
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Other resources Digital Media Centre

2000-5

Using Raster Sketches for Digital Image Retrieval Using Raster Sketches for Digital Image Retrieval

James Carswell
Technological University Dublin, james.carswell@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/dmcoth

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Carswell, J.: Using Raster Sketches for Digital Image Retrieval. Doctoral Thesis: University of Maine, 2000.

This Theses, Ph.D is brought to you for free and open access by the Digital Media Centre at ARROW@TU Dublin. It
has been accepted for inclusion in Other resources by an authorized administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/dmcoth
https://arrow.tudublin.ie/dmc
https://arrow.tudublin.ie/dmcoth?utm_source=arrow.tudublin.ie%2Fdmcoth%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=arrow.tudublin.ie%2Fdmcoth%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Dublin Institute of Technology
ARROW@DIT

Articles Digital Media Centre

2000-05-01

Using Raster Sketches for Digital Image Retrieval
James D. Carswell
Dublin Institute of Technology, jcarswell@dit.ie

This Theses, Ph.D is brought to you for free and open access by the Digital
Media Centre at ARROW@DIT. It has been accepted for inclusion in
Articles by an authorized administrator of ARROW@DIT. For more
information, please contact yvonne.desmond@dit.ie, arrow.admin@dit.ie.

Recommended Citation
Carswell, James D. :Using Raster Sketches for Digital Image Retrieval. Doctoral Thesis: University of Maine, 2000.

http://arrow.dit.ie
http://arrow.dit.ie/dmcart
http://arrow.dit.ie/dmc
mailto:yvonne.desmond@dit.ie, arrow.admin@dit.ie

USING RASTER SKETCHES FOR DIGITAL IMAGE RETRIEVAL

By

James D. Carswell

B.Tech. (Survey Engineering) Ryerson Polytechnical Institute, 1986

M.S. (Geodetic Science) The Ohio State University, 1988

A THESIS

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

(in Spatial Information Science and Engineering)

The Graduate School

The University of Maine

May 2000

Advisory Committee:

Peggy Agouris, Assistant Professor in Spatial Information Science
and Engineering, Advisor

M. Kate Beard-Tisdale, Chair and Professor in Spatial Information Science
and Engineering

Max J. Egenhofer, Professor in Spatial Information Science and Engineering

Steven A. Sader, Professor in Forest Resources and Forest Engineering

Anthony Stefanidis, Research Assistant Professor, National Center for
Geographic Information and Analysis

Library Rights Statement

In presenting this thesis in partial fulfillment of the requirements for an advanced degree

at The University of Maine, I agree that the Library shall make it freely available for

inspection. I further agree that permission for “fair use” copying of this thesis for

scholarly purposes may be granted by the Librarian. It is understood that any copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

James D. Carswell

March 15, 2000

USING RASTER SKETCHES FOR DIGITAL IMAGE RETRIEVAL

By James D. Carswell

Thesis Advisor: Dr. Peggy Agouris

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy
(in Spatial Information Science and Engineering)

May, 2000

This research addresses the problem of content-based image retrieval using

queries on image-object shape, completely in the raster domain. It focuses on the

particularities of image databases encountered in typical topographic applications and

presents the development of an environment for visual information management that

enables such queries. The query consists of a user-provided raster sketch of the shape of

an imaged object. The objective of the search is to retrieve images that contain an object

sufficiently similar to the one specified in the query.

The new contribution of this work combines the design of a comprehensive digital

image database on-line query access strategy through the development of a feature

library, image library and metadata library and the necessary matching tools.

The matching algorithm is inspired by least-squares matching (lsm), and

represents an extension of lsm to function with a variety of raster representations. The

image retrieval strategy makes use of a hierarchical organization of linked feature

(image-object) shapes within the feature library. The query results are ranked according

to statistical scores and the user can subsequently narrow or broaden his/her search

according to the previously obtained results and the purpose of the search.

ii

Acknowledgements

This work was partially supported by the National Science Foundation through

grant number SBR-8810917 for the National Center for Geographic Information and

Analysis and through CAREER grant number IRI-9702233.

For their support, collaboration and assistance with my thesis, I would like to

thank my advisor Peggy Agouris, my research supervisor Anthony Stefanidis, and the

reviewing committee members Kate Beard, Max Egenhofer, and Steve Sader.

Thanks to my family for always supporting me in whatever I do and to all the

friends who have encouraged me during these years.

And finally, a very special thanks to my wife Michela and baby Nicola for being

on my side and believing in my abilities. Her love and patience throughout my career at

UMaine has been essential.

iii

Table of Contents

Acknowledgements .. ii

List of Figures .. vii

List of Tables...x

Chapter 1: Introduction ... 1

1.1 Problem Statement .. 3

1.2 Research Questions and Objectives ... 9

1.2.1 Thesis Hypothesis...10

1.2.2 Research Challenges...11

1.3 Motivation and Applications ..12

1.4 Major Contribution of Thesis ...14

1.5 Organization of Remaining Chapters..15

Chapter 2: Related Research and Background ..16

2.1 Raster Space ..16

2.2 Image Retrieval in Raster Space...18

2.2.1 Color, Text and Texture Based Matching..21

2.2.2 Shape Based Matching ...25

2.2.3 Combined “Content” Based Matching ..27

2.3 Image Matching Techniques...31

2.3.1 Area-Based Matching ...31

2.3.2 Feature-Based Matching...32

2.3.3 Combined Area/Feature-Based Matching ...33

iv

2.4 Least-Squares Matching ...34

2.5 Tree Data Structures...38

2.6 Summary..42

Chapter 3: An Approach for Digital Image Retrieval Using Raster Sketches..............43

3.1 Objective & Contribution...43

3.2 Theoretical Model of an Image Query and Retrieval Environment45

3.3 Image Library ..50

3.4 Metadata Library..54

3.5 Feature Library...58

3.6 Off-line Matching ..60

3.7 On-line Matching ...62

3.8 Query-by-Sketch in a Comprehensive Digital Image Database67

3.9 Feature Matching and Linking..72

3.10 Chapter Summary ..74

Chapter 4: Modified Least-Squares Feature Matching..75

4.1 Objective & Contribution...75

4.2 Feature Matching ...76

4.2.1 The Unknown Transformation Parameters..77

4.2.2 Observations...79

4.2.3 An Iterative Solution ..79

4.2.4 Accuracy Measures ..85

4.3 Implementation Concerns...85

v

4.4 A Query Template Matching Example ...91

4.5 Chapter Summary ..94

Chapter 5: Feature Library ...95

5.1 Objective & Contribution...96

5.2 Feature Library Organization ...97

5.3 Implementation Concerns...103

5.4 Feature Housecleaning ...106

5.5 Chapter Summary ..110

Chapter 6: Experimental Results ..112

6.1 Traditional Least-Squares Template Matching..112

6.2 Modified Least-Squares Template Matching ..117

6.3 Matching Accuracy ..123

6.4 Matching Limitations ...126

6.5 Feature Library Testing ..128

6.6 Feature Library Limitations..136

6.7 Summary..137

Chapter 7: Conclusions ..140

7.1 Limits of the Traditional Least-Squares Approach..140

7.2 Advantages of the Modified Least-Squares Approach143

7.3 Limits of the Proposal ..144

7.4 Future Developments ...146

7.4.1 GUI Development ..147

7.4.2 Matching Configurations of Objects ...150

vi

7.4.3 Semantic Information ...151

7.4.4 Temporal Queries...153

7.4.5 Querying Heterogeneous Data: Vector to Raster Considerations...............153

Bibliography..155

Appendix: Feature House Cleaner..162

Biography of the Author ..177

vii

List of Figures

Figure 2.1 : A Binary Search Tree..39

Figure 2.2 : Unbalanced Binary Tree ...39

Figure 2.3 : Balanced Binary Tree..40

Figure 3.1 : The I.Q. Raster Query and Image Retrieval Environment............................49

Figure 3.2 : The Image Library Component. ..50

Figure 3.3 : One-to-One Linking Within the Image Library ...51

Figure 3.4 : Edge Representation Image...52

Figure 3.5 : Raw Image..53

Figure 3.6 : The Metadata Library Component...54

Figure 3.7 : Linking Between the Metadata Library and Image Library..........................57

Figure 3.8 : The Feature Library Component ...58

Figure 3.9 : Linking Between Metadata Library, Image Library and Feature Library59

Figure 3.10 : The Off-Line Matching Method 1 Information Flow60

Figure 3.11: The Off-Line Matching Method 2 Information Flow..................................61

Figure 3.12: The On-Line Matching Information Flow With Metadata64

Figure 3.13 : Prioritization of Query Results. ...65

Figure 3.14: The On-Line Matching Information Flow Without Metadata66

Figure 3.15: Metadata Only Query Information Flow...68

Figure 3.16: Metadata and Sketch Query Information Flow ...69

Figure 3.17: Sketch Only Query Without Feature Library Information Flow..................70

Figure 3.18: Sketch Only Query Ignoring Feature Library Structure71

Figure 3.19: Sketch Only Query With Structured Feature Library Information Flow......72

viii

Figure 4.1 : The Query Matching Workflow ..76

Figure 4.2 : Left Image Template and its Conjugate Right Image Window.....................77

Figure 4.3 : Quadrant Voting and Feature Shifting. ..81

Figure 4.4 : Example of Query Template Quadrants and Image Sub-Regions.................86

Figure 4.5 : Example of Overlapping Image Sub-Regions..88

Figure 4.6 : Example of Raster Query Processing on Edge-Image..................................93

Figure 5.1 : Raster Query Workflow Via Feature Library Linking96

Figure 5.2 : Example of Feature Library Hierarchy ..99

Figure 5.3 : Query Feature Matching at the Primary Parent Level.100

Figure 5.4 : Query Feature Insertion at the Primary Parent Level.102

Figure 5.5 : Shifting Feature Positions. ..104

Figure 5.6 : Unnecessary Duplications. ..105

Figure 5.7 : Necessary Duplications...106

Figure 5.8 : Feature Housecleaning. ...109

Figure 6.1 : Pixel Gradient Calculation ..113

Figure 6.2 : Occluded Image Feature ...114

Figure 6.3 : Large Corrections Cannot be Accommodated ...117

Figure 6.4 : Edge-Image of Sample Shapes..118

Figure 6.5 : Example of Typical Query Input and Feature Matching Process................119

Figure 6.6 : Matching Process For the Final Sub-Region..120

Figure 6.7 : Feature Library Hierarchy when Polygonal Shapes Inserted Before132

Figure 6.8 : Feature Library Hierarchy when Polygonal Shapes Inserted After.............133

Figure 6.9 : Changing the value of “same”, keeping “similar” constant at 50%.135

ix

Figure 6.10 : Changing the value of “similar”, keeping “same” constant at 80%.136

Figure 7.1 : Two Almost Identical Shapes With Completely Different Semantics.145

Figure 7.2 : The Initial Screen of the Image Query Interface..148

Figure 7.3 : Extract an Existing Feature to Edit or Sketch New Query Feature148

Figure 7.4 : Select or Input Relevant Metadata...149

Figure 7.5 : Prioritized Query Results ..149

Figure 7.6 : Conceptual Model of I.Q. that Includes Semantic Information.152

x

List of Tables

Table 2.1 : Comparison Between “Content” Based VIMS..20

Table 2.2 : Comparison Between Area-Based and Feature-Based Matching...................34

Table 3.1 : Image-Link File ...73

Table 3.2 : Feature-Link File..73

Table 5.1 : Temporal Feature Index for Figure 5.8 ...108

Table 6.1 : Summary of Matching Accuracy Tests...125

Table 7.1 : Comparison Between Traditional LSM and Modified LSM........................142

1

Chapter 1

Introduction

Advancements in sensor/scanner technology have resulted in the availability of

constantly increasing volumes of digital imagery. The geosciences and spatial

information engineering have been greatly affected by this development. Digital

photogrammetric applications in particular have become more robust, moving from the

experimental use of few images to large-scale projects, which employ numerous images

[Carswell and Hasani, 1992]. Indeed, we have reached a point where digital images have

practically substituted analog ones (e.g. prints, diapositives, or negatives) as the popular

medium for the extraction of precise and up-to-date spatial information like digital

elevation models (DEMs), or features with their precise 3-D coordinates. The increased

volume of digital imagery necessitates the development of novel methods to efficiently

retrieve specific images from large digital image databases. Simple filename-based

approaches or querying on metadata information alone are no longer adequate in terms of

intelligent data management. This, of course, is due to image filenames usually

appearing in the form of photo/flight number ID and therefore not being suitable for

conveying image content. Metadata on the other hand are better at describing the

contents of an image, but have the requirement of time consuming operator intervention

in the database population phase while still not completely accounting for all image-

object interaction. Instead, a better alternative would be to base image retrieval on

operator queries about image properties and content in its inherent raster domain.

2

Until now, advancements in digital photogrammetry and digital image analysis

for topographic applications have addressed mostly the devising of automated strategies

and methods for the extraction of information from digital images [Carswell and

Vanderlan, 1993]. This reflects an effort to improve the performance of traditional tasks

through automation. However, the use of digital imagery offers unparalleled potential for

substantial scientific/practical advancements through the identification of novel tasks and

application concepts. Tasks, which were simply not feasible until now, are becoming

realistic, and this allows us to revolutionize the way in which the science of digital

photogrammetry evolves and practice proceeds. For example, image retrieval from large

databases is receiving increased attention the last few years in the computer vision

community with quite substantial results [Cohen and Guibas, 1996; Gudivada and

Raghavan, 1995a; Mehrotra and Gray, 1995; Ogle, 1995; Pickard and Minka, 1995]. The

transfer of such advancements to topographic applications is so far theoretically weak and

therefore a challenging yet rather promising task.

In this thesis, theoretical considerations for the retrieval of specific images from

large image databases are supported by algorithms developed for user query-by-sketch

operations. Together, this is presented with an emphasis geared towards those users of

image data in the fields of remote sensing and digital photogrammetry. For example: the

intelligence community; mapping agencies; and satellite imaging vendors. Applications

for the medical imaging and graphic design disciplines as well as automated updating of

geo-databases, automated control point detection and image geo-positioning without

control (i.e. using objects of a GIS database) can also be envisioned as possible

beneficiaries of such a system.

3

1.1 Problem Statement

The subject of this thesis is “image retrieval by content in the raster domain”.

“Image”, in this sense, is defined as the digital equivalent of an aerial/satellite

photograph, and “content” is the shapes of the individual objects that appear in the image.

Where “shapes” of “objects” are together defined as the actual boundary edges of the

visible features that appear in any given image. The complete term “image retrieval by

content” therefore implies that a user will generate a query, i.e. provide a hand drawn

sketch (created in any standard PC Paint type program) of a specific image-object

boundary (also referred to as feature), to use as input, and retrieve all the relevant images

in the database that contain this query feature.

Since the advent of digital scanners and sensors, beginning in the late 1970’s,

[Chang and Reuss, 1978; Zloof, 1975] image database querying has become a major area

of research. Most of the efforts during this time have focused on analyzing and

comparing the low-level properties of digital imagery. These include: color, in the form

of histogram matching; texture, in the form of image coarseness and contrast matching

and; composition, where an image is divided into homogeneous regions of color or

texture and the relative positions of these regions analyzed [Carson et al., 1997; Flickner

et al., 1995; Forsyth et al., 1996; Frankel et al., 1996; Gupta et al., 1991; Ogle, 1995;

Pentland et al., 1996; Sclaroff et al., 1997]. While these approaches may be useful for

some applications, such as “retrieve for me all the images of jungle” or indeed “retrieve

for me all the images of tigers in a jungle”, they are designed to query an image database

based on general, low-level image characteristics. They have been shown to perform

well with general queries on diverse, multimedia type image databases but they do not

4

take into account the actual shapes of features contained within the imagery. Therefore,

such approaches cannot query against the specific object shapes contained within the

imagery of a typical aerial/satellite image database. A consequence of this general

weakness in dealing with specific image-object shape information is the inability to

analyze the differences in scale between identical features, a principal requirement when

using raster sketches of query objects for digital image retrieval.

The expression “image retrieval by content” in this thesis means to retrieve

images matching the higher level image characteristics, more specifically, actual shape

information (synonymous with outline or edges) of features contained within the

imagery, e.g. the outline of a building. Furthermore, we are interested in doing so

completely in the raster/spatial domains. This distinction is important as both the query

sketch and the database images are stored in the same raw raster format without any

vectorizing of the image-objects (feature digitizing) performed or other such image-

object information known beforehand. The spatial component also implies that there has

not been any processing applied to the imagery (such as Fast Fourier Transforms) that

transform the raster image into the frequency domain before further operations begin.

The majority of work in the area of feature matching has shown some success

through matching the image-objects in the vector domain [Blaser, 1998; Chang, 1997;

Cohen and Guibas, 1996; Jagadish, 1991; Mehrotra and Gray, 1993]. This requires that

the raster imagery be converted into scenes of vector objects, often together with

attributes and other semantics such as topology before they can be queried. As the

process of converting raster imagery into vector scenes of objects is not yet fully

automated, this task remains tedious and should not be considered as given. Accordingly,

5

matching in the vector domain is not applicable to many typical users of digital imagery,

for example, those concerned with detecting change on the latest imagery available,

before it becomes obsolete.

Queries of an aerial and satellite image database must support the information

gathering needs of a typical end user. The end user we consider is one who is interested

in retrieving raw images containing specific features, in “real-time”, from an image

database containing enormous amounts (thousands) of digital imagery. Real-time, in this

sense, means while the operator waits (i.e. remains on-line) at his terminal while the

relevant images are being retrieved. This is opposed to a batch type process that is run in

the background or overnight before results are returned.

From a theoretical point of view, to obtain an “optimal” performance in an image

information environment, some operations are better or easier done in the raster domain

while others are more efficient in the vector domain. Defining spatial relations, for

example, the topological (disjoint, touching, overlapping, etc.), directional (above, below,

north, south, etc.) and metric (distance) relationships between objects is easier in the

vector domain, where properties of the individual objects are known beforehand,

[Egenhofer and Herring, 1990; Güting, 1994], while feature matching is usually done in

the raster domain [Agouris and Schenk, 1996; Gonzalez and Woods, 1992; Mehrotra and

Gray, 1995]. It is well known that the integration of the two domains is still an open

problem.

This thesis proposes a novel solution to querying image databases by matching

raster features to imagery completely in the raster (and henceforth assumed spatial unless

otherwise noted) domain using single features (more specifically their shape) as the sole

6

matching primitive. The core matching module is a revised least-squares feature

matching algorithm developed to accomplish the matching process on binary (black &

white feature outline) images. This is accompanied with a novel development of a feature

library that organizes and links query objects with their images in the database, thus

enabling the retrieval of relevant imagery with the operator on-line, i.e. with an

acceptable minimal amount of wait time. The feature library allows us to reduce the

search space of a query from a database of images to an abridged group of features. Due

to the dynamic nature of the image database, it is also required that the feature library be

autonomous in that it be able to automatically maintain its contents and links to the image

database.

Our purpose is to extend existing theory on querying image databases to include

user-generated sketches of the input query feature. A typical user-generated sketch is

created via any standard PC Paint program. This type of program, available as standard

application software with all PC operating system software, allows a user to draw

(sketch), using the graphic editing tools available, outlines of any design. These outlines

include lines and arcs that can be combined to form open or closed polygonal shapes.

There is also an option to “fill” the shapes, to make a solid object, but this is not the input

required or indeed allowed for the image retrieval environment presented in this thesis.

Instead, all that is required as our input query to the image database is the outline (or

boundary or edge) of the object created within this simple drawing program. It should be

noted that although tools for drawing lines and arcs are used to generate the input query

feature, what is actually stored by this drawing program is in fact in raster format. For

example, there are no end points to the lines, or interest points on the arcs, all points on

7

the lines and arcs of the query feature are just individual pixels that are either turned “on”

(white) or “off” (black). In fact, it is also possible to draw (sketch) solely by toggling the

pixels, that together make up the outline or edge of the input query feature, on and off

individually. The final format therefore of this user-generated sketch of the input query

feature is termed “binary-raster”. Binary, because there are only two allowable states that

the individual edge pixels of the sketched query feature can exist in, i.e. either they are on

or off, and raster because every pixel in the sketch has its physical location within the

sketch, together with its state, stored individually in the final query feature (also referred

to as “query template”) file.

 To date, there have been few proposals to query image databases utilizing user

provided sketches of image-objects as the basis for the query in the raster domain

[Agouris et al., 1999a]. Most have either relied on matching previously vectorized

objects [Blaser, 1998; Mehrotra and Gray, 1993; Nishida, 1999], or on matching Fourier

descriptors in the frequency domain [Daoudi et al., 1999; Gadi et al., 1999; Kauppinen et

al., 1995; Persoon and Fu, 1977]. Thus, this thesis differs from the current research by

extending existing image retrieval theory to allow for user provided sketches of the

outlines or edges of features as the basis for the query and to carry out the matching on

binary imagery (rather than on color, or gray scale pixels, or sets of coefficients). Also,

the image retrieval environment described in this thesis differs significantly from existing

work in that it does not require that the images be manually or semi-automatically

preprocessed in any way. However it should be noted that pre-processing on the

imagery has been performed in a fully automatic fashion in batch mode where image-

edge files were created in the background at the time of initial image population of the

8

database. Additionally it must be said that had the images been manually pre-processed,

they could have been incorporated into the image retrieval environment described in this

thesis. In fact, improving the imagery manually or semi-automatically by further

enhancing their image-object boundaries, removing spurious edges or other such “noise”

through the use of various image processing techniques would have resulted in improved

matching consistency, as will be shown later.

User provided sketches of features, created within any standard PC Paint

program, allow for graphical queries and give more freedom and power to the user. This

graphical functionality for sketching is available in addition to the user’s capability to

extract existing features from database imagery or the feature library during the query

building process. The assumption of large, dynamic image databases (containing many

thousands of images with new imagery being added daily) of large imagery (many

megabytes per image) to be queried is also a theoretical requirement and is addressed

through the feature library indexing method mentioned earlier. It will be shown that it is

far more effective to match query sketches to a linked library of previous query templates

than to each individual image in the database, particularly where there is a requirement

for real-time results.

The approach proposed by this thesis is initially designed to query for individual,

man-made objects (e.g. airplanes, buildings, etc.) but does propose (in the Conclusions,

Chapter 7) options for extending its capabilities to include matching configurations of

objects (e.g. an airplane next to a building, multiple buildings, etc.).

9

1.2 Research Questions and Objectives

Some fundamental questions that this research will attempt to answer include:

• is it possible or not to query image databases based on object shape

completely in the raster domain and;

• can the retrieval of images, which match the query feature, be accomplished

effectively in real-time (i.e. on-line).

As there are no proposals to answer such fundamental questions in the current literature,

they will be identified as the first two primary objectives of this research.

Another question to be answered is;

• can an image retrieval environment be developed to work with a database of

aerial/satellite images.

If so, it will need to address the issue of working with extremely complex scenery

containing variable scales and high and low contrasting foregrounds and backgrounds

together with sometimes very noisy, and often blurry and occluded image-objects. At

present, the majority of image retrieval systems (see Chapter 2) require images with well

defined objects placed on uniform backgrounds or images without scale differences

between them. None of the current systems propose to tackle this difficult problem of

matching the inherently noisy and scale, tone, texture, color varying properties of aerial

and satellite imagery.

 Accordingly, while there is one primary goal of this thesis, namely the

development of a query environment capable of using raster sketches of object shape for

digital image retrieval, there are three primary objectives to be met on the road to this

goal:

10

• Objective 1 – To develop a feature matching algorithm that can take as input a user

provided raster sketch of a particular imaged object, e.g. the outlines (edges) of a

building. The algorithm should systematically match this sketch to a database of

images and return a prioritized list of images that contain this sketched feature.

• Objective 2 – To develop an algorithm that will organize the user-generated sketches

in an efficient and structured manner. The image database querying should be

optimized through the development of this hierarchical (tree like) feature library that

contains an exhaustive but independent and organized grouping of input query

features. These features should be linked to their relevant images within the database,

and therefore should allow for effective, real-time querying of the image database.

• Objective 3 – To combine the first two objectives into an implementation where

optimization testing of matching strategy combined with feature library organization

can be compared and analyzed.

1.2.1 Thesis Hypothesis

The hypothesis for this thesis states that:

• The proposed modified least-squares method for matching sketched object

shapes outperforms traditional least-squares matching on raw binary-raster

imagery.

Traditional least-squares matching, where the conjugate position of a query

template window is determined within an image window, is designed to function on gray-

scale raster imagery where every pixel contains information. The approach it uses for

determining the direction in which to shift the query template within the image requires

that the gray-scale gradients at each pixel location are analyzed and compared between

11

the two windows. As every pixel contributes information to aid in this decision, it has

been shown to be a very robust method for achieving this purpose. However, it has also

proven to be a very computationally intensive solution to the problem of image matching,

requiring good initial approximations of query template positioning within the image

[Carswell, 1988; Greenfeld and Schenk, 1989; Agouris, 1992]. For this reason alone,

traditional least-squares matching is not used on raw imagery, i.e. where neither image-

object information nor any interior or exterior orientation parameters are known a-priori,

as it would require stepping through the image pixel by pixel to ensure the “true”

conjugate position is found. Therefore, to use this approach for querying an entire image

database, where the user is waiting on-line for a prioritized list of query results, is not

practical.

Other shortcomings of the traditional least-squares approach include its inability

to handle occlusions of image-objects due to its inherent nature of query template re-

positioning within the image where it expects every pixel to contribute in the final

decision concerning the shift direction. Contemporaneously, typical shift distances

calculated through traditional least-squares are in the order of fractions of a pixel, which

implies of course that large corrections cannot be accommodated. For implementation on

binary-raster imagery therefore, where the input query criteria consists of user provided

sketches that do not contain image-object information at every pixel location, traditional

least squares will fail due to this deficiency.

