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a b s t r a c t

Artemisinin–acridine hybrids were prepared and evaluated for their in vitro activity against tumour cell
lines and a chloroquine sensitive strain of Plasmodium falciparum. They showed a 2–4-fold increase in
activity against HL60, MDA-MB-231 and MCF-7 cells in comparison with dihydroartemisinin (DHA)
and moderate antimalarial activity. Strong evidence that the compounds induce apoptosis in HL60 cells
was obtained by flow cytometry, which indicated accumulation of cells in the G1 phase of the cell cycle.

� 2009 Published by Elsevier Ltd.

Artemisinin 1 and its semisynthetic and synthetic analogues are
effective antimalarial agents and are used to treat chloroquine

40 resistant strains of the disease. Since the early 1990s they have also
been shown to have antiproliferative and antitumour activity.1–5

Their activity is greatest against rapidly proliferating neoplastic
cells with high iron content, since their mode of action almost cer-
tainly involves iron(II) catalysed reductive cleavage of the peroxide
bond leading to the formation of C-centred radical or cationic
intermediates able to alkylate biomolecules and induce cell
death.6–10 We and others have postulated that a possible cellular
target of these alkylating intermediates is DNA10,11 and hoped to
enhance their antitumour properties by preparing DNA-targeted

50 1,2,4-trioxane-acridine hybrids. Acridines are known to intercalate
with DNA and have been employed as antibacterial, antiparasitic
and antitumour agents,12,13 moreover their fluorescent properties
allow the use of confocal microscopy to examine the accumulation
and cellular location of these drug hybrids.14

Hybrid drugs are formed by covalently linking two distinct
chemical moieties with differing biological modes of action with
the aim of creating bitherapies that have improved biological activ-

ity and are less susceptible to the development of drug resis-
tance.15–17 We have synthesised a short series of artemisinin–

60acridine hybrids in which a 1,2,4-trioxane derived from artemisi-
nin has been covalently linked to the 9-diaminoalkyl-6-chloro-2-
methoxyacridines 2-5, and evaluated these hybrids for their
in vitro antitumour and antimalarial activity (Fig. 1).

The hybrids were designed to incorporate a metabolically stable
C-10 carba linkage at the 1,2,4-trioxane moiety, therefore the car-
boxylic acid 6 was prepared from C-10 allyldeoxoartemisinin.18

Ozonolysis of the terminal double bond in methanol and reduction
of the intermediate ozonide with triphenylphosphine afforded the
aldehyde in 76 % yield, followed by oxidation with sodium chlorite

70to give the carboxylic acid in quantitative yield. Treatment of the

0960-894X/$ - see front matter � 2009 Published by Elsevier Ltd.
doi:10.1016/j.bmcl.2009.02.028
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acid with oxalyl chloride followed by addition of the appropriate 9-
(diaminoalkyl)acridine afforded the hybrids 7–10 in moderate to
good yields (55–74 %), Scheme 1.19 The 9-(diaminoalkyl)acridines
2–5 were prepared from 6,9-dichloro-3-methoxyacridine and the
corresponding diamines in the presence of phenol.

The hybrids were evaluated for their in vitro activity against
four tumour cell lines (HL60, Colon HT29-AK and Breast MDA-
MB-231 and MCF-7)20 and against a chloroquine sensitive strain
of P.falciparum (3D7)21 relative to DHA as the control (Tables 1

80 and 2).
The hybrids were cytotoxic in the cell lines evaluated, with the

exception of 10, towards HT29-AK (Table 1). The rank order of sen-
sitivity of the cells to the hybrids were as follows: HL60 > MCF-
7 > MDA-MB-231 > HT29-AK. The observed cytotoxicity of the hy-
brids and DHA against HL60 cells was anticipated since this cell
line is characterised by its rapid proliferation and high iron con-
tent. In HL60, MDA-MB-231 and MCF-7 cells, the hybrids displayed
activity 2–4-fold greater than DHA. In HT29-AK cells, only hybrid 8
was more active than DHA; the remaining hybrids displayed only

90 moderate activity with the acridine apparently inhibiting the activ-
ity of the 1,2,4-trioxane. In HL60 cell lines the side-chain acridine 2
was also examined and shown to have activity of 12.5 lM. This
indicates that the addition of the endoperoxide to this unit en-
hances cytotoxicity; in breast cancer cell lines HT29-AK and
MDA-MB-231 this is clearly not the case since the hybrids are less
potent than 2. The hybrids were also evaluated for their in vitro
antimalarial activity against chloroquine sensitive 3D7 strain of
P. falciparum but none of them were more active than the positive
controls (DHA and artemether). Indeed, only 7 had good activity,

100 while 8 and 9 displayed moderate activity and 10 was more than
a 100 times less active than DHA (Table 2).

