds. The time delay, d,, is determined from equation
(4.19) as 0.51 seconds. This results in the parameter estimates of the FOPDT process

model, for the PT326 process trainer, using the described methods as follows:
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¢ Model gain, K, = 0.68
e Model time constant, 7, = 2.97 seconds

e Model time delay, d,, = 0.51 seconds

The FOPDT model parameters are inserted into a SIMULINK file and the open loop
step response compared with the open loop step response of the PT326 process

trainer for validation purposes; the responses are shown in figure (4.20).

Open Loop Step Response
R = 1

" Red-— line is response duin from PT326

Gireen line is step response of FOPDT model

e

Blue line is step input 1o PT326 and FOPDT model of PT326

Seconds

Figure (4.20) Open loop step response of PT326 and FOPDT model (Green line)

Clearly, the process model identified is unsatisfactory.

4.4.2 Relay With Hysteresis
It may be advantageous to use a relay with hysteresis as shown in figure (4.21), so
that the resulting system is less sensitive to measurement noise; a further advantage is

that the frequency response of G,(jw) at phase angles other than —180° can be
obtained.

159




A U

Figure (4.21) Relay with hysteresis (Wang ef al., 1999)

, Im

Figure (4.22) Negative inverse describing function of the hysteretic relay (Wang et
al., 1999)

The inverse negative describing function of this relay is given by equation (4.22):

1 Fi (fﬂz _ E.'z +f£) {422}

Na) 4
In this case, the oscillation corresponds to the point where the negative inverse

describing function of the relay crosses the Nyquist curve of the process as shown in
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figure (4.22). With hysteresis, there is an additional parameter £, which can, however,
be set automatically based on a pre-determination of the measurement noise level.
The width of the hysteresis should be bigger than the noise band (Yu (1999)).

The describing function analysis shows that the introduction of a relay with hysteresis
simply helps us to find the frequency response of G,(jaw) with phase angles between —
90° and —180° It then becomes obvious that we are able to find the frequency
response of (7,(ja) between these phase angles by changing €. In other words, instead
of adjusting the frequency to find G,(jw) between phase angles of -90° and -180°, one
can find G,(jw) by changing &.

4.4.2.1 FOPDT Model Identification; Implementation:

A test is carried out to determine the parameters of the FOPDT process model. The
process whose parameters are being estimated is the PT326 process trainer. The same
file in figure (4.5) is used for identification, with the relay parameters set as shown in
figure (4.23). The relay output characteristics are set as 1.3 when “ON" and 0.7
when “OFF”. Hysteresis is added to the relay characteristic by setting the hysteresis
element, i.e. €, to 0.1: the relay switch-on point is set to 0.1 and the relay switch-off
point is set to —0.1.

Blor k Marameters: Relay 3
g m_ S
the ‘on o 'olf value i the 1o the

Dutpud the spacified 'on’ o hm input

net allected
between the uppar and lower imits. oot
- Parameters —
Swich on pant
|ﬂ1

|

| Swichoffport
411

! Dutput when one

1.3

|Inlnlild‘lllﬂ!dﬂh The on/olf state of

when off:

A7

0K Concdl |  Hep | s |

Figure (4.23) Relay with hysteresis settings for test
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The program is run for 10 seconds and the resulting relay output and closed loop
system output is shown in figure (4.24).

Point no. 47 (Using Works paceBrowser for simout aray )
1.5 1—1_- T T T

05

0.5

Figure (4.24) Plot of closed loop system output (blue) and relay output (red--)

The MATLAB commands to determine the necessary information from figure (4.24)
are given in “Relay 77 in Appendix 2 section 4, page A75. The program shows how
the areas are calculated to determine the model gain, K,,, from equation (4.14). The
program also calculates the 4, value in figure (4.17) as 0.71. The values obtained are
also used to determine the approximate ultimate frequency (equation (4.1)) and the
approximate ultimate gain (equation (4.2)) from the data shown in figure (4.24).

The results of the program are:
e Model gain, K,, =0.78.

e Ultimate Period, P, , = 1.7 seconds

e Ultimate Frequency, a:m = 3.7 rads/sec

e
¢ Ultimate Gain, Ky —2:20
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The steady state gain estimate of the process, K, using equation (4.14) is 0.78. This
appears to be a much smaller value than that calculated in a number of previous
experiments carried out on the PT326 process trainer, and so indicates an error.
Therefore K,, is determined from a closed loop step response method (Mamat and
Fleming, (1995)). To activate this, the “Manual Switch” in figure (4.5) is toggled to
the PI controller position and the steady state gain value calculated from the response
data according to the technique in Chapter 3, section 3.3.1. The steady state gain, K.,
is determined from equation (3.24) as 1.14.