1.2.2 Research Challenges

To prove the hypothesis put forth by this thesis, two major research challenges

will need to be addressed. Namely, we will need to show that:

12

• querying an image database can be performed in the raster domain with user-

generated sketches as the input query template.

• effective, real-time querying of raster imagery is possible through the creation

and organization of a hierarchical library of features.

The main reason that the first of these two challenges exists is because of the

identifiable lack of theoretical research in this area. As mentioned previously, most of

the current work relies on extensions into the vector domain, which implies intensive

operator intervention in the image pre-processing stage before a single query can be

made. The criteria for testing whether this challenge has been met will be through the

analysis of the query results. For example, does the developed algorithm in fact return

the correct images to a users query?

The second challenge exists because it differs from current thinking where raw

raster image files are considered inefficient for on-line querying. It is important because

it proposes that large databases of image files, linked together with an intelligent feature

indexing strategy, can be queried in real-time, i.e. while the operator waits on-line. The

criterion for testing whether this challenge has been met will be through the analysis of

the feature library itself. For example, does the feature library structure itself in

hierarchical tree-like manner where all unnecessary duplicate query features are

removed?

1.3 Motivation and Applications

The major motivation for this research is the lack of theoretical solutions to the

current problem of retrieving images from a large, dynamic aerial/satellite image

database using the shape of user-generated sketches as the matching primitive. Much

13

effort has been spent on indexing and otherwise optimizing the querying of textual

databases [Frankel et al., 1996; Stonebraker, 1990], and recently progress is being made

in the area of querying configurations of objects in vector GIS databases through the

analysis of their spatial relations [Blaser, 1998]. In the raster world there have been

successful implementations of color/textural based image retrieval systems [Flickner et

al., 1995; Kelly et al., 1995] but until now, there have been no proposals specifically

intended for retrieving aerial/satellite imagery based on queries of the shape of objects

contained within them, completely in the raster domain.

Another motivation for this research was to provide the theoretical foundation for

potential application to the wider array of disciplines outside the geo-oriented arena.

Visual information management is a concern to any industry that utilizes photography in

any of its many guises. For example, in medical imaging where various scans of internal

organs can be queried against for specifically shaped abnormalities, or for the graphic

design industry where images containing certain objects or configurations of objects are

required for a particular advertising project.

The intended audience for this specific research comprises the remote sensing and

digital photogrammetry communities. Together, they are dealing with an ever growing

database of aerial and satellite mapping, reconnaissance and other imagery. The types of

queries of an organized image database are infinite but a sample query from these users

might be to search the database for all the images at a specific scale (e.g. 1:10,000), taken

on a certain date (e.g. Aug. 4, 1998), in a particular format (e.g. infrared), of an individual

country (e.g. Afghanistan), and containing specific objects (e.g. buildings, tanks, and

planes). With the volume of digital imagery increasing daily for these and every user of

14

photographic information, a “thesaurus orientated” mechanism for organizing and

querying this huge raster data store is imperative.

1.4 Major Contribution of Thesis

The two major contributions of this thesis are:

• Performing matching using raster features for queries on a database of digital

imagery.

This is contrasted to the color/textural based alternatives presented in the current

literature. Also, it extends existing theoretical models to accommodate application to

aerial/satellite imagery, which can be very diverse in scale and structure, even for images

depicting the same scene. This is an important theoretical advance of this research, i.e. it

matches on real images taken under real conditions, not artificial images taken in the lab

of simple, well defined scenes.

• The development of the feature library – a novel approach for organizing and

linking input query sketches to a database of digital imagery.

It is through the feature library that raw imagery is rendered suitable for on-line

querying. This is an important point as it diverges from current research in that the idea

of querying raw imagery had previously been thought of as not efficiently possible. This

research demonstrates that it is not necessary to know any a-priori image-object

information about the database. Queries of objects are possible in the raster world

without object segmentation, extraction or identification.

15

1.5 Organization of Remaining Chapters

The remaining chapters begin with a literature review on spatial database

querying in the raster domain, giving an overview on the current research status in this

field of research (Chapter 2). This is followed by a detailed description of the major

scientific contributions of feature matching and feature library indexing in this research

(Chapters 3), a detailed look at how the modified least squares matching algorithm

handles raster query features (Chapter 4), and a detailed account of the feature library

structure and organization (Chapter 5). A presentation of the proposed image query-by-

sketch approach and overall experimental results showing the varying degrees of query

retrieval efficiency obtained through modifications of the feature matching strategy and

feature library organization are presented next (Chapter 6). Finally the conclusions will

describe the advantages and limitations of this approach and provide ideas for future

developments (Chapter 7).

16

Chapter 2

Related Research and Background

This chapter reviews the current literature and gives an overview of the related

research into general visual information management systems. The information

presented here is required background for understanding the current state of the art

handling of raster representations of data. It describes the main differences between

raster and vector spatial databases, categorizes the existing literature into descriptions of

color/text/texture based matching, shape based matching and combinations of these two

approaches. It finishes with an overview of the peculiarities with query template

matching in raster space. The chapter does not however contain any new work related

to the image query-by-sketch approach proposed by this thesis.

2.1 Raster Space

Spatial databases can be divided into two basic groups: those that contain sets of

objects in vector form; and those that contain images or image-objects in raster form

[Güting, 1994]. Terms to describe these two basic groups range from pictorial or image

to geometric, geographical or spatial. The main difference between them is that in vector

space, objects are usually well defined, attributed and their spatial relations determined

before querying begins, whereas in raster space, typically this is not the case. The

distinction is important because when object extents and spatial relations are well-defined

a-priori, the operations and techniques for manipulating and querying their properties are

different than for raw objects on a raster image. In raster space, where edge enhancement

and image-object extraction can be performed (at least semi-automatically), it is typically

17

done without semantic or other information describing their spatial or functional

properties. A spatial database in raster space therefore, in contrast to its vector

counterpart, rarely contains semantic information related to the contents of the imagery it

stores.

However, when a raster spatial database does contain additional textual,

information about the imagery it contains, it is referred to as “metadata”. Currently, there

isn’t a generally accepted standard format that image metadata should take, although an

attempt is being made to address this problem [FGDC, 1997]. Metadata therefore, in the

sense used in this research, consists of a listing of potential values for a set of attributes

which describe general properties of the image itself, but not about any image-object or

other details that the image may contain [Agouris et al., 1999b]. These attributes may

include such additional information as: date and time of image acquisition; date and time

of introduction in the database; scale/resolution; location of the image, expressed in

hierarchically arranged geographic entities like state, country, city, etc.; and/or sensor

information and/or imagery type, e.g. black & white, color, color infrared, etc. When

available, metadata information is used to thin the pool of potential matches before

querying by image “content” begins.

Briefly, a digital image is an array of light intensity or brightness and for each x,y

location in the image array, there is stored the brightness value. For black and white (8

bit) imagery the range of brightness values are 0 (black) to 255 (white). For color (24 bit)

imagery, the ranges stored for the same x,y location are the same (0 to 255) for the three

color bands red, green and blue. For a human operator, the different objects and

color/texture patterns and semantics contained within an image are quite obvious,

18

however this object/pattern recognition process is proving to be quite challenging to

translate into automated computer code. Semantic information requires feature

extraction, segmentation and object and context recognition, none of which approach full

automation with today’s technology. Current research into this area therefore is quite

active, especially within the digital photogrammetry/remote sensing/image processing

community and the fields of artificial intelligence and GIS.

The accepted steps in the process from raw image to “intelligent” image are many

and most require some operator (i.e. human) intervention [Gonzalez and Woods, 1992].

This can be either in the form of accepting/rejecting an automated image processing

algorithm’s result (e.g. histogram stretching or feature representation) or manually

controlling/performing the process all together (e.g. feature recognition and

interpretation). However, for an image query and retrieval system to be effective, it

cannot wait for human input/decisions from semi-automatic algorithms, given the amount

of imagery flowing into such an environment on a daily basis. Instead, the image

database itself must be fully automatic and self-maintaining, as the approach presented in

this research is intended to be. This thesis proposes to show therefore, contrary to current

research direction, that raw imagery is indeed suitable for on-line querying.

2.2 Image Retrieval in Raster Space

At present, the majority of visual information management systems in the

literature can be grouped almost entirely into a single category. That being query by

image “content” where the term content refers to image or image-region color, text and/or

texture. There are however a few cases that incorporate this definition of content to

include shape and fewer cases still where an attempt is made to match on feature shape

19

alone. One example of this last case defines shape as the intensity surface of an object,

derived by the application of Gaussian filters, which, among other things, is impossible

for a user to sketch [Ravela and Manmatha, 1997]. Compared to matching image-object

outlines, the results of intensity surface matching are very difficult for an operator to

determine or interpret. For example, the answer to the simple question “why was a

particular result returned to a query and not another”, can be quite perplexing. This is not

the definition of the term “shape” referred to in this research, where the shape of an

object is defined as the outline of its actual visual appearance. In order for the user to

interactively sketch queries, this is imperative.

Table 2.1 presents a direct comparison of the defining characteristics between the

major visual information management systems (VIMS) described in the current literature.

The last entry (Image Query-by-Sketch) in Table 2.1 is the image retrieval approach

presented in this thesis.

20

Color,
Text,
and/or
Texture
Queries

Vector
Shape
Queries

Raster
Shape
Queries

Manual/
Semi-auto
image pre-
processing

Automatic
image pre-
processing

Aerial/
Satellite
imagery

Multimedia
type
imagery

Chabot ✔ ✔ ✔

Candid ✔ ✔ ✔

VisualSeek ✔ ✔ ✔

Cypress ✔ ✔ ✔

Jacob ✔ ✔ ✔

ImageRover ✔ ✔ ✔

Yahoo Image Surfer ✔ ✔ ✔

Lyco Media Search ✔ ✔ ✔

WebSeer ✔ ✔ ✔

WebSeek ✔ ✔ ✔

FIBSSR ✔ ✔ ✔

Nishida ✔ ✔ ✔

Fourier Descriptors ✔ ✔ ✔

QBIC ✔ ✔ ✔ ✔ ✔

PICTION ✔ ✔ ✔ ✔

PhotoBook ✔ ✔ ✔ ✔ ✔

Virage ✔ ✔ ✔ ✔ ✔

Image Query-by-

Sketch

✔ ✔ ✔ ✔ ✔

Table 2.1 : Comparison Between “Content” Based VIMS

21

2.2.1 Color, Text and Texture Based Matching

Some cases of image retrieval systems automatically extract keywords (metadata)

about the imagery through the analysis of the location (URL) where the image is found

on the WWW or from the text in which the image is imbedded. Other semantic and/or

metadata information in the form of general image color, texture, dimension, file type,

size, and date can also be extracted automatically and indeed are used by some image

retrieval systems, e.g. ImageRover, WebSeer, VisualSeek, Lyco Media Search, Yahoo

Image Surfer, and others [Athitsos et al., 1997; Frankel et al., 1996; Sclaroff et al., 1997;

Smith and Chang, 1996]. This definition of image “content” however is not the same as

that used in this thesis. For example, none of the above mentioned systems take into

account the actual shape of the objects contained within the imagery. This is

understandable of course since the process for generating (extracting) the objects

(features) from a raw raster image is not straight forward, i.e. not yet fully automated.

Chabot, (http://http.cs.berkeley.edu/~ginger/chabot.html)[Ogle, 1995] by UC

Berkley, takes a database orientated approach to image querying and retrieval by

incorporating an object-relational database called Postgres (also developed at UC

Berkley) that stores both the images and textual data by allowing for user defined

functions and data types [Stonebraker, 1990]. The images require manual preprocessing

on input in the form of adding descriptive text. This of course can be a problem due to

the different ways a photo could be annotated by different users. For example, the same

photo could be annotated as a “1968 Fastback Mustang 428” or as a “red car”, depending

on operator interpretation. Chabot adds color analysis to the already existing keyword

descriptor as an additional matching primitive and proposes to add matching based on

22

texture, shape and line in the future. However, at present, it does not go far enough to

enable querying at the feature level.

Candid [Kelly et al., 1995] is a system developed to retrieve images from an

image database based on a query image where a “global signature” is first derived from

various image features such as localized texture, shape, or color information for both the

query and the database images. The resulting query signatures are then compared against

each other using probability density functions of feature vectors. Although shape is

described as one of the matching primitives, it is not used in the same context as that

proposed by this thesis. Here, shape and texture are combined to produce a feature vector

that can be compared to texture feature vectors from other database images using

Euclidean distance, thereby allowing the retrieval of images with “similar” textures. This

approach therefore is not designed to retrieve images that contain features with a

particular shape based on their edge outlines. It is more for retrieving images with the

same global “look and feel” as the query image.

VisualSeek [Smith and Chang, 1996] is an approach for retrieving images based

on color and texture. Regions within the query scene of similar color and texture are

extracted and placed within minimum bounding rectangles and are then compared against

similarly decomposed images from within the image database. Comparisons are made

between the size and color of the extracted regions but not the shape. Further processing

determines the spatial relations between the MBRs within the query scene and those

contained within the matching candidate images. As shape is not used in this approach, it

is yet another “content” based image retrieval system where matching is based on color,

text, and texture and is therefore not suitable for the purposes identified in this research.

23

In [Carson et al., 1997; Forsyth et al., 1996], a new image representation,

“blobworld”, and a retrieval system, “Cypress”, based on this representation is presented.

Here, the authors correctly state that there are currently no systems that automatically

classify images or recognize objects. Therefore, the authors propose a new method,

which uses Expectation Maximization on color and texture jointly to provide an image

segmentation as well as a new image representation, and finds maximum likelihood

parameter estimates when there is missing or incomplete data. As this is another

color/texture based image query system, it is similar to those systems presented

previously in that it does not offer the user any capability to query on sketched shapes of

image-objects.

Jacob [Ardizzone and La Cascia, 1997], organizes and retrieves by “content” still

digital images or digital video sequences from an image/video database. To do this,

image and image sequence contents are first described and coded. No user action is

required during the database population step as the system automatically splits a video

into a sequence of shots, extracts a few representative frames (called r-frames) from each

shot and computes r-frame descriptors based on color, texture and motion. Queries based

on one or more “features” are possible. The use of the term “features” therefore is not

synonymous with that described previously and used in this research and so the matching

potential of this system for shape based queries is non-existent.

ImageRover [Sclaroff et al., 1997] is designed as a WWW image search engine

together with Yahoo Image Surfer, Lyco Media Search, WebSeer [Frankel et al., 1996],

and WebSeek [Smith and Chang, 1996]. It uses search robots to scan the WWW for

images imbedded in web documents and to automatically extract image information such

24

as color and orientation. Each image is divided into 6 regions and checked for this

information (color and orientation) in each of these “sub-images” producing a 2x6 image

index vector for each image. Work is in progress to extend ImageRover to include

texture and faces in the index vector but as yet there are no plans to include shape.

Therefore it is unsuitable for detecting isolated features and at present can only be used to

search for general patterns of color together with their orientation.

The Yahoo Image Surfer (http://ipix.yahoo.com/) and Columbia University’s

WebSeek (http://disney.ctr.columbia.edu/WebSEEk) categorize their imagery into

classes, e.g. animals, sports, etc. semi-automatically with text labels attached. The text

labels of the various classes can be queried as keywords and then the color histograms of

the imagery contained within a selected class can also be queried against. No support for

feature shape querying is offered and the semi-automatic nature employed to organize the

image database is impractical in an evolving image database environment.

Lycos (http://www.lycos.com/picturethis/) and the University of Chicago’s

WebSeer (http://infolab.cs.uchicago.edu/webseer/) are two other examples of keyword

based search systems with the difference in that the keywords are extracted automatically

from the image URL or the text imbedded with the document that contains the image.

Although no longer on-line (due to the disbanding of the research team), when

operational, WebSeer automatically extracted additional information on the image

“content” like the image color and dimension, the file type, size, date and whether or not

the image contains any (and how many) faces. WebSeer’s main design objective was to

find and distinguish between web photographs vs. graphics or icons based on these

automatic observations. However, it required initial manual training of the system to

25

determine what is a photo and a graphic, and did not attempt to query on shape

whatsoever.

2.2.2 Shape Based Matching

[Gudivada and Raghavan, 1995b] identify two main research directions for

content based image retrieval (CBIR). That is the “primitives” approach where object

boundaries and centroids are extracted manually a-priori and the “logical” approach

where abstract representations of the images in the form of attributes and semantics are

also manually extracted beforehand. Although the research in this thesis does use the

primitive approach to CBIR, it differs from both these directions by not manually or

semi-automatically pre-processing the imagery in the database, for example to extract

objects or spatial information. The remainder of this section will describe the methods

used for CBIR in those image retrieval systems that propose to match on shape.

One of the better attempts at shape based matching is FIBSSR (Feature Index-

Based Similar-Shape Retrieval), described in [Mehrotra and Gray, 1995]. Here the

outlines or edges of an object are decomposed into line segments connected by interest

points of maximum curvature or vertices. Each line segment and corresponding

endpoints are called a “feature” in this context. A group of features in this sense

compose a shape and are used to search a shape database looking for shapes (objects)

with similar features. This is done by first encoding all the “features” of a shape into a

“basis vector” which removes transformation variances such as scale, rotation and

translation. For high contrast images of shapes this approach shows promise but for

noisy aerial and satellite imagery, too many spurious edges would confuse any automated

process designed to extract shape boundaries. Indeed this application is limited to

26

querying shape databases of simple or articulated objects like scissors or other such tools

on uniform backgrounds. Although overlapping shapes are considered by eliminating

interest points in the query image that correspond to shapes found by previous queries

and then re-generating a new query feature with the remaining points, it does not consider

the topology of disjoint shapes, the most common configuration in aerial imagery.

In [Nishida, 1999], a method for image retrieval from image databases is

proposed using structural feature indexing. The features are first approximated with

polygons and then their convex/concave parts and quantized directions are indexed. This

of course requires working in the vector domain so is not directly comparable to working

in raster space other than it being another approach at solving the shape based

query/image retrieval problem. It does demonstrate however that an indexing strategy

increases the efficiency and robustness for shape/index retrieval from image databases.

Much work has been done in shape retrieval using Fourier Descriptors [Daoudi et

al., 1999; Gadi et al., 1999; Kauppinen et al., 1995; Persoon and Fu, 1977], which implies

working in the frequency domain (as opposed to the spatial domain). The foundation of

frequency domain techniques is the convolution theorem [Gonzalez and Woods, 1992].

Here, edges can be accentuated by using a function that emphasizes the high-frequency

components of an image. For example, in [Gadi et al., 1999], “fuzzy logic” is proposed

as a possible solution to the shape/image retrieval problem because of the inherent

difficulties of extracting region/object boundaries. In the spatial domain, automation of

the boundary extraction problem is indeed a major impediment to progress in matching

on shape information alone and is why color and texture have instead been used

27

extensively. This is why the approach proposed in this thesis doesn’t attempt to first

extract feature boundaries but instead matches completely in the raster/spatial domains.

An advantage of using the frequency domain is that Fourier Descriptors are

invariant to the basic similarity transformations such as translation and rotation. Hence,

the same shape appearing at a variety of positions and orientations, would all yield the

same set of descriptors. The shortcoming of this approach however is that it does not

scale, so the same object at different scales would yield different descriptors. This poses

a problem when dealing with aerial imagery in particular as even adjacent photos can

differ in scale due to changes in ground elevation or flying height. Another issue is when

images are returned from the query, the user doesn’t know exactly why or where the

query shape matched the image. This is because the shapes have been previously

transformed into coefficients, with obscure meaning to most users.

2.2.3 Combined “Content” Based Matching

IBM’s QBIC [Flickner et al., 1995] is designed as an image query system based

on image “content” that includes color, shape, texture, sketches, example images and

camera and object (image subsets) motion. It is organized into a database population

component and a graphical query component. On the database population side, the

images are pre-processed to extract “features” (features in QBIC are the properties of

either an image or image-subset (object) that describe content) describing their content

and then storing these features in a database. On the graphical query side, a sample query

consists of retrieving images that match to “find all images that are 30% blue and 15%

red”. Texture is described as image or image-subset coarseness, contrast and

directionality and shape descriptors are area, circularity, eccentricity, major axis direction

28

and a set of tangent angles around the object perimeter. The images are annotated with

text information and the objects are pre-extracted manually or semi-automatically with

area flooding and outlining using spline snakes. Automatic object extraction is available

for simple images containing easily separable background and (few) foreground objects.

QBIC (http://www.qbic.almaden.ibm.com/) is by far the most referenced system

in the literature and indeed has been awarded “best on the web” honors, among others.

However, it still falls short of achieving full automation by failing to solve the basic

problems of automatic image segmentation and object representation and description, or

alternatively proposing a strategy to populate their database without some operator

intervention. The automation that QBIC does achieve in extracting objects from their

backgrounds for simple scenes is commendable but again is only useful for specific

applications, for example, those that do not require aerial or satellite imagery. For this

type of imagery, that is arriving in quantity on a daily basis, operator assisted pre-

processing is undesirable.

PICTION [Srihari, 1995] is a “content based” image retrieval system where an

integrated text/image database of people is queried for similarity. The main application

of this approach is to query newspaper photos for human faces. Therefore, “content” in

this system refers to whether or not the image contains people. This is determined by

passing filters over the image to extract three edges that could represent a face combined

with textual analysis of the photo caption. Identifying people in newspaper photos is a

very challenging task and this approach does show promise for this application. It is

however quite a different problem than identifying features or groups of features from

29

aerial or satellite imagery that contain no textual captions and an infinite number of

possible object shapes.

In PhotoBook [Pentland et al., 1996], the authors provide three general

approaches to constructing semantics-preserving representations. These are appearance-

specific descriptions applied to face and keyframe databases, texture descriptions applied

to texture-swatch and keyframe databases, and shape descriptions applied to hand-tool

and fish databases. As the first two approaches do not deal with shape, only the third

approach will be explored. The general idea for semantic-preserving image compression

is to “first transform portions of the image into a canonical coordinate system that

preserve perceptual similarities, and then to use a lossy compression method to extract

and code of that representation”. When searching for objects, this approach uses

variations on the Karhunen-Loeve transform to derive optimally compact representations

for either appearance or shape [Jagadish, 1991]. This transform is known to provide an

optimal-compact linear basis for a given class of signal. In addition, this transform uses

the eigenvectors of the covariance matrix of the set of image features. These eigenvectors

can be thought of as a set of parametric variations from the mean or prototypical

appearance that altogether characterizes all of the variations between images of the object

and the object’s prototypical appearance. For shape of image, eigenvectors describe the

intrinsic symmetries for the object in a unique and canonical manner. The transformed

shapes used by this system were in fact a rectangular approximation of the true shape of

the object and did not handle rotation, occlusion, or the composition of multiple shapes.

Also, the system was implemented on a database of tools and fish outlines on a uniform

background. Thus, determining rectangular approximations and eigenvectors for objects

30

in noisy aerial images containing many edges from different objects would find this

approach infeasible.

[Bach et al., 1996], describes the Virage image search engine as a general image

retrieval system, it mainly focuses on the visual features of color, texture, and shape

[Flickner et al., 1995; Pentland et al., 1996]. The definition of shape in Virage therefore

is approximated similar to PhotoBook above, i.e. with rectangles. Virage is an indexable

collection of vectors for data types, with a collection of vectors representing a single

category of image information called a primitive. A primitive is a semantically

meaningful feature of an image. In this system, image indexing is performed after

several preprocessing operations, such as smoothing and contrast enhancement. Each

primitive-extraction routine takes a preprocessed image, and depending on the properties

of the image, computes a specific set of data for that primitive. A vector of the computed

primitive data is stored in a proprietary data structure. Since different computational

processes extract primitives, they belong to different topological spaces and each has

different distance metrics defined for them. A primitive encompasses a given feature’s

representation, extraction, and comparison function. When a query is submitted, the

search system computes the one or more similarity distances for a pair of primitive

vectors. This is performed in two steps; for each primitive, a similarity distance is

computed, and the similarity distances are combined with weights by a distance function

that forms a final score that is used to rank results by similarity. Virage does not support

spatial relationships among image-objects and due to its scale dependent shape

approximating rectangles, does not fully realize the users need for a truly sketch based

image query system.

31

2.3 Image Matching Techniques

When matching pixels of raster data from a query sketch to a database image,

traditionally there have been three fundamental approaches: that is area-based matching

where the gray levels of the query patch are used as matching primitives; feature-based

matching where image characteristics are used as the matching primitives; or hybrid

techniques that combine the strengths of the first two methods. [Doorn et al., 1990]

2.3.1 Area-Based Matching

Gray level or area-based matching involves the extraction and precise matching of

conjugate windows or patches of pixels. These patches (one from the input image and

one from the database image) are in the form of two dimensional arrays of gray scale

values. The best match between these two patches is where their collective difference in

gray values is minimized [Ackerman, 1984].

One method to digitally correlate the images is to directly compare the sums of

the squares of the density differences of corresponding pixels [Gruen and Baltsavias,

1987]. When the gray levels of these corresponding pixels are near the same value then

the conjugate position has been found.

A drawback to this method is that corresponding pixels will have different

radiometric and possibly geometric qualities even if they represent the same image-

object. They will have these differences because the two images were not taken from

exactly the same exposure station at exactly the same moment in time. Therefore the

contrast and brightness of the same image-object point and the geometry of same image-

object outline will never be exactly the same from image to image. Distortions between

the two patches, due to differing image perspectives and illumination, are therefore

32

modeled by geometric and radiometric transformations. Typically, an affine

transformation is used to describe the geometric relationship (rotation, translation, scale)

combined with added parameters to eliminate the radiometric differences.

Another limitation of area-based matching is that it requires good approximations

for the initial patch locations [Baltsavias, 1991]. The “pull-in” range of this approach is

defined as the maximum distance the input patch can be initially positioned in the image

patch, from its true conjugate position, and still be able to converge on its correct match.

