
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers Digital Media Centre

2005-01-01

TrioSon: a Graphical User Interface for Pattern Sonification TrioSon: a Graphical User Interface for Pattern Sonification

Charlie Cullen
Technological University Dublin, charlie.cullen@tudublin.ie

Eugene Coyle
Technological University Dublin, Eugene.Coyle@tudublin.ie

Follow this and additional works at: https://arrow.tudublin.ie/dmccon

 Part of the Other Computer Engineering Commons, and the Other Music Commons

Recommended Citation Recommended Citation
Cullen, C. & Coyle, E. (2005) TrioSon: A Graphical User Interface for Pattern Sonification. ICAD '05:The
11th Meeting of the International Conference on Auditory Display. University of Limerick, 6-9 July.

This Conference Paper is brought to you for free and open access by the Digital Media Centre at ARROW@TU
Dublin. It has been accepted for inclusion in Conference papers by an authorized administrator of ARROW@TU
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie,
vera.kilshaw@tudublin.ie.

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/dmccon
https://arrow.tudublin.ie/dmc
https://arrow.tudublin.ie/dmccon?utm_source=arrow.tudublin.ie%2Fdmccon%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=arrow.tudublin.ie%2Fdmccon%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/524?utm_source=arrow.tudublin.ie%2Fdmccon%2F22&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie

Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

TrioSon: A Graphical User Interface for Pattern Sonification

Charlie Cullen Eugene Coyle

Digital Media Centre Department of Control Systems and Electrical
Engineering

Dublin Institute of Technology (DIT)
Dublin,
Ireland

Dublin Institute of Technology (DIT)
Dublin,
Ireland

charlie.cullen@dmc.dit.ie eugene.coyle@dit.ie

ABSTRACT

The TrioSon software allows users to map musical patterns to
input data variables via a graphical user interface (GUI). The
application is a Java routine designed to take input files of
standard Comma Separated Values (CSV) format and output
Standard Midi Files (SMF) using the internal Java Sound API.
TrioSon renders output Sonifications from input data files for
up to 3 user-defined parameters, allocated as bass, chord and
melody instruments for the purposes of arrangement. In this
manner each parameter concerned is distinguished by its
individual instrumental timbre, with the option of rendering any
combination of 1 to 3 parameters as required.
The software parses indexed input data relating to individual
variables for each user-defined parameter, and provides the
means to allocate musical patterns to each variable for
Sonification using drag and drop functionality. Control over the
Rhythmic Parsing of the Sonification is provided, alongside
individual control of the volume, panning, muting and timbre of
each instrument in the trio. Sonifications can be rendered as full
output files of the entire data, or can also be auditioned by
index as required. This feature is designed to allow the user
complete control over the data they are sonifying- either on an
individual or collective basis.
Context for each output Sonification is provided by Midi events
defined by the index of the input data, which are mapped to
percussive timbres in the final SMF (via track 10). Java
development provides the added advantage of portability, with
the final application being small enough (200kb) to attach in an
email document. It is hoped that the compact and intuitive
nature of the application will make it a straightforward means
of investigating the Sonification of data sets.

1. INTRODUCTION

Sonification can be defined as the use of non-speech audio to
convey information [1]. The rapid increase in the amounts of
data that many fields of modern research and endeavour have to
process has led to the need for better tools and means of
representation, and to this end audio representation is a viable
and often powerful means of analysing data. Sound can convey
significant amounts of information [2], and thus can be of great
benefit in the analysis and understanding of data sets. Many
modern electronic devices contain some means of generating an
audio alert or warning (to signal a condition that requires some
form of user interaction or intervention), ranging from car
alarms through to the now familiar system sounds generated by
computer hardware.
The development of such systems has occurred largely in
ignorance of the overall benefit the Sonification has provided,