The ability of hybrid 8 to induce apoptosis was assessed in HL60
cells by flow cytometric measurement of mitochondrial membrane
depolarisation,22 DNA degradation23 and Western blot analysis of
caspase-3 activation.24 This compound was shown to induce mito-
chondrial membrane depolarisation in a concentration-dependent
manner, reaching a significant level at 1 lM increasing until a

maximum effect, 98 ± 3% of cells depolarised, was observed at
10 lM after 24 h. Analysis of cellular DNA content with PI staining

110showed concentration-dependent formation of a sub-G0/G1 popu-
lation with a maximum effect of 57 ± 2% of cells at 10 lM after
24 h ( Fig. 2A). Western blot analysis of caspase-3 activity also
showed concentration-dependent appearance of the catalytically
active subunit of processed caspase-3 with a concomitant decrease
of the inactive 32 kDa precursor (Fig. 2B). Together these results are
strongly indicative of the ability of hybrid 8 to induce cell death by
apoptosis.
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Scheme 1. Reagents and conditions: (i) O3, MeOH, �78 �C, 1 h; (ii) PPh3, MeOH, �78 �C to rt; (iii) NaClO2, 2-methyl-2-butene, NaH2PO4, t-BuOH/H2O, rt, 2 h; (iv) (COCl)2,
CH2Cl2, 0 �C?rt, 90 min then diaminoacridine (2–5), NEt3, CH2Cl2, 0 �C?rt, 16 h.

Table 1
Cytotoxicity results for compounds 7–10 and DHA against HL60, HT29-AK, MDA-MB-
231 and MCF-7 tumour cell lines

Compds HL60 HT29-AK MDA-MB-231 MCF-7

Cytotoxicity IC50, lMa

2 12.5 (±0.25) 6.57 (±1.34) 8.12 (±1.13) ND
7 1.17 (±0.35) 193.55 (±22.88) 48.98 (±7.72) 13.69 (±1.78)
8 3.08 (±0.13) 9.91 (±1.85) 11.64 (±0.23) 11.85 (±0.19)
9 1.58 (±0.72) 247.27 (±44.13) 43.30 (±1.39) 11.70 (±0.22)
10 0.56 (±0.17) >750 21.14 (±0.86) 3.51 (±0.42)
DHA 2.41 (±0.71) 16.12 (±1.10) 99.76 (±10.96) 45.23 (±3.54)

a Values are means of three experiments; standard deviation is given in paren-
theses. ND—not determined.

Table 2
Results for antimalarial activity of compounds 7–10 against chloroquine sensitive
3D7 P. falciparum

Compds IC50, nMa

7 5.96 (±1.50)
8 22.42 (±1.97)
9 20.34 (±3.11)
10 289.52 (±10.52)
Artemether 3.53 (±1.91)
DHA 2.30 (±1.50)

a Values are means of three experiments; standard deviation is given in
parentheses.

2 M. Jones et al. / Bioorg. Med. Chem. Lett. xxx (2009) xxx–xxx
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Confocal microscopy was used to determine the cellular loca-
tion of both hybrid 7 and 9-(1,2-diaminoethyl)-6-chloro-2-meth-

120 oxyacridine 2 in treated parasite infected erythrocytes and MRC-
50 human lung fibroblast cells (7 was selected based on the fact
that this hybrid was the most potent antimalarial in the series).
Both hybrid 7 and 9-aminoacridine 2 were shown to accumulate
selectively in infected erthyrocytes and on the nuclear membrane
of MRC-5 cells (Fig. 3A–C). In malaria parasites acridine 2 was easily
removed by washing with a buffer solution (Fig. 3B) whereas the
endoperoxide hybrid 7 remained, implying covalent binding of
the hybrid (and not the acridine) to intraparasitic cellular biomol-

ecules (Fig. 3 C). Similar experiments were performed in the pres-
130ence of a ferric iron chelator (desferrioxamine (DFO), and under

these conditions the hybrid was removed from the cells on wash-
ing with the buffer (data not shown).14 This result implies that che-
latable iron catalysed reductive cleavage of the peroxide bond is
required for covalent binding of the hybrid to the cellular targets.
(Since DFO is selective for ferric iron it is apparent that intrapara-
sitic reduction of iron to its ferrous form must be achieved to facil-
itate endoperoxide bond cleavage.)

Finally, the in vitro affinity of hybrid 7 and acridine 2 for calf thy-
mus (ct)-DNA and poly A–poly U was investigated spectrophoto-

Figure 2. (A) Concentration-dependent induction of mitochondrial depolarisation and DNA degradation by compound 8 in HL-60 cells (24 h). Key- Open circle: percentage of
cell population with depolarised mitochondria. Filled circles: percentage of cell population with degraded DNA (sub G0/G1 population). Results are the mean ± SD of three
independent sets of experiments. ***p < 0.001 and *p < 0.05 significance of data compared with drug blank as tested by the Mann-Whitney U test for nonparametric data. (B)
Concentration-dependent processing of caspase-3 induced by compound 8 in HL60 cells (24 h). Lane 1: control without 8, Lanes 2–5 increasing concentrations of 8: Lane 2,
0.5 lM, Lane 3: 1.0 lM, Lane 4: 5 lM and Lane 5: 10 lM.