In cases where the exterior orientation parameters of an image are known a-priori, this

range can be accommodated. But where raw imagery is used, finding conjugate matches

using this technique is extremely costly from a computational standpoint, even for small

input patches, as sequential stepping through the entire image is necessary to ensure all

potential conjugate positions have been tested.

2.3.2 Feature-Based Matching

Feature-based matching is an approach to simulate how a human

photogrammetric operator extracts and processes information from a digital image and

therefore is a model based on a matching strategy that proceeds from coarse to fine

[Greenfeld, 1987]. For example, a human operator, given the chore of matching an input

image with a database image, would at first view the two images independently and then

together to get a general feel for their contents and alignment. The operator would then

determine if the two images share any common ground, followed by matching up any of

their prominent features before moving on to the analysis of any minor details the

imagery might contain in common.

33

Feature-based matching accomplishes the above by matching specific “features”

of an input image to those of a database image through increasing levels of pixel

resolution, with matches at coarser resolutions transferred to and refined at higher levels

of resolution [Greenfeld, 1987]. Features in this sense include interest points, edges and

corners which are extracted using specially designed operators for each feature type.

Lists of features with their locations, strengths and orientations are created and

maintained for the input and database images respectively. Therefore, unlike area-based

matching, good initial locations are not required before matching can begin. With

geometric and/or statistical tests, the lists of features are sequentially compared and the

best matches recorded [Agouris, 1992; Forstner, 1986; Grimson, 1985]. Multiple and/or

erroneous matches are eliminated through a global consistency check using the image

coordinates of matched features and a priori information on the exposure geometry of the

two images. Unfortunately, this pre-knowledge of image/feature orientation/position is

not known in a raw raster image database, or for randomly orientated, user-generated

raster query sketches. Subsequently, although this technique has proven useful for

automatically creating DTM’s from digital stereo pairs of aerial imagery, it is not directly

suitable for the application intended in this research.

2.3.3 Combined Area/Feature-Based Matching

The two matching methods described briefly above both have advantages that can

be exploited in a combined area/feature-based matching approach. Here, feature

detection can be used, on previously oriented imagery, to identify conjugate areas rich in

information. Once located, these areas provide the required good initial approximations

34

for further refinement with area-based matching [Carswell, 1988; Greenfeld and Schenk,

1989]. Table 2.2 presents a direct comparison of these two techniques [Agouris, 1992].

Area-Based Matching Feature-Based Matching

Good initial approximations are

necessary

Good approximations are not

required

High precision Lower precision

Low reliability: susceptible to

erroneous matches if wrong initial

approximations

High reliability: matched pairs are

most likely truly conjugate

features

Can produce a dense regular grid

of matched points

Matched points have a sparse and

irregular distribution

Sensitive to geometric distortions

and radiometric noise

Less sensitive to geometric

distortions and radiometric noise

Ambiguous matches in areas of low contrast or repetitive texture

Table 2.2 : Comparison Between Area-Based and Feature-Based Matching Methods.

2.4 Least-Squares Matching

This research uses the idea of least-squares matching similar to that used in the

area based matching case in that it is based on the analysis of dissimilarities between an

input query template (user-generated sketch) and an image-edge file window. When a

query template is compared to an image-edge file, the template pixels vote to stay put (or

move) according to their similarity (respective dissimilarity) to corresponding image-

35

edge pixels. Moves can be performed in the +/- x and y directions, in one of 5 options:

left, right, up, down or stay put. This resembles the comparison of gray values in least

squares matching and the use of image gradients to identify shifts, rotations, and scaling.

Similar to the traditional least-squares approach, the final solution is obtained after a set

of iterations, and by analyzing voting patterns, we can accommodate occlusions. The

main difference between the feature matching approach in this thesis and traditional least-

squares is that the matching is carried out on edge information from binary imagery only,

instead of on gray scale differences between patches of pixels. As such, the conventional

least-squares approach, where every pixel is considered, is not strictly necessary as only

those pixels where information (i.e. the edge pixels) exists need to be considered.

Therefore, we avoid computationally expensive matrix manipulations and the

requirement for good initial positioning of the query template within the image-edge

patch. An overview of least-squares matching however is included for convenience.

Traditional least-squares matching offers a robust method for establishing

correspondences among image windows. Its mathematical background, based on least-

squares principles, permits its successful extension for application in a multiple image

matching scheme [Agouris and Schenk, 1996], or even for the establishment of

correspondences in sets of 3-dimensional images [Maas et al., 1994].

Assuming f(x,y) to be the reference query edge template and g(x,y) to be the actual

image patch, a matching correspondence is established between them when

f x y g x y(,) (,)= (1)

However, considering the effects of noise in the actual image, the above equation

becomes

36

f (x, y) − g(x,y) = e(x, y) (2)

with e(x,y) being the error vector.

In a typical least-squares matching method, observation equations can be formed

relating the gray values of corresponding pixels. They are linearized as

f(x, y) −e(x, y) = go(x, y)+
∂go(x,y)

∂x
dx+

∂go(x,y)

∂y
dy (3)

The derivatives of the image function in this equation express the rate of change

of gray values along the x and y directions, evaluated at the pixels of the patch. The two

patches are geometrically related through an affine transformation

xi = a11 + a12x + a21y (4)

yi = b11+ b12x + b21y (5)

The affine transformation parameters are the unknowns, which allow the

repositioning of the image window to a location that displays better radiometric

resemblance to the reference template. They are introduced in the derivative terms

(∂g / ∂x,∂g /∂y) of the linearized observations above as

f x y e x y g x y g da g x da g y dao
x x x(,) (,) (,)− = + + +11 0 12 0 21+gydb11 + gyx0db12 + gyy0db21 (6)

The resulting observation equations are grouped in matrix form as

−e = Ax− l ; P (7)

In this system, l is the observation vector, containing gray value differences of

conjugate pixels. The vector of unknowns x comprises the affine transformation

parameters, while A is the corresponding design matrix containing the derivatives of the

observation equations with respect to the transformation parameters, and P is the weight

matrix. A least-squares solution allows the determination of the unknown parameters as

37

ˆ x = (ATPA)−1 ATPl (8)

Through the adjusted transformation parameters we determine a new position in

the image as conjugate of the template. The robust mathematical foundation of least-

squares matching allows us to obtain meaningful statistical measures for the accuracy of

the matching process.

The a posteriori variance of unit weight

ˆ σ 2o = VTPV

df
 (9)

is an excellent measure of the overall accuracy. The residuals vector V expresses the

deviation between observations and their adjusted values (and is actually an evaluation of

e in Equation 7 once we obtain estimates of the unknown parameters x). The degree of

freedom (df) of the system expresses its redundancy and equals the difference between

formed equations and unknown parameters. An expression of the a posteriori variance is

used as a score index reflecting the confidence level of a match.

The above system can also be increased to incorporate additional parameters. By

taking advantage of the diffusion equation of the Gaussian function [Lindeberg, 1994],

according to which

∂g(x,sx)

∂sx
=

1

2

∂2g(x,sx)

∂x2 (10)

the derivative with respect to the scale parameter is equivalent to the second derivative of

gray values with respect to the spatial coordinate, allowing us thus to directly introduce it

in the linearized least-squares matching observation equations (with the second

derivatives of gray values as corresponding coefficients in the Jacobian matrix A of

equation 7). Thus, first derivatives of gray values express positional/rotational

38

differences between two conjugate windows, while second derivatives express scale

differences among them.

2.5 Tree Data Structures

Tree structures are typical approaches to organize data into some form of a

hierarchical index that facilitates efficient information search and retrieval combined with

the desire to save storage space by aggregating data having same or similar values. A

tree is a collection of elements called “nodes” along with a relation (“parenthood”) that

places a hierarchical structure on the nodes [Aho et al., 1987].

The simplest of the tree structures is known as the binary search tree. It is used

for representing large sets of elements that are ordered in some linear order. The

important property of a binary search tree is that all elements stored in the left sub-tree of

any node x are less than the element stored at x, and all elements stored in the right sub-

tree of x are greater than the element x. This storage property of binary search trees

makes testing for membership in the set simple. For example, to determine whether x is a

member of this set, first compare x with the element r at the “root” of the tree, i.e. the

parent element. If x=r we are done and the answer to the membership query is “true”. If

x<r then x can only be a descendant of the left child of the parent, if x is present at all.

Similarly, if x>r, then x could only be a descendant of the right child of the parent.

(Figure 2.1)

39

Figure 2.1 : A Binary Search Tree

It can be seen from such a structure however that one side of the tree can have far

fewer nodes than the other. This is due to the time of element insertion into the tree. For

example, if we are representing the set of real numbers between 0 and 100 and the 1st

element we insert in to the tree is the number 10, then the right side of the tree will end

up being far more populated than the left. This results in unequal search and retrieval

times when future queries, insertions or deletions are performed.

To counter this, the balanced tree implementation of element sets is used. For

example, if we have a tree of six nodes, as in Figure 2.2, and want to insert the element 1,

instead of inserting it such that four elements reside to the left of the root element and

two elements reside to the right of the root element, a re-ordering of the tree is performed.

The tree will then contain an equal number of elements on either side of the root element,

which allows for equal search and retrieval times for future queries (Figure 2.3).

Figure 2.2 : Unbalanced Binary Tree

10

5 14

7 12 18

15

7

5

3

4 62

40

Figure 2.3 : Balanced Binary Tree

Therefore, even for the simplest of tree index structures, the order or temporal

aspect of element insertion is important and re-ordering is required to balance the tree for

optimal query processing. In this research, we differ from the standard tree structure

above in that we have multiple “root” (parent) nodes (in fact, multiple nodes at every

level in the tree). The multiple parent nodes arise because of the range of values

acceptable at each node, instead of using a single value to determine an elements position

within the tree. As will be described later, this results in a pronounced affect regarding

the final tree structure, due to this temporal aspect of feature insertion, and subsequent

tree balancing requires far more complex element re-ordering operations.

The term “quadtree” is used to describe a class of hierarchical data structures

whose common property is that they are based on the principle of recursive

decomposition of space [Samet, 1990]. The prime motivation for the development of the

quadtree is the desire to reduce the amount of space necessary to store data through the

use of aggregation of homogeneous blocks. An example of a quadtree representation of

data is for a two-dimensional binary image where successive subdivisions into quadrants,

sub-quadrants, etc. are performed until blocks are obtained that consist entirely of 1s or

entirely of 0s.

4

2 6

3 51 7

41

Variations of the basic quadtree concept have been proposed to store, query, and

retrieve different kinds of information. For example, point quadtrees are used for sets of

points where non-uniform cell subdivisions are made continuously until only one point

resides within each cell [Finkel and Bentley, 1974]. Point quadtrees were initially

defined to represent point data in two dimensions but can be used for any (k) dimension.

However for higher dimensions, k-d trees are usually used to avoid the large branching

factor [Bentley, 1975]. Similar to the simple binary tree approach, both the point

quadtreee and the k-d tree have the property that their shape is dependent on the order in

which the points are added to them.

As an example of an application for k-d trees, in [Beis and Lowe, 1997], feature

vectors are generated for objects and an index structure created based on the k-d tree

approach. The goal was to recover from the index the most similar model shapes to a

given query image shape. Random viewpoints were used to generate approximately 103

images per object in the database. From these images, groups of 5 edge-length ratios and

5 angles between the edges were extracted and stored in 10-d feature space. Attempts to

identify a query object then began by extracting similar edge/angle representations from

the query object and searching through the database until the nearest neighbor to this

particular grouping of angles/edges is found, thus identifying the query object. This

approach showed promise in search and retrieval time but because of its 3-d objects and

the preprocessing overhead of extracting (i.e. vectorizing) edges and angles, it is not the

same problem considered in this thesis, where no image-object vector information is

known a-priori.

42

2.6 Summary

This concludes the chapter on background information. It began with a

description of raster space and an overview of the image retrieval systems found in the

current literature. In general, most of these systems can be grouped into the category of

“content” based image retrieval where the term content refers to a combination of image

color or texture. The remaining systems belong to a second group where manual

preprocessing of the database imagery is required, in the form of vectorizing the image-

objects, before database queries can be performed. This was followed by an overview of

image matching in raster space with an emphasis placed on the least-squares approach.

The chapter finished with a brief introduction to tree data structures and how they are

used to store data for nearest neighbor queries. Beginning with Chapter 3, the new work

related directly to this research is presented.

43

Chapter 3

An Approach for Digital Image Retrieval Using Raster Sketches

From the previous chapter, it can be seen that the typical image database query

systems developed to date are either color/text/texture based systems or require

substantial manual effort during the image pre-processing stage. These requirements,

while quite useful, limit the query system to retrieving images based on lower level

image “content” rather than on higher level shape information and/or to retrieving images

that have been manually pre-processed in some way (e.g. to extract image-object

information). In contrast, this thesis introduces an approach that is not encumbered by

either of these restrictions and therefore is unique in its design. The remainder of Chapter

3 will describe the scientific contribution and theoretical foundation of this new and

innovative work.

3.1 Objective & Contribution

The main objective of this chapter is to give a brief overview of the complete

image query and retrieval environment proposed by this thesis. More specifically, it will

highlight on each of the three individual components, namely the image library, the

metadata library, and the feature library, that together make up the comprehensive digital

image database. Further, the linking between each of these components and the need for

both off-line and on-line matching will be discussed. Finally, a description concerning

the flow of information and decision making for a typical database query will be

presented.

44

The major scientific contributions of this thesis lie in the feature library indexing

strategy and in the development of a feature shape-based similarity matching algorithm.

These two fundamental innovations replace the traditionally slow and computationally

intensive least-squares approach for object similarity matching in the raster domain, and

introduce a structured feature library mechanism that facilitates efficient on-line querying

of raw imagery.

The shape-based querying mechanism is also distinct from the color/textural

based alternatives presented in the current literature since it uses actual image-object

boundary outlines as its sole matching primitive. This allows for more specific queries

on image content, i.e. on the shape of actual features depicted in the scene, and not just

on a general description of image color or texture. Furthermore, it applies this capability

to aerial/satellite images, which can be very diverse in scale and structure, even for

images depicting the same scene. This is an important aspect of this research as it moves

away from lab imagery where objects are typically well defined compared to their

background and therefore imposes certain theoretical challenges. For example, we have

to consider rotations, scaling and translations of the query template on traditional

aerial/satellite imagery complete with the usual image noise and subsequent spurious

edge information.

A matching algorithm developed for an aerial/satellite image query environment

will need to be versatile in that it be able to handle both the comparison of query input to

existing lists of previous query templates, and to the actual image-edge files themselves.

The main difference between these two requirements being the template shifting strategy

employed, which has a direct influence on the time required to locate a conjugate match

45

and subsequently on the algorithms ability to retrieve correctly matched images in real-

time.

The structured feature library is another major contribution that is not presented

elsewhere in the literature. It is a novel approach for organizing image-object data, in the

form of previous shape queries, and through it shows that raw imagery is indeed suitable

for on-line querying. This is an important point as it diverges from current research in

that the idea of querying raw imagery had previously been thought of as not efficiently

possible.

This research proposes therefore that it is not necessary to know any a-priori

image-object information about the database. Queries of image-objects are possible in

raster space without object segmentation, extraction or identification. Chapters 4 and 5

are devoted to describing in more detail these two fundamental innovations and

requirements of a shape-based image query and retrieval environment.

3.2 Theoretical Model of an Image Query and Retrieval Environment

Image information systems incorporate many individual components and

processing stages. For example, Chang [Chang, 1985] refers to a typical system (an

approach which we are not adopting) as one that consists of three components. The first

component is the raw image, which is analyzed and image-objects recognized through

image enhancement, normalization, segmentation and pattern recognition techniques.

The next component in this system would convert image-objects into image knowledge

structures, i.e. assign topological, direction and distance measures to them. Finally, the

third component requires domain knowledge specific to each user application that

enables intelligent interrogation and use of the data. This ideal system proposed by

46

Chang uses feature indices, i.e. “hot spots” within the image with semantics attached

thereby resulting in “smart images”. The user would merely roll his cursor over the

image and obtain all sorts of attribute information and other properties concerning the

image area in question. To accomplish this, he proposes super computers performing

feature extraction work with massively parallel architecture to support the generation of

these active feature indexes. However, ideas envisioned with today’s technology in mind

and not requiring next generation or otherwise unobtainable hardware (to the average

user) are more likely to be realized and used in practice.

The first component describing the image information system above could be

further subdivided and described as having eight fundamental steps [Gonzalez and

Woods, 1992]. These include:

• Image acquisition, where digital cameras/sensors or conventional cameras and

scanners are used;

• Preprocessing, where imaging techniques like contrast stretching, noise

removal, edge enhancement, etc. are employed to improve image appearance

to ensure success of future processing steps;

• Segmentation, where the image is partitioned into homogeneous regions;

• Representation & description, where edges/features are extracted;

• Recognition & interpretation, where the extracted features are

identified/labeled/attributed;

• Processing, where various software used for analysis/classification is run;

• Communication, which involves the transferring of data between systems and

users; and finally

47

• Display, where media like slides, monitors, photos, transparencies, etc. are

used to convey the results.

As most of these eight steps, together with the final two components of the image

information system mentioned previously, are not yet fully automated, i.e. they require at

least some operator intervention, they are not included in the design approach taken by

this research.

The intention of the approach proposed by this thesis therefore is to function fully

automatically in the raster domain, i.e. without operator intervention at any stage, except

for when composing a query to the comprehensive digital image database itself. For

example, in the image acquisition step, it is only assumed that the image is in digital

format before it can be processed in the proposed image query and retrieval environment

of this thesis.

The only required pre-processing steps on the digital imagery in this proposed

environment are that a generic edge enhancement filter is applied to each image and the

resulting image thresholded such that only black or white pixels remain (values 0 or 255).

These two steps are required to produce the edge-image representation (of a given raw

image), on which the shape queries are processed. The edge-image therefore will contain

only the boundary outlines of the image-objects inherent to its corresponding raw image.

The two pre-processing steps involved in generating the edge-image are fully automated

with today’s technology and are performed in a batch process (e.g. in the background) as

each new raw image is inserted into the database. Together, they constitute the only pre-

processing requirements to populate the proposed comprehensive digital image database

before querying can begin.

48

There are many reasons for fully automated and self-maintaining image query

systems. They include:

• Decreased cost of setup and operation;

• Ease of use and maintenance and;

• Speed of bringing new database images on-line.

The main driving force behind the level of automation in this research is that it is

designed for the imaging user with hundreds or even thousands of digital images arriving

from various sources on a daily basis with temporal necessity the overriding priority. In

this case, the workload involved in pre-processing the imagery manually in any way,

before being able to insert it into the database or to query its contents, is too time

prohibitive.

Converting image-objects into image knowledge structures, i.e. storing objects

along with their topology, direction, and distance, is not necessary in this proposed

approach. Where some approaches begin at the object level, i.e. they require that image-

objects be pre-identified (i.e. vectorized) before the image’s contents can be queried, we

try to go lower to the image level and work solely in the raster domain. However, it

should be noted that vector shape queries on image content could potentially be

accommodated by the approach proposed in this thesis by first converting the vector

query shapes to raster form.

49

The remainder of this chapter will discuss the architecture of the raster query and

image retrieval environment proposed by this thesis. The components that make up this

environment include:

• The image library,

• The metadata library, Comprehensive Digital Image Database

• The feature library,
I.Q.

• Off-line query processing,
 Query Interface

• On-line query processing.

Together, these components describe the environment where feature queries on

the comprehensive digital image database are performed. Henceforth, this environment,

i.e. the approach presented in this thesis for using raster queries for digital image

retrieval, will be given the abbreviated term, I.Q. (Image Query-by-Sketch) (Figure 3.1).

Figure 3.1 : The I.Q. Raster Query and Image Retrieval Environment.

Query Interface Comprehensive
Digital Image

Database

Metadata
Library

Image
Library

Feature
Library

Off-line
Query

On-line
Query

Sketch

Value 1...
Value n

Sketch

50

3.3 Image Library

The image library component of I.Q. (highlighted in Figure 3.2) will contain an

assortment of black & white (8 bit) digital aerial/satellite images. As each new image

gets inserted into the database, three automatic pre-processing steps will be performed.

The result is that an original raw image gets inserted along with its edge representation

image. Both images are linked one-to-one and together comprise one entry in the image

library (Figure 3.3). They will be stored within the image library in separate directories

and have similar root filenames, e.g. a typical raw image filename would be 253482.tif

and its edge-image counterpart would be 253482_edg.tif.

Figure 3.2 : The Image Library Component.

Query Interface Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

Off-line
Query

On-line
Query

Sketch

Value 1...
Value n

Sketch

51

Figure 3.3 : One-to-One Linking Within the Image Library

The first step in the process to generate an edge-image from a raw image is to

apply an edge preserving filter that smoothes the low-frequency components while

keeping the major (strong) image discontinuities (edges) intact. The result of low-

frequency filtering is a smoothed gray scale image showing a more distinct or apparent

difference between the major image-objects (foreground) and their background. An edge

operator is then applied to this intermediate result to extract the most prominent edges

from the background information.

Various low-pass (smoothing) filters such as Laplacian or Median, and hi-pass

(edge enhancement) filters such as Sobel, Prewitt, Roberts, Wallis, and Kirsch could be

used for this procedure with differing results, i.e. for every image there is a preferred

combination of filters that will bring out the best edge representation and indeed even for

a single image there may be different combinations of filters that work better in one

region and another combination that works better in another region of the image.

A typical edge operator, like the Roberts Cross-Gradient Operator for example,

can be envisioned as two filters that are separately passed over the image, pixel by pixel,

Image Librar y

22852.tif

22853.tif

22854.tif

22855.tif

22852_edg.tif

22853_edg.tif

22854_edg.tif

22855_edg.tif

52

with their sums at each location recorded and assigned to the image position of the upper

left pixel position of the mask. The output of this edge enhancement operation will need

to be thresholded so that all pixels below the threshold value are set to 0 (black) and all

pixels above the threshold value are 255 (white). This gives the final edge representation

image of Figure 3.4 and is stored together with the original raw image (Figure 3.5) in the

image library in the manner described previously.

Figure 3.4 : Edge Representation Image

It can be envisioned that further filtering steps to clean up the excess noise along

with the shorter, less prominent, and/or spurious edge information within the image could

53

also be applied. However, due to time constraints and that these image processing details

are not the main focus of this thesis, no further effort was spent on this issue.

Figure 3.5 : Raw Image

In this research it was decided to compromise and use the same combination of

edge preserving/extracting filters for all imagery, giving acceptable results on average,

although perhaps not the optimum results for any individual image. The reason for this

approach is that the image library is required to be fully self-maintaining and also

because there isn’t an automated process available (with today’s technology) that is

capable of dynamically changing its filtering parameters within a single image in order to

always separate noise from information consistently. It is not the intention of this

research to solve this problem of automatically determining the “best” combination of

54

filters for highlighting edge information. Unfortunately, this is still a very operator

intensive procedure, relying heavily on a user’s previous experience. When

advancements in this area are realized, they of course can be added to enhance the

accuracy of the image-edge files currently generated within I.Q..

3.4 Metadata Library

The metadata library is another component of the comprehensive digital image

database (Figure 3.6) and, as used in this research, consists of a listing of potential values

for a set of attributes which describe general properties of the image itself [Agouris et al.,

1999b], but not about any specific image-object or other details the image may contain.

Figure 3.6 : The Metadata Library Component.

Query Interface Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

Off-line
Query

On-line
Query

Sketch

Value 1...
Value n

Sketch

55

Typical metadata for aerial/satellite imagery includes such additional information

as: date and time of image acquisition; date and time of introduction in the database;

scale/resolution; location of the image, expressed in hierarchically arranged geographic

entities like state, country, city, etc.; and/or sensor information and/or imagery type, e.g.

black & white, color, color infrared, etc.

Conceptually, metadata space is an n-dimensional one if we assume n distinct

metadata values. A point within this space corresponds to all images of the same area,

captured at the same scale, at the same date, with similar sensor. When one or more of

these parameters can accept less specific values, we move to “blobs” within the n-

dimensional metadata space, e.g. photos of various scales of a specific area taken on a

specific date form a blob in the metadata space. This blob then represents the scale space

of the area at the time of data capture. When defining points (or blobs) of the metadata

space we actually define a set of representations of a specific geographic area, and of the

features within it. Therefore, when querying the database using metadata information,

we narrow our area of interest, before we perform a query against the shapes that we

expect to exist in this region.

From a computational standpoint, metadata searches are inexpensive and fast. On

the other hand, shape-based searches are in general computationally demanding, but they

allow us to move from global image properties, which are conveyed by metadata, to

individual features (content) within images. By using metadata properties to narrow the

search space for subsequent shape matches we gain computational time without

compromising the quality of the query results.

56

Therefore, when available, metadata information can be considered, similar to the

feature library (described in Section 3.5), as a screening device to thin the pool of

potential matches before querying by shape begins, thus speeding up the image retrieval

time for a given query. However, it should be noted that image metadata is not a

requirement for I.Q. to process a query. It is used only as a facilitator in that, if available,

it can pre-select a sub-group images within the image library or alternatively a sub-group

of features within the feature library in which to limit the matching of the query sketch

against. Without metadata, the query is processed against all the images in the image

library or features in the feature library according to the procedures described in Chapters

4 and 5.

In this research, metadata is entered at image insertion time, before the edge-

image generation process (outlined in Section 3.3) begins, and is linked one-to-one with

each image in the image library (Figure 3.7). Therefore, if a subsequent query criterion is

for all images at scale 1:10000, the query gets processed within the metadata library with

the results pointing to individual images in the image library. To assist the user with

inserting an image into the image library, a selection of the most commonly entered data

values for each metadata category, as taken from other, previously inserted database

imagery, can be presented in a pop-up menu for quick selection. If relevant metadata

categories or data values are not presented or otherwise not suitable in this pop-up list,

the user could interactively add new metadata information to the list. Once the image

metadata has been entered, the image is inserted into the comprehensive digital image

database where the process of edge-image generation (described in Section 3.3) begins.