and as such serves to suggest the potential of such information
delivery techniques if properly utilised.
Pattern matching [3] is an area of data analysis that relies
heavily on computational methods to distinguish possible trends
or behaviours within a sequence or data set. It is suggested that
as human intelligence and perception are designed specifically
for the purpose of pattern matching, it may be of use to convey
the particular data concerned in a format that lends itself
towards human pattern recognition. Visual techniques for
conveying data are well known (in anything from a line graph
to fractal modelling), but Sonification for analysis is still
relatively undervalued as a means of representing data for
human recognition and understanding. The advantages of such
Sonifications include the ability to deliver information to
individuals or groups without any specific interaction on their
part (such as an alarm sound in a public place), and also the
relatively light processing overhead in conveying and storing
such information (many Sonification techniques use the midi
protocol to convey data and so do not require large computation
or storage space). The capability of the human brain to process
audio on a heirachal level (and quickly extract elements of
information) suggests it to be a far more powerful means of
communication and analysis than its present utilisation would
often suggest.
Applications have been developed to facilitate data
Sonification, and there are many good examples of task specific
applications such as Caitlin [4] (for debugging computer
software), MarketBuzz [5] (for stock market analysis) and
Protein Music [6] (for analysing DNA sequences). More
general data Sonification tools such as the Audio Abacus [7] or
Sonification Sandbox [8] suggest great potential for the analysis
of data in general, in an effort to ascertain the best means by
which Sonification itself can be performed (before considering
the data it will be applied to). It is suggested that an effective
framework for data Sonification must first be developed in
isolation, before it can be applied to any specific data with any
real efficiency. The aim of the TrioSon software is to provide a
means of considering the potential of pattern matching in data
Sonification at a low level, with a view to eventually
developing an effective method of pattern based data
Sonification.

2. DESIGN AND IMPLEMENTATION

The TrioSon software is designed to allow pattern based
Sonification of input data sets to be performed within a
Graphical User Interface. By providing a simple and intuitive
means of sonifying data, the software aims to allow the user to
quickly assess input data as required. TrioSon was developed

 ICAD05-1

mailto:charlie.cullen@dmc.dit.ie
mailto:conference@icad.org

Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

using the Java language, which was deemed to be the best
choice for a desktop application. Java applications are usually
small, single file (JAR archive) releases which only require the
presence of the Java Runtime Environment (JRE) in order to
function. This compact construction differs significantly from
applications developed using Visual Basic or C++, where an
application can require many separate files to be installed to
different locations on the target machine. Java is also a platform
independent language that can be run efficiently on Windows,
MacOS and Linux operating systems. This portability
(alongside its small size) is one of the reasons for the
proliferation of Java and JavaScript in applications for Internet
Browsers and Mobile Devices. This portability again separates
Java from languages such as C++ and Visual Basic, which often
require extensive redevelopment in order to be compatible with
different operating systems. Another important consideration in
the application design was its potential migration to mobile
devices such as cellphones and Personal Digital Assistants
(PDA). It was intended that by developing the application in
Java, the potential would exist to port the code onto such
devices at a later stage.

2.1. Application design- MVC design and model

The first consideration in the application was a completely
Object Oriented design. Java allows for OOP [9] (Object
Oriented Programming) by way of the class based structure of
the language, and this provided a means of segregating various
operations within the code for separate consideration.
As part of the design of the TrioSon application, the Model-
View-Controller [10] (MVC) architecture is used. MVC allows
the GUI and the back end processing in the application to be
separated for ease of design and implementation (Figure 1).

Figure 1. Model-View-Controller Architecture

In an MVC design, a Data Model class is constructed to hold all
data and variables used by the application. The View classes
relate to the GUI and its operation, with the Controller class
defining all information input by the user. In Java, any class
dealing with the input or display of information is hooked up to
the Data Model using an Adapter [11], which effectively allows
component classes in each View class to act as Controllers.
Java defines the Listener interface as a means of classes
obtaining information, and the Adapters allow a modified
Model-View architecture to be created (with the Adapters
acting as Listeners for the Data Model).
The Data Model could thus be designed separately from the
GUI, allowing all the relevant requirements of the code to be
specified as required. The application was required to have
provision for bass and melody patterns, as well as chord
intervals. In considering the Java Midi classes contained within
the Java Sound API [12] (Application Programmer Interface), it

was found that the Midi output functions were designed to take
data of standard Midi format (such as Note Numbers and
Message Codes) without additional conversion. Thus, the Data
Model can be filled with the relevant patterns and chord
intervals in a numerical format (Figure 2) for storage and
rendering.

Figure 2. Sample Melody Pattern Array in TrioSon

Data Model

The Rhythmic Parsing templates used in this software are also
set up in this manner, and other variables that have known
values or ranges (such as Instrumentation and Panning) are
similarly defined as part of the Data Model template (Figure 3).