To determine 1 and g, the following simultaneous equations are solved.
Ht+pe=13 (4.23)
b=t =-07 (424)

Therefore, = 0.3 and o = 1. A, is 0.71 and € is 0.1. The normalised dead time of
the process, d,/7,, is computed from equation (4.15) or (4.16) as 0.89. The time
constant, 7,, is found by using equation (4.17) or (4.18) (with Ty, equal to 0.55
seconds) as 1.03 seconds. The time delay is determined from equation (4.19) as 0.91
seconds. This results in the parameter estimates of the FOPDT model using the relay
with hysteresis, and the closed loop step response method described above to estimate

the process model gain, K., as follows:

e Model gain, K,,, = 1.14
* Model time constant, 7,,, = 1.03 seconds

e Model time delay, d,,, = 0.91 seconds
Validation: As a test of the accuracy of the estimated parameters using the relay with

hysteresis method, an open loop step response and an open loop frequency response
plot of the PT326 process trainer and the FOPDT model of the process is recorded.
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Figure (4.25) Open loop step response of both PT326 (Blue) and FOPDT model of
PT326 (Green) using biased relay identification methods

J. simout =

Step =025 PT326 Input Data (A) AT In 1 p| simin IDE]
Process Output  PT326 Output Data (Y)
AT Out e

Procass Input

Figure (4.26) MATLAB/SIMULINK/HUMUSOFT file to output step to PT326

process trainer to generate plot in figure (4.25)

1.14
> iw > p| simout
1.035+1
wsel)= 025 Delay=081s50c. FOPDT Process Open Loop
Transter Fon output

Figure (4.27) MATLAB/SIMULINK file to output step to FOPDT model of PT326
process trainer for figure (4.25)
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Figure (4.28) Nyquist plot of PT326 (Black) and FOPDT model (Red--)

The labels on the systems in figure (4.28) have no relevance except to identify the
process and the process model more easily.

Figure (4.29) Bode plot of PT326 (Black) and FOPDT model (Red--)
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The MATLAB commands used to generate figures (4.28) and (4.29) are shown in
Appendix 2 section 4, page A75, file name “Relay 8"

The results of the time-domain and the frequency-domain comparisons of the FOPDT
model with the actual process in figures (4.25), (4.28) and (4.29), using the relay with
hysteresis identification method, show that the models obtained are not as satisfactory
as the models obtained from, for example, open loop methods. It is worth mentioning
again that the evaluation method for all the identified models is intuitive.

The techniques used in the estimation of model parameter values using the relay
based identification methods need to be investigated further. A second-order-plus-
dead-time process model is not determined for the PT326 process trainer due to

difficulty in implementing the algorithms. Further work in this area is possible.

4.5 Conclusions

The relay based methods of process model identification are the least accurate of the
identification techniques examined. The ideal relay method does not always allow
real process model parameters to be determined for a simulated or real process. The
algorithms are quite difficult to implement. The improved relay feedback methods,
whereby bias and/or hysteresis are added to the ideal relay works better than the ideal

relay based method, in identifying a process model for the PT326 process trainer.

The relay based algorithms are the most difficult of all the algorithms examined for
process model identification. Issues like size of DC bias, and amount of hysteresis

introduced are issues to be decided when applying the relay based methods.

A

The primary information deduced from these relay-based experiments is g, and ,, .

This information is very useful in the auto-tuning of PI/PID controllers.
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Chapter 5 : Control of Time-Delayed Processes

5.1 Introduction

The PID controller in many cases gives satisfactory performance. It can often be used
on processes that are difficult to control provided that optimal performance is not
required. There are, however, situations when it is possible to obtain better
performance using other types of controllers. Typical examples are processes with
long relative time delays and processes with oscillatory responses in open loop. This
chapter deals with the control, using PI/PID controllers, of time-delayed processes in
simulation and implementation. The proportional-integral-derivative (PID) controller
is by far the most commonly used controller in industry (Astrom and Hagglund,
1995). Most feedback loops are controlled by this algorithm or minor variations of it.
It is implemented in many different forms. It can be used as a stand-alone controller
or as part of a network of distributed systems for process control. Many thousands of
instrument and control engineers worldwide are using such controllers in their daily
work. The PID algorithm can be approached from many different directions. It can be
viewed as a device that can be operated with a few rules of thumb, but it can also be
approached analytically (Astrom and Hagglund, 1995). In a PID controller, the
control action is generated as a sum of three terms. The control law is thus described

as

ult) = Hp(‘)"‘m () +ua)

In the equation shown, , is the proportional part, u, is the integral part and u, is the
derivative part. In proportional control, the output of the controller is proportional to
the control error for small errors. The main function of integral action is to make sure
that the process output agrees with the set-point in steady state. With proportional
control, there is normally a control error in steady state. With integral action, a
positive error will always lead to an increasing control signal, and a negative error

will give a decreasing control signal. Thus, a controller with integral action will
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