57

Figure 3.7 : Linking Between the Metadata Library and Image Library

If metadata is used as a matching criterion during the query building process, all

images that satisfy the users request will be selected from the image library. For

example, if the user only wants to look at imagery taken on a certain date, at a certain

scale, and of a certain location, this information will screen out most of the imagery in the

database as unsuitable matching candidates. From the remaining images, there are

known links to features within the feature library that the query sketch will match against

if on-line querying (described in Section 3.7) is invoked. In this case (i.e. when metadata

is used to facilitate on-line querying), the query sketch will go directly to the features

within the feature library that the selected images point to and begin matching the sketch

at the relevant parent levels in the tree. It will ignore testing against any features that

may be below the root parent point in the tree if it does not pass the specified matching

criteria, thus speeding up the search times considerably.

Image Librar y

22852.tif

22853.tif

22854.tif

22855.tif

22852_edg.tif

22853_edg.tif

22854_edg.tif

22855_edg.tif

Metadata Librar y

22852.tif 10000 3:15:62 Boston ...

22853.tif 10000 3:15:62 Boston ...

22854.tif 10000 3:15:62 Boston ...

22855.tif 10000 3:15:62 Boston ...

58

3.5 Feature Library

The feature library component of the comprehensive digital image database

(Figure 3.8) contains a set of distinct features (i.e. image-object shapes) and links to

relevant edge-images where such features appear. The role of the feature library is to

allow for efficient querying through the optimal organization of image-object data, in the

form of previously sketched queries, and to provide the crucial link between this abridged

group of raster features and a library of images. Feature-image linking allows us to avoid

matching against the actual images, which can be very time consuming even for a small

library of imagery.

Figure 3.8 : The Feature Library Component

The organization of the feature library data enables it to act like a multi-stage

screening mechanism that minimizes the risk of wasting considerable time making passes

over extensive data that have no chance of selection. For example, the first screening

Query Interface Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

Off-line
Query

On-line
Query

Sketch

Value 1...
Value n

Sketch

59

criterion will eliminate as potential matching candidates most of the features within the

library. A secondary screening criterion will eliminate the next greatest number of

alternatives and so on down through the feature library tree hierarchy. This is in contrast

to performing a sequential search through an unordered list of features where much time

will be wasted unnecessarily matching the query sketch against unrelated or duplicate

image-objects.

The feature library is linked many-to-many with the image library (Figure 3.9).

That is, one image could be linked to more than one feature within the feature library and

one feature could be linked to more than one image in the image library. Due to the

dynamic natures of the image library and query building, the feature library is constantly

adding, subtracting and otherwise updating its features, links, and internal organization.

It will also therefore need to be autonomous in that it automatically maintains its own

contents depending on the changing states of these external but integrated components.

Figure 3.9 : Linking Between the Metadata Library, Image Library, and Feature Library

Image Librar y

22852.tif

22853.tif

22854.tif

22855.tif

22852_edg.tif

22853_edg.tif

22854_edg.tif

22855_edg.tif

Metadata Library

22852.tif 10000 3:15:62 Boston ...

22853.tif 10000 3:15:62 Boston ...

22854.tif 10000 3:15:62 Boston ...

22855.tif 10000 3:15:62 Boston ...

Feature Librar y

Feature A Feature A-1

Feature D

Feature C

Feature B

Feature D-1

Feature C-1

Feature B-1

…
…
…
…

60

3.6 Off-line Matching

The off-line matching component of the I.Q. environment is a process that

matches a query feature to the entire feature library while ignoring its hierarchical

structure (Off-line Method 1, Figure 3.10) or to the entire image library (Off-line Method

2, Figure 3.11). In doing so, off-line matching completely ignores any metadata input the

user may have entered while composing the query. Subsequently, off-line matching

Method 1 and Method 2 bypasses the metadata library component of the comprehensive

digital image database and processes the input query using sketch information only. Off-

line matching therefore is invoked only in the cases where no acceptable images were

returned to the original query.

Figure 3.10 : The Off-Line Matching Method 1 Information Flow

Query Interface Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

Off-line
Query

On-line
Query

Sketch

Value 1...
Value n

Sketch

61

Potentially, a situation where unacceptable images are retrieved by the original

query could arise if relevant features (i.e. those that match acceptably to the query sketch)

within the feature library were inserted as children under a parent feature that did not

match sufficiently to the input query sketch. In this case, the query feature would not

pass down through the parent feature’s branch within the feature library tree hierarchy

and therefore would not find its potential match and subsequent link to the image library.

Figure 3.11: The Off-Line Matching Method 2 Information Flow

Off-line matching is also a process that matches all existing and newly inserted

library features (as opposed to query features) against all newly inserted images (Off-line

Method 3) of the image library. In this case, no query input is provided by the user, and a

substantial amount of time is required to complete the matching process (depending on

how many images are in the image library and/or features in the feature library).

Query Interface Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

Off-line
Query

On-line
Query

Sketch

Value 1...
Value n

Sketch

62

However, this process ensures that all library features are linked to their proper images

(and vice versa).

Off-line Method 3 is usually invoked under two circumstances:

• First, when a new image is inserted into the image library. Upon insertion, a

new image gets its edge representation generated, as described earlier, and

then all the features in the feature library get matched against this new image

to see if and where they match. More specifically, when new images get

inserted, Off-line Method 3 matches the existing features only to those new

images, and not to the entire image library. If a feature-to-image match is

above 50%, a link from this feature to this image (and vice versa) is

established along with its location (i.e. the coordinates of the feature centroid

within the image), and the coordinates of the minimum bounding rectangle

(MBR) of this feature within the image, and;

• Second, when a query feature is inserted into the feature library. The query

feature, to begin with, will acquire all the links of its parent but will in turn get

tested against all the images in the image library to update these links. Similar

to the previous case, if a feature-to-image match is above 50%, a link from

this feature to this image (and vice versa) is established along with its

location.

3.7 On-line Matching

On-line matching is a process that will retrieve all relevant images from the image

library that match to the users input query in real-time, i.e. while the user waits on-line.

The wait time required for such a process depends on the number of features in the

63

feature library and on the final organizational structure the feature library. For example,

depending on the number of nodes at a given level in the tree hierarchy, the time required

to search for a conjugate match at that level will vary.

On-line matching can be invoked with or without the metadata option being

selected during the query composition phase. For example: when a query is processed

with the Metadata option, four processes begin sequentially (Figure 3.12):

• First, the metadata library will be searched and image filenames that satisfy

the query will be returned;

• Second, the selected images will return the corresponding feature filenames

that they are linked to;

• Third, the input query sketch will be matched against this abridged list of

features beginning at the parent level of each of these selected features and the

results prioritized, and;

• Fourth, the images that the best matched feature library features point (link) to

will be returned as the final result to the query.

This is the most efficient approach to querying the comprehensive digital image database

and is what makes on-line querying possible (i.e. in real-time).

Some issues to consider while determining which images to return from a query

and in what priority need to be addressed. These include the concepts of same, similar,

and different. For example, when should a query sketch be considered to match the same

to a feature from the feature library (or to an object in an image), or similar, or different?

This issue was examined in some detail and is described further in Chapters 5 and 6. In

summary, it was discovered that the values chosen for these three matching categories are

64

both application and user dependent. Therefore, it is left up to the user to determine what

matching percentages he will accept to mean that two features should be considered as

the same, similar, or different.

Figure 3.12: The On-Line Matching Information Flow With Metadata

Depending on what value ranges the user chooses for these three categories, the

feature library will re-structure accordingly by adjusting its width and depth. This in turn

will have a direct affect on both the number of images that get returned to a given query

and on the time required to return this result, e.g. a wider tree structure will generally take

longer to search through.

Concerning the prioritization issue, where the sequence of returned images to a

given query is in question, there are conditions here that will also need to be investigated.

For example, consider the case where a query feature matches 70% similar to Feature A

Query Interface Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

Off-line
Query

On-line
Query

Sketch

Value1...
Value n

Sketch

3

4

2

5

6

1

65

and 60% similar to Feature B. Feature A in turn is linked to an image where it matches

only 55% while Feature B is linked and matched to an image at 85%. In this case, the

prioritization process will take the links provided by the feature with the highest match

first (the image links to Feature A). The prioritization process does not consider that

Feature B might have stronger links to its images (than Feature A) because this may or

may not make any difference to how well the query feature itself matches to the images.

It is quite possible that a query feature could match better to the linked images

than the feature it matched to in the feature library and vice versa. Since this is on-line

matching, it is not feasible to check in real-time how well the query feature itself matches

to each of the linked images just for the purpose of prioritizing the images returned from

a given query. Therefore, the image links to the best-matched feature from the feature

library will be returned first in their respective order followed by the links to other

images of lesser-matched features (Figure 3.13).

Figure 3.13 : Prioritization of Query Results.

Images linked to Feature A will be returned before images linked to Feature B even
though the Query Feature might match better to the images linked to Feature B. This
allows for querying and on-line matching to complete the image retrieval process in real-
time.

60%
Similar

70%
Similar

55%
Similar

85%
Similar

Feature Librar y Image Librar y

Feature

A

Image

6584.tif

Feature

B

Image

2501.tif

Query

Feature

66

When a query is processed without the Metadata option, due to the user having no

restrictions on scale (or on location or on any other metadata information), three

processes begin sequentially (Figure 3.14):

• First, the query feature gets matched against the entire feature library

beginning with the primary parent level and then subsequently down through

the required (i.e. best matched) trees;

• Second, the best matched features in the feature library will be found and their

links to the images prioritized, and;

• Third, the prioritized images are returned as the final result to the query.

This approach, which is also considered to be on-line matching, is not as efficient as

when metadata is used in the query building process, but is still much quicker than

matching the query feature against the image library directly.

Figure 3.14: The On-Line Matching Information Flow Without Metadata

Query Interface Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

Off-line
Query

On-line
Query

Sketch

Value 1...
Value n

Sketch

67

Both of the querying scenarios just described are considered as on-line matching.

They both will return, in a reasonable amount of time, results to a users query for images

that contain the requested object or feature. However when neither of the above two

methods return the desired images, off-line matching will need to be invoked.

3.8 Query-by-Sketch in a Comprehensive Digital Image Database

When querying the comprehensive digital image database, several conditions will

need to be addressed. For example, querying with and without metadata should be

allowed. This type of condition should be allowed in such an environment to counter the

instances where relevant imagery bypasses the metadata filter. An image could

potentially slip through the metadata search “net” if no information about a particular

attribute was entered at image insertion time. For example, if a particular image didn’t

have an attribute value entered for the date of exposure, a metadata search on this

criterion would fail to include this image in the query result.

Therefore a query in the I.Q. environment can consist of any combination of

metadata and sketch, i.e. there are five cases.

• Case 1: a query could be built and run against the image library using only metadata

information (Figure 3.15). A sample query in this case could be to return all the

images that were taken on a certain date by a certain sensor.

68

Figure 3.15: Metadata Only Query Information Flow

• Case 2: a query could consist of metadata information and a sketch (Figure 3.16). A

sample query in this case would be to use the results provided in Case 1 to select a

subset of features from the feature library to match the user provided sketch against.

The images linked to the best-matched features from this subset will be retrieved

from the image-library as the results to the query.

Input
Query

Value1...
Value n

Sketch

Image 1 Orono B&W
Image 2 Bangor IR
Image 3 Boston Color

.

.

.
Image n-1
Image n

Compose Query Search Metadata
Library for Relevant
Image Filenames

Retrieve Relevant
Imagery from Image
Library

Query Results

69

Figure 3.16: Metadata and Sketch Query Information Flow

• Case 3: a query could consist of sketch information only and be performed solely on

the image library (Figure 3.17). A sample query in this case is that you want to find

all the imagery that contains a certain object regardless of scale, location, date, etc. of

the imagery, while at the same time ignoring the feature library completely. This type

of query is performed off-line (Off-line Method 2) due to the time needed but makes

certain that all imagery in the image library is being considered. This type of query,

for example, takes into consideration that if no metadata information is entered for

some of the imagery at image insertion time, they can not be considered as results to a

metadata search.

Input
Query

Value1...
Value n

Sketch

Image 1 Orono B&W
Image 2 Bangor IR
Image 3 Boston Color

.

.

.
Image n-1
Image n

Compose Query Search Metadata
Library for Relevant
Image Filenames

Retrieve Relevant
Imagery from Image
Library

Retrieve Linked
Feature Subset from
Feature Library

Match Query
Sketch Against
Feature Subset

Retrieve Linked
Imagery to Best
Matched Feature

Query Results:
Prioritized List of
Relevant Imagery

93%

75%

54%

70

Figure 3.17: Sketch Only Query Without Feature Library Information Flow

• Case 4: a query consists of sketch information only and the feature library is

considered but not its underlying organizational structure (Figure 3.18). What would

happen in this case would be that the query feature would get matched offline (Off-

line Method 1) sequentially to all the features in the library. A possible scenario

where this type of matching would be invoked is in the cases where no acceptable

images were returned to the original query due to the relevant features within the

library being inaccessible. Library features could become inaccessible in some cases

because the organizational structure of the library is dependent on the values chosen

for the matching parameters “same”, “similar”, and “different” and on the temporal

order of feature insertion into the library’s tree-like structure (discussed further in

Chapter 5).

Input
Query

Value1...
Value n

Sketch

Compose Query Match Query Sketch
Against Image Library

Query Results:
Prioritized List of
Relevant Imagery

88%

74%

67%

71

Figure 3.18: Sketch Only Query Ignoring Feature Library Structure Information Flow

• Case 5: a query consists of sketch information only and the feature library, together

with its organized structure, is considered (Figure 3.19). A sample query in this case

is that you want to find all the imagery that contains a certain object regardless of

scale, location, date, etc. of the imagery, similar to Case 3, but you want to perform

this query on-line (i.e. in real-time). This type of query would first match the query

template feature against all the features at the parent level of the feature library and

then start progressing down through the relevant trees of the best-matched parents.

The links to the images of the best matched library features are returned as the results

to the query and the query feature gets inserted, if the user wishes, into the feature

library at that point.

Input
Query

Value1...
Value n

Sketch

Compose Query Match Query Sketch
Against Unstructured
Feature Library

Retrieve Linked
Imagery to Best
Matched Feature

Query Results:
Prioritized List of
Relevant Imagery

83%

65%

64%

72

Figure 3.19: Sketch Only Query With Structured Feature Library Information Flow

3.9 Feature Matching and Linking

In order to allow the proposed image query and retrieval environment to perform

on-line matching, it is necessary to link previous user sketches (queries) with their

respective matches in the image library. In doing so, further sketch-based queries on the

feature library will result in a list of prioritized images returned to the user. Also, further

metadata queries will result in a list of images being returned that point to a prioritized

list of features in the feature library, on which sketch-based matching can begin. The

result of this matching concludes in turn with a list of prioritized images that match to the

combined metadata/feature input query.

It is from the matching process itself (described in detail in Chapter 4) that the

links between the feature library and image library are created and maintained. The

variables returned from the matching process are the feature name, the image name, the

matching percentage, the row and column that the centroid of the feature matched at, and

the row and column values for the minimum bounding rectangle of the feature within the

image. Sample values for each of these variables might consist of (Table 3.1):

Input
Query

Value1...
Value n

Sketch

Compose Query Match Query Sketch
Against Structured
Feature Library

Retrieve Linked
Imagery to Best
Matched Feature

Query Results:
Prioritized List of
Relevant Imagery

83%

65%

64%

73

Feature Image % Row Col MBRminrow MBRmincol MBRmaxrow MBRmaxcol

Building1 22852 74 487 1920 450 1850 530 1990
Building1 29342 70 2190 1530 2100 1500 2253 1600
Building1 43852 65 3278 550 3200 500 3300 600

Plane7 39653 85 1522 2425 1496 2400 1555 2465
Plane4 22852 90 1700 886 1650 800 1778 925

Table 3.1 : Image-Link File.

An image-link file is created containing an entry for every feature in the feature

library. This file can be considered as a view of the matching results grouped according

to feature names, as in the above table. This view contains an ordered list of the images

that matched to the features above 50%. Every time off-line matching is invoked and

new links are found, they get inserted into this file in their proper location with higher

matched images listed first. The features themselves get appended to this view upon

insertion into the feature library.

Similarly, each image in the image library has a feature-link view of the matching

results grouped according to image names (Table 3.2). This view contains an ordered list

of the features that it matched to above 50%.

Image Feature % Row Col MBRminrow MBRmincol MBRmaxrow MBRmaxcol

22852 Plane4 90 1700 886 1650 800 1778 925
22852 Building1 74 487 1920 450 1850 530 1990
43852 Building1 65 3278 550 3200 500 3300 600
39653 Plane7 85 1522 2425 1496 2400 1555 2465
29342 Building1 70 2190 1530 2100 1500 2253 1600

Table 3.2 : Feature-Link File.

74

The variable entries in this file consist of the same columns as for the image-link

files except for the ordering. Every time off-line matching is invoked and new features

are found to match greater than 50%, they are added to this file in their proper location

with higher matched features listed first. The images themselves get appended to this

view upon insertion into the image library.

3.10 Chapter Summary

This chapter presented the theoretical framework underlying the approach

adopted in this thesis for digital image retrieval using raster queries. It includes a

description of the three major components that make up the comprehensive digital image

database, namely the image library, the metadata library, and the feature library. The

distinction between on-line and off-line matching is presented along with the concept of

feature matching and linking and a description of the 5 types of queries that are indeed

possible to process in such an environment. Within the proposed environment, queries

can be performed with or without the metadata option and with or without consideration

to the feature library organizational structure. Input query sketches can consist of an

existing member of the feature library, an extracted image-object taken directly from an

image in the image library, or a newly sketched query feature submitted by the user.

75

Chapter 4

Modified Least-Squares Feature Matching

Both the on-line and off-line matching algorithm employed by the image query

and retrieval environment presented in this thesis is based on the modification of the

least-squares matching (lsm) technique described previously in Chapter 2. In traditional

least-squares matching, the difference in gray values between a patch of template pixels

and a patch of image pixels is the criterion used to determine the accuracy of the match.

Limitations of this approach are that it can be a highly computation intensive operation,

even for small patches of pixels, and that good initial approximations for positioning the

template patch within the image are required for determining a correct match.

4.1 Objective & Contribution

The main objective of this chapter is to explain in more detail how the modified

least-squares matching approach functions. It was decided to use lsm in this thesis as the

matching foundation due as much to its robust nature in establishing correspondences

among conjugate image windows, as to its other previous successful extensions,

including; matching on multiple image windows [Agouris and Schenk, 1996], feature-

wise global matching solutions [Gruen et al., 1995], and on establishing correspondences

in sets of 3-D images [Maas et al., 1994].

Conceptually, the modified matching algorithm is a variation of (lsm), modified

to function with image-edge files. One of the obvious differences between the modified

approach and the traditional least-squares method therefore is the theoretical extension of

76

matching an input query template, in the form of a binary raster sketch, on binary raster

imagery (Figure 4.1).

The major scientific contribution of this modified least-squares approach is this

extension to function with binary raster data and subsequently without good initial

approximations of the conjugate positions.

Figure 4.1 : The Query Matching Workflow

4.2 Feature Matching

In our approach, we use edges instead of gray scale pixels as the metric for

template to image similarity. Therefore, it is not necessary to test full patches of pixels

against each other. Instead, we reduce the patch into its information content by

considering only those pixels that contain image-object information, i.e. only those that

constitute image-object edges, are required to test for similarity. This is possible because

the image itself is binary and therefore consists only of edge representations. The

matching process then reduces to checking only if the input query template edge pixels

overlay edge pixels from the image - the answer can only be either a “yes” or “no”. If

Raster Sketch Query
Modified Least-Squares Matching

on Raster Edge-Image Best Matching Percentage &
Coordinates of Conjugate Position

Recorded for Each Image

87%

77

yes, this template edge pixel “votes” to stay where it is. If no, then this template edge

pixel votes to move. The question now is, in which direction and how far.

4.2.1 The Unknown Transformation Parameters

In traditional least-squares the affine transformation is used to calculate the new

position of the query template patch within the image. It incorporates unknown

transformation parameters that take into account template translation, scaling and

rotation. The direction to shift the query template then is determined by testing the gray

scale difference between neighboring pixels within the template against the gray scale

difference between neighboring pixels within the image. This amounts to testing the

template gradient against the image gradient at each pixel location within the template.

The result of this test is a decision as to where and how far to shift the template

within the image to acquire a better match. Typical distance values for shifting the

template can be anywhere from fractions of a pixel to a few pixels in any direction before

re-sampling takes place and the unknown transformation parameters and new shift values

are re-calculated (Figure 4.2).

Figure 4.2 : Left Image Template and its Conjugate Right Image Window after Iteration

Left Image Right Image

XL XR

YL
YR

Query Template Initial Position

Final Position

78

Since the template never shifts more than a few pixels at a time in any one

direction, if the initial positioning of the template within the image is not already close to

its correct conjugate position, the template may never find its proper final match.

Traditional least-squares template matching therefore, although robust and highly

accurate, is very sensitive to the initial approximations as its “pull-in” range is quite

restrictive.

In contrast to traditional least-squares, our matching algorithm is a modification

of lsm to function using object outlines instead of gray values, thereby avoiding

computationally expensive matrix manipulations. We obtain a solution by analyzing the

dissimilarities between a query template (user provided sketch) and an edge-image

window. By using edge information only, the calculation of the unknown transformation

parameters reduces to checking in each of the cardinal directions (for each edge pixel in

the template that votes to move) for the nearest image edge pixel. Summing up and

averaging all directions and distances for all edge pixels that vote to move gives the

distance values and direction to shift the template feature.

Typical distance values range from 0 to 10s of pixels in any direction with the

maximum distance allowed being half the dimension of the template feature itself. This

distance is always an integer amount because the edge pixels are either “on” or “off” and

there is no averaging of groups of neighboring pixels allowed. This allowance for

shifting of the template feature 10s (or more) of pixels in any direction means that initial

approximations for positioning the template within the image are not required. If our

developed edge matching algorithm determines that the template is not in a suitable

position within the image, it will “move to where the image content is” on its own.

79

4.2.2 Observations

In traditional least squares, the observations are the gray levels of the images

themselves. This methodology allows for finding correspondences between two images,

between an image and a map, and between an image component (window) and a query

template (sketch). In our approach, again since object edges are used instead of gray

scale pixels, gray level observations are replaced with feature existence/absence

observations. When a query template is compared to an edge-image, the template is

divided into four quadrants. Each quadrant is matched separately to a corresponding

edge-image area, and template pixels vote to stay put (or move) according to their

similarity (respective dissimilarity) to corresponding edge-image pixels. This resembles

the comparison of gray values in least-squares matching and the use of image gradients to

identify shifts, rotations, and scalings.

4.2.3 An Iterative Solution

In traditional least-squares, the solution is obtained by solving for and using the

unknown parameters of the affine transformation to determine a new position in the

image as the conjugate of the template. This is an iterative procedure, i.e. the least-

squares matrix equation will have to be iterated until the unknown transformation

parameters do not change (within a certain tolerance) or until the iteration number

reaches a previously specified maximum.

In our approach, to determine which direction and how far to move the query

template while matching within an edge-image, the template is divided into quadrants

centered on the centroid pixel of the template feature. Each quadrant is matched

separately to the edge-image and the sum of the “votes” for each pixel of the feature in

80

the quadrant is recorded as to whether it votes to stay or move - and if it votes to move, in

which direction and how far. Image pixels are checked in the +/- x and y directions. This

means each quadrant votes to move in one of 4 cardinal directions; left, right, up, down

together with how far it wants to move plus 2 other possible voting outcomes; staying

where it is or shifting completely to another position within the edge-image. Therefore,

with 6 possible outcomes for each of the 4 quadrants, there are 64 (or 1296) possible

outcomes to consider for each new position the template takes up within the edge-image

(Figure 4.3).

The process of determining direction and distance to shift the query template

through the tabulation of its edge pixels votes continues until an arbitrary limit (e.g. 20

iterations) has been reached or until more pixels vote to stay put than to move. This

method also allows for occlusions of up to half of the template feature to be detected as

the feature can shift its origin, centroid pixel right up to the border of the edge-image.

81

Figure 4.3 : Quadrant Voting and Feature Shifting.

Note: The voting is presented in the order in which it is tested.

Note: a vote of means this
quadrant’s vote could be in any of
the four cardinal directions.

Q1Q2

Q3 Q4

The four query
template quadrants

Shift Up

Shift Right

Shift Left

Shift Down

Shift Right

Shift Left

Shift Up

82

Figure 4.3 cont. : Quadrant Voting and Feature Shifting.

Shift Right

Shift Left

Shift Down

Shift Up

Shift Right

Shift Left

Shift Up

Shift Down

83

Figure 4.3 cont. : Quadrant Voting and Feature Shifting.

Rotate
Clockwise

Rotate Counter
Clockwise

Rotate Counter
Clockwise

Rotate
Clockwise

Scale in X
direction
smaller/larger

Scale in Y
direction
smaller/larger

Shift Right

≠ ≠

≠

≠

≠

≠

≠

≠

Shift Down

84

Figure 4.3 cont. : Quadrant Voting and Feature Shifting.

Shift Right

≠

≠ ≠ ≠

Shift Up

≠ ≠

≠

≠

≠

≠

≠

≠

Shift Up

≠

≠ ≠ ≠

Shift Left

≠ ≠

≠

≠

≠

≠

≠

≠

Shift Left

≠

≠ ≠ ≠

Shift Down

≠ ≠

≠

≠

≠

≠

≠

≠

Shift Down

≠

≠ ≠ ≠

85

4.2.4 Accuracy Measures

In traditional least-squares, the robust mathematical foundation allows us to

obtain meaningful statistical measures for the accuracy of the matching process in the

form of the a posteriori variance of unit weight. Here, the residuals vector, expressing

the deviation between observations and their adjusted values, and the degrees of freedom,

or difference between formed equations and unknown parameters are combined in an

equation that is used as a score index, reflecting the confidence level of a match.