Figure 3. TrioSon Data Model Template

 In the Java MV architecture, information is passed in and out
of the Data Model (via the Adapters) using standard get and set
methods, allowing template functions to be set up before any of
the GUI functionality had been finalised. Consequently, the
Data Model is organised into a template which can be amended
as required, without any loss in functionality or change in
implementation.

2.2. Input file format

With the basic framework for the application data in place, the
next area of focus is the input of that data in the relevant
format. The CSV format [13] (Figure 4) was chosen due to its
inherent simplicity, a standard file contains one row of header
information followed by data on every subsequent row.

 ICAD05-2

Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

Figure 4. Example CSV file and its associated database

representation

Using this file type, any spreadsheet data can be used as
required. The CSV format is a popular choice in simple
spreadsheet and database applications (largely due to its
simplicity), and so is considered the ideal file format for
Sonification purposes. Once the CSV file format had been
specified for input data, several functions were required to parse
the information into the required format for the data model. A
function was written to separate the header information from
the following data, with the header being organised relative to
the index of each data row in the file.
The file index can be regarded as the delimiter (Figure 5) which
defines the separation of each set of values over time, allowing
each set of Sonification patterns to represent a specific set of
data values. Thus, the subsequent Rhythmic parsing of the
Sonification can be used to separate each set of values by index
as required by the user. This method of allocation requires that
each index (i.e. each set of values) in the data set be listed under
its own column heading, a heading that could be listed for
assignment in the GUI.

Figure 5. Example Mapping scheme for Sonification of

Student Results Dataset

A second function is used to write the data from the input file
into an array built by that function. In this manner, all data from
the file is made available to the user by its header. Each
individual parameter in the data could then be accessed from
the data model when (or if) required. With the data input into
the model, the application can now be manipulated by the user
to produce an output Sonification of that data.

2.3. Data Parameter Allocation

The TrioSon GUI (Figure 6) is designed to be as
straightforward and intuitive as possible. It is intended to have
the minimum number of operations between file input and
output, to allow the user quick and easy access to the
Sonifications they have created.

Figure 6. TrioSon GUI front screen

Each section of the GUI pertaining to a particular instrument is
colour coded [14] (blue for bass, green for chords and red for
melody), to help the user regard each instrument as an
individual entity within the overall Sonification. The choice of
colours was dictated by their proximity to one another within
the visible spectrum- lower frequency blue through green to the
higher frequency red.
The connotations of primary colours such as red and blue aims
to segregate in simple terms, with the choice of green for chord
relating to the frequency range occupied by chords in the
framework (between low and high). This aspect of GUI
functionality is intended to make the user as comfortable with
the separation of each parameter as possible, while still
retaining the overall cohesion of the trio arrangement.
All parameters in the input data file are displayed by their
header, and the user can then drag and drop each header onto an
instrument as desired. The index of the Sonification can also be
assigned as required, allowing the user to organise a
Sonification from a choice of more than one delimiter (if the
input data has been so organised). Once each instrument has
been assigned a data parameter, each unique variable for that
parameter is then made available to the user for pattern
allocation.

2.4. Pattern allocation

Each Instrument is given its own pattern allocation screen
(Figure 7) that allows the user to drag and drop musical patterns
onto targets representing each unique variable for that specified
parameter.

Figure 7. TrioSon pattern allocation screen

The available patterns are designed using Contour Icons [15] to
allow the user to make high level choices about the patterns
representing each data variable. By using Contour Icon patterns,
the user can detect a pattern in an output Sonification by its
melodic contour. This facility has been found to be a more

 ICAD05-3

Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

efficient means of pattern matching than by other non-graphical
methods, while also providing the user with as straightforward
an interface as possible.

2.5. Multi-threaded operation in Java

The Java programming standard allows for each Midi and GUI
event to be performed in a separate thread [16] during
operation. By moving playback and drag and drop operations
into separate threads for execution (Figure 8), it is possible for
the user to click and drag an icon while its relevant pattern (or
chord) is played.