Figure 3. Confocal microscopy studies. (A) Accumulation of 2 in infected erythrocytes; (B) following perfusion of cells with buffer. (C) Accumulation of 7 in MRC-5 human
lung fibroblasts. (D) Accumulation of 7 in infected erythrocytes. Attempts to remove 7 by cell perfusion failed in line with previous studies.

M. Jones et al. / Bioorg. Med. Chem. Lett. xxx (2009) xxx–xxx 3
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140 metrically using thermal melting analysis, electronic absorption,
fluorimetric binding titrations and circular dichroism (CD) analysis.
Addition of ct-DNA at concentrations close to equimolar in respect
of studied compounds yielded significant batochromic shifts in the
electronic absorption spectra of 7 and 2 ( Fig. 4) at wavelengths
characteristic for acridine moiety.25 However, at higher excess of
ct-DNA over 2, 7 precipitation occurred, hampering collection of en-
ough data points for accurate processing by Scatchard equation.26

At variance to UV/vis titrations, strong fluorescence of 2 and 7 al-
lowed fluorimetric titrations with polynucleotides at significantly

150lower concentrations, at which no precipitation was observed.
Emission of both 2 and 7 was strongly quenched by addition of
ct-DNA and poly A–poly U and processing of the fluorimetric titra-
tion data by Scatchard equation26 gave similar binding constants (in
the range Ks � 106 M�1) and ratio binding n[compound]/[polynucleotide] of
about 0.2. However, in thermal melting studies addition of 2 gener-
ally yielded a significantly stronger stabilisation effect on double
stranded polynucleotides than its hybrid analogue 7 (Table 3).

However, CD studies were the most elucidating. CD analysis of
ct-DNA (Fig. 5) and poly A–poly U in the presence of 2 showed an

160increase in the CD of DNA/RNA (220–300 nm range) and a weak
negative induced CD at about 430 nm (absorption attributed to
the acridine), characteristic of intercalation.27 However, there
was no change in the CD spectra of either ct-DNA or poly A–poly
U upon addition of hybrid 7, indicating that the acridine moiety
of the hybrid is not intercalated into the double helix. That would
imply that linking the acridine moiety to the trioxane prevents
intercalation in double stranded polynucleotide or at least dimin-
ishes its role in binding, presumably due to the intramolecular aro-
matic stacking interaction between acridine and trioxane moiety

170(visible from comparison of the UV/vis spectrum of 2 and 7). Con-
sequently, changes in the electronic emission and absorption spec-
tra of 7 upon addition of studied polynucleotides and the increase
in melting temperature are caused either by counterion stabilisa-
tion or by mixed binding modes including to some electrostatic,
hydrophobic and van der Waals interactions as well as intercala-
tion of the acridine as a minor contribution.28

In summary, artemisinin–acridine hybrids display promising
antitumour activity in HL60, MDA-MB-231 and MCF-7 cells. They
have been shown to induce cell death by apoptosis and to cova-

180lently bind to their intraparasitic cellular targets in the presence
of iron(II). Linking an acridine to an artemisinin derivative was
shown to enhance antitumour activity in the HL60 leukaemia cell
line (comparing 2 and 7), while it had a largely inhibitory effect
in HT29-AK and MDA-MB-231 cells. Compared to DHA the hybrids
had decreased in vitro antimalarial activity. Although hybrid 7 was
shown to have high affinity toward DNA/RNA, intercalation of hy-
brid 7 into DNA/RNA in vitro was not dominant binding mode, pre-
sumably due to the competitive intramolecular aromatic stacking
interaction between acridine and trioxane moiety. Future work

190will involve the synthesis and evaluation of redesigned hybrids
in which longer linkers between the two moieties and a variety

Figure 4. UV/vis spectra of 2 and 7 (c = 5 � 10-5 mol dm�3) and complexes 2/ctDNA
and 7/ctDNA at different ratios r = [2 or 7]/[ctDNA], pH 7, Na cacodylate buffer,
I = 0.05 M.

Table 3
DTm valuesa (�C) of studied ds-polynucleotides upon addition of 2 and 7 at ratio
rb = 0.3 at pH 7, Na cacodylate buffer, 0.02 M (I = 0.005 M)a

Polynucleotide DTm w/2 (�C) DTm w/7 (�C)

ctDNA 9.3 3.1
Poly A–poly U 2.2 2.4
Poly A–poly Tc 2.9 0.6

a Error in DTm: ±0.5 �C.
b r = [compound]/[polynucleotide].
c With the exception of this experiment (where I = 0.05 M) melting studies were

performed at I = 0.005 M due to the very weak effects at I = 0.05 M.
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Figure 5. (A) Changes in the CD spectrum of ct-DNA (c = 1�10-5 mol dm�3) upon addition of 2 (inset: changes at k = 280 nm at various ratios r = [2]/[ctDNA]); (B) induced CD
band of acridine moiety at various ratios r (c(ct-DNA) = 1�10-4 mol dm�3). Carried out at pH 7, Na cacodylate buffer, I = 0.05 M.
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of DNA targeting groups will be used in the hope of achieving
greater DNA affinity and enhanced antitumour activity.
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