In our approach, once the template query feature has settled onto a match, its

accuracy is determined from its matching percentage, i.e. by how many of its pixels

continue to vote to stay put compared to the total number of pixels that constitute its

edges. For example, if a query feature has 100 edge pixels and after it has scaled, rotated,

and translated itself onto its final conjugate position, 70 of these pixels are positioned on

edge information from the image, it will be considered as matching 70% to this particular

image. This matching percentage is recorded and sorted for each image in the image

library.

4.3 Implementation Concerns

To further assist the self propelled movement of the query template throughout

the edge-image, the file is subdivided into fractions depending on the pixel dimensions of

the input query feature. For example, if we assume the feature being searched for is

smaller than 1/9th of the total edge-image size, the edge-image could be subdivided into 9

equal sub-regions (Figure 4.4). If the feature being searched for is larger than this, then

the image could be subdivided into quarters, etc.. For example, when matching the query

feature to a member of the feature library (during on-line matching), there will be just 1

86

sub-region and its dimension will be identical to the library feature’s dimension.

Decisions on how to subdivide the image could also include the scene complexity, with a

more complex scene being subdivided more to ensure no detail is missed and to speed up

the searching process.

Figure 4.4 : Example of Query Template Quadrants and Image Sub-Regions.

Sub-region boundaries are set up so the template feature doesn’t waste time

searching around in an area of the image which may have no relevant data and to avoid

searching over the same image area more than once. By subdividing the image into these

regions, the feature is restricted from translating uncontrolled over the image. Its

movements are confined to the sub-region and each sub-region is checked sequentially

only once for matches. The best template matching percentage for all the sub-regions is

taken as the best match for that particular template/image pair.

When the query feature’s edge pixels are searching for a direction and distance to

move to, they will only do so for a distance of half the dimension of the sub-region. If

they do not find a suitable match within this distance, then those pixels vote to move the

q1q2

q3 q4

87

entire feature to a new position within the sub-region a distance of ½ the dimension of the

query template away. Once the query feature encounters the boundary of one of the sub-

regions, it drops down ½ the dimension of the template in the y direction and repeats its

movement along the x direction until it either finds some features in the image to match

to or again hits the boundary of the sub-region. When the entire sub-region has been

searched in this way, either successfully or unsuccessfully, the feature will then jump to

the beginning of the next sub-region and repeat the process. This is in contrast to the

traditional least-squares approach to template matching where the template is restricted to

moving only fractions of this amount.

At the completion of checking all the sub-regions, the position of the best match

from all the regions is identified as the best match for the image. To avoid missing a

match that may occur at the borders of two sub-regions, additional sub-regions are added

to overlap these areas in both the x and y directions. For example, if the edge-image was

originally divided into 9 sub-regions, two more overlapping regions would be added in

both the x and y directions thereby creating a 5x5 overlapping division of the edge-

image. This would result in 25 separate sub-regions requiring to be searched (Figure

4.5).

88

Figure 4.5 : Example of Overlapping Image Sub-Regions

For scaling the template feature, there are two approaches:

• Independent axis scaling is recommended when the user digitizes his own

feature to match, as a freehand sketch will most probably not contain a

uniform scale. This will allow for the feature to scale by different amounts in

the x and y directions.

• Global scaling is recommended for the matching process if the user chooses

an existing feature, either from the feature library or from an image, to search

the image library against. Global scaling assumes a constant scale change in

all directions. This is usually the case when images are scanned at different

resolutions or taken with different focal lengths or flying heights. For

example, if the developed matching algorithm determines, through analyzing

the quadrant shifts, that scaling in the x direction only is required, the entire

feature will scale the same amount in all directions.

Sub-region 1

Sub-region 2

Sub-region 5

Sub-region 4

Sub-region 3

89

In both cases of scaling, each quadrant remains intact. That is to say, when the

template feature pixels within the quadrant scale, all the pixels move in the same

direction the same amount. It can be seen therefore that in the case of scaling the feature

larger, there will now be spaces between the features pixels from one quadrant to the next

after expansion. This is logical, as data cannot be inserted into the newly created empty

spaces because this detail did not exist in the original scan. One method to circumvent

this lack of data, and an area of further research, may be to use fractal image compression

techniques, where, independent of how large an image is scaled (or zoomed in), there is

always new detail shown.

The analysis of the quadrant shift directions and distances proceeds first through

translation, then rotation then scale. The amount of translation is taken as the average

distance calculated from the 4 quadrants. For rotation, the transformation of coordinates

for the query feature pixels are calculated using Equation 11 and Equation 12.

row row col' cos() sin()= ∗ − + ∗ −α α (11)

col col row' cos() sin()= ∗ − − ∗ −α α (12)

where α is the angle of rotation between the x’ axis and the positive x axis. The

rotation angle begins at 180°, is negative in the counter clockwise direction, and positive

in the clockwise direction. If upon the next iteration the quadrant shifts determine a

rotation angle in the opposite direction, then the previous rotation angle is halved and the

sign changed. This halving and sign changing (if necessary) of the rotation angle

continues until an arbitrary limit (e.g. 20) of iterations is met or until the template feature

settles onto its final matched position. This process of arbitrarily choosing an initial

rotation angle, then continue to halve it until the final rotation angle is determined solves

90

the problem of calculating an initial rotation angle when only a clockwise or counter

clockwise direction is given.

For all instances of translation, rotation and scaling, there are “strong” and

“weak” cases. Many of the total 1296 different direction combinations mentioned earlier

can be grouped into similar cases within the weak and strong definitions and others can

be ignored altogether. For example: if all four quadrants vote to move in the same

direction, this obviously is considered as a strong case. If three of the four quadrants vote

to move in the same direction and the fourth quadrant votes to move in one of the other

directions, this is also considered as a strong case to move in the direction indicated by

the three quadrants that agreed with each other. Then there are the cases where only two

of the quadrants vote to move in the same direction and the other two vote to move

elsewhere (other than equal to each other). This is considered as a weak case and is

handled only after all the strong cases have been tested for both translation and rotation.

After the strong cases for translation are tested for, the strong cases for rotation

are then considered. These include the cases where all four quadrants vote to rotate in the

same direction. In the cases where only three of the quadrants vote to rotate consistently

in the same direction and one quadrant points to another direction, the template feature

will rotate only if this case doesn’t already match one of the strong cases for translation.

The order of testing for query feature movement within the image therefore is

critical for maintaining matching efficiency. After the strong and weak cases for rotation

have been tested, the cases where only two of the four quadrants point to the same

direction and the other two point elsewhere (but at the same time the quadrants taken

together don’t fall into any of the previous rotation categories), are considered.

91

The final transformation category to test for consists of those combinations of

directions that equal to scaling in either axis direction independently or together. The

remainder of the combinations of quadrant voting will consist of cases where all four

quadrants point to different directions that do not correspond to one of the translation,

rotation, and scaling. In this case, the template feature will shift to a new position within

the sub-region and begin the matching process anew.

4.4 A Query Template Matching Example

The following example will explain the matching process between a query feature

and an edge-image from the image library (Figure 4.6).

• The user will search the feature library for a suitable template feature to

modify, or search the image library for a suitable template feature to extract

from an existing image and modify, or draw from scratch a template feature

sketch.

• Once the template feature has been located/sketched, its number of rows and

columns are recorded along with the total number of edge pixels in the sketch.

The centroid of the template feature is calculated using the center of mass of

the feature. The (row,col) coordinate of this pixel will be used as the origin

for template translation, scaling and rotation within the image. The centroid

will also be used as the origin for the template quadrant system of edge pixel

voting.

• The template feature gets superimposed on the image in position “sub-region

1”. The testing of the feature edge pixels begins and the votes for each pixel

to either stay or move are recorded. If the pixel in question votes to move, it

92

is determined in which direction and how far with higher weights given to

shorter distances. After all the template feature edge pixels have been tested,

the sum of all these directions and distances are determined separately for

each of the four quadrants within the template feature.

• From analysis of the edge pixel voting patterns, a decision is made to

translate/scale/rotate the template feature within the sub-region. Once shifted

into its new position, the template feature re-calculates all its pixel’s votes and

new distance values and directions are determined. The searching is stopped

when the number of pixels in the template deciding to stay where they are is

greater than the number wanting to move to a new location, or the iteration

maximum is reached.

• If the searching determines that there are no good matches found in sub-region

1 or that a good match was indeed found, it jumps to sub-region 2 and so on

until all sub-regions have been checked independently. The best-matched

position for all sub-regions is recorded and the best one of these is used as the

final matching percentage and position for the template feature in this

particular edge-image.

93

Figure 4.6 : Example of Raster Query Processing on Edge-Image from Image Library

Raster Sketch Query

Best Matching Percentage &
Coordinates of Conjugate Position

Recorded for Each Image

87%

Modified Least-Squares Matching
on Raster Edge-Image

Initial Position Conjugate Position

Stay: 15 Move: 55
Q1: Shift Right 10 pixels
Q2: Shift Down 5 pixels
Q3: Shift Right 12 pixels
Q4: Shift Right 5 pixels

Shift Template Right 9 Pixels

Stay: 17 Move: 53
Q1: Shift Down 8 pixels
Q2: Shift Down 4 pixels
Q3: Shift Right 12 pixels
Q4: Shift Down 9 pixels

...

Shift Template Down 7 Pixels

Row: 274 Col: 455
Matching Percentage: 87%

Query Sketch

Rows: 30 Cols: 45
Edge Pixels: 75
Centroid: 15,25

94

4.5 Chapter Summary

In this chapter, a description of the matching process within I.Q. is presented. In

general, a query feature is divided into quadrants at its centroid and then superimposed on

an image. The edge pixels in each of the quadrants then vote as to which direction and

the distance they would like to move. An average direction and distance is determined

for each quadrant separately and then analyzed to give an overall position shift for the

template feature. This shift can be one of a translation, a rotation or a scaling. The

process repeats for a maximum number of iterations or until a match is found. The

template then moves to another location (sub-region) within the image where the

matching procedure begins anew. The final matching position for the template feature

within the image is taken as the best matched position from all the sub-regions.

The modified least-squares matching algorithm developed in this thesis is a novel

theoretical extension of traditional lsm to function with binary raster data and

subsequently without good initial approximations of the conjugate positions.

95

Chapter 5

Feature Library

The feature library is a hierarchical organization of raster query feature templates.

It is through the exploitation of the unique I.Q. feature library that on-line query and

retrieval of raw raster imagery can be realized. This is accomplished through linking the

features in the feature library to imagery in the image library (Figure 5.1).

Some issues to consider when determining which images need to be linked to

which features need to be addressed. These include the concepts of same, similar, and

different. For example, when should a query sketch be considered to match the same to a

feature from the feature library (or to an object in an image), or similar, or different?

We suggest that the “cut-off” values chosen for these three matching categories

are both application and user dependent. Different applications require different types of

imagery and perhaps the shape of objects contained within them do or do not differ very

much. In either case, the range of matching percentages selected to mean that two

features should be considered as the same, similar, or different will vary. Also, for the

same application, some users might wish to restrict the imagery returned from a query by

allowing for near perfect matches only when considering if two features are the same

while other users will accept imagery having a much broader range of matching

percentage values. As an example of how the values for these ranges could be selected,

one might choose to limit the number of features allowed on the parent level, e.g. by

broadening the different value range.

96

Depending on what value ranges the user chooses for these three categories, the

feature library will re-structure accordingly with adjustments to its width and depth. This

in turn will have a direct affect on both the number of images that get returned to a given

query and on the time required to return this result.

Figure 5.1 : Raster Query Workflow Via Feature Library Linking

5.1 Objective & Contribution

The main objective of this chapter is to introduce the novel approach taken by this

thesis to establish an organized, hierarchical structuring of shape templates in a feature

library. The overall structure of the feature library will be presented, illustrating its multi

level hierarchical organization. A typical query process will be described in detail,

showing how a new query feature template returns the linked imagery query results and

subsequently how it gets inserted into the tree, becoming the feature library’s newest

Raster Sketch Query

Matches to

In Feature Library

Linked to

In Image Library

97

member. Finally, the concept of feature housecleaning will be introduced, explaining the

need of and methods for ensuring feature library consistency by testing for and removing

any unnecessary duplicate members.

The major scientific contribution of the feature library indexing strategy is its

structured, progressive filtering mechanism that facilitates efficient on-line querying of

raw raster imagery. To accomplish this, matching results at a specific node in the tree are

used to eliminate complete branches and alternatively, to consider only a few branches.

This permits us to reduce the search space from a large database of imagery to a

progressively refined and limited group of feature outlines.

5.2 Feature Library Organization

The feature library is an organized arrangement of distinct feature outlines (i.e.

image-object shapes) and links to image files where such features appear. The role of the

feature library is to provide the crucial link that allows us to reduce the search space of a

query from a large image database to an abridged group of features. In order for the

query to be efficient, the feature library needs to be optimal. The optimality criteria are

three: the members of the library should be exhaustive (thus being able to describe all

possible input features); the members of the library should be independent (avoiding

unnecessary duplications); and the members of the library should be organized (such that

related members are grouped and stored dependently). The three properties, when

satisfied, are equivalent to an ideal library, which is approaching a structured base

spanning the space of shapes.

Feature library organization employs three parameters: a matching percentage

above which objects are considered to be the same, a percentage range within which

98

objects are assumed to be similar, and a matching percentage below which objects are

considered to be different. Combined, the three parameters define the degree to which

the feature library approaches the ideal library outlined previously. High values for same

ensure the independence of elements at the same level of the library tree. In Figure 5.2,

and for the remaining examples in this chapter, the 80-100% range is used to define

same, the 50-79% range to define similar, and matching percentages below 50% define

what is meant by different. These values were chosen as they seemed a good fit to the

data generated by the experimental results, explained further in Chapter 6.

Therefore, all features on the same level anywhere within the organized feature

library structure are considered as different if they match less than 50% to each other.

Child features at any level are considered similar if they match between 50% and 79%

inclusive to their respective parents. All unnecessary duplicates, i.e. those features that

match 80% or greater to an existing feature in the library are removed as they will be

considered as the same.

During a query process, a query sketch is first matched against the features at the

parent level in the tree. The process then progresses to child, grandchild and other levels

as necessary. Using the above intervals for illustration, the hierarchical levels of the

feature library are organized in the following manner:

• The Primary Parent Level : The primary parent level is the level against which

every new query shape is first tested (Figure 5.3). The features at this level are the

roots of the multiple trees that comprise the feature library. Individual features within

the parent level are considered different if their mutual similarity percentages are

below 50%. If the matching percentage between a query feature and a parent feature

99

is the same, the links the parent feature has to the images in the image library are

returned as the results to the query. If more than one parent feature matching same to

the query feature exists, the links of the top matching parent (highest matching

percentage) are returned first. In practice, this case of multiple parent matches is

unlikely due to the mutual dissimilarity between the parent features.

Figure 5.2 : Example of Feature Library Hierarchy

If the matching percentage is different to all existing parent level features, the

query feature is considered as different to the parent feature(s) and is a candidate for

insertion into the feature library at the primary parent level (Figure 5.4). Subsequent off-

line processing is then required to establish its links to images in the image library.

… …

Parent
Feature

A

Parent
Feature

B

Parent
Feature

C

Child
Feature

B-1

Child
Feature

B-2

50-79% Similar

GrandChild
Feature
B-1-A

…

…

…GrandChild
Feature
B-1-B

0-49%

Similar

0-49%

Similar

0-49%

Similar

0-49%

Similar

50-79% Similar

100

Figure 5.3 : Query Feature Matching at the Primary Parent Level.

Query Feature 1 is tested against all the features at the primary parent level of the feature
library. It matches best with Feature A, i.e. the matching percent is 14/26=53.8%

• The Child Level : if the query feature matched in the 50-79% range to any parent

feature, it is considered “similar” to the parent and is then tested against this parent’s

respective child features. In the case of multiple parent candidates, we select the one

with the highest percentage first and continue with other candidates in order. If there

are as yet no child features for the selected parent feature, the query feature gets

inserted into the feature library as a descendent of the best-matched parent. Its image

links are added and prioritized through off-line matching. If child features already

reside at this level for any of the selected parents, the query feature gets matched

against each of them. If the matching percentage is in the 80-100% range, the query

Raster Sketch Query

Parent Feature A Parent Feature B

… …

…

Query Feature 1

101

feature is considered as the “same” as the corresponding child feature and the links of

this child feature to the images in the image library are returned as the results to the

query. If the matching percentage is in the 0-49% range, the query feature gets

inserted into the feature library at the child level of the best-matched parent, and

additional links are added and prioritized through off-line matching.

• The Grandchild Level : If after matching in the 50-79% range to a parent feature,

the query feature matched in the 50-79% range to any child feature, the query feature

is tested against any grandchild features. Similar to the above levels, the relationship

between child and grandchild follows that of parent and child. The processes already

described take place at this library level to identify the “same” grandchild, to establish

a new grandchild or to move further down the tree to the level of great-grandchildren.

Combined, these similarity tests have to be satisfied within branches of the tree

structure form the insertion-testing criterion. The children levels may be alternatively

referred to as n-child levels, with the child being 1-level, grandchild being 2-level,

etc.

102

Figure 5.4 : Query Feature Insertion at the Primary Parent Level.

Query Feature 2 matched less than 50% to all existing features at the parent level so is
inserted as Parent Feature C. Note also that Query Feature 1 had previously been inserted
as a descendent (Child Feature A-1) of Parent Feature A.

Raster Sketch Query

Parent Feature A Parent Feature B

…

Query Feature 2

Parent Feature C

Child Feature A-1

103

5.3 Implementation Concerns

This “insertion testing” approach to query feature population of the feature library

ensures that all child/n-child features will match at least 50% (using the lower bound for

similar described earlier) to their parents - a fundamental requirement of the feature

library. It can be envisioned however that a new query feature might match above 50%

to a particular child/n-child feature but less than 50% to any of the current parent

features, as in Figure 5.4. This type of query correctly results in the query feature being

inserted into the feature library at the primary parent level. However, the child/n-child

feature that matched better than 50% to this newly inserted parent feature might now be

residing under the “wrong” parent, i.e. a parent feature that it matches less well to than

the newly inserted parent feature. In this case the child feature must shift its position

within the feature library to reside under the “better” parent in the tree hierarchy (Figure

5.5).

Another example of a potential inconsistency in the feature library could occur

when two children of different primary parents match closer together than to any other

feature currently within their respective tree hierarchies. Depending on the temporal

aspect of feature insertion, this phenomenon could produce unnecessary duplicates in

some cases (Figure 5.6) and necessary duplicates in others (Figure 5.7). This is due to

the allowable range of percentages considered for “same” (i.e. 80-100%) and “similar”

(i.e. 50-79%) matching. If the feature library did not allow for this degree of uncertainty

in its matching, i.e. by allowing for exact matching only, this phenomenon would not

exist. These and other potential inconsistencies are rectified by applying general feature

104

“housecleaning” (which utilizes the temporal aspect of feature insertion, discussed further

in Section 5.4) to the feature library off-line.

Figure 5.5 : Shifting Feature Positions.

Child Feature A-1 is tested against newly inserted Parent Feature C and finds a better
match, i.e. 19/26=73.1%. It shifts position within the feature library to reside as Child
Feature C-1. All of its previous image library links remain intact.

The matching parameters mentioned here are intended to serve as example values

and are not unique. They can be chosen experimentally or even arbitrarily. The

percentages may become lower or higher and can be considered as tuning parameters of

the approach, with their variations affecting the structure of the feature library in a

predictable and organized manner.

Parent Feature A Parent Feature B Parent Feature C

Child Feature C-1

Child Feature
A-1

…

105

Figure 5.6 : Unnecessary Duplications.

Parent Features A and B already reside in the library. Child Feature A-1 matches 60% to
A and 50% to B. It therefore gets correctly inserted as Child Feature A-1. Child Feature
B-1 matches 40% to A and 55% to B so gets correctly inserted as Child Feature B-1
without testing against A-1. Child Feature A-1 is 80% similar to B-1 and 50% similar to
B so should be removed from the feature library.

By narrowing the high (equivalent to same) matching range, e.g. using the range

90-100% instead of 80-100% we increase the number of distinct entries at each level of

the tree structure, making the tree wider and less deep. This will increase the search

space and make the processing time longer. However, it would also allow the queries to

become very specific. For example, the queries might be: “retrieve images containing

features which look exactly like the query sketch”, as opposed to “retrieve images

containing feature that look like the query sketch”.

Widening the high range, e.g. using a 70-100% matching range will result in

fewer entries in the database and will make the tree deeper and narrower. In turn, this

produces faster queries with less accurate results. Narrowing or widening the middle

(similar) matching range will have comparable effects to the structure of the feature

library.

Parent
Feature

A

Parent
Feature

B

Child
Feature

A-1

Child
Feature

B-1

55%
Similar

60%
Similar

80%
Similar

0-49%
Similar

40%
Similar

50%
Similar

106

Figure 5.7 : Necessary Duplications.

Parent Features A and B already reside in the library. Child Feature A-1 matches 60% to
A and 49% to B. It therefore gets correctly inserted as Child Feature A-1. Child Feature
B-1 matches 40% to A and 55% to B so gets correctly inserted as Child Feature B-1
without testing against A-1. Child Feature A-1 is 80% similar to B-1 but 49% similar to
B so is not allowed to shift its position under B in the tree hierarchy - thus maintaining
library consistency.

5.4 Feature Housecleaning

Feature housecleaning is a process that maintains the consistency of the feature

library tree hierarchy. It is run by default every night but could be invoked each time the

user inserts a new feature into the library, if desired. The user should be aware however

that while feature housecleaning is in progress, the feature library is off-line to further

querying until completed. Feature housecleaning ensures that each of the parents are

themselves unique and that all n-child features are residing under their proper parent. It

minimizes the theoretical possibility that unnecessary “duplicate” features could exist

somewhere in the tree hierarchy (i.e. n-child features that are between 80% and 100%

similar). This possibility of unnecessary duplicate features exists because:

Parent
Feature

A

Parent
Feature

B

Child
Feature

A-1

Child
Feature

B-1

55%
Similar

60%
Similar

80%
Similar

0-49%
Similar

40%
Similar

49%
Similar

107

• The feature library is not symmetric. A case can be envisioned where Parent

Feature X matches less than 50% to Parent Feature Y without the reverse

being true.

• The feature library is not transitive. Another case could have Feature X

matching greater than 50% to Feature Y and Feature Y matching greater than

50% to Feature Z but Feature X matching less than 50% to Feature Z.

To check for these conditions, feature housecleaning utilizes a self-organizing

table called the “Temporal Feature Index” (TFI). The TFI (Table 5.1) is a two

dimensional cross-referencing table of feature filenames together with their respective

matching percentages. Newly inserted features into the feature library are simply

appended to this table and all their matching percentages recorded as they occur, thereby

recording their relative insertion time. The time of insertion is important as it reduces

both the number of features to test and the number of features to test against. For

example, it is not necessary to re-test Child Feature A-2-A against Parent Feature A as

this matching percentage is already known and recorded previously at time of insertion.

Feature housecleaning searches the TFI top down beginning with the first feature

found (i.e. Feature A in Table 5.1). It takes this feature and matches it against all other

features inserted after it, provided there does not already exist a matching percentage for

it in the table.

If the matching percentage is in the 80-100% range to any of the subsequently

added features, Feature A will want to remove itself from the feature library. If the

matched feature is a parent level feature, the image links for Feature A get passed to this

“same” parent feature before deleting itself from the library. If the matched feature is not

108

a parent feature, then the matching percentages for all the nodal features above this match

beginning at the primary parent level are tested. If all pass the 50-79% similarity test, the

feature is an unnecessary duplicate and therefore passes its links to this “same” feature

and removes itself from the feature library. If the parent/child feature had n-children of

its own, they are tested in turn and re-inserted into the tree similar to their shifting parent.

Therefore, the insertion testing criteria is invoked for each feature in the TFI, with all of

its children (if any) also re-inserted following it before the next feature’s turn in the TFI.

Temporal Feature Index

Feature/
%

A B A-1 C C-1 A-2 A-2-A C-2 C-3 C-3-A C-3-B

A 100
B 44 100

A-1 60 23 100
C 33 12 100

C-1 28 56 61 100
A-2 66 23 39 55 33 100

A-2-A 76 55 29 51 49 70 100
C-2 45 11 77 38 100
C-3 65 34 19 67 21 32 61 20 100

C-3-A 55 54 17 50 45 27 45 56 100
C-3-B 53 37 5 53 26 7 40 57 42 100

Table 5.1 : Temporal Feature Index for Figure 5.8.

If all insertion tests are satisfied, a child feature will shift its position in the tree

hierarchy under a new “parent” - providing it is less than 50% similar to any existing

children already occupying this level. This eliminates the possibility of a shifting feature

ending up in a position within the tree “worse-off” than where it was before (Figure 5.8).

109

Figure 5.8 : Feature Housecleaning.

Feature A-2-A matches better to C-3 than to A-2 and should perhaps be a descendent of
this “parent”. However, because C-3 has a child (C-3-B) that matches above 50% to A-
2-A but less than its current parental match of 70%, it doesn’t shift its position within the
tree as this would make the feature library inconsistent. Had Feature A-2-A matched
above 70% to C-3-B, it would have shifted position with the tree hierarchy as a child of
C-3-B.

It also ensures that the internal consistency of the library is maintained, i.e. that all

features reside under their best matched “parent”, all things considered (i.e. satisfying the

insertion testing criteria). Feature housecleaning terminates once it has completed one

pass through the TFI table.