Figure 8. Multi-threaded GUI operation

This is an essential function within the GUI, allowing users to
preview each pattern with a single click. It also provides an
efficient means of repeating patterns to allow the user to
become as familiar with their choices as possible.
By retaining a patterns signature during allocation to a specific
variable a more intuitive link between pattern and variable can
be achieved. By using multiple threads it is also possible to
write a Midi file to disk while playing back the same file using
the JavaMidi API, an element of application functionality that
greatly reduced time delays during software operation.

2.6. Index, combination and rhythm screen

In order to provide the use with as much information as possible
about the patterns they were required to detect, a Pattern
Combination screen is provided (Figure 9).

Figure 9. TrioSon Single Events and Combinations

screen

 The Java Combo boxes in the Pattern Combinations section
allows each individual bass, chord and melody mapping to be
played by the user. This feature was added to provide the user
with the means to learn specific combinations before they

listened to the full Sonification. In the above example (Figure
9), a data set of the answers to simple survey questions has been
loaded into the application. The data specifies how many
people (of those questioned) prefer a certain newspaper, type of
food or beverage from a list of choices. By selecting different
combinations using the drop down menus, a user can preview a
particular combination of interest (in this case the Evening
Herald newspaper, Italian food and Tea). In this manner, a user
can detect how many people in the survey group chose a
particular combination by learning that combination prior to (or
during) listening to the full Sonification.
The user can also compare each set of combinations by index
(Figure 10), in the above case pertaining to the newspaper, food
and drink preferences of the survey group.

Figure 10. Pattern combinations by index

The survey group is listed by name (index), with each Java
button playing the combination for that index. In this manner, a
user could listen to the individual responses of a particular
survey participant and define what their choices had been. A
subjects set of choices can be compared with the pattern
combination choices, to provide a straightforward method of
pattern detection on an individual basis.
In the TrioSon software, provision is made for the Rhythmic
Parsing [17] of the different combinations of events and offsets
(Figure 9). A single event can be accompanied by up to 3
minim rests, or 2 events could be accompanied by 1 or 2 minim
rests. In each case, the event itself is designed to last for no
more than 1 minim. By providing the means to vary both the
time between patterns and the time between each pattern in a
set the user is able to structure the output Sonification to suit
their own pace of comprehension [18] (Figure 11).

Figure 11. Block diagram of the use of Rhythmic

Parsing in a Sonification

 ICAD05-4

Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

Placing short rhythmic gaps between events [19] in a
Sonification allows the user time to detect and process the
information in that Sonification more effectively than when no
gap is present.
The offset between instruments (Figure 12) was also considered
of great importance in multiple parameter Sonification, where it
was desired to provide the user means of detecting each pattern
for separate instruments in a sequence.

Figure 12. Rhythmic offsets between parameters in a

Sonification

The use of offsets allows different patterns relating to the same
index (such as a particular persons favourite food and drink) to
be staggered relative to that index. In this manner, a user has the
means to detect each pattern individually, while still retaining
an overall segregation based on the Rhythmic Parsing of the
Sonification.

2.7. Instrument, Volume and Panning Configuration

Each instrument used in the Sonification requires a General
Midi patch to be assigned to it, in order that a useable
Sonification could be produced. It is intended to include
provision for external Midi devices (such as Samplers and
Synthesiser Modules) in due course, but for initial purposes it is
felt sufficient to provide General Midi timbres (Figure 13) via
the onboard Soundcard of the relevant machine.

Figure 13. TrioSon GUI Instrument Configuration
Screen

The individual volume and panning settings for each instrument
are made available to the user. Spatialisation is considered an
important part of the human hearing mechanism, and many
experiments [20] on its effect have shown it to be a very

important element in pattern recognition. The sliders provided
allow the user to set the position of each instrument relative to
others in the Sonification. This was felt to be an important
consideration in multiple parameter Sonification, where the
stereo position of each instrument would make it easier to
detect than if centred monaurally. The guidelines specified for
Earcon design [21] also suggest that volume is an important
factor in inhibiting perception or masking tones. For this
reason, it was felt important to allow the user to set relative
volume levels for each instrument that they were comfortable
with.

2.8. Output file format

A Midi [22] file contains sequence information that can be
processed for output by any soundcard, keyboard or synthesiser
module that has Midi capability. A file will typically contain a
string of Midi messages, each of which define a certain
operation to be performed by the device reading the file.
The Midi specification allows up to 16 Midi channels to be
allocated (and controlled) at one time through a single Midi
data stream. This means that any Midi file can potentially
contain information pertaining to 16 different devices (or a
single device with 16 different outputs). Midi messages are sent
as binary (0 or 1) and defined as one Status byte (8 bits)
followed by one or more Data bytes (Figure YY), with each
message processed sequentially.