This approach to feature housecleaning applies the highest weight to the matching

percentage of a direct parent. Other approaches could apply a higher weight to the root

(i.e. primary parent) or consider the average matching percentage of all the nodes

Parent
Feature

A

Parent
Feature

B

Parent
Feature

C

Child
Feature

A-1

Child
Feature

C-2

…0-49%

Similar

0-49%

Similar

Child
Feature

C-1

Child
Feature

C-3

Child
Feature

A-2

Child
Feature
C-3-B

Child
Feature
C-3-A

Child
Feature
A-2-A

0-49%

Similar

0-49%

Similar

0-49%

Similar

0-49%

Similar

60% Similar

70% Similar

61% Similar

55% Similar

51%
Similar

76%
Similar

44% Similar 68% Similar

75% Similar

110

composing the path from the root to the target feature in the corresponding tree.

Depending on which approach is taken and on the matching percentages used to

determine the levels of feature similarity, the feature library will either be deeper or

broader in structure. For example, if the “similar” matching range is increased, the tree

will be deeper but narrower. One optimum combination of matching percentages with

organizational strategy would be the one that allows for the shortest search time for any

given query. Any overall best strategy will need to be verified through experimental

results as mathematical models for determining least cost paths through data with varying

degrees of uncertainty unfortunately do not yet exist.

5.5 Chapter Summary

In this chapter, we introduce an organized and hierarchical feature library to

manage shapes in a tree structure. It is through the organization and exploitation of the

feature library that allows for on-line querying of raw raster imagery. A defining

characteristic of the library is its range of matching percentages acceptable at each node

and from this, its subsequent multiple root nodes. In regard to this range of acceptable

values allowed at each level in the hierarchy, the feature library varies from a typical tree

indexing structure. The resulting tree is without a global ordering due to the fact that the

matching relations between library features are neither symmetric nor transitive and that

the temporal order of feature insertion into the library affects its structure. Any

unnecessary duplicate features are removed from the feature library and its overall

structure re-arranged through the implementation of a feature housecleaning algorithm.

This is a recursive procedure that re-inserts all the features, followed by their respective

111

children, within the library through the analysis of their matching percentages stored in

the Temporal Feature Index (TFI).

In Chapter 6, the experimental results of this unique approach to using raster

sketches for digital image retrieval will be presented.

112

Chapter 6

Experimental Results

In this chapter, the implementation of the I.Q. methodology will be discussed in

more detail together with experimental results. The modified least-squares matching

algorithm and the feature library working together comprise the essential components of

the image query-by-sketch approach proposed by this thesis. This approach outperforms

traditional least-squares matching due to an adaptation to operate with raw binary-raster

imagery. It should be noted however that the modified least-squares method and the

feature library are indeed separate components of the complete query system and

therefore can be tested as such. For example, the matching algorithm can be tested on

template features or complete images without consideration for the feature library

implementation, and likewise, the feature library can be tested for efficiency of its

organizational structure without reference to the matching module. Such a separation of

components allows for improvements or enhancements to each independently of the

other. This capability facilitates the overall testing process and also allows for the two

major elements of this thesis to be analyzed individually.

6.1 Traditional Least-Squares Template Matching

In Section 2.3, the inherent characteristics of traditional least-squares area-based

matching were described. These include its reliance on gray-scale imagery, and that it

requires good approximations for the initial query template positioning within the image.

113

Gray-scale imagery is a pre-requisite for traditional least-squares to function

properly as it requires that every pixel within the query template and the image contains

information. This brightness value information, contained within each pixel, is needed in

order to calculate the gradient at each pixel location (Figure 6.1). Pixel gradients in the x

and y directions, instead of the actual pixel gray-scale or brightness value are typically

used for matching purposes in order to minimize the radiometric differences between

identical objects. Corresponding pixels from the query template and the image will have

different radiometric and possibly geometric qualities even if they represent the same

image-object because the two images were not taken from exactly the same exposure

station at exactly the same moment in time. Therefore the contrast and brightness of the

same image-object point and the geometry of the same image-object outline will never be

exactly the same from image to image.

9 7 8 3 5
4 2 5 3 8
2 7 4 2 3
2 1 6 3 3
7 1 4 9 7

Figure 6.1 : Pixel Gradient Calculation

If the array of brightness values in Figure 6.1 were to be considered as the gray-

scale query template, only the shaded pixels would have a gradient in both the x and y

directions. Most other pixels will not have a gradient in one of the two principle

directions and the corner pixels will not have a gradient in either direction. The gradient

of the central pixel would be calculated as:

�gx = − = −2 7 5

�gy = − =6 5 1

114

It is due to this gradient calculation that occluded features cannot be found within

the image. For example, if an imaged feature was only half contained within the image,

(or otherwise occluded by cloud cover, overhanging trees or buildings) traditional least-

squares would not be able to find it for the simple reason that the query template is

restricted to remaining completely within the image space (Figure 6.2). This is because

all pixels within the query template and underlying image are required for the calculation

of shift distance/direction, a fundamental assumption of the traditional least-squares

solution. If any pixel information is missing or does not contain significant brightness

value information due to the occluding object, traditional least-squares will fail.

Figure 6.2 : Occluded Image Feature

Image resampling is another characteristic of traditional least-squares matching.

It is the process of assigning new gray levels to the pixels within the image where the

query template has just been shifted. The first sampling of gray levels for the image will

be those pixels directly under the overlaid query template. However, these gray levels

Query Template: 84 edge pixels Raw Binary -Raster Edge-Image

61 pixels

7
1

 p
ix

el
s

207 pixels

2
2

3
 p

ix
el

s

115

will only be the gray levels of those image pixels for the first phase of iterations. After

the x and y shift values have been calculated at the end of the first phase of iterations,

there will be new gray levels tested from the image. If the two shifts were integer values,

the new gray levels would simply be the gray levels of the new pixels that the query

template has shifted onto. What happens in practice is that the shift values are not integer

but are instead real values. This leads to shifts of partial pixel distances that requires a

resampling of the image pixels before the next iteration can be processed. For example,

the new shifted location must take as its gray level a percentage of the gray levels that

surround it with the inverse of the distances to these surrounding pixels used as the

weights for determining what percentage of a gray level it will be given.

After all image gray levels (that underlie the shifted query template) have been

resampled, the iterations will re-start at finding the best transformation parameters for

this new position. Once new transformations parameters are found, new shift values are

calculated and resampling is repeated. All of these procedures will cease when the x and

y shift values are less than a preset tolerance, typically set to 1/10th of a pixel. The final

position of the query template (when the preset tolerance is reached) is the final

coordinates of the conjugate match within the image.

In the example of Figure 6.2, traditional least-squares would require a good initial

approximation of the conjugate feature position for it to function properly. This is

because the “pull-in” range for this approach is limited to a distance of about half (or

less) the dimension of the input query template [Baltsavias, 1991]. In our case of raw

imagery, where neither image-object information nor interior or exterior orientation

parameters for the image are known a-priori, good initial approximations cannot be

116

provided. Traditional least squares therefore would have to sequentially step the query

template through the entire image, pixel by pixel, in order to test against all possible

conjugate positions, an extremely time consuming process. For this example image, it

would require 22,192 initial re-positionings (and corresponding gradient calculations and

matrix manipulations) plus any subsequent shifting and resampling operations.

Assuming 1” per initial re-positioning, this translates into more than 6 hours of

processing time for this very small sample image alone. This amount of processing

overhead is the main argument behind the contemporary view that raw raster imagery is

unsuitable for real-time querying.

Stepping the input query template through the binary-raster image of Figure 6.2

would result in a first position match (top left corner of image) of just over 98%. With

such a high matching percentage, the subsequent shift distances calculated for the x and y

directions are insignificant which renders the resampling of the new, shifted query

template’s position’s underlying image pixels, meaningless. This is an example of a

typical problem encountered with traditional least-squares matching on binary-raster

imagery and is an important illustration of why it is not suitable for such purposes.

Along with large corrections in translation, traditional least-squares cannot

accommodate equally large corrections in scale or rotation. For example, input query

template A in Figure 6.3 appears in the image rotated 180º. Traditional least-squares

methodology is incapable of handling such large corrections due to an intrinsic property

of the mathematical model that the query template function is a minor geometric

transformation of the image function as both are assumed to be images of the same object

related to the same co-ordinate system. Input query template B would suffer a similar

117

fate, as it cannot scale larger than its own dimensions and therefore would not find its

conjugate match in the image.

Figure 6.3 : Large Corrections Cannot be Accommodated

From the above explanation, it can be seen that traditional least-squares lacks the

flexibility required to function effectively with raw binary-raster imagery. The following

sections will describe how the modified least-squares approach proposed in this thesis

behaves under similar operating conditions.

6.2 Modified Least-Squares Template Matching

Various individual feature templates and edge-imagery were used to test the

robustness of the modified least-squares feature matching algorithm. For example, one

edge-image used was a controlled environment for testing purposes only (Figure 6.4). It

is actually a collection of sample shapes with all image noise removed. A sample query

template feature for this image could be the outline of an “L” shaped building complex.

Query Template A Raw Binary -Raster Edge-Image

Query Template B

118

Using this query template/edge-image combination, a typical, straightforward matching

process is described in (Figure 6.5).

Figure 6.4 : Edge-Image of Sample Shapes

The query feature begins its search within the image at the top left position. It

works its way through the sub-regions, as described in Chapter 4, until it finally arrives in

the sub-region where the feature exists, i.e. at the bottom right of the image. Once the

query feature gets translated into this final sub-region, it iterates until the best matching

position is found. A description of the actual matching process within this last sub-region

follows (Figure 6.6):

119

Figure 6.5 : Example of Typical Query Input and Feature Matching Process

Note: a detailed description of the matching process for the final (bottom right) sub-
region is presented in Figure 6.6.

Raster Sketch Query Raster Edge-Image from Image Library

120

Figure 6.6 : Matching Process For the Final Sub-Region.

Program Output Event Summary

Start iter=1 ,mp=0.000000, iter-1=0,mp-1=0.00
move=43, stay=3
q1dir=4, q2dir=1, q3dir=1, q4dir=4
q14dir=4 and other dir=1, movedown 9 pixels
End iter=1 ,mp=6.522000, iter-1=0,mp-1=0.00

Iteration 1
• 43 pixels vote to move
• 3 pixels vote to stay
• shift down 9 pixels
• match=6.5%

Start iter=2 ,mp=0.000000, iter-1=1,mp-1=6.52
move=46, stay=0
q1dir=3, q2dir=1, q3dir=1, q4dir=1
3 outof 4 dir=1, moveright 7 pixels
End iter=2 ,mp=0.000000, iter-1=1,mp-1=6.52

Iteration 2
• 46 pixels vote to move
• 0 pixels vote to stay
• shift right 7 pixels
• match = 0%

Start iter=3 ,mp=0.000000, iter-1=2,mp-1=0.00
move=18, stay=28
q1dir=1, q2dir=5, q3dir=1, q4dir=2
q13dir=1 and other dir not same, moveright 2
pixels
End iter=3 ,mp=60.869999, iter-1=2,mp-1=0.00

Iteration 3
• 18 pixels vote to move
• 28 pixels vote to stay
• shift right 2 pixels
• match = 60.9%

121

Figure 6.6 Cont. : Matching Process For the Final Sub-Region.

Start iter=4 ,mp=0.00000, iter-1=3,mp-1=60.86
move=28, stay=18
q1dir=3, q2dir=3, q3dir=2, q4dir=3
3 outof 4 dir=3, moveleft 2 pixels
End iter=4 ,mp=39.130001, iter-1=3,mp-1=60.86

Iteration 4
• 28 pixels vote to move
• 18 pixels vote to stay
• shift left 2 pixels
• match = 39.1%

Start iter=6 ,mp=0.00000, iter-1=5,mp-1=60.86
move=28, stay=18
q1dir=3, q2dir=3, q3dir=2, q4dir=3
3 outof 4 dir=3, moveleft 2 pixels
shift left ARBITRARILY, 1 pixel
End iter=6

Iteration 6
• 28 pixels vote to move
• 18 pixels vote to stay
• shift left 2 pixels
• Arbitrary shift to

break out of loop

Start iter=5 ,mp=0.00000, iter-1=4,mp-1=39.13
move=18, stay=28
q1dir=1, q2dir=5, q3dir=1, q4dir=2
q13dir=1 and other dir not same, moveright 2
pixels
End iter=5 ,mp=60.869999, iter-1=4,mp-1=39.13

Iteration 5
• 18 pixels vote to move
• 28 pixels vote to stay
• shift right 2 pixels
• match = 60.9%

Program Output Event Summary

122

Figure 6.6 Cont. : Matching Process For the Final Sub-Region.

Note: in this example the template feature enters and breaks out of a repeating loop
before finding its final best match. This conjugate position for the template feature is
illustrated in the final sub-region of Figure 6.5.

Using a single 180MhZ Pentium Processor computer, this feature matching

approach takes about 2’30” to complete on a typical 512x512 block of image space. On a

single feature within the feature library, the same matching procedure takes only about

2”.

This significant difference in time required to match a query template against a

single feature as opposed to a complete image illustrates the need and importance of

Iteration 8
• 0 pixels vote to move
• 46 pixels vote to stay
• shift 0 pixels
• match = 100%

Start iter=8 ,mp=0.000000, iter-1=7,mp-1=0.00
move=0, stay=46
q1dir=5, q2dir=5, q3dir=5, q4dir=5
q1234dir=5, shift entire template
End iter=8 ,mp=100.000000, iter-1=7,mp-1=0.00

Start iter=7 ,mp=0.000000, iter-1=6,mp-1=0.00
move=46, stay=0
q1dir=2, q2dir=2, q3dir=2, q4dir=2
q1234dir=2or5, moveup 1 pixels
End iter=7 ,mp=0.000000, iter-1=6,mp-1=0.00

Iteration 7
• 46 pixels vote to move
• 0 pixels vote to stay
• shift up 1 pixel
• match = 0%

Program Output Event Summary

123

incorporating an organized feature library into an overall, image database query strategy.

In addition, due to the features in the library being singular and free of image noise, the

matching algorithm could operate with a greater success rate where combinations of

scaling and rotating the query template are required. More on situation handling of the

modified least-squares matching algorithm is presented in the next section.

6.3 Matching Accuracy

A collection of 48 tests of the matching accuracy were performed to see how well

the implemented feature matching algorithm worked in practice using “real world”

features and images (Table 6.1). Various features from imagery in the image library were

extracted, and in some cases modified, and tested against the same library of images. The

results of the tests are grouped into three categories:

• The “Positive” group describes if the “correct” images were returned to a

query with the corresponding matching percentage inserted in Table 6.1.

Correct in this sense means that the image(s) where the feature resides was

retrieved somewhere in the top 10 prioritized list of images. This number was

chosen somewhat arbitrarily although it does represent 10% of the imagery in

the image library. Therefore, if the correct image is returned somewhere

within the top 10% of the total amount of imagery contained in the image

library, it will be considered as a successful or positive result to the query.

• The “Commission” group is defined as those instances when “incorrect”

imagery (i.e. those that do not contain the object being searched for) did get

returned as a result to the query. Commission errors therefore are very

subjective and would vary from user to user as each has their own idea on

124

what “similar” features should look like. To include this group in the results

would require extensive user testing with an averaging of their subjective

results. Therefore, in the interest of time and that analyzing subjective

behavior associated with individual preferences is beyond the scope of this

thesis, this group is not included in the testing.

• The “Omission” group is defined as those instances when “correct” imagery

(i.e. those that do contain the object being searched for) did not get returned as

a result to the query. Therefore, this group describes if the correct images

were not returned in the top 10 list of prioritized images with the

corresponding matching percentage inserted in Table 6.1.

The “Position” column in the table indicates the actual position the image

occupied in the prioritized list of matches returned from the query.

From the test results, the implemented matching algorithm returned the correct

image to the query, somewhere within the top 10 list of prioritized images, 77% of the

time, and to the top 20 list, 85% of the time. The conditions under which the matching

algorithm failed to find the correct images for a query are varied, and will be discussed in

the next section on matching limitations.

125

 Test # Feature Name Positive (%) Omission (%) Position
1 221870_f1 67.4 1
2 221870_f2 100 1
3 221870_f3 39.3 2
4 221870_f4 28.8 10
5 221870_f5 100 1
6 225870_f1 44.8 6
7 225870_f2 18.8 26
8 225882_f4 38 1
9 225882_ff 32.4 21
10 233898_f 61.9 9
11 237898_f 34.6 7
12 241890_f 52.6 1
13 241894_f 60.3 1
14 241894_f2 46.2 4
15 241898_f 30.8 19
16 241902_f 39.1 1
17 241902_f2 27.9 6
18 241906_f1 32.5 5
19 241906_f2 46.4 7
20 241906_f3 43.2 10
21 241906_f4 40.4 17
22 241906_f5 36.2 16
23 241918_f1 52.1 3
24 241918_f2 33.3 26
25 241918_f3 51.2 8
26 245886_f 37.6 1
27 245890_f 35.3 10
28 245902_f 26.6 15
29 245902_ff 29.4 5
30 245906_f 22.4 19
31 245910_f 32.2 1
32 245910_ff 30.4 1
33 249886_f 39.9 1
34 249906_f 35.3 5
35 249910_f 55 8
36 253894_f 97.7 1
37 2m_1_f 46.2 6
38 2m_1_ff 29.2 22
39 2m_2_f 23.3 28
40 2m_3_f 62.8 1
41 2m_3_ff 29.7 4
42 2m_4_f 37.9 1
43 2m_5_f 61.4 3
44 2m_6_f 80.8 1
45 2m_7_f 27.1 20
46 2m_8_f 73.8 1
47 2m1_f3 22.3 2
48 2m1_f4 49.3 4

37/48=77% 11/48=23%

Table 6.1 : Summary of Matching Accuracy Tests.

126

6.4 Matching Limitations

As expected, it was discovered during the implementation phase of this research

that the translation, rotation and scaling operations on the template feature tend to be

sensitive to image noise. For example, the presence of spurious edges around an image-

object may cause the voting for the pixel shifts to change dramatically. This potentially

could lead to erroneous over-corrections, or back and forth shifting inside a loop.

To counter the noisy image problem, filters could be applied to the edge-images

to rid them of edges shorter than a given length. Or, the image could be further divided

into more sub-regions, with the shifting template advancing in smaller increments

throughout the matching process. Both approaches were tested with improved success

rates for template feature matching.

In the first case, artificial test images were created like that used in Figure 6.4.

For the second case, where the image is further subdivided, it too resulted in better

matching accuracy but of course produced the counter effect of increasing the time

needed to match a template feature to an image. Solving the problem with more sub-

regions is in essence approaching a traditional least-squares solution, i.e. it provides good

initial approximations by increasing the number of initial template positioning within the

sub-regions.

Another limitation, found during the implementation phase, was the methodology

used when determining the amount of angular rotation to apply to the template feature.

For example, the idea of halving the rotation angle upon the next iteration did not always

produce correct results in practice. The theory of quadrant voting used in this research

127

does in fact handle the rotation problem, through closer analysis of the distance and

direction averages, but was beyond the scope of our implementation.

In practice, due to noise in the images or other factors, after the template applied

its first rotation, the subsequent iteration sometimes produced disruptive results. For

example: on the subsequent iteration, the template feature would vote to shift, which

would misalign the rotation origin; or the template feature would vote to scale, which

changed the locations of the pixels in the quadrants.

In addition to the above two conditions, two more cases of diminished matching

accuracy were discovered during the implementation and testing phase of the research.

One such instance occurred when the template matching would not settle onto its final

matching position and instead entered into a shifting loop. Here, due to the arrangements

of the pixels within the quadrants, a template shift would be determined of a certain

amount of pixels in a given direction. After moving to this new position and

recalculating the pixel votes for each of the quadrants, it is determined that a shift back to

the previous template position is required, and so on. This situation is analogous to the

difficulties that traditional least-squares matching has with repetitive patterns.

In order to break out of this shift/reverse shift loop, the last three template

matching iterations were monitored. If a repetition was found, for example, if the

matching algorithm determined to first shift 3 pixels to the right, then 3 pixels to the left,

and then 3 pixels to the right again, the template would be arbitrarily shifted a distance of

1 pixel in any direction and the pixel positions recalculated. An example of this exact

problem was presented in Figure 6.6.

128

A final limitation of the matching strategy was found when trying to match

template features where the centroid of the feature lies outside the feature boundaries.

This situation amounted to one or more of the quadrants having very few or even no

pixels available to vote on distance/direction shifting. A solution to this problem, where

the template feature’s pixels are not (roughly) evenly distributed amongst the four

quadrants, would be to first look upon the pixels of the feature as points on a line and

then calculate the best fit line to them. The angle between this line and the vertical axis

could be determined and the quadrant system could be rotated to align with this new

orientation. This has the effect of distributing the feature pixels evenly throughout the

four quadrants, which in turn allows for more intelligent shifting decisions.

6.5 Feature Library Testing

Experiments comparing the image retrieval time required with and without the

feature library implementation showed quite significant results. Search and retrieval

times for the feature library implementation were tested against a sample database of 94

features. These features comprised a grouping of both manually sketched and extracted

objects from existing imagery. Typical shapes were circular, representing cooling

towers, rectangular, representing buildings, and unique shapes like outlines of airplanes

and other visible image-objects.

Testing the matching algorithm for a single template feature against a complete

but unstructured feature library, i.e. one that has not been organized into a hierarchical

tree structure, resulted in search times averaging around 2” per feature. This is in

contrast to matching the same feature against a single aerial image, which took about the

2’30” to complete (per image). A substantial saving in search times therefore is realized

129

through matching query sketches to linked features rather than to the original images,

which was to be expected.

The next step was to organize the 94 features into their proper tree hierarchy

according to the rules outlined in Chapter 5. To accomplish this, a recursive algorithm

was developed that processed two complete passes through the TFI (see Appendix A).

The first pass through the list of features parallels initial feature insertion into the feature

library. It resulted in a tree structure that was 60 features wide and 3 deep with 10

features being removed (deleted) as unnecessary duplicates. After processing the second

pass, i.e. simulating feature housecleaning, the tree reduced to a structure of 48 features

wide and 3 deep with 5 additional features being removed as unnecessary duplicates.

The search times therefore were roughly cut in half (i.e. 48 x 2”), demonstrating the need

for an organized feature library structure, as the minimum number of features to test

against was reduced from 94 to 48. Additional testing into the tree, if required, did not

take significant amounts of time, as it was only three features deep with typical search

times averaging around 2” per feature.

The final structure of the feature library, with the same 94 features, depends on

the values chosen for the variables “same” and “similar” and on the order of feature

insertion into the library. For example, the above test used a same percentage lower

bound of 80 and a similar percentage lower bound of 50. If however the values were

changed to 70% for same and 30% for similar, the final structure of the feature library

would find 27 features removed as unnecessary duplicates with 48 features on the parent

level and 6 levels deep. Modifying these variables therefore affects the form of the

130

library but not retrieval efficiency, i.e. given a range of values acceptable at each node,

the library will always re-organize into its most efficient state.

When the order of feature insertion into the library was reversed, the resulting

structure had 16 features removed as unnecessary duplicates and 47 features on the parent

level. The test results show therefore that the final organization of the feature library also

depends on the sequence of feature insertion. This is logical, as the matching between

library features is neither symmetric nor transitive, i.e. although there is a local ordering

of the features, a global ordering among the features cannot be defined, resulting in

possibly different tree structures (depending on the sequence of insertion).

Also, there does occur the case where one feature could be a child of either of two

(or more) parents since it matches exactly the same to both. Therefore, depending on the

order of insertion, this feature could end up under a different parent. Similarly,

depending on the order of insertion, a feature could get removed, or not, as an existing

feature that matches the “same” to it could be in a path that is not reachable. However,

this is considered as a necessary duplicate so is acceptable in this case.

Tree structure variation therefore is due then to the order of feature insertion into

the library, to the acceptable range of values allowable at each node and to the dynamic

nature of the library itself, where features are constantly being added in the form of user

queries.

In order to guarantee that a “canonical form” can be found, i.e. one that has the

maximum number of removed features, all possible permutations of feature insertion

must be tested - which is time prohibitive because with n features, this is in the order of

n! tests, and therefore not feasible.

131

The feature library, with its inherent organization and links to imagery in the

image library, is essential if the goal of a raster image query and retrieval environment is

to return results to the query in real-time. As an illustration with the complete feature

library would be too space prohibitive, an example of feature library organization with a

handful of those features follows. In Figure 6.7, a grouping of polygon shapes of n-order

(i.e. n=3,4,5,6,8,10) are inserted before a selection of extracted image-object shapes taken

from imagery in the image library. In Figure 6.8, the order of insertion into the feature

library is reversed, i.e. the extracted shapes are inserted before the polygon shapes.

132

Figure 6.7 : Feature Library Hierarchy when Polygonal Shapes are Inserted Before
Extracted Shapes

Child Level

Grand Child Level

Great Grand Child Level

Primary Parent Level

133

Figure 6.8 : Feature Library Hierarchy when Polygonal Shapes are Inserted After
Extracted Shapes

From the above tests, it can be seen how the temporal aspect of feature insertion

has a marked affect on the organization of the feature library. For example, some of the

parent-child relationships are just reversed between the two figures. In Figure 6.7, the

majority of the polygonal figures organized under the star parent feature, while in Figure

6.8, the star feature, while remaining at the parent level, has only one child. This is

Primary Parent Level

Child Level

Grand Child Level

Great Grand Child Level

134

entirely due to the sequence of feature insertion into the feature library. Also notice that

in both cases, the polygonal shapes tended to group together, while the majority of the

extracted features tended to group at the parent level.

In addition to feature sequence of insertion, it was shown that by modifying other

variables, the feature library structure is similarly affected. While keeping the order of

feature insertion constant, the overall structure and organization of the feature library can

be adjusted directly by the values chosen for the variables “same” and “similar”. For

example, it was thought that if the value for “same” were changed from 100% down to

51%, at some point a drop off would occur in the amount of features considered as

unnecessary duplicates. This cut off value therefore might be a good starting point to

begin studying where the difference between two shapes can be considered as being

either the same or similar. Tests with varying quantities for these values were performed

to see if there were any general trends that could be deduced from the data structure

(Figure 6.9).

Although not a substantial reduction, the result of this test did in fact show a small

drop off in the percentage of features remaining in the feature library when the value for

“same” was around 78%. From then on downwards to 50%, a decrease in number of

library features seemed to fall off steadily. This would indicate that for matching values

of “same” above about 80%, the feature library considers those features as unnecessary

duplicates and therefore removes them from the library.

135

Figure 6.9 : Number of features remaining in the feature library while changing the value
of “same”, keeping “similar” constant at 50%.

The value of “similar” was modified between 20% and 79% to see what effect

this would have on the overall structure of the feature library, i.e. the width and depth

(Figure 6.10)

From this test, it was shown that there was no significant value for “similar” that

produced a noticeable change to the slope of the graph. With a constant decrease in the

value for “similar” a proportional constant decrease in the amount of features remaining

on the parent level likewise occurred, and subsequently the depth of the structure

increased to accommodate these additional features. For example, with a value of 20%

51% <= Same <= 100%

0
10

20
30

40
50

60
70

80
90

10
0

10
0 98 96 94 92 90 88 86 84 82 80 78 76 74 72 70 68 66 64 62 60 58 56 54 52

"same" %

%
 o

f f
ea

tu
re

s
re

m
ai

ni
ng

% of Features Remaining

136

for “similar”, the final library structure was 7 levels deep with 13 features on the parent

level.

Figure 6.10 : Number of features remaining on the parent level in the feature library
while changing the value of “similar”, keeping “same” constant at 80%.

6.6 Feature Library Limitations

Different users would consider different values for what is meant by the term

“same” and “similar”. Also, for different types of applications, another set of different

values could be valid choices as the collection of features within the library could have

substantially different shapes to those found for a typical geographic application. It was

decided therefore that the best way to overcome this subjective decision was to present a

sample template feature to the user and a sample of about a dozen modified versions of

20% <= Similar <= 79%
0

10
20

30
40

50
60

70
80

90
10

0

79 76 73 70 67 64 61 58 55 52 49 46 43 40 37 34 31 28 25 22

"similar" %

%
 o

f f
ea

tu
re

s
on

 p
ar

en
t l

ev
el

% of Features on Parent Level

137

the template shape. The user could then click on which features in the sample he/she felt

was the same as the template, or similar, or different. From this operation, the feature

library could determine the average matching percentages the template had to each of the

3 groups and set the values for “same” and “similar” from them. Each user of course

would probably choose different shapes for each of the categories and would therefore

end up with a different organization of the feature library.

However, in the end, the final structure of the feature library is not so important as

long as it retrieves to the user the images he/she is searching for. Due to this basic

assumption, another solution to the question of what values should occupy the “same”

and “similar” variables is to ask the user how much time he/she is prepared to wait for a

query to return results. Depending on the time indicated, for example if the user chooses

a maximum wait time of 10”, the feature library should organize into a structure that is

not more than about 10 features wide and about 10 deep. Using this constraint as input,

values for “same” and “similar” could be calculated by the feature library that would give

such a structure.

6.7 Summary

In this chapter, an explanation of the shortcomings of traditional least-squares

matching on raw binary-raster imagery, together with the experimental results for the

image query-by-sketch approach proposed in this thesis were presented. The

implementation phase was divided into two separate but related modules. This allowed

for the revised least-squares template feature matching algorithm to be developed and

tested first without requiring a completed feature library implementation, and also for

enhancements to either of the two modules independently of the other.

138

It was found that the matching algorithm performed more consistently in the case

of single feature matching than in the case of complete image matching due mainly to the

lack of image noise inherent to members of the feature library. Also, for single feature

matching, it did not require initial approximations in order to find the correct match, an

important improvement compared to the standard least-squares approach. However,

when matching on noisy aerial images, it did require the image to be sub-divided into

more sub-regions, which approximates the improved initial position requirements of the

traditional least-squares case.

There were various limitations on matching performance discovered throughout

testing. These included difficulties in determining the amount of angular rotation for the

template, situations where the template would fall into a shift/reverse shift loop, and

where the centroid of the template feature would fall outside the feature boundary thus

leaving unequal amounts of pixels in the four quadrants. These issues were addressed

through closer analysis of quadrant voting distances and, shifting the template feature 1

pixel in an arbitrary direction, and rotating the vertical quadrant axis to align with the best

fit line through the points in the template.

For the feature library, a recursive algorithm was developed that organized the

query features into a hierarchical tree like structure. By changing the values used for

“same” and “similar”, the shape (i.e. its width and depth) of the tree could be

manipulated. It was proposed that the values for these two variables could be determined

by presenting the user with a sample template feature and a collection of library features

that it could match too. The user would then decide which of the library features

139

appeared the “same”, “similar” or “different” to the template, from which the feature

library algorithm could then determine the corresponding values for these variables.

Another solution for handling this issue could have the user inputting the amount

of time he/she is willing to wait for a query to return results and the tree could re-

organize its maximum width/depth limits accordingly (keeping in mind match times of 2”

per feature) through the manipulation of these two “same” and “similar” percentages.

Beginning in Chapter 7 the Conclusions of this research will be drawn. They

include the advantages and limitations of this proposal and some ideas for future

research.

140

Chapter 7

Conclusions

In this thesis, a proposal for querying digital image databases through the use of

sketched image features completely in the raster domain has been presented. The

approach combines a modified least-squares matching algorithm with a structured feature

library. Together they offer a substantial improvement, in matching effectiveness and

time, over the traditional least-squares approach for on-line querying of raw binary-raster

imagery. An implementation of the proposed theory demonstrated its feasibility and

highlighted areas for future work. In the following sections, the advantages and

limitations of the proposal are discussed and some remarks on possible future

developments are given.

7.1 Limits of the Traditional Least-Squares Approach

Several points were made in the previous chapter concerning the unsuitability of

the traditional least-squares method for matching on raw binary-raster imagery. In fact,

due to its reliance on good initial approximations, limited scale and rotation range, and

gray scale imagery, it was shown to be completely ineffective for even the most basic of

queries. For example, in order for traditional least-squares matching to accommodate the

inherent characteristics present in raw binary-raster imagery, it will need to be modified

to comply with the requirements that:

• It must function without initial approximations, i.e. without a sequential

search through the image;

141

• It must function with rotations of up to +/-180º, i.e. without a limit to its range

of rotation angles;

• It must function with scale increases larger than the input query template

dimensions, i.e. without a limit to its range of scale values;

• It must be able to locate conjugate image-objects irrespective of initial query

template positioning, i.e. without a limit to its pull-in range;

• It must be able to locate semi-occluded objects, i.e without conjugate features

being fully contained within the image;

• It must function with edge pixel information only, i.e without every pixel

containing gray-level information;

• It must search an entire image database in a fraction of the time it currently

requires to match a single image, i.e. without excessive amounts of processing

time.

A summary of the defining characteristics or differences between traditional least-

squares and the modified approach can be found in Table 7.1. These results confirm that

the proposed modified least-squares method for matching sketched object shapes

outperforms traditional least-squares matching on raw binary-raster.

142

Traditional Least-Squares
Matching

Modified Least-Squares
Matching

Good initial approximations are

necessary

Initial approximations are not

required

High precision (shifts of fractions

of a pixel)

Lower precision (shifts of integer

amounts only)

Low reliability: susceptible to

erroneous matches if wrong initial

approximations

Higher reliability: matched pairs

are more likely to be truly

conjugate features

Limited rotation range No limit to range of rotation

Limited scale range increases of

query feature

No limit to range of scale

increases

Limited pull-in range No limit to its pull-in range

Cannot find semi-occluded

objects

Can find objects up to 50%

occluded

Cannot function with edge

information only

Designed to function with edge

information only

Requires excessive amounts of

processing time per image

Can return multiple imagery to

query in "real-time"

Sensitive to geometric distortions and radiometric noise with

ambiguous matches in areas of high noise and spurious edge content

Table 7.1 : Comparison Between Traditional LSM and Modified LSM.

143

7.2 Advantages of the Modified Least-Squares Approach

The limitations to traditional least-squares matching listed in the previous section

were addressed by the image query and retrieval environment presented in this thesis.

Additionally, until now the majority of current image query research requires that image-

objects be vectorized at least to some extent. This of course requires some form of pre

and/or post human intervention, as fully automated algorithms for consistent feature

extraction from raw imagery do not yet exist. Also, those systems that do work in the

raster domain require that the spatial domain be transformed into the frequency domain

where translation and rotation can be modeled but not scale. The main advantage of this

proposal therefore is that it provides the ability to query digital image databases

completely in the raster and spatial domains, without any manual intervention in the form

of pre or post processing of the imagery.

This task was accomplished through the modification of traditional least-squares

matching theory to function effectively with raw binary-raster edge representations. This

modification overcomes the constraints implicit with matching gray-scale imagery using

the traditional least-squares method, for example, its reliance on good initial

approximations and a limited pull-in range, by requiring no initial approximations with

an unlimited pull-in range. It therefore increased the overall matching efficiency and

freed the user from providing any a-priori image-object information.

Just an improvement in matching efficiency alone however will not make an

image query and retrieval environment complete. Due to the size and quantity of images

in an image database, it is not feasible to query on them directly. A novel approach to

allow for on-line querying therefore was introduced where all previous query features are

144

inserted into a hierarchically structured feature library. The library organized and linked

the query features to the images in the database through off-line matching. A typical

query would proceed by matching the query feature against the features already stored in

the library and return a prioritized list of the images linked to the best-matched features.

The query feature itself would then get inserted into the feature library, get linked to

images and be available for future interrogations of the image database. The feature

library therefore allows us to reduce the search space of a query from a database of

images to an abridged group of features.

The feature library is dynamic and self-maintaining. Every new addition gets

tested against every existing element in a feature housecleaning operation that is designed

to remove any unnecessary duplicates. This ensures an efficient and optimal feature

library where the members approach our objective of an ideal library, i.e. related

members are grouped and stored dependently (organized), are able to describe all

possible input features (exhaustive) without unnecessary duplications (independent).

7.3 Limits of the Proposal

During the implementation phase of this research, it was noticed that the matching

algorithm worked as expected, e.g. that it is affected by excessive image noise. The

voting strategy employed considers all edge information within its pull in range, giving

higher weight to closest edges. If this closest “edge” turned out to be image noise, the

matching algorithm would still consider them for the scaling and rotation conditions set

out in the procedure. If the centroid position of the template feature lay outside the

feature boundaries or if there wasn’t a roughly even distribution of pixels scattered

throughout the four template quadrants, the template feature could potentially scale or

145

shift when in fact a rotation was required, or vice versa. To counter this effect, it is

proposed to further subdivide each of the template feature’s quadrants into additional

quadrants where the voting patterns in each of the quadrants are analyzed and

transformed individually. In theory, template feature quadrants could continue to be

further subdivided into sub-quadrants in this way until each quadrant contains only 4

pixels, whereby it approaches the traditional least-squares paradigm.

An obvious limitation of the approach is that it does not consider the semantic

aspects of the query. For example, the proposed implementation would not consider the

two objects in Figure 7.1 to be different, either semantically or geometrically, in fact they

would be considered about 95% the “same”. This is because the approach proposed by

this thesis works completely in the raster domain, i.e. based on shape information only

and does not consider the semantic context of objects.

Figure 7.1 : Two Almost Identical Shapes With Completely Different Semantics.

Concerning limitations to the feature library, there might be discrepancy between

different users when considering whether two features are the “same”, “similar”, or

“different”. This creates the situation where a final convergent structure to the feature

library can not be predicted. The structure is also affected by constant querying of the

146

image library, i.e. as new query features get inserted into the feature library, the process

of feature housecleaning will re-structure it accordingly to ensure that each feature is

residing under its best matched parent and that there are no unnecessary duplications.

However, this dynamic aspect of the feature library, i.e. its ability to self-organize

and maintain its contents is one of its advantages. The final structure of the library is not,

in general, of concern to the user. What is important is that the proper images get

returned to the query in real-time. Similar to other tree data structures, the final structure

of the feature library is dependent on the sequence of feature insertion, and due to the

lack of a global ordering, a canonical form cannot be determined.

7.4 Future Developments

The directions for future extensions of this research are many and varied. For

example:

• The implementation phase could be complimented with the development of a

graphical user interface;

• The matching process could be extended to include querying for

configurations of image-objects;

• Semantic information could be included as a query criteria;

• Testing the matching algorithm with temporal queries for change detection;

• Considerations for querying on vector and heterogeneous databases could be

examined.

147

7.4.1 GUI Development

The ultimate purpose for the image query-by-sketch proposal in this thesis is to

function as a query mechanism for large image database with minimal interference by the

operator. Possible user environments include both internet and intranet application.

Users will be able to query and update, from remote workstations, the images stored on

the image database server.

To accomplish this, an interface will need to be constructed that allows for these

functionalities. For example, for the query operations, an initial screen acting as a

window into the image database (Figure 7.2) will let the user examine the contents of the

data base and allow for object extraction from the existing images. Extracted features

can then be used as is or modified as the template feature for further queries (Figure 7.3).

The Metadata Menu could be the next screen accessed by the user (Figure 7.4) or

bypassed completely. Choosing the metadata option will narrow the search space of the

image database by eliminating those images, and therefore those feature library features,

that do not meet the query criteria.

148

Figure 7.2 : The Initial Screen of the Image Query Interface.

Figure 7.3 : Extract an Existing Feature to Edit or Sketch New Query Feature

Next 8Last 8

Click here to cycle through the images in the database.

Click on an image to go to next screen.

,�4�

Original Image

1. User digitizes polygon
around area of interest.

,�4�

2. User pushes extract button to
extract area of interest with edge
enhancing filter applied.

3. User has option to edit area of
interest by clicking on it or push
Metadata to continue.

Metadata

Extract

Editable Sketch Area

149

Figure 7.4 : Select or Input Relevant Metadata

A final screen containing the prioritized results from the query, with options to

further edit the query feature or refine the metadata will be presented next (Figure 7.5).

Figure 7.5 : Prioritized Query Results

,�4�,�4�

2. User pushes Search button to
begin searching the image library.

Maine

ALL

1:15000

Metadata Menu

Image Location:

Image Date:

Scale Range: toto 1:25000

1. Each button will have a pop up
screen behind it with various available
selections taken from existing imagery
within the image library.

Images to Return:

Other ...:

SearchBack 3. User pushes Back button to return
to previous menu.

Top 10

Metadata Menu

Image Location:

Image Date:

Scale Range:

Maine

ALL

1:15000 to 1:25000

Editable Sketch Area

1.

2.

3.

4.

5.

99%

98%

90%

80%

60%

Best Matches

User can edit Sketch or
Metadata by clicking on it.

Rerun QuerySubset

User can rerun query
on all or subset of
image library.

Undo

Redo

User can retrieve full
resolution image by
clicking on thumbnail.

,�4�

150

7.4.2 Matching Configurations of Objects

Configurations can be matched within the query environment by adding an

extension to the query building interface. What is required is that the individual objects

within the sketch be recognized as such, and the pixels that make up their respective

edges stored in independent arrays. This can be accomplished by clicking on an icon

within the sketching environment that indicates when new feature digitizing commences

and terminates. In addition, another icon can be used to group or separate existing

objects in the sketch. Note that the objects continue to remain in raster form, i.e. an

object is considered as the minimum bounding rectangle (MBR) array of pixels that

encompasses it, some of which are turned “on” (to indicate object boundaries) while

others are turned “off” (to indicate background information).

Once the query scene has been built, the individual MBR component objects that

make up the scene are separable and the 9 intersection matrix [Egenhofer and Herring,

1991] can be determined for each pair of objects in the scene.

The individual sketch objects that make up the scene are then processed against

the feature library and for each sketch object a prioritized list of candidate images is

proposed. An analysis of the returned images for each object in the scene shows that

certain images are included more than once. For each image that was returned by all of

the objects in the configuration, the topological relations between the involved objects

will be determined.

As described previously, when a feature gets matched to an image, its centroid

coordinates within the image are recorded as well as the top left and bottom right

coordinates of the query feature’s minimum bounding rectangle, after scaling and rotation

151

have taken place (if required). Therefore, topological relations on the image are also

determined through the use of the matched query features MBRs instead of the actual

image-objects because the image is in raster (non-vectorized) format and therefore no a-

priori information is known about any image-object (in particular, their boundaries).

Also, it is straight forward to determine the MBR containing the pixels composing the

translated/rotated/scaled query object and using their MBRs speeds up the topological

building process and thus allows for topology to be built and queried in real-time.

To summarize then, given a configuration of image-objects, built by the user, the

system will automatically compute topological, orientation, and distance relations

between those objects before the actual search begins. Next, the search will commence

by first retrieving all the images that match to the individual objects of the query scene.

From this subset of images, only those images that have a match above a given threshold

for all of the objects in the query scene will be further considered. From these remaining

images, the topological/orientation/distance relations between the matched objects will be

computed and compared to that of the query scene.

7.4.3 Semantic Information

Once queries have been made on the image database, additional semantic

information could be stored on the objects contained within the images. For example, if a

traditional query returned an image with a rectangular outline of a building, this

additional data could be stored as a “hospital” in a semantic library that is connected to

the imagery library within the comprehensive digital image database (Figure 7.6). A

typical query using semantic information then would include, on the metadata form, an

152

option for the user to specify what type (or purpose, etc.) of objects should be contained

within the images returned from the query, not just the shape.

Figure 7.6 : Conceptual Model of I.Q. Environment that Includes Semantic Information.

For example, if the user decided to retrieve all images with hospitals that match to

a particular shape, the query would:

• Process the metadata library and retrieve all images that match to the

specified metadata criterion (e.g. scale, or location, etc.).

• Follow the links from this subset of images to the semantic library where it

would identify which of these images contained hospitals of any shape;

Query Interface
Comprehensive
Digital Image

Database

Image
Library

Feature
Library

Metadata
Library

On-line
Query

Metadata
Input

Criteria

Sketch

3

2

5

1

Semantic
Library

Semantic
 Input

Criteria

4

6
7

8

9

153

• Use the semantic input criteria to further narrow down the list of images to

search within for the required query shape;

• Use this further subset of imagery to select, through feature linking, a refined

subset of features within the feature library to match the query sketch against,

and;

• Feature library matching and subsequent image retrieval will proceed as

described previously.

7.4.4 Temporal Queries

The technique described in Section 7.3.2 could be modified to allow for temporal

reasoning on the database. By loosening up object/relation constraints and by analyzing

matching percentages, we will be able to detect temporal changes in some areas, such as:

the elimination of some objects, changes in object shape, and change in location.

For example, given two images of the same area, by analyzing shape similarity

results, we will be able to detect the elimination of objects and changes in shape, and

changes in topological/orientation relations could help detect changes in location.

Statistical methods could be used for this analysis for predicting behaviors of dynamic

objects. The graphic interface, proposed in Section 7.3.1, could be enhanced to provide a

menu that assists the user in formulating his temporal queries in an intuitive way.

7.4.5 Querying Heterogeneous Data: Vector to Raster Considerations

In many application fields, users need to retrieve information from heterogeneous

spatial databases, i.e. a database that contains various data types and formats. Although

our interest is on raster formats for their inherent spatial accuracy, if we want to access

154

and manipulate the objects within a scene, a vector representation is also required.

Therefore, both raster and vector descriptions of scenes and individual objects should be

included in the database, and linked, to allow switching from one representation to the

other depending on the required task. Textual information on these scenes and objects

could be stored in the form of metadata and semantic properties.

The image query-by-sketch methodology proposed in this thesis could also be

applied to querying for vector objects. To accomplish this, the vector query object and

the various “map sheet” regions of the database would first be rasterized. The query can

then be processed similar to the raster case.

Thus, our method could be extended to querying heterogeneous data. In general,

query criteria could consist of one or more of the following: a sketch in raster or vector

format of individual features (image-objects) or configurations of objects; metadata

information on images or maps; and the semantic properties of objects.

The enhanced spatial query module will search and retrieve images and maps that

match to user specified query criteria. A spatial query language will need to be

developed to assist users in building their queries. The alphabet for this language could

comprise the features/objects contained in the feature library as well as any interactive

sketches the user might create. The constructs of the language will consist of

configurations of objects built by the user. These configurations are built graphically and

are characterized by the spatial relations between objects.

155

Bibliography

Ackerman, F., 1984. Digital Image Correlation: Performance and Potential Application in

Photogrammetry. Photogrammetric Record, 11(64): 429-439.

Agouris, P., 1992. Multiple Image Multipoint Matching for Automatic Aerotriangulation,

The Ohio State University, Columbus, Ohio.

Agouris, P., Carswell, J. and Stefanidis, A., 1999a. An Environment for Content-Based

Image Retrieval from Large Spatial Databases. ISPRS Journal of Photogrammetry

& Remote Sensing, 54: 263-272.

Agouris, P., Carswell, J. and Stefanidis, A., 1999b. Sketch-Based Image Queries in

Topographic Databases. Journal of Visual Communication and Image

Representation, 10: 1-16.

Agouris, P. and Schenk, T., 1996. Automated Aero-triangulation Using Multiple Image

Multipoint Matching. Photogrammetric Engineering & Remote Sensing, 62(No.

6): 703-710.

Aho, A.V., Hopcroft, J.E. and Ullman, J.D., 1987. Data Structures and Algorithms.

Addison Wesley Publishing Company.

Ardizzone, E. and La Cascia, M., 1997. Automatic video database indexing and retrieval.

Multimedia Tools and Applications.

Athitsos, V., Swain, M. and Frankel, C., 1997. Distinguishing Photographs and Graphics

on the World Wide Web, IEEE Workshop on Content-Based Access of Image and

Video Libraries, Puerto Rico, pp. 10-17.

156

Bach, J.R. et al., 1996. The virage image search engine: An open framework for image

management, SPIE - Symposium on Electronic Imaging: Science and Technology

- Storage and Retrieval for Still Image and Video Database IV, pp. 76-87.

Baltsavias, E.P., 1991. Multiphoto Geometrically Constrained Matching. 49, ETH -

Institute for Geodesy and Photogrammetry, Zurich.

Beis, J.S. and Lowe, D.G., 1997. Shape Indexing Using Approximate Nearest-Neighbour

Search in High-Dimensional Spaces. IEEE trans. on Pami, 19(9).

Bentley, J.L., 1975. Multidimensional binary search trees used for associative searching.

Communications of the ACM, 9(18): 509-517.

Blaser, A.D., 1998. Spatial-Query-by-Sketch: Fundamentals for a Sketch-Based User

Interface in GIS, University of Maine, Orono, ME. USA.

Carson, C., Belongie, S., Greenspan, H. and Malik, J., 1997. Region-Based Image

Querying, IEEE Workshop on Content-Based Access of Image and Video

Libraries, San Juan, Puerto Rico, pp. 42-49.

Carswell, J., 1988. A Combined Digital Image Correlation Procedure for Establishing

Relative Orientation. Technical Report, The Ohio State University, Columbus,

Ohio, 55 pp.

Carswell, J. and Hasani, M., 1992. Transition to Digital Photogrammetry, EGIS, Munich,

Germany.

Carswell, J. and Vanderlan, F., 1993. Automatic DTM Generation, International

Symposium on Operationalization of Remote Sensing, ITC - Enschede, The

Netherlands.

157

Chang, N.S. and Reuss, J., 1978. Design Considerations of a Pictorial Database System.

Internationa Journal Policy Analysis Information Systems, 1: 49-70.

Chang, S.F., 1997. SaFe/VisualSEEk - Automatic Joint Spatial/Feature Based Image

Search System. .

Chang, S.K., 1985. Image Information Systems. Proceedings of the IEEE, 73(4): 754-

764.

Cohen, S.D. and Guibas, L.J., 1996. Shape-Based Indexing and Retrieval; Some First

Steps. Proceedings 1996 ARPA Image Understanding Workshop, 2: 1209-1212.

Daoudi, M., Ghorbel, F., Mokadem, A. and Avaro, O., 1999. Shape Distances for

Contour Tracking and Motion Estimation. to appear in Pattern Recognition.

Doorn, B., Agouris, P., Al-Tahir, R., Stefanidis, A. and Zilberstein, O., 1990. Digital

Stereo Matching: In Perspective. 10, The Ohio State University, Columbus, Ohio.

Egenhofer, M. and Herring, J., 1990. A Mathematical Framework for the Definition of

Topological Relationships. In: K.B.a.H. Kishimoto (Editor), Fourth International

Symposium on Spatial Data Handling, Zurich, Switzerland, pp. 803-813.

Egenhofer, M. and Herring, J., 1991. Categorizing Binary Topological Relations Between

Regions, Lines and Points in Geographic Databases, Department of Survey

Engineering, University of Maine, Orono, ME.

FGDC, 1997. Content Standard for Digital Geospatial Metadata, Federal Geographic

Data Committee, Washington, D.C.

158

Finkel, R.A. and Bentley, J.L., 1974. Quad trees: a data structure for retrieval on

composite keys. Acta Informatica 4: 1-9.

Flickner, M. et al., 1995. Query by Image and Video Content: The QBIC System. IEEE

Computer, 28(9): pp. 23-32.

Forstner, W., 1986. Digital Imatge Matching Techniques for Standard Photogrammetric

Application, ACSM-ASPRS Annual Convention.

Forsyth, D.A. et al., 1996. Finding pictures of objects in larges collections of images,

ECCV 96 Workshop on Object Representation.

Frankel, C., Swain, M. and Athitsos, W., 1996. WebSeer: An image search engine for the

world wide web. TR-96-14, Department of Computer Science, University of

Chicago.

Gadi, T., Benslimane, R., Daoudi, M. and Matusiak, S., 1999. Fuzzy Similarity Measure

for Shape Retrieval, Vision Interface '99, Trois Rivieres, Canada, pp. 386-389.

Gonzalez, R.C. and Woods, R.E., 1992. Digital Imge Processing. Addison-Wesley

Publishing Company, Inc., 716 pp.