Figure 14. Format of a Standard Midi Message

Any Midi file written by software must define information in
this manner, and choice of file format is also important.
Format0 files contain Midi information for a single Midi track
and therefore all note information in the file will be output on a
single Midi channel. Format1 files can contain up to 16 separate
tracks, each of which can hold Midi data that can then be sent
to a required Midi channel. In the TrioSon application, the
numerical note patterns held in the data model (see Figure 2)
are written to a Midi file using the JavaSound API library
routines, with the sequence of patterns being determined by the
input data. Other information (such as instrumentation and
configuration data) is written as Control Change messages,
while timing information (such as Rhythmic Parsing and offset)
is dictated by arrays held in the model that defines the time
values of all output Midi messages.
Midi files are used by all aspects of the GUI output (such as
individual and combination pattern playback), as it was found
to be an efficient means of configuring and outputting data. The
JavaSound API provides functions for real-time output of midi
information, but this has been found to be unstable at times.
Due to the small size of the midi files used, playing a temporary
Midi file written for a specific pattern proved to be an effective
means of allowing users to preview patterns during allocation.

2.9. Transport bar

In the TrioSon application, it was decided that the development
of a transport section should be of prime importance. As a

 ICAD05-5

Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

functional element, the transport section was also given
provision for tempo control and individual instrument muting
(Figure 15).

Figure 15. TrioSon Transport Bar

The flexibility of the Java Midi classes allows for the
implementation of a tempo slider and checkboxes for each
channel mute. The tempo slider was introduced to allow the
user to listen to a Sonification at their own pace, which is
particularly important during training and familiarisation. The
channel mutes are included to allow single or dual parameter
Sonification to take place as desired by the user. Although the
ultimate aim of the application is to provide a multiple
parameter Sonification framework, it is felt that lower
parameter counts are essential for training- and indeed for many
instances of single data listings. The entire transport section is
embedded in a toolbar, which can be detached from the main
GUI screen (by drag and drop) and relocated anywhere in the
display area as required by the user. A Sonification can be
played and stopped by the user, and the entire Sonification can
also be written to file if desired. A Reset button was also added,
to allow the user to recommence work with a new data file as
required. The reset command re-initialises the data model and
resets all parameters within the application GUI other than
those related to instrument configuration. Instrument parameters
(such as volume, panning, muting and patch selection) are left
static as it was found that most users settle upon a preference of
some kind after repeated use. It was felt that it would be more
time consuming (and hence frustrating) to reset all parameters
each time a new data file was loaded, rather than merely
resetting those related to the data itself.

2.10. Context

Context [23] is provided by a single Midi click on ever quarter
note in an output Sonification, with a different note being used
for the first beat of every bar. Context is used to define each
individual index in the output Sonification, and also provide the
user with a means of synchronising to the patterns involved.
Context is not implemented on individual patterns or
combinations, as testing had shown that some users found it
confusing during short sequences (of one pattern length). It is
intended to investigate the potential of context more fully in
future development.

3. CONCLUSIONS

The TrioSon software was developed to investigate various
aspects of pattern matching and Sonification. The performance
of listeners in multiple parameter conditions can be examined,
as can the potential of different musical patterns. The use of
Rhythmic Parsing can also be considered as a means of more
effectively delivering information, and the compact nature of
Java applications allows for testing to be performed under most
conditions by a variety of users. This application has already
been distributed to various users as part of ongoing testing, and
initial results have shown it to be straightforward enough to be
used with little training required. Sonification testing performed
using the application showed it to be stable, and mo problems
were encountered with the software during testing. A full
release of the application (including source) is available via the

DMC website (www.dmc.dit.ie) or by email
(www.charlie.cullen@dmc.dit.ie). Development and
amendment is encouraged by any interested parties, and it is
hoped that the TrioSon application will eventually become a
more comprehensive tool for data Sonification.

4. REFERENCES

[1] G Kramer(ed) et al, “Sonification Report: Status of
the Field and Research Agenda,” International
Conference on Auditory Display (ICAD), 1997.

[2] HG Kaper, S Tipei, E Wiebel, “Data Sonification and
Sound Visualization,” Computing in Science and
Engineering, vol. 1, no. 4, pp. 48-58, 1999.

[3] Web url:
http://www.cs.ucr.edu/~stelo/pattern.html#Resources

[4] P Vickers, “Caitlin: Implementation of a Musical
Program Auralisation System to Study the Effects of
Debugging Tasks as performed by Novice
Programmers,” Doctoral Thesis, Loughborough
University, 1999.

[5] P Janata, E Childs, “MarketBuzz: Sonification of
Real-Time Financial Data,” International Conference
on Auditory Display (ICAD), 2004.

[6] RD King, CG Angus, “PM: Protein Music,”
Computer Applications in the Biosciences CABIOS,
vol. 12, no. 3, pp. 251-252, 1996.

[7] BN Walker, J Lindsay, J Godfrey, “The Audio
Abacus: Representing a Wide Range of Values with
Accuracy and Precision,” International Conference on
Auditory Display (ICAD), 2004.

[8] BN Walker, J Cothran, “Sonification Sandbox: a
Graphical Toolkit for Auditory Graphs,” International
Conference on Auditory Display (ICAD), 2003.

[9] J Hunt, The Hierarchical MVC, www.planetjava.com,
Online Book.

[10] J Weber et al, Using Java, 2nd Edition, QUE 1996,
ISBN: 0789709368.

[11] Swing Components Short Course, Sun MicroSystems,
Online Tutorial.

[12] Java Sound API Documentation, Java 2 PlatformTM
Std.Ed.v1.4.2, Sun Microsystems.

[13] J Walkenbach, Microsoft® Excel 2000 Bible, Wiley,
1999, ISBN 0764532596.

[14] FA Wichmann, LT Sharpe, KR Gegenfurtner, “The
Contributions of Color to Recognition Memory for
Natural Scenes,” Journal of Experimental
Psychology: Learning, Memory, and Cognition, vol.
28, no. 3, pp. 509-520, 2002.

[15] C Cullen, E Coyle, “Musical Pattern Design Using
Contour Icons,” submitted to the 2005 International
Conference on Auditory Display (ICAD) for review.

[16] C Austin, M Pawlan, “Writing Advanced
Applications for the JavaTM Platform,” Sun
MicroSystems, Online Book.

[17] C Cullen, E Coyle, “Analysis of Data Sets Using Trio
Sonification,” Irish Signals and Systems Conference
(ISSC), 2004.

[18] P Keller, “The Role of Metric Frameworks in The
Processing and Representation of Musical Rhythm,”
Noetica Open Forum, Issue 8, 2004.

[19] S Katsuyuki et al, “Neural Representation of a
Rhythm Depends on its Interval Ratio,” The Journal
of Neuroscience, vol. 19, no. 22, pp. 10074-81, 1999.

 ICAD05-6

http://www.charlie.cullen@dmc.dit.ie/

Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005

[20] D McGookin, SA Brewster, “Space, The Final
Frontearcon: The Identification of Concurrently
Presented Earcons in a Synthetic Spatialised Auditory
Environment,” International Conference on Auditory
Display (ICAD), 2004.

[21] SA Brewster, PC Wright, DN Edwards, “Guidelines
for the Creation of Earcons,” British Human-
Computer Interaction Group (BCS-HCI), vol. 2, pp.
155-159, 1995.

[22] P Messick, Maximum Midi: music applications in
C++, Manning Publications 1998, ISBN 1-884777-
44-9.

[23] BN Walker, DR Smith, “Tick-Marks, Axes and
Labels: The Effect of Adding Context to Auditory
Graphs,” International Conference on Auditory
Display (ICAD), 2004.

 ICAD05-7

	TrioSon: a Graphical User Interface for Pattern Sonification
	Recommended Citation

	INTRODUCTION
	DESIGN AND IMPLEMENTATION
	Application design- MVC design and model
	Input file format
	Data Parameter Allocation
	Pattern allocation
	Multi-threaded operation in Java
	Index, combination and rhythm screen
	Instrument, Volume and Panning Configuration
	Output file format
	Transport bar
	Context

	CONCLUSIONS
	REFERENCES