Greenfeld, J.S., 1987. A Stereo Vision Approach to Automatic Stereo Martching in

Photogrammetry. Ph.D. Dissertation, The Ohio State University, Columbus, Ohio.

Greenfeld, J.S. and Schenk, A.T., 1989. Experiments with Edge-Based Stereo Matching.

Photogrammetric Engineering and Remote Sensing, 55(12): 1771-1777.

Grimson, W.E.L., 1985. Computational Experiments with a Feature-Based Stereo

Algorithm. IEEE PAMI, 7(1): 17-34.

159

Gruen, A., Agouris, P. and Li, H., 1995. Linear Feature Extraction with Dynamic

Programming and Globally Enforced Least Squares Matching. In: A. Gruen, K.

O. and A. P. (Editors), Automatic Extraction of Man-Made Objects from Aerial

and Space Images. Birkhaeuser Verlag, pp. 83-94.

Gruen, A.W. and Baltsavias, E.P., 1987. Geometrically Constrained Multiphoto

Matching. Photogrammetric Engineering and Remote Sensing, 54(5): 633-641.

Gudivada, V.N. and Raghavan, V.V., 1995a. Content-Based Image Retrieval Systems.

IEEE Computer: 18-22.

Gudivada, V.N. and Raghavan, V.V., 1995b. Design and Evaluation of Algorithms for

Image Retrieval by Spatial Similarity. ACM Transactions on Information Systems,

13(2): 115-144.

Gupta, A., Weymouth, T. and Jain, R., 1991. Semantic Queries With Pictures: The

VIMSYS Model, Seventeenth VLDB, Barcelona, Spain.

Güting, R.H., 1994. An Introduction to Spatial Database Systems. VLDB Journal, 3: 357-

399.

Jagadish, H.V., 1991. A Retrieval Technique for Similar Shapes, ACM SIGMOD

International Conference on Management of Data, pp. 208-217.

Kauppinen, H., Seppnaen, T. and Pietikaainen, M., 1995. An experimental comparison of

auto-regressive and Fourier Descriptors in 2D shape classification. IEEE PAMI,

17(2): 201-207.

160

Kelly, P.M., Cannon, T.M. and Hush, D.R., 1995. Query by image example: the

CANDID approach. SPIE Storage and Retrieval for Image and Video Databases

III, Vol. 2420: pp.238-248.

Lindeberg, T., 1994. Scale-Space Theory in Computer Vision. Kluwer Academic

Publishers Boston.

Maas, H.-G., Stefanidis, A. and Gruen, A., 1994. Feature Tracking in 3-D Fluid

Tomography Sequences, ICIP-94, pp. 530-534.

Mehrotra, R. and Gray, J., 1993. Feature-Based Retrieval of Similar Shapes, Ninth

International Conference on Data Engineering, Vienna, Austria, pp. 108-115.

Mehrotra, R. and Gray, J., 1995. Similar-Shape Retrieval in Shape Data Management.

IEEE Computer, 28(9): 57-62.

Nishida, H., 1999. Shape Retrieval from Image Databases through Structural Feature

Indexing, Vision Interface '99, Trois Rivieres,Canada, pp. 328-335.

Ogle, V.E., 1995. Chabot: Retrieval from a Relational Database of Images. IEEE

Computer(September): 23-32.

Pentland, A., Picard, R.W. and Scarloff, S., 1996. Photobook: Content-based

manipulation of image databases. International Journal of Computer Vision.

Persoon, E. and Fu, K.S., 1977. Shape discrimination using Fourier Descriptors. IEEE

Trans. on SMC, 7(3): 170-179.

Pickard, R.W. and Minka, T.P., 1995. Vision Texture for Annotation. Multimedia

Systems, 3(1): 3-14.

161

Ravela, S. and Manmatha, R., 1997. Retrieving Images by Similarity of Visual

Appearance, IEEE Workshop on Content-Based Access of Image and Video

Libraries, San Juan, Puerto Rico, pp. 67-74.

Samet, H., 1990. Application of Spatial Data Structures. Addison-Wesley Series in

Computer Science.

Sclaroff, S., Taycher, L. and La Cascia, M., 1997. ImageRover: A Content-Based Image

Browser for the World Wide Web, IEEE Workshop on Content-Based Access of

Image and Video Libraries, San Juan, Peurto Rico, pp. 2-9.

Smith, J.R. and Chang, S.-F., 1996. VisualSEEk: a fully automated content-based image

query system. ACM Multimedia '96, November.

Srihari, R.K., 1995. Automatic Indexing and Content-Based Retrieval of Captioned

Images. IEEE Computer(September): 49-56.

Stonebraker, M., 1990. The Implementation of Postgres. IEEE Trans. Knowledge and

Data Engineering, March.

Zloof, M.M., 1975. Query by Example, AFIPS 1975 NCC, pp. 431-438.

162

Appendix

Feature House Cleaner

//
// feature_house_cleaner - a recursive cprogram to order a TFI
// (a square matrix of matching percentages between features)
// into a structured feature library with all unnecessary
// duplicates removed.
//

#include "cips.h"

typedef char string30[31];

typedef struct{ string30 fn;
short level;
string30 path[11];
short numkids;
string30 kidnames[101];}FEATURE;

void FINDKIDS(FEATURE features[101],short index,short *totalkids,short
kids[101],short totalfeatures){

short i,j,k;

for(i=1;i<=features[index].numkids;i++){

for(j=1;j<=totalfeatures;j++){

if(strcmp(features[index].kidnames[i],features[j].fn)==0){
*totalkids=*totalkids+1;
kids[*totalkids]=j;
j=totalfeatures+1;

}
}

for(k=1;k<=features[kids[*totalkids]].numkids;k++)

FINDKIDS(features,kids[*totalkids],totalkids,kids,totalfeatures);

}

}

void FINDMAX(FEATURE features[101], short index, float tfi[101][101],
short newfeature, float similar, float same,
float *max, short *position,short *found){

short i,j,h,p,index2;
float max2;

163

if(tfi[newfeature][index]>=same){
*found=1;
*max=tfi[newfeature][index];
*position=index;

}

else if(tfi[newfeature][index]>=similar || index==0){
if(tfi[newfeature][index]>=*max){

max2=0; h=0; index2=0; *found=1;
for (p=1;p<=features[index].numkids;p++){

for(j=1;j<newfeature;j++){

if(strcmp(features[j].fn,features[index].kidnames[p])==0){
h=j;
j=newfeature;

}
}

if (tfi[newfeature][h]>=similar &&
tfi[newfeature][h]>= max2){

max2=tfi[newfeature][h];
index2=h;

}

}
if (max2==0){

*max=tfi[newfeature][index];
*position=index;

}
else {

*max=max2;
*position=index2;

}
}
for(i=1;i<=features[index].numkids;i++){

for(j=1;j<newfeature;j++){

if(strcmp(features[j].fn,features[index].kidnames[i])==0){

FINDMAX(features,j,tfi,newfeature,similar,same,max,position,found)
;

}
}

}

}
else //case of different
{

if (tfi[newfeature][index]>=*max){
*max=tfi[newfeature][index];
*position=index;
*found=1;

}
}

}

164

void FINDMAX2(FEATURE features[101], short index, float tfi[101][101],
short newfeature, float similar, float same,
float *max, short *position,short *found, short

totalfeatures){

short i,j,h,p,index2;
float max2;

if(tfi[newfeature][index]>=same){
*found=1;
*max=tfi[newfeature][index];
*position=index;

}

else if(tfi[newfeature][index]>=similar || index==0){
if(tfi[newfeature][index]>=*max){

max2=0; h=0; index2=0; *found=1;
for (p=1;p<=features[index].numkids;p++){

if(strcmp(features[index].kidnames[p],features[newfeature].fn)!=0)
{

//for(j=newfeature+1;j<=totalfeatures;j++){
for(j=1;j<=totalfeatures;j++){

if(strcmp(features[j].fn,features[index].kidnames[p])==0){
h=j;
j=totalfeatures+1;

}
}

if (tfi[newfeature][h]>=similar &&
tfi[newfeature][h]>= max2){

max2=tfi[newfeature][h];
index2=h;

}
}

}
if (max2==0){

*max=tfi[newfeature][index];
*position=index;

}
else {

*max=max2;
*position=index2;

}
}
for(i=1;i<=features[index].numkids;i++){

if(strcmp(features[index].kidnames[i],features[newfeature].fn)!=0)
{

//for(j=newfeature+1;j<=totalfeatures;j++){
for(j=1;j<=totalfeatures;j++){

if(strcmp(features[j].fn,features[index].kidnames[i])==0){

FINDMAX2(features,j,tfi,newfeature,similar,same,max,position,found
,totalfeatures);

j=totalfeatures+1;
}

165

}
}

}

}
else //case of different
{

if (tfi[newfeature][index]>=*max){
*max=tfi[newfeature][index];
*position=index;
*found=1;

}
}

}

int INSERT(FILE *outFilep, FEATURE features[101], short index, float
tfi[101][101],

short totalfeatures, short newfeature, float same,
float similar,

short *found){

short i,p,m,position;
float max;

char parent[31];

position=0;
max=0;
index=0;

for(i=1;i<=features[index].numkids;i++){

FINDMAX(features,index,tfi,newfeature,similar,same,&max,&position,
found);

if (max>=same){
features[newfeature].level=0;
return 0;

}
else if (max>=similar){

features[newfeature].level=features[position].level+1;

features[position].numkids=features[position].numkids+1;

strncpy(features[position].kidnames[features[position].numkids],fe
atures[newfeature].fn,31);

for(p=1;p<features[position].level;p++){

strncpy(features[newfeature].path[p],features[position].path[p],31
);

}

strncpy(features[newfeature].path[p],features[position].fn,31);

166

return 0;
}

else{
features[newfeature].level=features[position].level;
if(features[newfeature].level==1){

strncpy(parent,"ROOT",31);
strncpy(features[newfeature].path[1],parent,31);

}
else{

strncpy(parent,features[position].path[features[position].level-
1],31);

}
for(m=0;m<=totalfeatures;m++){

if(strcmp(features[m].fn,parent)==0){
features[m].numkids=features[m].numkids+1;

strncpy(features[m].kidnames[features[m].numkids],features[newfeat
ure].fn,31);

m=totalfeatures+1;
}

}
for(p=1;p<features[position].level;p++){

strncpy(features[newfeature].path[p],features[position].path[p],31
);

// if (newfeature==5 && p==1)
 //

printf("%15s",features[newfeature].path[p]);

}

return 0;

}
}

}

int INSERTKIDS(FILE *outFilep, FEATURE features[101], short index, float
tfi[101][101],

short totalfeatures, short newfeature, float same,
float similar,short *found){

short i,p,m,position;
float max;

char parent[31];

position=0;
max=0;
index=0;

for(i=1;i<=features[index].numkids;i++){

FINDMAX2(features,index,tfi,newfeature,similar,same,&max,&position
,found,totalfeatures);

if (max>=same){

167

features[newfeature].level=0;

return 0;
}
else if (max>=similar){

features[newfeature].level=features[position].level+1;

features[position].numkids=features[position].numkids+1;

strncpy(features[position].kidnames[features[position].numkids],fe
atures[newfeature].fn,31);

for(p=1;p<features[position].level;p++)

strncpy(features[newfeature].path[p],features[position].path[p],31
);

strncpy(features[newfeature].path[p],features[position].fn,31);

return 0;
}

else{

features[newfeature].level=features[position].level;
if(features[newfeature].level==1){

strncpy(parent,"ROOT",31);
strncpy(features[newfeature].path[1],parent,31);

}
else{

strncpy(parent,features[position].path[features[position].level-
1],31);

}

for(m=0;m<=totalfeatures;m++){
if(strcmp(features[m].fn,parent)==0){

features[m].numkids=features[m].numkids+1;

strncpy(features[m].kidnames[features[m].numkids],features[newfeat
ure].fn,31);

m=totalfeatures+1;
}

}

for(p=1;p<features[position].level;p++)

strncpy(features[newfeature].path[p],features[position].path[p],31
);

168

return 0;

}
}

}

int INSERT2(FILE *outFilep, FEATURE features[101], short index, float
tfi[101][101],

short totalfeatures, short newfeature, float same,
float similar,

short *found){

short i,j,jj,p,m,position,kidposition,
kids[101],totalkids=0;

float max;

char parent[31];

kidposition=0;
position=0;
max=0;
index=0;

for(i=1;i<=100;i++)
kids[i]=0;

for(i=1;i<=features[index].numkids;i++){

FINDMAX2(features,index,tfi,newfeature,similar,same,&max,&position
,found,totalfeatures);

if (max>=same){

features[newfeature].level=0;

FINDKIDS(features,newfeature,&totalkids,kids,totalfeatures);

for(j=1;j<=features[newfeature].numkids;j++)
*features[newfeature].kidnames[j]='\0';

features[newfeature].numkids=0;

for(jj=1;jj<=totalkids;jj++){
kidposition=kids[jj];

found=0;

for(j=1;j<=10;j++)
*features[kidposition].path[j]='\0';

for(j=1;j<=features[kidposition].numkids;j++)

169

*features[kidposition].kidnames[j]='\0';

features[kidposition].numkids=0;

INSERTKIDS(outFilep,features,index,tfi,totalfeatures,kidposition,s
ame,similar,&found);

}

totalkids=0;
for(j=1;j<=100;j++)

kids[j]=0;

return 0;
}

else if (max>=similar){

features[newfeature].level=features[position].level+1;

features[position].numkids=features[position].numkids+1;

strncpy(features[position].kidnames[features[position].numkids],fe
atures[newfeature].fn,31);

for(p=1;p<features[position].level;p++){

strncpy(features[newfeature].path[p],features[position].path[p],31
);

}

strncpy(features[newfeature].path[p],features[position].fn,31);

FINDKIDS(features,newfeature,&totalkids,kids,totalfeatures);

for(j=1;j<=features[newfeature].numkids;j++)
*features[newfeature].kidnames[j]='\0';

features[newfeature].numkids=0;

for(jj=1;jj<=totalkids;jj++){
kidposition=kids[jj];

found=0;

for(j=1;j<=10;j++)
*features[kidposition].path[j]='\0';

for(j=1;j<=features[kidposition].numkids;j++)
*features[kidposition].kidnames[j]='\0';

features[kidposition].numkids=0;

INSERTKIDS(outFilep,features,index,tfi,totalfeatures,kidposition,s
ame,similar,&found);

}

totalkids=0;
for(j=1;j<=100;j++)

170

kids[j]=0;

return 0;

}
else{

features[newfeature].level=features[position].level;
if(features[newfeature].level==1){

strncpy(parent,"ROOT",31);
strncpy(features[newfeature].path[1],parent,31);

}
else{

strncpy(parent,features[position].path[features[position].level-
1],31);

}
for(m=0;m<=totalfeatures;m++){

if(strcmp(features[m].fn,parent)==0){
features[m].numkids=features[m].numkids+1;

strncpy(features[m].kidnames[features[m].numkids],features[newfeat
ure].fn,31);

m=totalfeatures+1;
}

}
for(p=1;p<features[position].level;p++){

strncpy(features[newfeature].path[p],features[position].path[p],31
);

// if (newfeature==5 && p==1)
 //

printf("%15s",features[newfeature].path[p]);

}

FINDKIDS(features,newfeature,&totalkids,kids,totalfeatures);

for(j=1;j<=features[newfeature].numkids;j++)
*features[newfeature].kidnames[j]='\0';

features[newfeature].numkids=0;

for(jj=1;jj<=totalkids;jj++){
kidposition=kids[jj];

found=0;

for(j=1;j<=10;j++)
*features[kidposition].path[j]='\0';

for(j=1;j<=features[kidposition].numkids;j++)
*features[kidposition].kidnames[j]='\0';

features[kidposition].numkids=0;

INSERTKIDS(outFilep,features,index,tfi,totalfeatures,kidposition,s
ame,similar,&found);

}

171

totalkids=0;
for(j=1;j<=100;j++)

kids[j]=0;

return 0;
}

}

}

//
//beginning of main program
//

int main(){

FEATURE features[101];

char junk[31],parent[31],tfiname[80],result1[80],result2[80];

short numfiles=0, found=0,index=0,
i,j,status,k,p,parentposition,
totalfeatures;// total number of features in feature

library

short
zero=0,one=0,two=0,three=0,four=0,five=0,six=0,seven=0,eight=0,nin

e=0,ten=0;

float same,
similar,
tfi[101][101];

FILE *inFilep,*outFilep, *library;

///////////////////////////////////////

inptfi:
printf("\n\nEnter file name of tfi");//i.e. tfi66
printf(" --> ");
gets(tfiname);
strncpy(result1,"d:\\tfi\\",80);
strncat(result1,tfiname,80);
strncat(result1,".dat",80);

if (strcmp(tfiname,"")==0) goto inptfi;

//inFilep=fopen(tfiname,"rb");

//strncpy(result1,"d:\\tfi\\tfi66.dat",80);
inFilep=fopen(result1,"r");

if (!(inFilep)) {

172

printf("\nInput file open error:%s does not
exist\n\n",tfiname);

goto inptfi;
}

inpt2:
printf("\n\nEnter percentage for SAME (between 0 and 100 percent)-

->");//i.e. 80

scanf("%f",&same);
if(same>100 || same<0){

printf("\nInvalid entry, SAME must be between 0 and 100
percent\n\n");

goto inpt2;
}

inpt3:
printf("\n\nEnter percentage for SIMILAR (must be less than SAME)-

->");//i.e. 80

scanf("%f",&similar);
if(similar>=same || similar<0){

printf("\nInvalid entry, SIMILAR must be less than
SAME\n\n");

goto inpt3;
}

printf("\n press enter to start timer--> ");
system("time >> d:\\tfi\\time.dat");

for(i=1;i<=100;i++){
for(j=1;j<=100;j++)

tfi[i][j]=0.;
}

for(i=0;i<=100;i++){
features[i].level=0;
features[i].numkids=0;

for(j=0;j<=10;j++)
*features[i].path[j]='\0';

for(k=0;k<=100;k++){
*features[i].kidnames[k]='\0';

}
}

outFilep=fopen("d:\\tfi\\featurelibrary.dat","w");

if (!(outFilep))
{

printf("Output file open error\n\n");
return 1;

}

//inFilep=fopen("d:\\tfi\\tfi66.dat","r");
//inFilep=fopen("d:\\tfi\\test2.dat","r");

i=1;
status=fscanf(inFilep,"%s",features[i].fn);

173

while(status != '\n')
status=getc(inFilep);

while(status!=EOF){
i++;
status=fscanf(inFilep,"%s",features[i].fn);
while(status != '\n' && status!=EOF)

status=getc(inFilep);
}
totalfeatures=i;

fclose(inFilep);

//inFilep=fopen("d:\\tfi\\tfi66.dat","r");
//inFilep=fopen("d:\\tfi\\test2.dat","r");

inFilep=fopen(result1,"r");

for(i=1;i<=totalfeatures;i++){
status=fscanf(inFilep,"%s",junk);

for(j=1;j<=totalfeatures;j++)
status=fscanf(inFilep,"%f",&tfi[i][j]);

while(status != '\n' && status!=EOF)
status=getc(inFilep);

}

fclose(inFilep);

for(i=1;i<=totalfeatures;i++){
fprintf(outFilep,"\n%15s",features[i].fn);
for(j=1;j<=totalfeatures;j++)

fprintf(outFilep,"%10.1f",tfi[i][j]);
}

//here is where the insertion starts

features[1].level=1;
strncpy(features[index].fn,"ROOT",31);
strncpy(features[1].path[1],features[index].fn,31);
strncpy(features[index].kidnames[1],features[1].fn,31);
features[index].numkids=1;

for(i=2;i<=totalfeatures;i++){
found=0;

INSERT(outFilep,features,index,tfi,totalfeatures,i,same,similar,&f
ound);

}

//printout feature library before housecleaning

sprintf(result2,"%.1f",same);
strncpy(result1,tfiname,80);
strncat(result1,"_",80);
strncat(result1,result2,80);
sprintf(result2,"%.1f",similar,80);
strncat(result1,"_",80);
strncat(result1,result2,80);
strncat(result1,"_before",80);
strncat(result1,".dat",80);
strncpy(result2,"d:\\featurelibrary\\",80);

174

strncat(result2,result1,80);

library=fopen(result2,"w");
for(i=1;i<=totalfeatures;i++){

//if(features[i].level!=0){
fprintf(library,"\n%15s %3d

%3d",features[i].fn,features[i].level,features[i].numkids);
for(j=1;j<features[i].level;j++)

fprintf(library,"%15s",features[i].path[j]);
//}

}

fclose(library);

/*
for(i=0;i<=100;i++){

for(j=0;j<=10;j++)
*features[i].path[j]='\0';

}
*/

//housecleaning begins here

for(i=1;i<=totalfeatures;i++){
found=0;
if(features[i].level>0){

if(features[i].level==1){
strncpy(parent,"ROOT",31);

}
else{

strncpy(parent,features[i].path[features[i].level-1],31);
}

for(p=0;p<=totalfeatures;p++){
if(strcmp(parent,features[p].fn)==0){

parentposition=p;
p=totalfeatures+1;

}
}

for(j=1;j<=features[parentposition].numkids;j++){

if(strcmp(features[parentposition].kidnames[j],features[i].fn)==0)
{

*features[parentposition].kidnames[j]='\0';
k=j;

}
}

for(j=1;j<=10;j++)
*features[i].path[j]='\0';

for(j=1;j<features[parentposition].numkids;j++){

175

if(strcmp(features[parentposition].kidnames[j],"")==0){

strncpy(features[parentposition].kidnames[j],features[parentpositi
on].kidnames[j+1],31);

k=j+1;
j=features[parentposition].numkids;

}
}
if(features[parentposition].numkids>1){

for(j=k;j<features[parentposition].numkids;j++)

strncpy(features[parentposition].kidnames[j],features[parentpositi
on].kidnames[j+1],31);

}

*features[parentposition].kidnames[j]='\0';

if(features[parentposition].numkids>0)

features[parentposition].numkids=features[parentposition].numkids-
1;

INSERT2(outFilep,features,index,tfi,totalfeatures,i,same,similar,&
found);

}
}

//printout feature library after housecleaning

sprintf(result2,"%.1f",same);
strncpy(result1,tfiname,80);
strncat(result1,"_",80);
strncat(result1,result2,80);
sprintf(result2,"%.1f",similar,80);
strncat(result1,"_",80);
strncat(result1,result2,80);
strncat(result1,"_after",80);
strncat(result1,".dat",80);
strncpy(result2,"d:\\featurelibrary\\",80);
strncat(result2,result1,80);

library=fopen(result2,"w");
for(i=1;i<=totalfeatures;i++){

//if(features[i].level!=0){
if(features[i].level==0)

zero=zero+1;
if(features[i].level==1)

one=one+1;
if(features[i].level==2)

two=two+1;
if(features[i].level==3)

three=three+1;
if(features[i].level==4)

four=four+1;
if(features[i].level==5)

five=five+1;
if(features[i].level==6)

six=six+1;

176

if(features[i].level==7)
seven=seven+1;

if(features[i].level==8)
eight=eight+1;

if(features[i].level==9)
nine=nine+1;

if(features[i].level==10)
ten=ten+1;

fprintf(library,"\n%15s %3d
%3d",features[i].fn,features[i].level,features[i].numkids);

for(j=1;j<features[i].level;j++)
fprintf(library,"%15s",features[i].path[j]);

//}
}

fprintf(library,"\n\nzero=%d\none=%d\ntwo=%d\nthree=%d\nfour=%d\nf
ive=%d\nsix=%d\nseven=%d\neight=%d\nnine=%d\nten=%d",

zero,one,two,three,four,five,six,seven,eight,nine,ten);

fclose(library);

fclose(outFilep);
printf("\n\nALL DONE\n\n press enter to stop timer-->\n\n");
//system("time >> d:\\tfi\\time.dat");

return 0;
} /* ends main */

177

Biography of the Author

James Duncan Carswell was born in Renfrew, Ontario, Canada on March 15,

1962. He began his formal schooling in Sault Ste. Marie and from there moved on to

Pembroke, Kingston, and back to Pembroke to finish his final years of secondary

schooling at Fellowes High School, graduating in June 1981. During this time, his was a

familiar presence amongst all the major varsity sports teams including track & field,

football, basketball, volleyball, and soccer; the last three of which he captained to

multiple conference championships.

 He began his post secondary schooling at Ryerson Polytechnical Institute in

Toronto, Ontario, earning a Bachelor of Technology Degree in Survey Engineering in

1986. Deciding to further strengthen his academic credentials, he obtained a Master of

Science in Geodetic Science from The Ohio State University in 1988. While attending

OSU, he held both teaching and research assistantship positions on a NASA sponsored

digital photogrammetry project.

After graduation, he began his first “real” job as a GIS Analyst with Unisys’

European Center for GIS in Amsterdam, The Netherlands. He remained there for three

years presenting, installing and customizing their Oracle based GIS to suit customer

requirements throughout Europe. For the next five years, he was the Digital

Photogrammetry Product Marketing Manager within the European Headquarters of

Intergraph, also located in The Netherlands. It was through both these professional

appointments that allowed him to work with the major mapping institutions of Europe,

178

which encouraged him to return to school in pursuit of a doctoral degree in the mapping

sciences.

In 1996, Mr. Carswell left Europe to accept a graduate research assistantship

position with the Department of Spatial Information Science and Engineering at The

University of Maine. He has authored or co-authored numerous research papers

published in fully refereed journals and conference proceedings and was awarded the

Altenhofen Memorial Scholarship for photogrammetry in 1998 by the American Society

of Photogrammetry and Remote Sensing

He is a candidate for the Doctor of Philosophy degree in Spatial Information

Science and Engineering from The University of Maine in May, 2000.

	Using Raster Sketches for Digital Image Retrieval
	Recommended Citation

	Recommended Citation
	Dublin Institute of Technology
	ARROW@DIT
	2000-05-01

	Using Raster Sketches for Digital Image Retrieval
	James D. Carswell

